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1. INTRODUCTION
The mathematical programing technique has already been adopted for the

1.2
optimization of the structures subjected to the dynamic excitations. Most of
these optimizations were dealt with beams, trusses or frames, subjected to
simple excitations such as harmonic waves or shock'waves, and designed under
rather simple elastic constraints.

However, in case of earthquake loadings it becomes important to estimate
the dynamic forces correctly using the available model for the elastic design,
and to take into aecount the inelastic behaviour of structures during the very
strong ground motion.

Considering these problems, this paper presents a method for the automated
minimum weight design of wide-flange steel frames which gives the optimum
distribution of the moment of inertia of used members.

2. DYNAMIC ANALYSIS
An idealized dynamic model consist of bedrock, ground layres and a structure

is considered (see Fig. l). Ground excitations are given by the model presented
by Kanai and Tajimi, and the dynamic response of the structure to this ground
motion is estimated by means of the random Vibration theory and Davenport's
equation which gives the expected maximum value of a random process.
2.1 Vibration of Ground Surface

Kanai and Tajimi has presented the idea that spectrum observed at bedrock
is characterized by a constant pattern (white noise), while the spectrum at the
ground surface is amplified by the Vibration property of the ground layre and

3
showed a power spectrum of this ground surface as follows:

t ; + «-P%^

where h^ and Wgk are ground damping factor and predominant frequency, respectively,
S0 is a constant power spectrum density function and where s^ is a factor

which measures predominence of each component. This excitation of ground
surface becomes Gaussian process of zero mean.

2.2 Dynamic Response of Structure
The variance of elastic response of the structure subjected to the ground

motion mentioned above can be obtained by means of random Vibration theory. Let
Q^_ and Q*£_ be the variance of story shear force and its time derivative,

respectively.



94 IIa - OPTIMUM DESIGN AND DYNAMIC EARTHQUAKE FORCES

Following Davenport, the mean value of possible maximum elastic response of
story shear force can be given as

QL- (2/n vT)^ +
°-5772

where
A oi

(2/n vT)2
(2)

and T represents the duration of the strong earthquake excitation which is fixed
10 seconds in this paper.

Por very strong ground motion, the response of the structure is considered
to be inelastic, and the relative displacements of each floor are estimated

5
following the idea of Newmark and et al. Equating the inelastic potential
energy of deformation to the elastic one which can be obtained supposing that
the structure responses elastically, the maximum ductility factor of floor
drift,/(, can be obtained as follows (see Fig. 2);

M 4r- + ±( 0. -Y (3)

where 6.y may be thought of as the yield level of the story shear force, and can
be obtained by means of a simple plastic analysis assuming the mechanism of
beam collapse type or column collapse one for each story.

n i i i i i i i i i i r.

Qmon

1 GROUND LAYER 1

BEDROCK

Fig. 1 Dynamic Model

US

Fig. 2 Definition of Ductility Factor

3. DESIGN CONSTRAINTS
For the moderate earthquakes which give such a dynamic force as usually

presented in the design code, the members of the frame are designed elastically
In accordance with the design code of steel structure of Architectural Institute
of Japan (A.I.j). On the other hand, for the very severe earthquake, which is
rarely expected during their service lives, the frame is designed plastically
relying on the energy absorption which due to their inelastic deformation.
In this design procedure, the maximum ductility factor given by Eq.(3) is
constrained less than the allowable value which is fixed 4 in this paper.

To satisfy these ductility requirements, it is necessary for the frame to
prevent the weakening of the load-deflection curves caused by the lateral or
local buckling of members and P-A effects.

These problems are taken into aecount according to the plastic design code
of steel structure of A.I.J.. Namely, lateral buckling is prevented by the
correctly designed stiffners, and local buckling is prevented by selecting the
members which are on market to satisfy the width-thickness ratio of plate
elements imposed by the code mentioned above, or designing each member in-
aecordance with these requirements after the Optimum stiffness distribution of
frame member is decided. Moreover to avoid the excessive P-A. effects, the
slenderness ratios and the axial compressive forces of columns are ristricted by
the code requirements.
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4. OPTIMIZATION
Wide-flange steel members on market are supposed to be mainly used in the

design. The moment of inertia of them, I, are the design variables and objective
function is the total weight of structural members. The emprical relationships
between member properties which are required in the design code and moment of
inertia of economical series of the steel wide-flange section was obtained by
plotting them. The calculation was proceeded using these equations and treating
the moment of inertia as continious design variable.

Sequential linear programming (S.L.P.) technique was successfully adopted for
the optimization of the frames. Objective function and constraint equations were
approximately linearlized, and using linear programming technique, the optimumly
modefied design variables were obtained at each design step. Repeating this
procedure, the optimum solusion, namely the distribution of moment of inertia of
members which gives the minimum weight of structural members, was obtained.

5. SENSITIVITY ANALYSIS
To optimize the structure by means of S.L.P. technique, the change of

member stress and deformation caused by the modefication of each members must be

quantitively estimated as the first order derivative of these values with respect
to the design variables.

