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IIa

Die Bedeutung des Kraft- und Weggrössenverfahrens für die Optimierung
von Tragwerken nach der Lagrange'schen Multiplikatorenmethode

The role of the Force- and Displacement-Method for the Optimization
of Structures with the Lagrangian-Multiplier-Technique

Röle de la methode des forces et des deformations dans l'optimisation
des structures selon la methode de Lagrange

W. LIPP G. THIERAUF
Dipl. Ing. Prof. Dr.-Ing.

Universität, Gesamthochschule Ruhr-Universität
Essen, BRD Bochum, BRD

1. Problemstellung

Im Konstruktiven Ingenieurbau stehen heute eine Reihe leistungsfähiger
Berechnungsverfahren zur Verfügung. Das Dimensionieren von Tragwerken erfolgt
dagegen durch den Ingenieur, wobei Können und Erfahrung eine wesentliche Rolle
spielen. Kann man eine Gewichts- oder Kostenfunktion definieren, so läßt sich
dieses Problem als Optimierungsaufgabe formulieren, die als Folge der
Bemessungskriterien i.a. nichtlinear und nichtkonvex ist. Aus der Vielzahl der
Lösungsverfahren zur Bestimmung eines lokalen Minimums [\J wird hier das Verfahren

der Optimalitätskriterien betrachtet, das eine problemorientierte Variante
der Lagrange'schen Multiplikatorenmethode darstellt.

Dem Optimierungsmodell liegt ein durch n Elemente diskretisiertes Tragwerk

zugrunde. Es wird vorausgesetzt, daß für jedes Element i die
Elementflexibilität £±*' umgekehrt proportional von einer Querschnittsvariablen
(Entwurfsvariable) <i£ > 0 abhängt und daß sich das Gewicht des Tragwerkes als
lineare Funktion (Zielfunktion) dieser Entwurfsvariablen darstellen läßt:

n n
W - X w. - 7 w. o. (1)

• i s. ..11i=I i-l
Als Nebenbedingungen werden Spannungs- und Verformungsrestriktionen berücksichtigt,

wobei o-? und 6-9 die zulässige Spannung des Elementes i bzw. die
zulässige Verformung in Richtung des Freiheitsgrades j infolge Lastfall 1

bedeutet. Zusätzlich kann eine Einschränkung der Variablen durch untere und obere
Schranken aV bzw. a? vorgegeben werden. Damit ergibt sich folgende
Optimierungsaufgabe :

n
Minimiere W - T w. a.

i-l
unter Berücksichtigung der Restriktionen

Matrizen und Spaltenvektoren werden durch Unterstreichen gekennzeichnet, ein
hochgestelltes T bedeutet die Transponierte.
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°il - 0

"ii IIA 0

6jl - >°» IIA 0

ua.
1 - a.l IIA 0

a.l - 0
a.i IIA 0

(i"l n ; 1-1 p)

(j-1 q 5 1"1 p)

(i=l n)

(i»l,...,n)

(2)

(3)

(4)

(5)

Es bedeutet q die Anzahl der Freiheitsgrade und p die Anzahl der Lastfälle.
Die Spannungen a und die Verformungen 6 sind nichtlineare Funktionen der
Entwurfsvarieblen a_ so daß die Restriktionen einen nichtkonvexen Lösungsbereich

beschreiben. Da die Problematik bei einem Lastfall bzw. mehreren
Lastfällen dieselbe ist, wird im folgenden aus Gründen der Übersichtlichkeit auf den
Belastungsindex 1 verzichtet.

