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Die Bedeutung des Kraft- und Weggrdssenverfahrens fiir die Optimierung
von Tragwerken nach der Lagrange’schen Multiplikatorenmethode

The role of the Force- and Displacement-Method for the Optimization
of Structures with the Lagrangian-Multiplier-Technique

Rdle de la méthode des forces et des déformations dans I'optimisation
des structures selon la méthode de Lagrange

W. LIPP G. THIERAUF
Dipl. Ing. Prof. Dr.-Ing.
Universitat, Gesamthochschule Ruhr-Universitat
Essen, BRD Bochum, BRD

1. Problemstellung

Im Konstruktiven Ingenieurbau stehen heute eine Reihe leistungsfihiger
Berechnungsverfahren zur Verfligung. Das Dimensionieren von Tragwerken erfolgt
dagegen durch den Ingenieur, wobei Konnen und Erfahrung eine wesentliche Rolle
spielen. Kann man eine Gewichts— oder Kostenfunktion definieren, so 148t sich
dieses Problem als Optimierungsaufgabe formulieren, die als Folge der Bemes-
sungskriterien i.a. nichtlinear und nichtkonvex ist. Aus der Vielzahl der L&-
sungsverfahren zur Bestimmung eines lokalen Minimums [1/ wird hier das Verfah-
ren der Optimalitidtskriterien betrachtet, das eine problemorientierte Variante
der Lagrange 'schen Multiplikatorenmethode darstellt.

Dem Optimierungsmodell liegt ein durch n Elemente diskretisiertes Trag-
werk zugrunde. Es wird vorausgesetzt, daB fiir jedes Element i die Element-
flexibilitdt £i+) umgekehrt proportional von einer Querschnittsvariablen (Ent-
wurfsvariable) o; > 0 abhingt und daB sich das Gewicht des Tragwerkes als li-
neare Funktion (Zielfunktion) dieser Entwurfsvariablen darstellen 1l3Bt:

n n
W o= 2 w, = 2 Tii a, (n
i=1 i=]

Als Nebenbedingungen werden Spannungs- und Verformungsrestriktionen beriicksich-
tigt, wobeil oio und 6;9 die zuldssige Spannung des Elementes i bzw. die zu-
ldssige Verformung in Richtung des Freiheitsgrades j infolge Lastfall 1 be-
deutet. Zusitzlich kann eine Einschrankung der Variablen durch untere und obere
Schranken u‘].f bzw. ag vorgegeben werden. Damit ergibt sich folgende Optimie-
rungsaufgabe :

n
linimiere W o= 3 w. a.
i=]

unter Beriicksichtigung der Restriktionen

+ ¥ . 3 .
) Matrizen und Spaltenvektoren werden durch Unterstreichen gekennzeichnet, ein
hochgestelltes T bedeutet die Transponierte.
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o - 021 < o (i=1,...,n ; 1=1,...,p) , (2)
65 - 6‘;1 < 0 (3=1,...50 5 1=l,...,p) (3
a; - a; < O (i=1,...,0) (4)
a; - a7 g 0 £ o R (5)

Es bedeutet q die Anzahl der Freiheitsgrade und p die Anzahl der Lastfidlle.
Die Spannungen o und die Verformungen ¢é sind nichtlineare Funktionen der
Entwurfsvarieblen o« , so daB die Restriktionen einen nichtkonvexen L&sungsbe-
reich beschreiben. Da die Problematik bei einem Lastfall bzw. mehreren Last-
fillen dieselbe ist, wird im folgenden aus Griinden der Ubersichtlichkeit auf den
Belastungsindex 1 verzichtet.

2. _Notwendige und hinreichende Optimalit#tsbedingungen

Die Herleitung notwendiger Extremalbedingungen der nichtlinearen Optimier-
rungsaufgabe erfolgt mit der verallgemeinerten Lagrange 'schen Multiplikatoren-
methode [2/. Da s#mtliche Variablen a nichtnegativ definiert und alle Restrik-
tionen als Ungleichungen gegeben sind, sind diese Bedingungen hinreichend fiir
ein lokales Minimum der Zielfunktion /3/. Bezeichnet man mit G; <0 die allge-
meine Form der Restriktionen (2) und (3), so lautet die Lagrange'sche Funktion:

n
) + X g (ag -a)) . (6)

m n 5
J = W+ 3 A, G + 2 wu (a. - a.
i Vi i i

j=1 3 J ia *

Die Lagrange'schen Parameter Aj' vy und n; sind festgelegt durch:

\, 20, fur cj 2 0 (G=1,...,0) (7
. = u .

