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Optimum Design of Steel Frame Subjected to Dynamic Earthquake Forces

Calcul optimal de cadres métalliques soumis aux forces dynamiques des
tremblements de terre

Optimierung von Stahlrahmen unter dynamischer Erdbebenlast

HIDETAKE ANRAKU
Researcher
Technical Research Institute, Ohbayashi-Gumi Ltd.
Tokyo, Japan

1. INTRODUCTION

The mathematical programing technique has already been adopted for the

1,2
optimization of the structures subjected to the dynamic excitations. Most of

these optimizations were dealt with beams, trusses or frames, subjected to
simple excitations such as harmonic waves or shock waves, and designed under
rather simple elastic constraints.

However, in case of earthquake loadings it becomes important to estimate
the dynamic forces correctly using the available model for the elastic design,
and to take into account the inelastic behaviour of structures during the very
strong ground motion.

Considering these problems, this paper presents a method for the automated
minimum weight design of wide-flange steel frames which gives the optimum
distribution of the moment of inertia of used members.

2. DYNAMIC ANALYSIS

An idealized dynamic model consist of bedrock, ground layres and a structure
is considered (see Fig. 1). Ground excitations are given by the model presented
by Kanai and Tajimi, and the dynamic response of the structure to this ground
motion is estimated by means of the random vibration theory and Davenport's
equation which gives the expected maximum value of a random process.

2.1 Vibration of Ground Surface

Kanai and Tajimi has presented the idea that spectrum observed at bedrock
is characterized by a constant pattern (white noise), while the spectrum at the
ground surface is amplified by the vibration property of the ground layre and

showed apower spectrum of this ground surface as follows:

1 + 4h 2(=2)2
gk (wgk)

5156 (1)
k=l 1 4 (4hgk2-2)(r§k)2 + (F-gﬁ“ <

where h,, and wgk are ground damping factor and predominant frequency, respective-
ly, S, is a constant power spectrum density function and where sy is a factor
which measures predominence of each component. This excitation of ground

surface becomes Gaussian process of zero mean.

2.2 Dynamic Response of Structure

The variance of elastic response of the structure subjected to the ground
motion mentioned above can be obtained by means of random vibration theory. Let
Qs and Gg_be the variance of story shear force and its time derivative,
respectively.
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4
Following Davenport, the mean value of possible maximum elastic response of _
story shear force can be given as

Q__: (2!{}_ vT)% + %12__1_ (2)
(2fn v1)?
where v = —i— Eﬁi- T
= 5% To.

and T represents the duration of the strong earthquake excitation which is fixed
10 seconds in this paper.

For very strong ground motion, the response of the structure is considered
to be inelastic, and the -relative displacements of each floor are estimated

following the idea of Newmark and et al. Equating the inelastic potential
energy of deformation to the elastic one which can be obtained supposing that
the structure responses elastically, the maximum ductility factor of floor
drift, {{, can be obtained as follows (see Fig. 2);

' 1 1 B 2
= +
M= =+ 5 ) (5)
Where(ly may be thought of as the yield level of the story shear force, and can

be obtained by means of a simple plastic analysis assuming the mechanism of
beam collapse type or column collapse one for each story.
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Fig. 1 Dynamic Model Fig. 2 Definition of Ductility Factor

3. DESIGN CONSTRAINTS

For the moderate earthquakes which give such a dynamic force as usually
presented in the design code, the members of the frame are designed elastically
in accordance with the design code of steel structure of Architectural Institute
of Japan (A.I.J). On the other hand, for the very severe earthquake, which is
rarely expected during their service lives, the frame 1is designed plastically
relying on the energy absorption which due to their inelastic deformation.

In this design procedure, the maximum ductility factor given by Eq.(}) is
constrained less than the allowable value which is fixed 4 in this paper.

To satisfy these ductility requirements, it is necessary for the frame to
prevent the weakening of the load-deflection curves caused by the lateral or
local buckling of members and P - A effects.

These problems are taken into account according to the plastic design code
of steel structure of A.I.J.. Namely, lateral buckling is prevented by the
correctly designed stiffners, and local buckling is prevented by selecting the
members which are on market to satisfy the width-thickness ratio of plate
elements imposed by the code mentioned above, or designing each member in-
accordance with these requirements after the optimum stiffness distribution of
frame member is decided. Moreover to avoid the excessive P - A effects, the
slenderness ratios and the axial compressive forces of columns are ristricted by
the code requirements.
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4. OPTIMIZATION

Wide-flange steel members on market are supposed to be mainly used in the
design. The moment of inertia of them, I, are the design variables and objective
function is the total weight of structural members. The emprical relationships
between member properties which are required in the design code and moment of
inertia of economical series of the steel wide-flange section was obtained by
plotting them. The calculation was proceeded using these equations and treating
the moment of inertia as continious design variable.

Sequential linear programming (s.L.P.) technique was successfully adopted for
the optimization of the frames. Objective function and constraint equations were
approximately linearlized, and using linear programming technique, the optimumly
modefied design variables were obtained at each design step. Repeating this
procedure, the optimum solusion, namely the distribution of moment of inertia of
members which gives the minimum weight of structural members, was obtained.

5. SENSITIVITY ANALYSIS

To optimize the structure by means of S.L.P. technique, the change of
member stress and deformation caused by the modefication of each members must be
quantitively estimated as the first order derivative of these values with respect
to the design variables.

Let P be the vector of external nodal forces of global coordinate, and X
and XK be the corresponding nodal displacement vector and stiffness matrix. Using
these notations

-1

X=K"P (4)

Therefore, the derivative of nodal displacements with respect to design
variable, I, is obtained as follows;

=9 xl.p sl p (5)
oI

The second term of the right hand side of the above equation contain the
derivative of the dynamic loads which vanish in the static problems. If these
values are obtained, the sensitivity coefficients of the stresses and deflections
can be evaluated applying the same procedure adopted for the static problems.

As the dynamic loads which is evaluated by means of random vibration theory
become the explicit function of natural frequencies and modg vectors of structure,

if the sensitivity coefficients of these values are evaluated, then that of these
dynamic loads can be obtained without difficulty.

6. NUMERICAL EXAMPLE
The method previously mentioned is
applied to the design of three-story

frames of equal span length, 6m, and TYPE| Tgi | hgi | A1 | Tgz | haz | e
equal story height, 3m, with uniformly

distributed load, w, on beams, subjected I o3los | 1o

to the four types of ground motions

whose characteristics are decided by i Lo | 06 | IO

the parameters presented in Table 1.
Frames are designed both elastically
for the power Sy of E .(1), and
plastically for the power of X times of
S, so that the story drifts should be
less than allowable ductility factor 4,
and beam collapse type mechanism is

Table 1 Ground Parameter
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considered for the calculation of yield levels of story shear forces. Steel used
is SS41 whose yield stress is 2.4 ton/cm2.

6.1 Three story one bay frames subjected to the ground motion of type I is
optimized for W =5 ton/m and S =5 cm/rad/sec3. In Fig, 3, the maximum
stresses and the maximum ductility factors of each story corresponding to the
final design are presented for({ equal 5 and 7 respectively. Where the maximum
stress is defined as the value in the most severely violated constraint equation
for elastic design whose allowable limit is normalized as unity. For the case
of A equals 5, the member size is desided by the elastic constraints and the
response ductility factors of each story are scattering. On the other hand, for
the case of O{ equals 7, the beams are not fully stressed for elastic design
constraints and for the plastic design constraints they are equally fully
constrained. Therefore it can be pointed out that for the optimum design of
earthquake resistance structures, it become important to consider the constraints
for the inelastic deflection expected during the very strong earthquakes.

6.2 Three story one bay frame subjected to the ground motion of type III and
IV is optimized for w = 2 ton/m, S, = 2 cm/rad/sec3 and®X = 7. The maximum
stresses of each member defined previously and the maximum ductility factors for
the final design are presented in Fig. 4. This shows that the optimum member
size restricted by both elastic and plastic constraints.

The acceleration response spectrum to these ground motions is presented in
FPig. 4 with the values of the spectrum correspond to the fundamental frequencies
of the structure of initial and final design. This shows that even if the initial
design is at the valley of the response spectrum, or final design is at the
vieinity of the maximum, this optimization technique can be successfully adopted.

Neglecting the derivative of dynamic forces which is used in Eqg. (5), the
optimization is also carried out for the same model. The final result obtained
starting from the same initial design mentioned above is presented in Fig. 6.
Compared with the above analysis, much more iterative calculations are carried
out and the real optimum solusion can not be obtained. This too happen for the
optimization of the structure subjected to the ground motion which have more
moderate response spectrum showing the importance of sensitivity analysis of
dynamic forces for these analysis.

6.3 Three story one bay and three bays frames are optimized for X = 7 by chang-
ing the parameters concerend with the distributed load and ground motion. The
ductility factors of story drift correspond to the final design are shown in
Table 2 with these parameters. Each story yield almost equally fully restricted
by the constraints of plastic deformation. Therefore it can be pointed out that
for this kind of structures, the optimum design correspond to such a structure
whose response ductility factors against very strong ground motion are almost
equal for all story.

7. CONCLUSION
As a result of this study, following conclusions can be pointed out.

(1) The analysises of Some examples shows the validity of the optimization
technique mentioned above together with the importance of the sensitivity
analysis of dynamic forces.

(2) The constraints concerened with the plastic deformation against the very
strong ground motions must be considered together with the constraints for
the elastic strength.

(3) For the type of structure dealt with in this paper, the minimum weight
design correspond to such a structure whose response ductility factors
against very strong ground motion are almost equal for all story.
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U
SPAN | W TYPE | Se
| 2 3
1 10 I 5 4.0 4.0 40
| 50 l 5 4.08 4.08 4.05
| 50 I} 5 404 404 404
] 5 m 2 4.0 4.0 4.0
| 5 1\ 2 40 368 392
I 2 w 2 40 4.0 40
| 50 1A% 5 399 3.82 396
3 10 o 5 4.04 408 | 408
3 30 I 5 3.92 3.96 392
3 30 i 5 4.12 4.04 404

Table 2 The Maximum Ductility Factor
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SUMMARY

The minimum weight design of unbraced steel frames subjected to
dynamic earthquake loads is presented. Random vibration theory is
adopted to elastic member strength and plastic story deflection, the
sequential linear programming technique is successfully adopted to
obtain the optimum design. Several examples are presented with the
analysis and comparisons are drawn.

RESUME

On présente le dimensionnement, pour un poids minimum, de cadres
métalliques soumis aux forces dynamiques des tremblements de terre.
La théorie des vibratiocns aléatoires permet de déterminer le comporte-
ment "dynamigque" de la structure. La programmation linéaire séquentielle
donne le dimensionnement optimal dans des conditions de comportement
élastique des éléments et de comportement plastique du cadre soumis a la
déflection.