2. Notwendige und hinreichende Optimalitätsbedingungen

Die Herleitung notwendiger Extremalbedingungen der nichtlinearen Optimier-
rungsaufgabe erfolgt mit der verallgemeinerten Lagrange'schen Multiplikatorenmethode

[2j. Da sämtliche Variablen ot_ nichtnegativ definiert und alle Restriktionen

als Ungleichungen gegeben sind, sind diese Bedingungen hinreichend für
ein lokales Minimum der Zielfunktion [2j. Bezeichnet man mit Gj < 0 die allgemeine

Form der Restriktionen (2) und (3), so lautet die Lagrange1sehe Funktion:

W + Z. X. G. +

j-1 j j £ "i (ai - -i> X. n. (a. - a.)ii li»l
(6)

Die Lagrange'schen Parameter A., u. und n. sind festgelegt durch:

(j-1,...,m)

(i»l n)

(i-l,...,n)

A.
J

All 0 > für G. <
J

0

"i All 0 * für a. >l
u

0
1

n.i All 0 f für a. Zl
o

a.l

(7)

(8)

(9)

Als notwendige und hinreichende Bedingung für einen stationären Wert von W

müssen die partiellen Ableitungen von J nach den Variablen tx verschwinden.
Mit 6(...)/8a, erhält man:

m

Z o.
j-i

Mit (8) und (9) folgt

m

X X. G.

j-1 J J'k

j,k " "lc +

V

(k-1,...,»)

für •< < a < <*:

(10)

(in

Für alle "passiven " Restriktionen G: <0 ist nach (7) der Lagrange'sehe
Parameter A. gleich Null, so daß in der Optimalitätsbedingung (11) nur die
"aktiven" Restriktionen G- - 0 berücksichtigt zu werden brauchen.
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3. Rekursionsformeln zur Bestimmung der optimalen Konstruktion

3.1 Aktive Verformungsrestriktionen

Einzelne Verformungsgrößen können mit Hilfe des Prinzips der virtuellen
Kräfte berechnet werden. Es gilt:

6, - £ e.. - X ßhh (j"' q,) ' (12)
J i=l J i-l

wobei e.. die virtuelle Verzerrungsenergie, S. die Schnittgrößen infolge der
Belastung, S. die Schnittgrößen infolge der virtuellen Einheitsbelastung in
Richtung der gesuchten Verformungsgröße des Elementes i und q' die Anzahl
der aktiven Verformungsrestriktionen darstellt. Als partielle Ableitung nach
den Variablen a, (k=l n) erhält man mit e, e~, /a :

Gj,k -\j'\ •

u

<'»

Bezeichnet k C NI eine "aktive" Variable a, mit dem Wert a < a, < a, und
k C N2 eine "passive" Variable mit a, - a" oder a, a° so muß für alle
aktiven Variablen k € NI das Gleichheitszeichen in der Optimalitätsbedingung
(11) erfüllt sein. Mit W - w und (13) folgt:

X X. e I cx\ w (Vk C NI) (14)
j-1 J RJ

Diese Gleichung stellt i.a. ein hochgradig nichtlineares Gleichungssystem mit
den Unbekannten A. (j=l,...,q') und afc (k=l,...,n) dar, das nur iterativ
gelöst werden kann. Ist nur eine einzige Verformungsrestriktion zu berücksichtigen,

d.h.
6° X e / a + X e (15)

J kGNl K;l kGN2 J

so läßt sich der Lagrange'sehe Parameter A. eliminieren. Die Gleichungen (14)
aufgelöst nach a (k G NI) und in (15) eingesetzt, liefert:

A- -* X V ek. w
"

)2 mit 6* - 6° - X e (16)
J 6 kGNl J k kCN2 KJ

Bei mehreren aktiven Verformungsrestriktionen is_t eine Bestimmung von A.

(j=I,...,q') aus (14) nur dann möglich, wenn e, / cC als invariant
betrachtet werden. In diesem Fall stellt (14) ein " überbestimmtes lineares
Gleichungssystem in A^ dar:

G A - E (17)

mit - " | e'-- v<- a'Z 1 (18)
2

*kj ' "k \
und E_ » { I,..., l) für alle k C NI und j-1 q' Mit Hilfe der ersten
Gauß'sehen Transformation kann eine Lösung für X gefunden werden. Es gilt:

h'4 1 GT E (19)