My > o , fiir a, > ai (i=1,...,n) (8)
. = o :

ns >0 , fiir a, < @ (i=1,...,n) (9)

Als notwendige und hinreichende Bedingung fiir einen stationiren Wert von W
missen die partiellen Ableitungen von J nach den Variablen o verschwinden.

Mit a(...)/aak = ("'),k erhilt man:

m
Wk + 2D ij T oMt = 0 (k=1,...,0) (10)
j=] b ]

Mit (8) und (9) folgt:

o
i 2 W’k %y a
- . 4 - . u [o]
3'%1 A G5y L , fur € o < a < o) ()
u
B b

Flir alle "passiven " Restriktionen G: <O 1ist nach (7) der Lagrange'sche Pa-
rameter A: gleich Null, so daB in dgr Optimalititsbedingung (11) nur die "ak-
tiven" Restriktionen Gj = 0 berlicksichtigt zu werden brauchen.
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3. Rekursionsformeln zur Bestimmung der optimalen Konstruktion

3.1 Aktive Verformungsrestriktionen

Einzelne VerformungsgrdBen kdnnen mit Hilfe des Prinzips der virtuellen
Krifte berechnet werden. Es gilt:

n n T
= = ] s ]
By = iZ=l €ij i{l S; £ 3 (G=1,...59") (12)

wobei e.. die virtuelle Verzerrungsenergie, S. die SchnittgrdBen infolge der
Belastuﬁé, §i die SchnittgrdoBen infolge der Yirtuellen Einheitsbelastung in
Richtung der gesuchten VerformungsgroBe des Elementes i und q' die Anzahl
der aktiven Verformungsrestriktionen darstellt. Als partielle Ableitung nach
den Variablen a (k=1,...,n) erhdlt man mit ekj = Ekj/uk :

k
- 2
S T TG %
Bezeichnet k € Nl eine "aktive" Variable a,  mit dem Wert aE <a < uz und
k € N2 eine "passive'" Variable mit a_ = a2 “oder a, = a® , so muR fiir alle
aktiven Variablen k € NI das Gleichheitszeichen in der Optimalitidtsbedingung

(11) erfiillt sein. Mit W K = Wk und (13) folgt:
1 ]

q _ 5 _
A, . = ;

j%l 5 % / @y v, (¥k € N1) (14)

Diese Gleichung stellt i.a. ein hochgradig nichtlineares Gleichungssystem mit

den Unbekannten A. (j=l,...,q9') und a (k=1,...,n) dar, das nur iterativ

geldst werden kann: Ist nur eine einzige Verformungsrestriktion zu beriicksich-

tigen, d.h.

(13)

o —_—

6. = 3 e ./la + 3 e. 5 (15)
] kent K3k e M

so liRt sich der Lagrange'sche Parameter A. eliminieren. Die Gleichungen (14)

aufgel8st nach uk (k € N1) wund in (15) eiAgesetzt, liefert:

o= (L0 X e W, )P mit & = %= 5 e .. (16)
J 6 KENI ] kenz

Bei mehreren aktiven Verformungsrestriktionen ist eine Bestimmung von A.
(j=1,...,9"') aus (14) nur dann moéglich, wenn e . / a‘° als invariant be-
trachtet werden. In diesem Fall stellt (l4) ein * {iberbestimmtes lineares Glei-
chungssystem in A dar:

6 A= E (17
mit G =|e./w uz] (18)

- kj k "k

und E = {I,...,l} fiir alle k € NI und j=1,...,q'. Mit Hilfe der ersten
GauB'schen Transformation kann eine Lésung fiir A gefunden werden. Es gilt:

=[] e (19)
In Bezug auf die urspriingliche Gleichung (17) stellt ) die beste Losung im
Sinne der kleinsten Quadrate dar. Mit den bekannten A-Werten und der Annahme
invarianter GrdBen @, : (bei stat. best. Systemen) entkoppelt sich das Glei-
chungssystem (14), so daB die aktiven Variablen o (k € N1) bestimmt werden
kdnnen:

]
o = (X A 5. /w2 (20)
k jai 3 k) k
Bei stat. unbest. Systemen sind die GrdBen e,. komplizierte Funktionen von

a . Da sich eine Anderung von o in erster JLinie auf die SchnittgrdBen des

k
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Elementes k auswirkt, kann (20) iterativ angewendet werden, d.h.

q|
v+1l v —v - 1/2
%k ¢ j‘§, Ao ) : 21
wobei v den Iterationsschritt kennzeichnet und A" j=|,...,q¢) fiir q'=1
aus (16) bzw. fiir q' 2 2 aus (19) mit den Werten 1&g, und «a berechnet
wird. Da die passiven Variablen « (k € N2) 1i.a. J nicht im voraus be-

kannt sind, muB ihre Bestimmung ebenfalls iterativ erfolgen. Dabei kdnnen die

Schranken a% und a° durch die Bedingungsgleichungen
o v+1
>
a o 2 o
v+l v+l . u v+l o
a = @ fiir ak < ak < ak (22)

u v+l u

4 kS %

beriicksichtigt werden. Alle Variablen, fiir die a¥ bzw. o maBgebend ist,

werden in der nidchsten Iteration zu den passiven gezihlt.

3.2 Aktive Spannungsrestriktionen

Sind ausschlieBlich Spannungsbeschrinkungen vorgeschrieben, so kann die
Bestimmung der Variablen a nach der bekannten "stress-ratio'- Methode [4] er-
folgen, in der jedes Element entsprechend seiner spannungsmiBigen Auslastung
dimensioniert wird. Es gilt:

v+l v v o]

a a 'ok / O i (23)
wobei o die mafRgebende Spannung des Elementes k im v~ten Iterationsschritt
bedeutet. Als Ergebnis erhilt man eine sogenannte '"voll-beanspruchte" Konstruk-
tion, die in jedem Element die zulissige Spannung ausnutzt, wenn nicht der durch

GE festgelegte minimale Querschnitt maRgebend ist.

Bei aktiven Verformungsrestriktionen k&nnen Spannungsbeschrinkungen beriick-
sichtigt werden, wenn man in jeder Iteration die nach (23) berechneten o-Werte
in der Bestimmungsgleichung (22) als zusitzliche untere Schranken auffaBt.

3.3 Konvergenz des Verfahrens

Die Anwendung der Gleichungen (16), (19), (21) bis (23) verlangt nach je-
der Iteration eine vollstindige Berechnung der Konstruktion. Um jeweils eine zu-
ldissige Losung zu erhalten, werden sidmtliche Variablen @’ mit einem globalen
Skalierungsfaktor multipliziert, so daB keine der Restriktionen (2) und (3) ver-
letzt und mindestens eine identisch erfiillt wird. Danach erfolgt die Bestimmung
der aktiven Verformungsrestriktionen, wobei alle Verformungen, die im Verlauf
des Iterationsprozesses einmal ihren zulidssigen Wert erreicht haben, weiterhin
zu den aktiven gezdhlt werden. Ergibt sich jedoch nach (19) ein negativer A-Wert
so mufl die entsprechende Restriktion aufgrund der Nichtnegativititsbedingung (7)
wieder eliminiert werden. Erst wenn alle aktiven Verformungen bekannt sind, ist
mit einer schnellen Konvergenz zu rechnen. Das Konvergenzverhalten kann durch
eine Begrenzung der Schrittweite in aufeinanderfolgenden Iterationen beeinfluft
werden. Mit

:+l - u: (k=1,...,n)
ist die optimale Konstruktion gefunden, fiir die das Gewicht ein (lokales) Mini-
mum annimmt,
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4, Die Bedeutuggrdes Kraft- und WeggriBenverfahrens