ZUSAMMENFASSUNG

Fir unausgesteifte Stahlrahmen, die durch Erdbebenwirkung beansprucht
sind, wird die Berechnungsmethode des "minimalen Gewichts" abgeleitet.
Die "Random"-Vibrationstheorie erlaubt es, das dynamische Verhalten des
Tragwerks festzustellen. Unter Annahme "elastischer" Krdfte und plastischer
Verformungen liefert die fortschreitende lineare Programmierung das
gesuchte Optimum. Beispiele werden gezeigt und Vergleiche angestellt.
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1. INTRODUCTION

The developments that have taken place in the last few years
in the field of optimization techniques applied to structural
problems were restricted mainly to structures subjected to determi-
nistic loadings. The reasons for the lack of research activities
towards the analysis of structures under the effects of random
loadings could be attributed to the mathematical complication invo-
lved in the procedure and the non-asvailability of sufficient and
reliable data regarding the past histories of the random exciting

force.

In this paper a simplified approach is reported to deal with
the structural optimization problems under non-stationary loadings
by making use of the upper bound probability of failure of the
structure. The analysis is carried out in two phases:

(A) to obtain an expression for the probability that the response
of the structure at a critical zone reaches for the first time an
upper limit value with time-dependent control-barriers, interms of
their rate of uperossings; and

(B) to seek an approximate solution to the optimization problem,
using the result obtained in phase (A), with the probability of
failure, the natural frequency of vibration and the frequency respo-
nse function of the system as restraints.

2, PHASE (A).

The estimation of the upper and lower bound probabilities of
failure of a structure in a closed internal of time, has been a
field of great interest among engineers dealing with random vibra-
tion problems. J.J Coleman! for the first time, suggested an
approximate solution to estimate the upper bound value interms of
the expected rates of the threshold crossings of the response process
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at positive and negative slopes. However, the process of independ-
ent arrivals of failure, as assumed by Coleman, is unacceptable
especially for narrow band random process, such as the response of
lightly demped dynamic systems. Besides, for low damped structural
systems, crossings of response process tend to occur in 'clumps' of
dependent crossings and hence the expected rate of threshold cross-
ings should be replaced by the average clumping rate. M Shinozuka?
has developed a method applicable to stationary and non-stationary
cases as well, to estimate the upper and lower bounds for the proba-
bility of the first excursion failure within an arbitrary semi-clo-
sed time internal (o, t) and constant barriers without the assumption
of independent threshold crossings. When the computed values of

the upper and lower bounds are sufficiently close to each other,
they are just as valuable as the mathematically exact values of the
probability as a basis for making engineering decisions. In a
paper® published later, Shinozuka has further extended his solution
to take into account the effects of time-dependent barriers also.

The solution to the above problem with time-dependent barriers,
presented in this paper is a modification to Shinozuka's approach
with a different interpretation, interms of the expected rate of
crossings of the response-barriers.

Following Shinozuka's expression for the upper - bound probab-
1lity of failure of the structure,
P_' Lt ;_Y?_(.t) ,Yi(t)] £ Py Lt; ..Ylu_))oc_] + P+ [t 5 *aC,Y,(t]
— Py [{j((t,) <—YL(tL)}£'x (ta) >Y‘ (t)}] -7 -(i)

where x(t) represents the response of the system at a critical zone
and the failure of the system, fer the first time, is defined as

when x(t) Z Y, (t), or 2¢(t) < ~Yo (&), in which Yq(t) and
Yo(t) are positive barriers of response process.

Let hJ[Y]Ct),t]) hereafter referred as Nq, represents a random
variable denoting the number of crossings of Yq(t) from below
during the internal (O,t). The probability that N[V, (t),t]
takes a value ‘y> during (0,t), PriNiz+] can be expressed as:

Pr[N=1] = Pr[Ny=%, X (o) 2 V()] 4+ Pr [N 2F; X)L Y, (0)] - - --@)
Also,
Pr [ty -, ¥, (8] = Pr[90a) 7Y (o) , N1 20]4 Py [XCDLY (o) N, 2 1]
PP x@)=Y (D, NZe] - . oL @)
Equation (3) can further be simplified as :

Pr [t —oC, Y, (2] = Pr[x (o) »Y,(0)] + Pr [ XD L Yi(0) ) Pr[N;ZlI‘K(o)(J
Y;(O)

£ Pr [ 0) 24 ()] +Pr [X(6)< Y (o) ] ;{ls Pr[N(=5 | x (o) -
- Y, C0) -
Equation (4) with the help of equation (2) finally reduces to, !

Prit;-<,Y,()]4 Py (%) »Y,Co)]+ E[Ny] =Pr [ (o) 2 Y 0) ] E [N,}OCC()))/\(I(O)J
T (%)

in which E denotes the expected value.

If hi[—ﬂi(t),tj) hereafter referred as N,, represents a random
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variable denoting the number of crossings of -Yo(t) from above
during an internal (0,t),

Pr [t =Yp (t DY) ¢ Pr[x(0)<=-N (0] + Py [ (o) >N ()] +
Pv [ K (o) >=Y2(0d] E [Ny|2(0) >-Y,(0)]+
Py [x (o) €Y ()] ELNi[x(o) <Y ()] -
Pa [ § X(0)<=Y2(@F{ x>V, (£} ]- - -~ ®

Equation (6) in effect represents the best upper bound probability
of failure of the structure interms of the rate of crossings of the
time-dependent barriers of response process,

In case the response process starts from zero origin, such that
Py [ xC0)=0)= 1 equation (6) further simplifies to

Pr [ £, -Yo (1), Y, (&) CE[N]+ E[N,L]—Pw[{occmkv,_(t.)}{fx(t;) >V, (L) ] -7

The approach presented above, to estimate the upper bound value
becomes significant in dealing with those problems where a stationa-
ry process for a finite time internal is observed, as in certain
control system problems.

3, PHASE (B).

An approximate solution to the structural optimization problem
is attempted in this phase, making use of the results obtained in
phase (A), with the probability of failure of the structure and the
system—characteristics as restraints.

ILet Z(d) be the objective function to be minimised subject to
the condition,

k
Pr [ U, {Si (x(d,t)) 2 *f}]j < [P{‘]J S (8D
and Sj (x(dtd))<¥j - - - _ )
and W € W § PDiw (1o0)

where ES{(OC(dAﬂ) is the frequency response function of the system;
« (d,t) representSs the response (stress, strain or displacement)at a
critical zone to random excitation;

Wiy ,Yiuw are the lower and upper limits of the natural frequency of
vibration of the structure, respectively;

[ﬁjj denotes the upper limit of the probability of failure under
mode j.

Let P+[Sc(x,t)) 2] = ) - - - S

For example, if the safety of the structure is analysed on the basis
of the external load acting on it and its internal resistance, say
F and R respectively, both treated as statistically independent
normal distributions, then,

©
bed) = J_i‘:‘r jf Pl doc (12)
where ¢ = R-F : == = : s a8 . -~ = = LU

R T ()
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in which® and F are respectively the mean value of the resistance

and the lead; Gﬁf and s}l are their wvariance.

Equation (8) now reduces to, L
P[0, Si (=) 2n3 ]y = [g 0y, - W)
il

the limit of summation of the time variable being from -« to .
It fellows,

[ £ @) <lydj, Jebmom

In the case of non-stationary random excitations, fer example,
ground acceleration due to earthquakes, the left hand side of
equation (15) may be replaced by the upper bound value of the proba-
bility of failure of the structure as obtained in phase (A).

4., CONCLUSIONS.

Since a knowledge of the rate of crossings of the time-
dependent response-barriers is an essential pre-requisite to the
present analysis, a rigerous statistical analysis of the past
records of the random exciting force is warranted to achieve a high
level of accuracy. A large class of optimization problems in
eontrol system engineering could be advantageously studied using
this method.
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SUMMARY

A general solution to deal with structural optimization problems under
non-stationary random loadings is presented, with the upper bound proba-
bility of failure of the structure within time-dependent barriers and the
system characteristics as restraints.

RESUME

Une technique générale d'optimisation des structures est présentée
pour le cas de charges aléatoires. Les caractéristiques du systéme et les
valeurs supérieures de la probabilité de ruine en fonction du temps sont
prises en considération.

ZUSAMMENFASSUNG

Es wird eine allgemeine L&sung der Bauoptimierungsprobleme fir nicht
stationdre Unfallsbelastungen dargestellt, mit der oberen Grenze der
Versagenswahrscheinlichkeit innerhalb zeitabhdngiger Grenzen und den
Systemcharakteristiken als Einschrédnkungen.
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Optimierung von Tragwerken: Entscheidende Kriterien und Verfahren zur
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Structural Optimization: Prevailing Criteria and Proportioning
Approach in Steel Structures

J. BROZZETTI Y. LESCOUARC'H P.A. LORIN
Centre Technique Industriel de la Construction Métallique
Puteaux, France

1 - INTRODUCTION

L'idéal que cherchent & atteindre tous ceux qui sont associés a l'art de
construire est de réaliser l'ouvrage qui donnera les meilleures garanties de
service dans des conditions requises de sécurité et au meilleur prix.

L'optimisation envisagée ainsi n'est aujourd'hui pas accessible par des
méthodes déductives., Elle demeure un art. Cependant, pour les démarches qu'il
doit faire en vue de cette optimisation, 1'ingénieur dispose de moyens de plus
en plus élaborés. Les critéres qu'il faudra respecter dans ces choix sont dans
la pratique imposés par les autorités responsables de la sécurité, par les maltres
d'ouvrage et par les maitres d'oeuvre. On les trouve exposés soit dans les textes
réglementaires [1,2] , soit dans des cahiers des charges.

Par utilisation des techniques de programmation linéaire, le projeteur peut
dans la pratique optimiser sa structure en poids, tout en satisfaisant un certain
nombre de critéres aux états limites ultimes. Un programme de dimensionnement
optimal de structures a barres, visant ces objectifs, a été réalisé dans le cadre
de travaux entrepris au CTICM et nous montrerons un certain nombre d'exemples qui
mettent en lumiére 1l'influence que peut avoir le respect des critéres de vérifi-
cation sur l'optimisation de la structure.

2 - RAPPEL DES DIFFERENTS CRITERES A SATISFAIRE AUX ETATS LIMITES ULTIMES
Un état limite ultime est atteint lorsqu'un des phénoménes suivants se
produit :
a) perte d'équilibre de la structure
b) transformation de tout ou d'une partie de la structure en un mécanisme
¢c) instabilité de forme
- d'ensemble de la structure,
- individuelle d'une barre
d) déformations excessives
e) cumul de déformations sous charges répétées
f) rupture d'un élément (fragilité ou par fatigue).

Un état limite d'utilisation est atteint lorsque la structure devient inapte
aux fonctions normales pour lesquelles elle est congue, en particulier lorsque
les déformations excessives entralnent une interruption du service normal de la
structure ou des désordres dans les éléments non structuraux.