In Bezug auf die ursprüngliche Gleichung (17) stellt A^ die beste Lösung im
Sinne der kleinsten Quadrate dar. Mit den bekannten ^-Werten und der Annahme

invarianter Größen e. • (bei stat. best. Systemen) entkoppelt sich das
Gleichungssystem (14), so daß die aktiven Variablen a. (k C NI) bestimmt werden
können:

«k - (X *j ekj /wk)
1/2

(20)

Bei stat. unbest. Systemen sind die Größen e, komplizierte Funktionen von

£ Da sich eine Änderung von o in erster JLinie auf die Schnittgrößen des
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A* /

Elementes k auswirkt, kann (20) iterativ angewendet werden, d.h.

„v+l £ P^ ,:r 1/2

j-1
wobei v den Iterationsschritt kennzeichnet und \".
aus (16) bzw. für q' > 2 aus (19) mit den Werten

—v

Jekj (21)

U*'
wird. Da die passiven Variablen a (k G N2) i.a. 'kj

1,...
und

nicht

für q'-l
berechnetVim voraus

bekannt sind, muß ihre Bestimmung ebenfalls iterativ erfolgen. Dabei können die
Schranken otu und

v+1

durch die Bedingungsgleichungen

v+1
k
v+1\
u

für °k<
v+1

v+1
< a. (22)

<=\
berücksichtigt werden. Alle Variablen, für die au bzw. a° maßgebend ist,
werden in der nächsten Iteration zu den passiven gezählt.

3.2 Aktive Spannungsrestriktionen

Sind ausschließlich Spannungsbeschränkungen vorgeschrieben, so kann die
Bestimmung der Variablen c^ nach der bekannten "stress-ratio"- Methode fh]
erfolgen, in der jedes Element entsprechend seiner spannungsmäßigen Auslastung
dimensioniert wird. Es gilt:

v+1 <> (23)

wobei o, die maßgebende Spannung des Elementes k im v-ten Iterationsschritt
bedeutet. Als Ergebnis erhält man eine sogenannte "voll-beanspruchte" Konstruktion,

die in jedem Element die zulässige Spannung ausnutzt, wenn nicht der durch
o. festgelegte minimale Querschnitt maßgebend ist.

Bei aktiven Verformungsrestriktionen können Spannungsbeschränkungen
berücksichtigt werden, wenn man in jeder Iteration die nach (23) berechneten a-Werte
in der Bestimmungsgleichung (22) als zusätzliche untere Schranken auffaßt.

3.3 Konvergenz des Verfahrens

Die Anwendung der Gleichungen (16), (19), (21) bis (23) verlangt nach
jeder Iteration eine vollständige Berechnung der Konstruktion. Um jeweils eine
zulässige Lösung zu erhalten, werden sämtliche Variablen a mit einem globalen
Skalierungsfaktor multipliziert, so daß keine der Restriktionen (2) und (3)
verletzt und mindestens eine identisch erfüllt wird. Danach erfolgt die Bestimmung
der aktiven Verformungsrestriktionen, wobei alle Verformungen, die im Verlauf
des Iterationsprozesses einmal ihren zulässigen Wert erreicht haben, weiterhin
zu den aktiven gezählt werden. Ergibt sich jedoch nach (19) ein negativer A-Wert
so muß die entsprechende Restriktion aufgrund der Nichtnegativitätsbedingung (7)
wieder eliminiert werden. Erst wenn alle aktiven Verformungen bekannt sind, ist
mit einer schnellen Konvergenz zu rechnen. Das Konvergenzverhalten kann durch
eine Begrenzung der Schrittweite in aufeinanderfolgenden Iterationen beeinflußt
werden. Mit

v + 1 v rs s \«H, " «i, (k"' n)

ist die optimale Konstruktion gefunden, für die das Gewicht ein (lokales) Minimum

annimmt.
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4. Die Bedeutung des Kraft- und Weggrößenverfahrens

Bisher wurde nur das Iterationsverfahren zur Lösung der Optimierungsaufgabe
betrachtet. Über die Lagrange'schen Parameter A^ bei mehreren aktiven