Bisher wurde nur das Iterationsverfahren zur Lésung der Optimierungsauf-
gabe betrachtet, Uber die Lagrange'schen Parameter A bei mehreren aktiven Re-
striktionen wurde im Sinne der kleinsten Quadrate verfiigt. Im Vergleich mit an-
deren Verfahren [4] ergibt sich hierdurch ein stabiles Konvergenzverhalten bei
nur wenigen Iterationsschritten. Die wiederholte Berechnung des Tragwerkes nach
der Finiten-Elementmethode erfordert bei den vorliegenden Problemen einen erheb-
lichen Rechenaufwand und verdient damit besondere Beachtung. Ohne auf die Mog-
lichkeiten der Ableitung von Elementmatrizen [5/ einzugehen, werden hier nur
die L&sungsverfahren betrachtet. Diese Verfahren folgen direkt aus den klassi-
schen Minimalprinzipien elastischer Tragwerke.

Das Prinzip vom Minimum der Potentiellen Energie

Min{-;—éTEQ-BTQ} ; (24)
mit der positiv definiten Gesamtsteifigkeitsmatrix K, den Lasten P und
den Verschiebungen &6 , liefert als notwendige und hinreichende Bedingung die
Grundgleichung der Verschiebungemethode:

K6 = P . (25)

Das Prinzip vom Minimum der Komplementdrenergie

Min{-;-gTig §§=g} , (26)
mit der Hyperdiagonalmatrix f der Elementflexibilitdtsmatrizen, den verallge-
meinerten Spannungen S wund der Gleichgewichtsmatrix N ergibt die Grundglei-

chungen der Kraftmethode:

NS = P (Gleichgewicht) ,
T (27)
B £S = 0 (Vertridglichkeit) .
-—x—-—
Ei ist der Kern der Gleichgewichtsmatrix (E_Ei = 0) .

dert im allgemeinen die Verschiebungsmethode: Der einfache Aufbau, die positive
Definitheit und Bandstruktur der q x q Matrix K erleichtert die Berechnung.
Bei einer mehrmaligen Berechnung des Tragwerkes mit variabler Flexibilitdt f
zeigt jedoch die Kraftmethode gewisse Vorteile: Die q Gleichgewichtsgleichungen
(27) miissen nur einmalig geldst werden, die Vertrdglichkeitsbedingungen lassen
sich einfacher darstellen und mit geringerem Aufwand fiir jede Wiederbemessung
16sen. Als Losung erhidlt man die n SchnittgrdBen S. zur Iteration nach (12).
Mit dem in /6/ niher beschriebenen Ldsungsverfahren kann zudem die Bandstruktur
der Gleichgewichtsgleichungen gewahrt werden. Ein genauer Vergleich des numeri-
schen Aufwandes beider Methoden fiihrte zu dem Ergebnis, daB mit steigender Zahl
der Wiederbemessungen der Aufwand A, der Kraftmethode abnimmt. Das Verhdltnis
des Aufwandes der Verschiebungsmethode zur Kraftmethode nimmt jedoch bei
wachsendem n/q ab. In den fiir die Praxis wichtigen Stabtragwerken ist jedoch
i.a. n/q < 2 . Fiir ein System mit 1000 Freiheitsgraden der Verschiebung und ei-
nem speziellen Elementtyp (s) ergibt sich die in Bild | dargestellte Abhingig-
keit [6/.

Umfangreiche numerische Untersuchungen /[7/ an den aus der Literatur bekann-
ten optimalen Tragwerken bestitigen in allen Fillen die Uberlegenheit der Kraft-
methode.
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20 . )
Anzohi d Freiheitsgrade ©  n=1000
Elemenityp: s=20
W Anzohl der Iterationen © V
O
L5 <
N \
Q
<
2
e 10 - - e
3 N v =8
D
g 2
05 e
it Kraftmethode
i oufwendiger

n/q

Bild 1: Vergleich der Kraft— und
Verschiebungsme thode

Lastfall | Knoten (Pz=-1000 1bs)