Dans le cadre actuel francais de la philosophie de la sécurité, pour vérifier
la sécurité vis-a-vis des états limites, le projeteur multiplie les valeurs
(caractéristiques ou nominales) des actions par des facteurs appelés coefficients
de pondération. Les valeurs de ces coefficients dépendent de 1l'état limite consi-
déré (état limite d'utilisation ou état limite ultime) du type d'action envisagé
(actions permanentes ou variables) et de la combinaison d'actions étudiée (inter-
vention simultanée d'actions variables).
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Ainsi, pour la vérification & 1'état limite ultime, on est conduit & consi-
dérer les plus défavorables des combinaisons d'actions données dans le tableau
ci-dessous :

Tableau 1
Cas de combinaisons
d'actions
prenant en compte une %Q + ':-:-G %Q + G
des trols actions 3 - 86 3 <so
SYMBOLES Q, S, W. 2 3 2
- Majuscules %w + %G %w +0
Q = action permanente 17 i e
G = surcharge prenant en compte 13 (Spt¥) + 36 o (SptH) +G
S = neige simultanément deux 17 Y -
W = vent des trois actions 17 (W) + 36 7 (M 6
. S, W. 17 u
- Indices % S, T (Q+s) + 3 G % (Q+s) +6
e = extréme prenant en compte
r = réduite simultanément trois %(Q + S, +t W+ G) § (Q+Sp+H) + G
des actions Q, S, W.
prenant en compte les Q+ Spe + W +G Q+ St Wer G
actions climatiques )
extrémes Q+5e+6 Q¥ 8, ¢

A 1'état limite d'utilisation, la vérification doit étre effectuée en consi-
dérant les combinaisons les plus défavorables des actions non pondérées.

Selon 1'état limite considéré, la vérification consiste en particulier a3
contrdler si la structure satisfait aux critéres de déformations, d'instabilité
ou de résistance.

I1 a paru utile, dans le cadre de cet article, de bien souligner les prin-
cipes sur la maniére de prendre en compte la sécurité dans l'optique des réglements
actuels frangais. Car il est de l'opinion des auteurs que ces considérations sont
de nature a avoir une influence trés importante, non seulement sur la fagon dont
on entend poser le probléme de 1'optimisation, mais aussi sur la nature des résul-
tats de cette optimisation.

L'étude et la mise au point d'un projet de construction passent toujours par
trois phases essentielles, d savoir

. le choix des dispositions générales de la construction,

. la détermination des dimensions de tous les éléments composants,

. la vérification que les dimensions adoptées sont acceptables et -en parti-

culier- conférent 3 la construction un degré de sécurité suffisant.

En ce qui concerne la premidre phase, on admet généralement que seul le choix
des dispositions générales de l'ouvrage et de sa conception constitue oeuvre
d'imagination créatrice, pour laquelle l'intuition et l'expérience de l'architecte
et du constructeur jouent un rdle essentiel.

La question qui nous préoccupe dans le cadre de cet exposé est de savoir s'il
existe des méthodes pratiques qui permettent de déterminer un choix préalable des
sections ou composants d'une structure quelconque et qui, d'une part satisfont a
l'ensemble des critéres de vérification que nous venons de décrire briévement et
d'autre part, conduisent 3 une optimisation de poids de la structure.

3 - TECHNIQUES D'OPTIMISATION DES STRUCTURES

Le cadre réduit de cet article ne nous permet pas d'exposer les fondements
de la méthode utilisée ni le détail de sa formulation en termes de programmation
linéaire. Cette étude a fait l'objet de plusieurs publications [5,6,7] od 1'on
trouvera la formulation du probléme de prédimensionnement optimal en termes de
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de programmation linéaire, avec le choix de la fonction objective (que 1l'on peut
linéariser) et la prise en compte, d'une part de l'interaction effort normal-
moment fléchissant et d'autre part du flambement.

L'approche utilisée par les auteurs se distinguent d'autres méthodes itéra-
tives [3,4] de type "heuristique", qui abordent le probléme de la recherche d'un
optimum au travers d'un processus complexe "d'itération-contrdle-modification"
permettant de prendre en considération de nombreux critéres de vérification
(contrainte, stabilité, déformabilité) de la structure étudiée. Ces méthodes
présentent, d défaut d'un manque de généralités et d'une incertitude sur
l'optimum atteint, l'avantage d'avoir été pensées comme un programme module
(PLADS-I PLASTIC ANALYSIS AND DESIGN SYSTEM, écrit dans un systéme général de
langage orienté : ICES INTEGRATED CIVIL ENGINEERING SYSTEM). A ce titre, il a le
mérite d'@tre immédiatement disponible et utilisable par 1l'ingénieur de bureau
d'études.

4 - EXEMPLES D'APPLICATION

Le programme de prédimensionnement automatique des structures permet de
prendre en compte la stabilité individuelle des barres et une combinaison quel-
conque d'états de charges pondérées., Il est cependant nécessaire, pour &tre en
conformité avec les réglements de calcul [1,2] , de contrdler que la solution
obtenue satisfait les critéres aux états limites d'utilisation et de vérifier
les conditions d'instabilité d'ensemble de la structure.

Nons donnons ci-aprés deux exemples qui démontrent que d'une part, la solu-
tion optimale recherchée dépend des critdres d'états limites adoptés, selon que
le dimensionnement se référe 3 un rdglement de calcul en élasticité [1] ou en
plasticité [2], d'autre part le prédimensionnement est d'autant plus proche de la
solution finale optimale que l'on considére ou non les conditions d'instabilité
individuelle.

Exemple 1 : A titre d'exemple, nous donnons les résultats obtenus sur la structure
donnée 3 la figure la. Les schémas 1b et lc donnent la valeur de deux combinaisons
de charges les plus défavorables pour la structure considérée, d savoir charges

permanentes + neige et charges permanentes + neige + vent.

IPE
i -________,__-_ﬁ__-_--l—_-_____‘~.*_-~l
*
m
w
I

1
HEB x

(a)

HEBy

L
r
.
3

17.1 17.1

Fig. 1

Les résultats sont résumés dans le tableau de la page suivante.
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Tableau 2
Poids A4 . ﬁx( 1 Nbre plastification
(tonnes) ﬁ—(150) L 200 état limite utilisation
Elas. poteaux HEB 200 3.98 1 1 0
[1] traverse IPE 360 . 199,5 350
Plas. poteaux HEB 200 3.47 1 1 2
[2] traverse IPE 300 2 174 210
poteaux HEB 180 3 1 1
Pred. | { averse IPE 360 | -°° I 332

Dans cet exemple particulier pour leguel les conditions d'instabilité au
flambement sont vérifiées, l'optimisation est différente selon qu'elle est élas-
tique ou plastique. Dans les deux cas elle satisfait aux conditions de déforma-
bilité aux états limites d'utilisation ; par contre, la présence de 2 rotules
plastiques aux états limites d'utilisation n'est pas acceptée en élasticité. Le
gain de poids est ici de 12,8%.

Le prédimensionnement initial donnait une solution proche de la solution
élastique, mais la condition de déformabilité en téte du poteau n'était pas
vérifiée, quoique la condition de flambement du poteau était satisfaisante.

Exemple 2 : Soit la structure donnée en figure 2, avec le cas de charges pondérées

considéré. Les résultats du prédimensionnement sont rassemblés dans le tableau 3.

Fig. 2
B 8.04 8,04 . 2880 daN/m
l e J e :
® @ pas E: 2640 daN/m
@ 5 ® 8 2E
gr-:c
@ @ @ ) g!
| el -L’—!L ] 1 1
Tableau 3
Poteaux 1,2,5,6 Poutres 3,4 Poutres 7,8,9,10
)
;ani‘l lgzeg:;;z;em IPE 300 HEB 100 IPE 400
) 3
;"e; :t‘t;i‘;rcn;;;znt IPE 360 HEB 160 IPE 400
?
z:i‘;ﬁlgia‘s’ph] IPE 360 HEB 200 IPE 400

L'examen des résultats de ce tableau par le programme de prédimensionnement
automatique des structures montre que si le dimensionnement sans interaction M
et N est acceptable pour les poutres (c'est-d-dire lorsque la sollicitation de
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flexion est prépondérante), il n'en est pas de méme pour les poteaux ol l'effort
axial est prépondérant. Il est nécessaire alors d'introduire dans le prédimen-
sionnement les conditions d'interaction entre l'effort normal et le moment flé-
chissant et les conditions d'instabilité (voir 2éme ligne du tableau 3). L'intro-
duction de ces conditions améne généralement une redistribution des efforts entre
les sections et peut conduire aussi 3 une augmentation des sections simplement
fléchies (barres). La 3éme ligne du tableau 3 donne la solution finale compatible
avec les exigences d'un réglement élastique [1].

5 - CONCLUSIONS

La méthode mise au point dans le cadre d'études entreprises au CTICM trouve
son fondement dans l'application du théoréme statique en plasticité et les tech-
niques de programmation linéaire. Elle conduit d'une maniére pratique 3 un pré-
dimensionnement initial correct, a condition toutefois de prendre en considéra-
tion les conditions d'interaction entre sollicitation de flexion et effort axial
et les conditions de stabilité individuelle au flambement des barres.

I1 y a lieu cependant de procéder d une vérification de ce prédimensionne-
ment initial, pour contrdler si la structure satisfait aux diverses exigences
imposées par les codes de calcul aux états limites d'utilisation.

La fonction & optimiser est le colt total de la structure, c'est-d-dire la
somme des colts des aciers, de la fabrication, du montage et de l'entretien. Une
étude factorielle de 1l'influence de ces divers colits dans 1'établissement d'une
fonction économique a été étudiée [8]. Si cette étude a montré qu'il était pos-
sible d'améliorer sensiblement la fonction économique, la qualité du dimension-
nement n'est cependant pas accrue dans les mémes proportions. En particulier, du
fait de nombreuses hypothéses au niveau de la prise en compte dans le prédimen-
sionnement de l'instabilité individuelle des barres, le gain de précision du a
1l'amélioration de la fonction économique est illusoire,

Le programme de prédimensionnement autematique des structures est valable
quelle que soit la configuration géométrique de la structure et la nature des
charges extérieures appliquées. Cependant, le nombre de sections potentiellement
critiques choisies et celui des contraintes résultant des conditions de plasti-
fication, d'interaction M et N et d'instabilité de flambement des barres compri-
mées et fléchies, en limitent 1'application pratique a des structures relativement
simples (portiques simples, portiques accolés, cadres multi-étagés de 2 niveaux,

3 baies).
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RESUME

L'article expose briévement 1'état des conditions & satisfaire dans le
cadre d'une philosophie réglementaire aux états limites. Il est actuelle-
ment possible de tenir compte des conditions d'interaction effort normal-
moment fléchissant et des conditions de flambement dans l'optimisation des
structures a barres. Deux exemples montrent qu'il est important de prendre
en considération ces critéres si l'on veut aboutir & un prédimensionnement
valable.

ZUSAMMENFASSUNG

Der Artikel weist kurz auf die Bedingungen hin, die im Rahmen einer
vertretbaren Philosophie der Grenzzustdnde erfillt sein missen. Es ist
heutzutage mdglich, in der Optimierung von Stabtragwerken der gegenseitigen
Wirkung zwischen Normalkraft und Biegungsmoment und dem Knicken Rechnung zu
tragen. Zwei Beispiele zeigen, dass es wichtig ist, solche Kriterien in
Betracht zu ziehen, wenn eine glnstige Vorbemessung erreicht werden soll.