Restriktionen wurde im Sinne der kleinsten Quadrate verfügt. Im Vergleich mit
anderen Verfahren [kj ergibt sich hierdurch ein stabiles Konvergenzverhalten bei
nur wenigen Iterationsschritten. Die wiederholte Berechnung des Tragwerkes nach
der Finiten-Elementmethode erfordert bei den vorliegenden Problemen einen
erheblichen Rechenaufwand und verdient damit besondere Beachtung. Ohne auf die
Möglichkeiten der Ableitung von Elementmatrizen f5j einzugehen, werden hier nur
die Lösungsverfahren betrachtet. Diese Verfahren folgen direkt aus den klassischen

Minimalprinzipien elastischer Tragwerke.

Das Prinzip vom Minimum der Potentiellen Energie

Min I j £T K £ - P_T ^ [

mit der positiv definiten Gesamtsteifigkeitsmatrix K, den Lasten P_ und
den Verschiebungen 6 liefert als notwendige und hinreichende Bedingung die
Grundgleichung der Verschiebungemethode:

K£ - _P (25)

Das Prinzip vom Minimum der Komplementärenergie

(24)

f 1 T I

Min J j £ f_ £ N £ P } (26)

(27)

mit der Hyperdiagonalmatrix _f der Elementflexibilitätsmatrizen, den
verallgemeinerten Spannungen S_ und der Gleichgewichtsmatrix N_ ergibt die Grundgleichungen

der Kraftmethode;

N_ £ - P_ (Gleichgewicht)

BT
f_ £ - 0 (Verträglichkeit)

T T
]ä ist der Kern der Gleichgewichtsmatrix (N_ B_ - 0

Den geringsten Aufwand für die einmalige Berechnung eines Tragwerkes erfordert
im allgemeinen die Verschiebungsmethode: Der einfache Aufbau, die positive

Definitheit und Bandstruktur der q x q Matrix K erleichtert die Berechnung.
Bei einer mehrmaligen Berechnung des Tragwerkes mit variabler Flexibilität f_

zeigt jedoch die Kraftmethode gewisse Vorteile: Die q Gleichgewichtsgleichungen
(27) müssen nur einmalig gelöst werden, die Verträglichkeitsbedingungen lassen
sich einfacher darstellen und mit geringerem Aufwand für jede Wiederbemessung
lösen. Als Lösung erhält man die n Schnittgrößen S. zur Iteration nach (12).
Mit dem in £6j näher beschriebenen Lösungsverfahren kann zudem die Bandstruktur
der Gleichgewichtsgleichungen gewahrt werden. Ein genauer Vergleich des numerischen

Aufwandes beider Methoden führte zu dem Ergebnis, daß mit steigender Zahl
der Wiederbemessungen der Aufwand A- der Kraftmethode abnimmt. Das Verhältnis
des Aufwandes Aj. der Verschiebungsmethode zur Krafttnethode nimmt jedoch bei
wachsendem n/q ab. In den für die Praxis wichtigen Stabtragwerken ist jedoch
i.a. n/q < 2 Für ein System mit 1000 Freiheitsgraden der Verschiebung und
einem speziellen Elementtyp (s) ergibt sich die in Bild 1 dargestellte Abhängigkeit

[dj.
Umfangreiche numerische Untersuchungen [lj an den aus der Literatur bekannten

optimalen Tragwerken bestätigen in allen Fällen die Überlegenheit der
Kraftmethode.
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Anioni C Fretheitsgracie ru lOOO