1

1-4,7-13,19-28,37
1-37

1,4-7,13-19,28-37

SN —

Tabelle 1: Belastungsangaben

240 IN.

Bild 2: Fachwerkkuppel
5. Numerische Ergebnisse

Die Zuverlissigkeit des Optimierungsverfahrens soll hier an einem ausge-
wihlten Beispiel gezeigt werden. Die in Bild 2 dargestellte Fachwerkkuppel, die
in den Knoten 38 - 61 unverschieblich gelagert ist, wird durch vier Lastfille
beansprucht. Die genauen Belastungsangaben sind in Tabelle | zusammengestellt.
Als Material wird Aluminium mit einem Elastizititsmodul von E = 107 psi und dem
spezifischen Gewicht von p = 0.1 1lbs/in3 verwendet. Fiir alle Stibe betridgt der
minimale Querschnitt 0.1 in? , wobei die zulissige Spannung von + 25000 psi
nicht {iberschritten werden darf. Die Verschiebungen simtlicher Freiheitsgrade in
z-Richtung werden auf # 0.l in. begrenzt. Alle Entwurfsbedingungen sind mit denen
aus /8/ identisch.

Ausgehend von einer zulissigen Konstruktion mit querschnittsgleichen Stiben
(Wl=358.85 1bs) wird die optimale Kuppel nach 15 Iterationen und einem Gewicht
von 161.63 1bs gefunden, das um 10.77

il geringer ist als in /8/ . Wihrend zu
Beginn der Optimierung nur die Ver-
T \ w2 35005 schiebung von Knoten 1 (LF 1) den
20 1= maximal erlaubten Wert von -0.1 in.
2M-——-§z erreicht, sind von der 13. Iteration
590 O an 4] Verformungsrestriktionen zu
20 beriicksichtigen, die jeweils durch
o0 @ | einen der 4 Lastfille aktiviert wur-
@ den. Spannungen waren in keiner Pha-
we \\ se des Iterationsprozesses maRgebend.
180 “~£25 Bild 3 zeigt das stabile Konvergenz-—
170 '“““i;LJ————C) verhalten, wobei insgesamt eine Ge-
B \\h~"_“'ﬁk: wichtsreduktion von 557 erreicht wird.
= ! ! l | Die Querschnittsflichen der optimalen
r2 03 ¢ s s 7 8 9 wom 22 2k 5V Kyppel, die symmetrisch zu den beiden

Bild 3: Iterationsverlauf Achsen 38-50 und 44-56 ausgebildet
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ist, sind in Tabelle 2 zusammengestellt. Bei n/q=1.19 konnte die Kraftmethode
duBerst wirtschaftlich eingesetzt werden. Die Rechenzeit (TR 440) betrug nur
182 sec.

Stab | Flache Stab | Flache Stab | Fliche Stab | Fldche
4 11.0176 36 0.4831 | 62 | 0.3177 111 0.1003
511.1732 371 0.3051 63 | 0.6572 112 ] 0.2403
9 10.9720 38| 0.3514 80 | 0.3062 113} 0.3088
10 | 0.8322 56 | 0.3207 81 10.2128 114 | 0.1429

21| 0.2990 571 0.1904 82 | 0.1003 115 | 0.5000
22 |1 0.3395 58| 0.3378 83 | 0.1003 116 | 0.1003
231 0.5773 59 | 0.3431 84 | 0.3347 117 | 0.4381
24 | 0.4148 60| 0.29 6 109 | 0.1003 118 | 0.3312
25 [ 0.6776 61| 0.5494 110 | 0.4961 119 1 0.1003

Tabelle 2: Optimale Querschnittsfldchen (in?) eines Quadranten
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ZUSAMMENFASSUNG
Es wird eine spezielle Anwendung der Lagrange'schen Multiplikatoren-
methode, die als Verfahren der Optimalitdtskriterien bekannt wurde, dar-

gestellt. Eine lineare Transformation der Lagrange-Parameter fihrte zu
einer schnellen und gleichmdssigen Konvergenz.

SUMMARY

A special application of the Lagrangian-Multiplier-Technique, known as
the optimality-criterion-method, is presented. A simple linear transfor-
mation of the Lagrange parameters leads to fast and uniform convergence.

RESUME

Une application spéciale de la technique des multiplicateurs de Lagrange,
dite méthode des critéres d'optimisation est présentée. Une transformation
linéaire entralne une convergence rapide et uniforme.
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