SUMMARY

The paper states briefly the conditions to be satisfied within the frame-
work of an ultimate state design philosophy. It is presently possible to
improve the coptimization of structures by taking into account interaction
between normal force and bending moment and buckling conditions. Two examples
show that it is important to consider such criteria, if we want to achieve
a proper members selection.
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1. Introduction Several classes of general solutions to the problem of mini-
mum weight plastic design of multi-story multi-span plane frames subjected to a
class of one set of practical design loads have been derived by the senior author
[1] by applying Foulkes' theory [2] and by extending it to a more general theory
[3] which incorporates the axial force-bending moment interaction yield condi-
tions. The present authors have further extended the result of [1] so as to in-
corporate the reaction constraints in [4]. These analytical general solutions
are of theoretical and practical interests. Firstly, they serve to clarify even
partially the general features of the minimum weight designs. Secondly, once an
analytical method is developed for simpler problems based upon the moment yield
condition [1], their general solutions would provide a good lead to the general
solutions to more complex problems based upon interaction yield conditions [3].
Thirdly, they will provide good initial feasible solutions for neighborhood
problems.

In this paper, a kinematical restricted maximization procedure is developed
by combining the primal-dual method of LP [5] with a semi-inverse approach simi-
lar to the idea of [1] and then applied to the problem of minimum weight plastic
design of multi-story multi-span plane frames subjected to five sets of design
loads.

2. Formulation of the Design Problem Fig.l shows a multi-story multi-span

plane frame to be designed by Foulkes' theory [2] and the five sets of design
i i 3 3 4 - — .
| : ; H 1 1. Wind Loads
] -
— — =t P i B el = Py 5 Vs
' ' ! : .:
\ | 2. Wind Loads
! L $ 4 4 $ ! = :
:_. I,_. ._..: ._1| { PWJ' i V‘jk)
1 i ! 1
1 | 5
L ) ) + 4 3. Gravity Loads
o V. 1= (05 A7)
e Ly | ] e - :
[ -—]
- ) ¢, e, ' 2 [ 4_1 4. Earthquake
: ) i 5‘7"' pdmt1 57" Bk d | Loads
(L. (- L $ i o - (st i ij]
P} (P..) (- . M-P,.}
Wi Ej Ly Wy . Earthquake
Lateral 77/ WAT 72 nrr 777 S \ Lateral l{.oads
Desi A . torey-shear Design -P.., V.}
L:asgn b = R == Distributions Loadg Ej Jk

Vertical Design Loads

Fig.1

Design Load Distributions, Notation and 5 sets of Design Loads
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loads. The fully-plastic moments of (j,k)-beam and (j,k)-column are denoted by

Bj,k and Cj k, respectively. Without loss of practical generality, it may be

assumed that the story-shear force distributions defined in Fig.l be such that
Qpj 2 ij for gj=1,2, ..., p, and (1)
BEj £ g for  g=p+1, ..., f.

The factor A for the design gravity loads is assumed to be A £ 2.0.
The design problem for five sets of design loads is treated in the following

three or four steps:

(i) Solve the basic problem for the two sets of co-directional lateral design
loads 1 and 4, i.e., for {Pyj;V;j x} and {PEjJVj,k}»

(ii) Construct a statically admissible bending moment field for the two sets of
design loads 2 and 5, i.e., for {'PWUJVj,k} and {‘PEjJV',k}’

(iii)Construct a statically admissible bending moment field for the design grav-
ity loads 3, i.e., for {O;XVij},

(iv) If the step (ii) or (iii) is not possible, modify the collapse mechanism
locally and find the corresponding modified design.
The basic problem (i) may be stated in terms of the static variables defined

in Fig.2(a) as follogs:

S+
Minimize G = g{kzlzkj=13jk +j=1hjk£jcjk}, (g: constant) (2)
. ad 7 L R B T
subject to: kzl(‘%k + Crjk) = hjR1j 5 PIjk * PIj k-17 Crj+1,k * CIjk >
%(b%jk - B+ FVik < By (3a-i)
-Bjk & b%jk < Bji » -Bjk S bgjk < Bjx 5 Bjx 2 0,
~Cix S Lk € Cjk » ~Cjk £ Lo S Cjk s Cik 2 05

where b%jka b?jk! c?jk and eI .. are free variables. In the expression (2), f and
s denote’ the numbers’of stori®s and spans, respectively. In the constraints (3),
the first subscript I denotes the kind of design loads and is to be either E or
W. The second and third subscripts refer to the story number from below and mem-
ber number from left, respectively. For the sake of brevity, the equations of
moment equilibrium about interior and exterior joints have been written in one
and the same form with the convention that all the undefined quantities with
respect to non-existent members shall be disregarded and dropped as null. This
convention will also be used hereafter, unless otherwise stated.
3. Kinematical Restricted Maximization Procedure-Semi-Inverse Primal-dual Method.

The idea of the proposed approach may be summarized by referring to Fig.3
as follows. A design problem formulated as a linear programming problem [6] of
a mixed type [S], may often be such that a certain set of constraints may be an-
ticipated to be inactive due to the nature of the problem. From the original
primal problem

[PO]: Minimize {G(x)|x € S;N Sy}
of a large size, a subproblem

[PS]: Minimize {G(X)|x € S;}
may be derived by tentatively disregarding a certain set of constraints which are
anticipated to be inactive and which define the set Sg. Then the dual problem to

b R
r | 1S Lik A kT e T Ak
e Wi
B. Ikl L - ﬁk
L — gk g Vil
brik [
N, Jk Fig.2
Definitions
] of the
Bending moment variables
diagram under
— o the design loads
cf_jk’.zf l (PIJ',-ij}
collapse mechanism
ik Cix

(a) Statiec variables (b) Kinematic variables
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[PS], i.e.

(DS]: Maximize {D(u)|u € V}
must involve a smaller number of dual variables and a greater number of equality
constraints. Therefore, if the solution u® to [DS] can be found more easily com-
pared to the solution to the dual problem of [PO], then the corresponding solu-
tion x9 to [PS] may also be readily found simply by solving the set of simultane-
ous linear equations derived from the duality theorem of LP. It remains then to
check if x? € §5. The procedure may also be called "a semi-inverse primal-dual
method."
4. A Class of General Solutions to the Problem (i) It is now shown that the
kinematical maximization procedure is fruitful for rectangular frames due to
their regularity in the optimality criteria based collapse mechanism. Let

So: (b%Jk, Tjk?2-Bjks (cI k)z -Cixs Bjrz0s Cjx20, (4a-d)
Then the dual prob{em [DS may e written 1n terms of t%e kinematic variables
defined in Fig. 2(b§ as follows:

Moximize D=8 3 h; (waYhU+QEJYEJ)+ {'%Zijk(¢wyk+¢Ejk)} (5)
J= k=1 g=1
subjeet to Yrj2 Mﬁx-{wljk; ij-l,k}

wIJk;quJ-k;O (k=1,2,..., 8), U)Ij,s-/-l;_(bl'js
1P, e 17200530+ (Vg3 VB  k#1120851) 1 = Bly (6a-d)

{(2Yw,]—q}w3"1,k”q)WJk)+(2YEJ-¢EJ—1,k-wEJk)} = GhJ
The inequalities (6a, b) restrict the directions of plastic hinge rotations and
the equalities (6c, d) are the generalized Foulkes conditions defined by Chan [6]
and Prager [7]. The latter will be referred to as FCP conditions.
The equations (6d) indicate that wW KVE K J (independent of k). The
Eroblem defined by (5) and (6) may then be 51mp11f1ed to a problem in terms of
Wik Ywje ¢va and ¢j only. After some manipulation on the inequalities, YW
may be expressed in terms of ww x and Y. only, and then ¢w ik, in terms of Wpk
and ¢j only. Finally, for those problems in which the load conditions:
[1 £ J £ p-1 for I=E,

thIj+hJ+1QI,J+1 = RZI kVik 5 ptl £ J £ f for I=W
S

(72,b)
holEpt2hp 4 19Ep+1-hp419pt1 2 kzlzkvpk >
and the geometrical conditions:
lp & Ly <81y , Iy £ 2hy (Ly= Mﬁn.{lk}) , (8a,b)
are satisfied, the problem [DS] may be reduced to the following form:
Maximize D*=O(-MMpE + AMyyn), (%)
subject to & = f%x.{prk}’ n = Mﬁn.{prk} (EZn)
E S Shps OtMin.{0,n}, Max.{57,6,E} < p+19+ﬂ= (10a-d)

Fig. 3 ﬂLﬂ 7T i Fig. 4
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02 whpk 2Zme (k=1,2,..., 8), a & whb,3+1 £ b,
a = Max.{-(1g-1,)0/2, ‘Wwps} <0
b = Min {1,6/2, Ly@-Uyps} 2 1,8/2 (10e-h)

where MM, = hp(QEp-QWP) 2 0 and AMp+1 = hp+1(QWP+1‘QEp+1) > 0. The solution to

this reduced problem may readily be derived as summarized in Table 1. In those
problems where (7) and (8) are satisfied, the generalized Foulkes mechanism de-
fined by the FCP conditions can thds be constructed as shown in Fig.4 for Case

(B) as an example.

The solution to the problem [PS] corresponding to this problem[DS] may also
be derived straightforwardly. By assuming that some statical restrictions de-
fined and checked later will be satisfied, the resulting bending moment diagram
may be understood best by conceiving it as the result of superposition of the
constituent elementary moment diagrams (with equal corner values for k#m) shown
in Fig.5. Such a decomposition was first introduced in [1]. Each diagram is
referred to as '"frame moment diagram.' The minimum weight plastic design corre-
sponding to Table 1 may be compactly summarized as Table 2 in terms of "Maximum
Story- Shear Force Design" defined by

gk = Maz. {BY oy ng gk = Maz. {ch, c’?k} (11a,b)
where {BY S Cg’} and {B Cgk} denote the designs only for {Phﬁi ij} and {PEj3

Jk}’ respectlvely, derlved by means of [1] B;k and C% ik are given by

5%, = L1V (km); Cy = (zk V5 kst s (k;ém, m+1)

B}, = (hQI+h o, 54 ZZk ) (1 £ $p-1 for I=E
gk Vgl g [p+1 2J < f for I=W andJ

J=p, I=E for Ny, g 412 and j=p, I=W for MMy, < AMp+1;
7 r
€t = =(hQ .- ) LoV ir 1s£jsp for I=E,
gn 4797y k#n-1,n kigk™ [ ptl £ g £ f for I—W,]
VJfk Y (-1)t Iy, i nem, w1 (12a-e)

=7
The yield inequalities in (3) provide restrictions on the design loads in
accordance with the classification of the solutions listed in Table 2. These

Table 1 Generalized Foulkes Mechanism
Y Yg; Yk Vejk by (kFm) | bpa (kfm) | b Opim
) 1, .1
J=1 S(hi+gl )@
2 2°m 1 1
0 0 L8 0 L 1,08
. 2 2°m 21K
J=2, ..., p-1 E(h,i*Zm)a
(a) 0 Lih +1,)8 0 ] 0 Li14-1_70
z(hp 7tm® 2 “k~m
8) |2t -n_ 00 |Lengen . 20 |dee -n_ )e| In e . *
i=p 2''m “p+l 2 P p+1 2 'm "p+l 2 pt+1
1 1 1 T,
(c) 218 78 21,0 0 21,-1,)8 0
| ine 1 0 10 YT . * 0
2'p 2'm 2'p 2 hP
1 1
() | Fper® 118
1 1
(8) 1.9 e 1®
J=pt1 1 1 1
(C) | §1h, +1p)@ 0 1.8 0 Li1,-1,00 0
D —{h th 00| 11 -n )6
o p"pt1 m'p

J 2 ..s f 2rha+zm)a 0
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restrictions may be summarized as ghown in Table 3, where
-1
MIj = Z(hJQIJ + hj-{—lQI,j‘f'l —kZIZkVJ'k) (13)

It may now be concluded that the present solutions (4~D) are the rigorous solu-
tions to the problems in which all the geometrical and lecading conditions are
satisfied.