Eierr.enttyp s* 20
Ansaht der Iterationen V

<1.5

v W
a 1.0

X'O'imethode
Outtvendiger

n/q

Bild 1: Vergleich der Kraft- und
Verschiebungsmethode

Lastfall Knoten (P ^1000 lbs)z
1

2

3
4

1

1-4,7-13,19-28,37
1-37

1,4-7,13-19,28-37

Tabelle 1: Belastungsangaben

5. Numerische Ergebnisse

4

com

Bild 2: Fachwerkkuppel

W llbsl

Die Zuverlässigkeit des Optimierungsverfahrens soll hier an einem
ausgewählten Beispiel gezeigt werden. Die in Bild 2 dargestellte Fachwerkkuppel, die
in den Knoten 38-61 unverschieblich gelagert ist, wird durch vier Lastfälle
beansprucht. Die genauen Belastungsangaben sind in Tabelle 1 zusammengestellt.
Als Material wird Aluminium mit einem Elastizitätsmodul von E 10^ psi und dem

spezifischen Gewicht von P 0.1 lbs/in? verwendet. Für alle Stäbe beträgt der
minimale Querschnitt 0.1 in? wobei die zulässige Spannung von + 25000 psi
nicht überschritten werden darf. Die Verschiebungen sämtlicher Freiheitsgrade in
z-Richtung werden auf +0.1 in. begrenzt. Alle Entwurfsbedingungen sind mit denen
aus ßlj identisch.

Ausgehend von einer zulässigen Konstruktion mit querschnittsgleichen Stäben
(W.-358.85 lbs) wird die optimale Kuppel nach 15 Iterationen und einem Gewicht

von 161.63 lbs gefunden, das um 10.7%
geringer ist als in f8j Während zu
Beginn der Optimierung nur die
Verschiebung von Knoten 1 (LF 1) den
maximal erlaubten Wert von -0.1 in.
erreicht, sind von der 13. Iteration
an 41 Verforraungsrestriktionen zu
berücksichtigen, die jeweils durch
einen der 4 Lastfälle aktiviert wurden.

Spannungen waren in keiner Phase

des Iterationsprozesses maßgebend.
Bild 3 zeigt das stabile Konvergenzverhalten,

wobei insgesamt eine
Gewichtsreduktion von 55% erreicht wird.
Die Ouerschnittsflachen der optimalen
Kuppel, die symmetrisch zu den beiden
Achsen 38-50 und 44-56 ausgebildet

\\ w, 358.85

\

©\ ©
\ l

\

\ -,,3)H
^® [

1
\~~~">~. << •)

1

i

I6E

—\
6J

tO 11 12 13 lt 15

Bild 3: Iterationsverlauf
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ist, sind in Tabelle 2 zusammengestellt. Bei n/q=1.19 konnte
äußerst wirtschaftlich eingesetzt werden. Die Rechenzeit (TR
182 see.

die Kraftmethode
440) betrug nur

Stab Fläche Stab Fläche Stab Fläche Stab Fläche

k 1.0176 36 0.4831 62 0.3177 111 0.1003
5 1.1732 37 0.3051 63 0.6572 112 0.2403
9 0.9720 38 0.3514 80 0.3062 113 0.3088

10 0.8322 56 0.3207 81 0.2128 114 0.1429
21 0.2990 57 0.1904 82 0.1003 115 0.5000
22 0.3395 58 0.3378 83 0.1003 116 0.1003
23 0.5773 59 0.3431 84 0.3347 117 0.4381
24 0.4148 60 0.29 6 109 0.1003 118 0.3312
25 0.6776 61 0.5494 110 0.4961 119 0.1003

Tabelle 2: Optimale Querschnittsflächen (in?) eines Quadranten
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ZUSAMMENFASSUNG

Es wird eine spezielle Anwendung der Lagrange'schen Multiplikatorenmethode,
die als Verfahren der Optimalitätskriterien bekannt wurde,

dargestellt. Eine lineare Transformation der Lagrange-Parameter führte zu
einer schnellen und gleichmässigen Konvergenz.

SUMMARY

A special application of the Lagrangian-Multiplier-Technique, known as
the optimality-criterion-method, is presented. A simple linear transformation

of the Lagrange parameters leads to fast and uniform convergence.

RESUME

Une application speciale de la technique des multiplicateurs de Lagrange,
dite methode des criteres d'optimisation est presentee. Une transformation
linSaire entraine une convergence rapide et uniforme.

Bg. 9 vs
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