5. Design for Five Sets of Design Loads. It may readily be confirmed that a
statically admissible bending moment field for {-Pp;; Vjx} and {-P.; ij} can be
constructed just by inverting the frame moment diagrams as shown in Fig.6.

For design gravity loads, it is convenient to consider again the decomposed
moment diagram with the respectively equal corner values AlyV.z/8, as shown in
Fig.7. The conditions that the bending moment diagram given %y superposing the
elementary diagrams in Fig.7 be statically admissible in a frame designed by the
procedure in Section 4, lead again to further restrictions on the design gravity
loads. An examination of these restrictions indicates that there are a number of
practically useful design solutions within the range defined by them.

6. Concluding Remarks It may now be concluded that, for the class of design
problems in which all the previous and supplementary conditions are satisfied,
the solutions (A~D) are the rigorous minimum weight plastic designs. The present
designs have apparently clarified the nature of minimum weight plastic designs.
While these designs must be modified for practical use so as to satisfy a number
of structural requirements, the present solutions will at least provide a basis
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for initial designs useful in such countries where fairly large lateral design
loads must be assigned for PLASTIC DESIGN so that frames can withstand against
strong winds and strong motion earthquakes. The present solutions may be said
to be a class of the most fundamental designs in the sense that a number of use-
ful designs to practical neighborhood problems can be derived by appropriate but
mostly local modifications. Three cases:

(a) hfpﬂf ;kzllkak s (b) L, 2 2h; and (c) alk 2 21, have been treated in [8].

The present solution and the solutions in [1, 3, 4] indicate that a frame
designed by these solutions would collapse in an extremely deteriorated overcom-
plete mechanism under a designated set of design loads according to the rigid-
plastic analysis. It is therefore necessary to confirm the safety of such a
frame against possible collapse due to inelastic instability according to a more
refined theory of large-deflection elastic-plastic analysis. For this purpose,
static and dynamic large-displacement analyses have been carried out on minimum
weight frames in [9~11] under alternating lateral loads well beyond their static
stability limits and under strong motion earthquake disturbances, respectively.

(1] Ryo Tanabasni & Tsuneyoshi Nakamura,"The Minimum Weight [7] W.Prager,"Foulkes Mechanism in Optimal Plastic Design for

Design of a Class of Tall Multi-story Frames Subjected Alternative Loads," Int.J.Mech.Sci.,Vol.13,971-973,1971.
to Large Lateral Forces,"Transactions of Architectural [8] Tadashi Nagase,"Minimum Weight Plastic Design of Multi-
Inst.Japan,Part 1,N0.118,10-18,0ec.1965 & Part II, No. story Multi-span Plane Frames,"(In Japanese),Thesis for
116,37-44, Jan.1966. Also Proc.15th Japan National Master of Engineering.(Kyoto Univ.) Chap.2,384, 1975,
Congr.Appl.Mech., 72-81,1965. [9] Yoshitsura Yokoo, Tsuneyoshi Nakamura,Shuzo Ishida &
[2] J.Foulkes,"The Minimum Weight Design of Structural Takashi Nakamura,"Cyclic Load-deflection Curves of Multi-
Frames," Proc.Royal Soc.London,Vol.223,482-494, 1954. story strain-hardening Frames Subjected to Dead and Re-
[3] Yoshitsura Yokoo, Tsuneyoshi Nakamura & Michio Keii, peated Alternating Loadings,"Pre.Rep.IABSE Symp.RESIST-
"The Minimum Weight Design of Multi-story Building ANCE AND ULTIMATE DEFORMABILITY OF STRUCTURES ACTED ON BY
Frames based upon the Axial Force-Bending Moment Inter- WELL-DEFINED REPEATED LOADS,81-87, Lisboa, 1973.
action Yield Condition,"Proc.1973 IUTAM Symp.Optimizat- [10]Ryo Tanabashi, Tsuneyoshi Nakamura & Shuzo Ishida,
ion in Structural Design, (Warsaw),Springer-Verlag,1975. "Gravity Effect on the Catastrophic Dynamic Response of
[4] Tsuneyoshi Nakamura & Tadashi Nagase, "The Minimum Strain-hardening Multi-story Frames," Proe.5th World
Weight Design of Multi-story Multi-span Plane Frames Conference Earthquake Engng.,Vol.2, 2140-2151, 1973.
Subject to Reaction Constraints,” To be published in [11]0samu Ohta, Tsuneyoshi Nakamura & Shuzo Ishida,"Collapse
J.Structural Mechanics,Vol.4, No.3, 1976. Behavior and Imperfection Sensitivity of Minimum Weight
[5] See for instance, W.A.Spivey & R.M.Thrall, LINEAR Plastic Frames," Swmmaries of Technical Papers at 1974
OPTIMIZATION, Holt,Rinehart & Winston, 1970. Annual Meeting of Architectural Inst.Japan, 753-754,1974.

[6] H.S.Y.Chan, "On Foulkes Mechanism in Portal Frame De-
sign for Alternative Loads,"J.Appl.Mech.,V01.36, 73-75,
1971.

SUMMARY

A kinematical restricted maximization procedure has been developed by
combining the primal-dual method of linear programming with a semi-inverse
approach. Some general solutions to practical problems of minimum weight
plastic design have been derived analytically by applying the proposed method.

RESUME

Une procédure cinématique de maximisation limitée a été développée par
combinaison de la méthode primale-duale de la programmation linéaire avec
une approche semi-inverse. Quelques solutions générales pour des problémes
pratiques de dimensionnement plastique, conduisant & un poids minimum ont
été obtenues analytiquement par application de la méthode proposée.

ZUSAMMENFASSUNG

Ein begrenztes kinematisches Maximierungsverfahren wird bei einer
Kombination der "primal-dual"-Methode der linearen Programmierung mit einem
"semi-inversen" Verfahren entwickelt. Allgemeine analytische L&sungen
praktischer Probleme der plastischen Bemessung auf Minimalgewicht werden
durch Anwendung der vorgelegten Methode gefunden.
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Optimality Criteria and Dual Methods in Truss Design

Critéres d'optimisation et méthodes duales dans le dimensionnement
de treillis

Optimierungskriterien und Dualmethoden in der Berechnung von Fachwerken

A.B. TEMPLEMAN
Department of Civil Engineering, The University
Liverpool, England

1. INTRODUCTION

In the Introductory Report of the 10th Congress of IABSE Gellatly and Dupree1
describe the optimality criteria approach to the optimum design of large structural
systems. In handling large structural systems the direct solution approach by
numerical mathematical programming methods is often excessively slow and cumbersome
as a result of the large numbers of variables which must be optimized. The
optimality criteria approach is intended to overcome the difficulties posed by
having large numbers of variables. Gellatly and Dupree consider the optimality
approach to the design of structures in which element mass and stiffness are
proportional. Such structures include those composed of axial force bars, membrane
plates and shear panels. For this class of structures Gellatly and Dupree derive
an optimality criterion, their equation (2), for the minimum weight design of a
truss subject to a single displacement constraint. They then use this optimality
criterion, (2), to develop a recursion relationship, (8), which allows any arbitrary
set of member areas to be modified iteratively so as to eventually produce an
optimal set of member sizes. The important time-saving feature of this approach
is that at each iteration the existing set of member sizes is altered by applying
the simple relationship (8) to each area in turn. There is no complicated numerical
search involved.

Gellatly and Dupree then continue to describe a large computer program,
OPTIM II, in which this optimality criterion and redesign formula is used to design
structures with multiple displacement constraints (stiffness requirements) and also
individual member size comstraints. They point out that neither the optimality
criterion itself nor the redesign formula is valid for anything other than a single
displacement constraint but, despite this lack of rigour, OPTIM II still obtains
remarkably good numerical results very quickly. This is not disputed here; OPTIM II
is an efficient program, but its lack of rigour is perplexing and it makes it
difficult to interpret and identify those occasional cases in which OPTIM II
performs poorly.

The purpose of this paper is to examine a new dual formulation of optimum
design problems for this class of structures. In particular the problem of how
best to handle multiple constraints is examined and an interpretation of the dual
problem is presented which has considerable relevance in the development of improved
optimum design algorithms for large structural systems.

2, THE OPTIMUM DESIGN PROBLEM

For simplicity of notation a truss structure composed onlyof axial force bars is
considered, being typical of the general class of structures with member stiffness
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proportional to member mass, The minimum weight (minimum volume) design problem
can be posed as that of finding the set of member areas Ai’ i=1, ..., N, which

Minimize W = Li A. L)

=] 1

He M 2

subject to M independent nodal displacement constraints (Gellatly and Dupree
consider only a single generalised stiffness constraint),

N
FUL 1
g =% (_.__Eg A—Sl m=1l, ..., M (2)
1

1=1 mi i

A,
= _l 1 =
BM+i - R <1 1 1, ..., N (3)

In constraints (2) F and U are the member actual forces and virtual forces
associated with unit displacement in the direction of the nodal constraint. &gy is
the maximum permitted displacement of a node in constraint my m =1, ..., M. E is
the elastic modulus, and each of constraints (2) is derived from specific applied
loads and virtual force systems, In constraints (3) A; is the minimum permissible
size of member i, derived either from maximum member stress limits or from
fabricational considerations,

In the above formulation it is assumed that F and U are constants, hence A;
is also constant. This assumption is wvalid for statically determinate trusses.
It is strictly invalid for indeterminate trusses, however, F, U and hence A; do
not usually alter appreciably as members sizes alter and it is common to assume
them constant, obtain an altered set of member sizes in some way, update the values
of F, U and Aj, solve again and continue in this iterative fashion until the
process converges to an optimum solution, This iterative solution technique is
used by both mathematical programming and optimality criterion devotees, the
essential difference between them being only the way in which the altered set of
member sizes is obtained. It is assumed here that this iterative method for
indeterminate structures is used and so in the above formulation F, U, L, E, § and
A are all known constants. Our problem is how best to find the optimal set of
member sizes.

Recently the present author? has shown that there is a dual formulation of
the problem expressed in relationships (1), (2) and (3). Derivation of the dual
problem is accomplished by exploiting the fact that the Lagrangian function of
the above problem has a saddle point as a stationarity condition., A full proof of
the dual formulation is given in reference? and here it is merely stated as

3 Mo opu A :
Maximise V = ? Li {z (EE . Am + T AM+i}
i=1 m=1 ml 1
M+N (4)
subject to £ x =1
m
m=1
Am >0 m=1, ..., M+ N

The solution of (4) is equivalent exactly to the solution of the primal problem,
(1), (2) and (3). At the solution point (minimum of W, maximum of V) the following
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transformation relationships hold, with superscript asterisk denoting optimal
values,

(Minimum) Wk = yx2 (Maximum)
M A, 4
FU 1 .
* = *® —— * — *x =
Ai = vk {¢ (Eé) . )\m+ T AM+.1} i=1, «v.y N (5)
=1 mi 1

The dual variables in dual problem (4) are the Ap, m =1, ..., M+ N and it
will be noted that there is a dual variable Ay for each of the primal constraints
(2) and (3). The dual variables are therefore similar to the unknown Lagrange
multipliers of the primal problem. All XA's must be non-negative; any value of
A = 0 denotes that the primal constraint to which it corresponds is inactive at the
optimum, The single constraint in dual problem (4) requires that all A's sum to
unity.

3. PROBLEMS WITH ONLY DISPLACEMENT CONSTRAINTS

Gellatly and Dupree! consider only a single displacement constraint and their
equations (2) and (8) represent an optimality criterion and a resizing formula for
this problem. Their equation (2) contains a single unknown Lagrange multiplier
corresponding to the single constraint. This unknown multiplier may be eliminated
by substitution into the constraint which must perforce be active; consequently
their resizing formula (8) contains no unknown multipliers. A major difficulty is
encountered if this method is extended to multiple displacement constraints. In
this case there will be M unknown Lagrange multipliers, one for each constraint,
and since it is not known a priori which of the multiple displacement constraints
are active and which are slack at the optimum it is not possible to eliminate the
unknown multipliers by substitution., Consequently when a member resizing formula
for multiple constraints is developed corresponding to Gellatly and Dupree's
equation (8) it contains all the M unknown Lagrange multipliers. In order to use
the resizing formula it is necessary to supply values to all the unknown Lagrange
multipliers but there is no way of knowing what these values should be. This
constitutes the major difficulty of using optimality criteria methods for
multiple constraints. In order to get round this difficulty OPTIM II uses the
envelope method which resizes each member according to the single conmstraint
resize formula for each displacement constraint and then selects the largest
resulting size., This process seems intuitively logical but has no theoretical
rigour.

If the dual approach is examined for multiple displacement constraints only,
the dual problem becomes

N M - 3 1
Maximise V=% L. {Z (== A}
; i ES” . 'm
1=1 m=1 ml ? (6)
M
subject to L A =1
m
m=1
A >’O m=1, lnl’M J
m

At the optimum, we have
(Minimum) Wk = V&2 (Maximum)

FU ;

% = V% et * = <

& v {Z=1 (E6 y An# 1=1, ee, N
ml
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Problem (6) consists of maximizing V, a non-linear function of the M dual variables
Ap subject only to a single linear equality constraint and non-negativity of the
dual variables. This is easily done by classical optimization methods. Once A%,
m=1, ..., M are known, relationships (7) give the minimum weight and optimal
member sizes directly.

Several features of the dual problem can be noted, Firstly the number of
dual variables i1s M, the number of displacement constraints. This means that the
dimensionality of the original problem, which had N member size variables, is
greatly reduced. Thus a large structure with perhaps 1000 members to be sized and
5 displacement constraints has a dual problem which consists of maximizing a non-
linear function V of only 5 variables, In most large structural problems there
are usually many more members than displacement constraints so the reduction in
dimensionality afforded by the dual problem is of considerable advantage. Secondly,
the dual problem itself is of a convenient form for rapid solution. The single
linear equality constraint may be eliminated by substitution, converting the problem
to one of unconstrained form with non-negativity requirements., First and second
derivatives can be easily evaluated which makes solution comparatively simple.
Thirdly, the result gives immediate information about which constraints in the
primal problem are active and which are slack since a value of Ap = O corresponds
to a slack constraint. Finally the dual approach has the theoretical rigour
which is lacking in the emvelope method.

A physical interpretation of the primal/dual problems in terms of structural
behaviour is illuminating. Consider a structure constrained by M independent
displacement constraints, i.e.

Minimize W
(8)
Subject to gy € 1 m=1l, ..., M

If each of the M constraints in (8) is multiplied by a multiplier Ap, m =1, ..., M,
such that the sum of the Ap's is unity, and all the constraints are then summed
into a single surrogate constraint we have

Minimize W
M (9
Subject to Z A g
m
m=1

A
'_l

m

Examination of the dual problems corresponding to (8) and (9) shows them to be
identical providing the Ay 's in (9) solve problem (6) optimally. This demonstrates
that in responding to multiple constraints the structure apportions its member

sizes as if all the independent constraints were surrogated into a single generalised
stiffness requirement. The structure therefore responds to a single fictitious
surrogated stiffness requirement and, since the A must solve (6), the surrogate
stiffness requirement is such that the independen? sitffness requirements are
combined together in such a way as to maximize their constraining potential,

This physical interpretation may partly help to explain the good results often
obtained by the envelope method as used in OPTIM II., The envelope method resizes a
a member by applying a single resize formula to each constraint in turn and selects
the highest resulting member size. These highest sizes form a resized set. By
this means the constraining potential of all the constraints is maximized. This is
in the same spirit as the more rigorous dual approach outlined above but is
mathematically different and is not rigorous. However, it may be conjectured that
the good results obtained by OPTIM II correspond to problems in which the enveloping
and surrogation approaches are similar and that the occasional poor performance of
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OPTIM II corresponds to problems in which the member sizes obtained by enveloping
are very different from those which satisfy the more correct surrogated comstraint
in (9).

4. PROBLEMS WITH DISPLACEMENT AND MEMBER SIZE CONSTRAINTS

As Gellatly and Dupree demonstrate, a displacement constraint governs the
distribution of material throughout the structure. A member stress or size
constraint only controls the material in an individual member. Difficulties arise
when both types of constraints are present together since the distribution of
material required to optimally satisfy a displacement constraint may violate the
amount of material required to satisfy one or more of the individual member
constraints. There is no optimality criterion of practical use for combined types
of constraints. Somewhat ad hoc methods are usually used such as active/passive
sets of variables as in OPTIM II to handle both types of constraints.

The primal problem concerning us here is that given in (1), (2) and (3) and
the corresponding dual problem is given in (4) and (5). On examining the dual
problem it at first appears that its dimensionality, (M + N), is greater than that
of the primal problem, N. This would negate the advantage which the dual approach
has of reducing problem dimensionality. Fortunately, very recent research has
shown that the N dual variables corresponding to member size constraints may be
effectively eliminated by an iterative process. A brief summary of this now
follows.

Consider dual problem (4) for a single displacement constraint (with dual
variable 1p) and a full set of N member size constraints. If we write

W=, A 5, - =3

AE i

Wo=I W, § =1 &,
j=1 * is=1

and if § is the maximum permissible nodal displacement, dual problem (4) is

N s }
Maximize V = ¥ ,JW, {— 2 *+ .}
=1 1 8 1
N (10)
Subject to I Ai =1
i=o0
Ai 20 i=0, ..., N

Necessary conditions for a constrained maximum of V with respect to the N member
size dual variables only are that

%%T =0 i=1, .o., N
1

This leads to

Wl )\0 _ ﬁ -
et a2 Foe- L) TR an
1 q 8 W 1
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Substituting (11) into V of (10) gives

v i B2 (12)

If § < & this denotes that member sizes evaluated from the member size constraints
alone will satisfy the displacement constraint and hence Ay will be zero. We are
interested in the case where 6§ > § and the displacement constraint must be active.
In this case V as given in (12) is maximized by as large a value of Ay as is
possible. However, Ap may not increase to a value such as to drive any of the
A;%, i =1, ..., N in (11) below zero. The highest possible value of Ag is
therefore that value which first puts any X;* equal to zero, i.e.

H) (13)

This value of Ay drives one of the A\;* to zero. Let the variable driven to zero be
My * = 0. This is now eliminated as a slack member size constraint.

IISI
|7

Ao = Min <31 - % +
1,..0,N

i= y sy

=

1

A new dual problem may now be formed with Ay eliminated. This replaces
problem (10) and is

N-1 iy -q % F GN 3 W
Maximize V = iil W, 3= X+ M)+ (5 Aol
N-1 T (14)
Subject to I A, =1
i=o
A 20 i=0, ..., N=1 ]

Problem (l4) is treated in a similar way to problem (10). Relationships similar

to (11) are established for the X;*, this time for i =1, ,.., N- 1. An expressior
for V similar to (12) is found and a new value of Ay is determined as (13). If the
new value of Ay is greater than its previous value another of the XA;* is eliminated,
another problem similar to (14) but with(N = 2)va1ues of X{ is set up and the
process is continued in this iterative fashion until the value of Ay reduces. The
previous iteration's results for all the A's are then optimal. Relationships (5)
then give the minimum weight and optimal member sizes.

The iterative procedure described above forms into a very simple algorithm
since the relationships of the types of (11), (12) and (13) are very concise in
nature. Using this iterative dual approach the interactions of member size
constraints and a displacement constraint may be optimized very rapidly, the
dimensionality of the method being essentially unity. An advantage of the method
is that it starts essentially with a fully-stressed design (all member size dual
variables active and Aq = 0). The activity level of the displacement constraint,
Ao, is then progressively increased, knocking out member size constraints as they
become slack. In many practical design situations a first requirement is to
examine the fully-stressed design and check it against possible displacement
limitations. If the displacements are excessive the fully-stressed design needs
to be altered in some way so as to optimally satisfy displacement limitatioms.
This is precisely how the dual approach outlined above tackles the problem and it
is therefore well suited to implementation in practical optimum design programs.

The treatment above is limited to the combination of a single displacement
constraint and member size constraints. If multiple displacement constraints are
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present the iteration algorithm is more complex and has not yet been fully investi-
gated. However, it has already been shown in this paper that multiple displacement
constraints behave as a single surrogated constraint. This suggests a possible
solution algorithm in which the multiple constraints are first solved separately
and the single surrogate constraint formed and then the above algorithm used to
handle the interacfions of the surrogate constraint and the member size constraints.
This remains to be further investigated.

5. CONCLUSIONS

This paper has examined a dual approach to the optimum design of structures
whose elements have stiffness proportional to mass. It has shown that a study of
duality gives insight and rationale for some of the successful, non-rigorous
approaches to truss design such as the optimality criterion approach used in
OPTIM II. It would have been more satisfying to give numerical results confirming
the speed and efficiency of the-dual algorithms suggested in this paper but space
limitations preclude this. Nevertheless it can be stated that the dual approach
does provide a means of very rapidly solving optimum design problems for large
structural systems. The reduction in dimensionality and the ease with which the
dual problems may be manipulated and solved makes the approach a very serious
competitor to the much-used, less rigorous optimality criteria methods. From a
practical structural engineering point of view it should be stressed that although
duality theory and the associated algebra may seem unnecessarily complicated and
abstract, the algorithms which may be developed from it are rigorous and are very
simple to operate, giving practically useful results very rapidly. Furthermore the
dual-based algorithms often tend to be similar to those suggested by engineering
intuition. This is very satisfying and a firmer theoretical basis for intuitive
design approaches adds considerable strength to them.

As the present author has commented in the Introductory report to the 1Oth
IABSE Congress?® a major advantage of a study of dual methods is that it sheds new
light on well-known problems and enables the nature of the problems to be understood
more deeply. Sometimes, as in the case here, this extra insight allows new solution
algorithms to be developed. The ultimate usefulness of these algorithms remains to
be fully investigated in a continuing program of research,
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SUMMARY

The paper examines a new dual approach to the cptimum design of trusses
with multiple displacement and member size constraints. Comparison is made
with optimality criteria approaches to the same problem. Reductions in
problem dimensionality and simple solution algorithms arise from casting
the problem into dual space, which also gives insight into some ad hoc,
intuitive artifices often employed in the solution of these problems.
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RESUME

Une nouvelle méthode duale est présentée pour le dimensionnement
optimal de treillis, soumis & des contraintes de déplacements multiples
et de types de profils. Une comparaison est faite avec la méthode des
critéres d'optimisation. Des réductions de la dimension des problémes
ainsi que des algorithmes simples pour leur résolution sont obtenus en
situant le probléme dans l'espace dual, ce qui permet également d'analyser
guelques artifices de calcul souvent utilisés dans la solution de tels
problémes.

ZUSAMMENFASSUNG

Der Bericht behandelt eine neue Dualmethode fiir die Optimierung von
Fachwerken mit mehrfachen Formdnderungs- und Formgebungsrestriktionen.
Die Ergebnisse werden mit der Methode der Optimalit&tskriterien verglichen.
Eine Abminderung der Komplexitdt und einfache L&sungsalgorithmen resultie-
ren aus der Problemprojektion in einem Dualraum, was auch Einblick in
gewisse intuitive Verfahren gewdhrt, die bei der L&sung solcher Probleme
oft angewendet werden.
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Rdle de la méthode des forces et des déformations dans I'optimisation
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1. Problemstellung

Im Konstruktiven Ingenieurbau stehen heute eine Reihe leistungsfihiger
Berechnungsverfahren zur Verfligung. Das Dimensionieren von Tragwerken erfolgt
dagegen durch den Ingenieur, wobei Konnen und Erfahrung eine wesentliche Rolle
spielen. Kann man eine Gewichts— oder Kostenfunktion definieren, so 148t sich
dieses Problem als Optimierungsaufgabe formulieren, die als Folge der Bemes-
sungskriterien i.a. nichtlinear und nichtkonvex ist. Aus der Vielzahl der L&-
sungsverfahren zur Bestimmung eines lokalen Minimums [1/ wird hier das Verfah-
ren der Optimalitidtskriterien betrachtet, das eine problemorientierte Variante
der Lagrange 'schen Multiplikatorenmethode darstellt.

Dem Optimierungsmodell liegt ein durch n Elemente diskretisiertes Trag-
werk zugrunde. Es wird vorausgesetzt, daB fiir jedes Element i die Element-
flexibilitdt £i+) umgekehrt proportional von einer Querschnittsvariablen (Ent-
wurfsvariable) o; > 0 abhingt und daB sich das Gewicht des Tragwerkes als li-
neare Funktion (Zielfunktion) dieser Entwurfsvariablen darstellen 1l3Bt:

n n
W o= 2 w, = 2 Tii a, (n
i=1 i=]

Als Nebenbedingungen werden Spannungs- und Verformungsrestriktionen beriicksich-
tigt, wobeil oio und 6;9 die zuldssige Spannung des Elementes i bzw. die zu-
ldssige Verformung in Richtung des Freiheitsgrades j infolge Lastfall 1 be-
deutet. Zusitzlich kann eine Einschrankung der Variablen durch untere und obere
Schranken u‘].f bzw. ag vorgegeben werden. Damit ergibt sich folgende Optimie-
rungsaufgabe :

n
linimiere W o= 3 w. a.
i=]

unter Beriicksichtigung der Restriktionen

+ ¥ . 3 .
) Matrizen und Spaltenvektoren werden durch Unterstreichen gekennzeichnet, ein
hochgestelltes T bedeutet die Transponierte.
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o - 021 < o (i=1,...,n ; 1=1,...,p) , (2)
65 - 6‘;1 < 0 (3=1,...50 5 1=l,...,p) (3
a; - a; < O (i=1,...,0) (4)
a; - a7 g 0 £ o R (5)

Es bedeutet q die Anzahl der Freiheitsgrade und p die Anzahl der Lastfidlle.
Die Spannungen o und die Verformungen ¢é sind nichtlineare Funktionen der
Entwurfsvarieblen o« , so daB die Restriktionen einen nichtkonvexen L&sungsbe-
reich beschreiben. Da die Problematik bei einem Lastfall bzw. mehreren Last-
fillen dieselbe ist, wird im folgenden aus Griinden der Ubersichtlichkeit auf den
Belastungsindex 1 verzichtet.

2. _Notwendige und hinreichende Optimalit#tsbedingungen

Die Herleitung notwendiger Extremalbedingungen der nichtlinearen Optimier-
rungsaufgabe erfolgt mit der verallgemeinerten Lagrange 'schen Multiplikatoren-
methode [2/. Da s#mtliche Variablen a nichtnegativ definiert und alle Restrik-
tionen als Ungleichungen gegeben sind, sind diese Bedingungen hinreichend fiir
ein lokales Minimum der Zielfunktion /3/. Bezeichnet man mit G; <0 die allge-
meine Form der Restriktionen (2) und (3), so lautet die Lagrange'sche Funktion:

n
) + X g (ag -a)) . (6)

m n 5
J = W+ 3 A, G + 2 wu (a. - a.
i Vi i i

j=1 3 J ia *

Die Lagrange'schen Parameter Aj' vy und n; sind festgelegt durch:

\, 20, fur cj 2 0 (G=1,...,0) (7
. = u .

My > o , fiir a, > ai (i=1,...,n) (8)
. = o :

ns >0 , fiir a, < @ (i=1,...,n) (9)

Als notwendige und hinreichende Bedingung fiir einen stationiren Wert von W
missen die partiellen Ableitungen von J nach den Variablen o verschwinden.

Mit a(...)/aak = ("'),k erhilt man:

m
Wk + 2D ij T oMt = 0 (k=1,...,0) (10)
j=] b ]

Mit (8) und (9) folgt:

o
i 2 W’k %y a
- . 4 - . u [o]
3'%1 A G5y L , fur € o < a < o) ()
u
B b

Flir alle "passiven " Restriktionen G: <O 1ist nach (7) der Lagrange'sche Pa-
rameter A: gleich Null, so daB in dgr Optimalititsbedingung (11) nur die "ak-
tiven" Restriktionen Gj = 0 berlicksichtigt zu werden brauchen.
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3. Rekursionsformeln zur Bestimmung der optimalen Konstruktion

3.1 Aktive Verformungsrestriktionen

Einzelne VerformungsgrdBen kdnnen mit Hilfe des Prinzips der virtuellen
Krifte berechnet werden. Es gilt:

n n T
= = ] s ]
By = iZ=l €ij i{l S; £ 3 (G=1,...59") (12)

wobei e.. die virtuelle Verzerrungsenergie, S. die SchnittgrdBen infolge der
Belastuﬁé, §i die SchnittgrdoBen infolge der Yirtuellen Einheitsbelastung in
Richtung der gesuchten VerformungsgroBe des Elementes i und q' die Anzahl
der aktiven Verformungsrestriktionen darstellt. Als partielle Ableitung nach
den Variablen a (k=1,...,n) erhdlt man mit ekj = Ekj/uk :

k
- 2
S T TG %
Bezeichnet k € Nl eine "aktive" Variable a,  mit dem Wert aE <a < uz und
k € N2 eine "passive'" Variable mit a_ = a2 “oder a, = a® , so muR fiir alle
aktiven Variablen k € NI das Gleichheitszeichen in der Optimalitidtsbedingung

(11) erfiillt sein. Mit W K = Wk und (13) folgt:
1 ]

q _ 5 _
A, . = ;

j%l 5 % / @y v, (¥k € N1) (14)

Diese Gleichung stellt i.a. ein hochgradig nichtlineares Gleichungssystem mit

den Unbekannten A. (j=l,...,q9') und a (k=1,...,n) dar, das nur iterativ

geldst werden kann: Ist nur eine einzige Verformungsrestriktion zu beriicksich-

tigen, d.h.

(13)

o —_—

6. = 3 e ./la + 3 e. 5 (15)
] kent K3k e M

so liRt sich der Lagrange'sche Parameter A. eliminieren. Die Gleichungen (14)

aufgel8st nach uk (k € N1) wund in (15) eiAgesetzt, liefert:

o= (L0 X e W, )P mit & = %= 5 e .. (16)
J 6 KENI ] kenz

Bei mehreren aktiven Verformungsrestriktionen ist eine Bestimmung von A.
(j=1,...,9"') aus (14) nur dann moéglich, wenn e . / a‘° als invariant be-
trachtet werden. In diesem Fall stellt (l4) ein * {iberbestimmtes lineares Glei-
chungssystem in A dar:

6 A= E (17
mit G =|e./w uz] (18)

- kj k "k

und E = {I,...,l} fiir alle k € NI und j=1,...,q'. Mit Hilfe der ersten
GauB'schen Transformation kann eine Lésung fiir A gefunden werden. Es gilt:

=[] e (19)
In Bezug auf die urspriingliche Gleichung (17) stellt ) die beste Losung im
Sinne der kleinsten Quadrate dar. Mit den bekannten A-Werten und der Annahme
invarianter GrdBen @, : (bei stat. best. Systemen) entkoppelt sich das Glei-
chungssystem (14), so daB die aktiven Variablen o (k € N1) bestimmt werden
kdnnen:

]
o = (X A 5. /w2 (20)
k jai 3 k) k
Bei stat. unbest. Systemen sind die GrdBen e,. komplizierte Funktionen von

a . Da sich eine Anderung von o in erster JLinie auf die SchnittgrdBen des

k
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Elementes k auswirkt, kann (20) iterativ angewendet werden, d.h.

q|
v+1l v —v - 1/2
%k ¢ j‘§, Ao ) : 21
wobei v den Iterationsschritt kennzeichnet und A" j=|,...,q¢) fiir q'=1
aus (16) bzw. fiir q' 2 2 aus (19) mit den Werten 1&g, und «a berechnet
wird. Da die passiven Variablen « (k € N2) 1i.a. J nicht im voraus be-

kannt sind, muB ihre Bestimmung ebenfalls iterativ erfolgen. Dabei kdnnen die

Schranken a% und a° durch die Bedingungsgleichungen
o v+1
>
a o 2 o
v+l v+l . u v+l o
a = @ fiir ak < ak < ak (22)

u v+l u

4 kS %

beriicksichtigt werden. Alle Variablen, fiir die a¥ bzw. o maBgebend ist,

werden in der nidchsten Iteration zu den passiven gezihlt.

3.2 Aktive Spannungsrestriktionen

Sind ausschlieBlich Spannungsbeschrinkungen vorgeschrieben, so kann die
Bestimmung der Variablen a nach der bekannten "stress-ratio'- Methode [4] er-
folgen, in der jedes Element entsprechend seiner spannungsmiBigen Auslastung
dimensioniert wird. Es gilt:

v+l v v o]

a a 'ok / O i (23)
wobei o die mafRgebende Spannung des Elementes k im v~ten Iterationsschritt
bedeutet. Als Ergebnis erhilt man eine sogenannte '"voll-beanspruchte" Konstruk-
tion, die in jedem Element die zulissige Spannung ausnutzt, wenn nicht der durch

GE festgelegte minimale Querschnitt maRgebend ist.

Bei aktiven Verformungsrestriktionen k&nnen Spannungsbeschrinkungen beriick-
sichtigt werden, wenn man in jeder Iteration die nach (23) berechneten o-Werte
in der Bestimmungsgleichung (22) als zusitzliche untere Schranken auffaBt.

3.3 Konvergenz des Verfahrens

Die Anwendung der Gleichungen (16), (19), (21) bis (23) verlangt nach je-
der Iteration eine vollstindige Berechnung der Konstruktion. Um jeweils eine zu-
ldissige Losung zu erhalten, werden sidmtliche Variablen @’ mit einem globalen
Skalierungsfaktor multipliziert, so daB keine der Restriktionen (2) und (3) ver-
letzt und mindestens eine identisch erfiillt wird. Danach erfolgt die Bestimmung
der aktiven Verformungsrestriktionen, wobei alle Verformungen, die im Verlauf
des Iterationsprozesses einmal ihren zulidssigen Wert erreicht haben, weiterhin
zu den aktiven gezdhlt werden. Ergibt sich jedoch nach (19) ein negativer A-Wert
so mufl die entsprechende Restriktion aufgrund der Nichtnegativititsbedingung (7)
wieder eliminiert werden. Erst wenn alle aktiven Verformungen bekannt sind, ist
mit einer schnellen Konvergenz zu rechnen. Das Konvergenzverhalten kann durch
eine Begrenzung der Schrittweite in aufeinanderfolgenden Iterationen beeinfluft
werden. Mit

:+l - u: (k=1,...,n)
ist die optimale Konstruktion gefunden, fiir die das Gewicht ein (lokales) Mini-
mum annimmt,
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4, Die Bedeutuggrdes Kraft- und WeggriBenverfahrens

Bisher wurde nur das Iterationsverfahren zur Lésung der Optimierungsauf-
gabe betrachtet, Uber die Lagrange'schen Parameter A bei mehreren aktiven Re-
striktionen wurde im Sinne der kleinsten Quadrate verfiigt. Im Vergleich mit an-
deren Verfahren [4] ergibt sich hierdurch ein stabiles Konvergenzverhalten bei
nur wenigen Iterationsschritten. Die wiederholte Berechnung des Tragwerkes nach
der Finiten-Elementmethode erfordert bei den vorliegenden Problemen einen erheb-
lichen Rechenaufwand und verdient damit besondere Beachtung. Ohne auf die Mog-
lichkeiten der Ableitung von Elementmatrizen [5/ einzugehen, werden hier nur
die L&sungsverfahren betrachtet. Diese Verfahren folgen direkt aus den klassi-
schen Minimalprinzipien elastischer Tragwerke.

Das Prinzip vom Minimum der Potentiellen Energie

Min{-;—éTEQ-BTQ} ; (24)
mit der positiv definiten Gesamtsteifigkeitsmatrix K, den Lasten P und
den Verschiebungen &6 , liefert als notwendige und hinreichende Bedingung die
Grundgleichung der Verschiebungemethode:

K6 = P . (25)

Das Prinzip vom Minimum der Komplementdrenergie

Min{-;-gTig §§=g} , (26)
mit der Hyperdiagonalmatrix f der Elementflexibilitdtsmatrizen, den verallge-
meinerten Spannungen S wund der Gleichgewichtsmatrix N ergibt die Grundglei-

chungen der Kraftmethode:

NS = P (Gleichgewicht) ,
T (27)
B £S = 0 (Vertridglichkeit) .
-—x—-—
Ei ist der Kern der Gleichgewichtsmatrix (E_Ei = 0) .

dert im allgemeinen die Verschiebungsmethode: Der einfache Aufbau, die positive
Definitheit und Bandstruktur der q x q Matrix K erleichtert die Berechnung.
Bei einer mehrmaligen Berechnung des Tragwerkes mit variabler Flexibilitdt f
zeigt jedoch die Kraftmethode gewisse Vorteile: Die q Gleichgewichtsgleichungen
(27) miissen nur einmalig geldst werden, die Vertrdglichkeitsbedingungen lassen
sich einfacher darstellen und mit geringerem Aufwand fiir jede Wiederbemessung
16sen. Als Losung erhidlt man die n SchnittgrdBen S. zur Iteration nach (12).
Mit dem in /6/ niher beschriebenen Ldsungsverfahren kann zudem die Bandstruktur
der Gleichgewichtsgleichungen gewahrt werden. Ein genauer Vergleich des numeri-
schen Aufwandes beider Methoden fiihrte zu dem Ergebnis, daB mit steigender Zahl
der Wiederbemessungen der Aufwand A, der Kraftmethode abnimmt. Das Verhdltnis
des Aufwandes der Verschiebungsmethode zur Kraftmethode nimmt jedoch bei
wachsendem n/q ab. In den fiir die Praxis wichtigen Stabtragwerken ist jedoch
i.a. n/q < 2 . Fiir ein System mit 1000 Freiheitsgraden der Verschiebung und ei-
nem speziellen Elementtyp (s) ergibt sich die in Bild | dargestellte Abhingig-
keit [6/.

Umfangreiche numerische Untersuchungen /[7/ an den aus der Literatur bekann-
ten optimalen Tragwerken bestitigen in allen Fillen die Uberlegenheit der Kraft-
methode.
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20 . )
Anzohi d Freiheitsgrade ©  n=1000
Elemenityp: s=20
W Anzohl der Iterationen © V
O
L5 <
N \
Q
<
2
e 10 - - e
3 N v =8
D
g 2
05 e
it Kraftmethode
i oufwendiger

n/q

Bild 1: Vergleich der Kraft— und
Verschiebungsme thode

Lastfall | Knoten (Pz=-1000 1bs)

1

1-4,7-13,19-28,37
1-37

1,4-7,13-19,28-37

SN —

Tabelle 1: Belastungsangaben

240 IN.

Bild 2: Fachwerkkuppel
5. Numerische Ergebnisse

Die Zuverlissigkeit des Optimierungsverfahrens soll hier an einem ausge-
wihlten Beispiel gezeigt werden. Die in Bild 2 dargestellte Fachwerkkuppel, die
in den Knoten 38 - 61 unverschieblich gelagert ist, wird durch vier Lastfille
beansprucht. Die genauen Belastungsangaben sind in Tabelle | zusammengestellt.
Als Material wird Aluminium mit einem Elastizititsmodul von E = 107 psi und dem
spezifischen Gewicht von p = 0.1 1lbs/in3 verwendet. Fiir alle Stibe betridgt der
minimale Querschnitt 0.1 in? , wobei die zulissige Spannung von + 25000 psi
nicht {iberschritten werden darf. Die Verschiebungen simtlicher Freiheitsgrade in
z-Richtung werden auf # 0.l in. begrenzt. Alle Entwurfsbedingungen sind mit denen
aus /8/ identisch.

Ausgehend von einer zulissigen Konstruktion mit querschnittsgleichen Stiben
(Wl=358.85 1bs) wird die optimale Kuppel nach 15 Iterationen und einem Gewicht
von 161.63 1bs gefunden, das um 10.77

il geringer ist als in /8/ . Wihrend zu
Beginn der Optimierung nur die Ver-
T \ w2 35005 schiebung von Knoten 1 (LF 1) den
20 1= maximal erlaubten Wert von -0.1 in.
2M-——-§z erreicht, sind von der 13. Iteration
590 O an 4] Verformungsrestriktionen zu
20 beriicksichtigen, die jeweils durch
o0 @ | einen der 4 Lastfille aktiviert wur-
@ den. Spannungen waren in keiner Pha-
we \\ se des Iterationsprozesses maRgebend.
180 “~£25 Bild 3 zeigt das stabile Konvergenz-—
170 '“““i;LJ————C) verhalten, wobei insgesamt eine Ge-
B \\h~"_“'ﬁk: wichtsreduktion von 557 erreicht wird.
= ! ! l | Die Querschnittsflichen der optimalen
r2 03 ¢ s s 7 8 9 wom 22 2k 5V Kyppel, die symmetrisch zu den beiden

Bild 3: Iterationsverlauf Achsen 38-50 und 44-56 ausgebildet
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ist, sind in Tabelle 2 zusammengestellt. Bei n/q=1.19 konnte die Kraftmethode
duBerst wirtschaftlich eingesetzt werden. Die Rechenzeit (TR 440) betrug nur
182 sec.

Stab | Flache Stab | Flache Stab | Fliche Stab | Fldche
4 11.0176 36 0.4831 | 62 | 0.3177 111 0.1003
511.1732 371 0.3051 63 | 0.6572 112 ] 0.2403
9 10.9720 38| 0.3514 80 | 0.3062 113} 0.3088
10 | 0.8322 56 | 0.3207 81 10.2128 114 | 0.1429

21| 0.2990 571 0.1904 82 | 0.1003 115 | 0.5000
22 |1 0.3395 58| 0.3378 83 | 0.1003 116 | 0.1003
231 0.5773 59 | 0.3431 84 | 0.3347 117 | 0.4381
24 | 0.4148 60| 0.29 6 109 | 0.1003 118 | 0.3312
25 [ 0.6776 61| 0.5494 110 | 0.4961 119 1 0.1003

Tabelle 2: Optimale Querschnittsfldchen (in?) eines Quadranten
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ZUSAMMENFASSUNG
Es wird eine spezielle Anwendung der Lagrange'schen Multiplikatoren-
methode, die als Verfahren der Optimalitdtskriterien bekannt wurde, dar-

gestellt. Eine lineare Transformation der Lagrange-Parameter fihrte zu
einer schnellen und gleichmdssigen Konvergenz.

SUMMARY

A special application of the Lagrangian-Multiplier-Technique, known as
the optimality-criterion-method, is presented. A simple linear transfor-
mation of the Lagrange parameters leads to fast and uniform convergence.

RESUME

Une application spéciale de la technique des multiplicateurs de Lagrange,
dite méthode des critéres d'optimisation est présentée. Une transformation
linéaire entralne une convergence rapide et uniforme.
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