Let P be the vector of external nodal forces of global coordinate, and X

and K be the corresponding nodal displacement vector and stiffness matrix. Using
these notations

X K (4)

Therefore, the derivative of nodal displacements with respect to design
variable, I, is obtained as follows;

ax
31

P + K-
ÖI

(5)

The second term of the right hand side of the above equation contain the
derivative of the dynamic loads which vanish in the static problems. If these
values are obtained, the sensitivity coefficients of the stresses and deflections
can be evaluated applying the same procedure adopted for the static problems.

As the dynamic loads which is evaluated by means of random Vibration theory
become the explicit function of natural frequencies and mode vectors of structure,

6

if the sensitivity coefficients of these values are evaluated, then that of these
dynamic loads can be obtained without difficulty.
6. NUMERICAL EXAMPLE

The method previously mentioned is
applied to the design of three-story
frames of equal span length, 6m, and
equal story height, 3m, with uniformly
distributed load, w, on beams, subjected
to the four types of ground motions
whose characteristics are decided by
the parameters presented in Table 1.
Frames are designed both elastically
for the power S0 of En.(l), and

plastically for the power of(X times of
S0 so that the story drifts should be
less than allowable ductility factor 4,
and beam collapse type mechanism is

TYPE Tgi hgi Al Tg 2 hg2 ßz

1 0.3 0.6 1.0

D 1.0 0 6 1.0

m Ol 03 0.2 1.0 0.3 0 8

rv 0.1 0.3 0.2 1.5 0.3 0.8

Table 1 Ground Parameter
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considered for the calculation of yield levels of story shear forces. Steel used
is SS41 whose yield stress is 2.4 ton/cm2.

6.1 Three story one bay frames subjected to the ground motion of type I is
optimized for W 5 ton/m and S0 5 cm/rad/sec3. In Fig. 3, the maximum
stresses and the maximum ductility factors of each story corresponding to the
final design are presented forO^ equal 5 and 7 respectively. Where the maximum
stress is defined as the value in the most severely violated constraint equation
for elastic design whose allowable limit is normalized as unity. For the case
of(X equals 5, the member size is desided by the elastic constraints and the
response ductility factors of each story are scattering. On the other hand, for
the case ofo( equals 7, the beams are not fully stressed for elastic design
constraints and for the plastic design constraints they are equally fully
constrained. Therefore it can be pointed out that for the optimum design of
earthquake resistance structures, it become important to consider the constraints
for the inelastic deflection expected during the very strong earthquakes.

6.2 Three story one bay frame subjected to the ground motion of type III and
IV is optimized for w 2 ton/m, S0 2 cm/rad/sec5 andOt 7. The maximum
stresses of each member defined previously and the maximum ductility factors for
the final design are presented in Fig. 4. This shows that the optimum member
size restricted by both elastic and plastic constraints.

The acceleration response spectrum to these ground motions is presented in
Fig. 4 with the values of the spectrum correspond to the fundamental frequencies
of the structure of initial and final design^ This shows that even if the initial
design is at the valley of the response spectrum, or final design is at the
vicinity of the maximum, this optimization technique can be successfully adopted.

Neglecting the derivative of dynamic forces which is used in Eq. (5), the
optimization is also carried out for the same model. The final result obtained
starting from the same initial design mentioned above is presented in Fig. 6.
Compared with the above analysis, much more iterative calculations are carried
out and the real optimum solusion can not be obtained. This too happen for the
optimization of the structure subjected to the ground motion which have more
moderate response spectrum showing the importance of sensitivity analysis of
dynamic forces for these analysis.

6.3 Three story one bay and three bays frames are optimized for 0( 7 by changing
the parameters concerend with the distributed load and ground motion. The

ductility factors of story drift correspond to the final design are shown in
Table 2 with these parameters. Each story yield almost equally fully restricted
by the constraints of plastic deformation. Therefore it can be pointed out that
for this kind of structures, the optimum design correspond to such a structure
whose response ductility factors against very strong ground motion are almost
equal for all story.

7. CONCLUSION
As a result of this study, following conclusions can be pointed out.

(1) The analysises of some examples shows the validity of the optimization
technique mentioned above together with the importance of the sensitivity
analysis of dynamic forces.

(2) The constraints concerened with the plastic deformation against the very
strong ground motions must be considered together with the constraints for
the elastic strength.

(3) For the type of structure dealt with in this paper, the minimum weight
design correspond to such a structure whose response ductility factors
against very strong ground motion are almost equal for all story«
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SUMMARY

The minimum weight design of unbraced steel frames subjected to
dynamic earthquake loads is presented. Random Vibration theory is
adopted to elastic member strength and plastic story deflection, the
sequential linear programming technique is successfully adopted to
obtain the optimum design. Several examples are presented with the
analysis and comparisons are drawn.

RESUME

On presente le dimensionnement, pour un poids minimum, de cadres
metalliques soumis aux forces dynamiques des tremblements de terre.
La theorie des vibrations aleatoires permet de determiner le comportement

"dyn<amique" de la structure. La programmation lineaire sequentielle
donne le dimensionnement optimal dans des conditions de comportement
elastique des elements et de comportement plastique du cadre soumis ä la
deflection.

ZUSAMMENFASSUNG

Für unausgesteifte Stahlrahmen, die durch Erdbebenwirkung beansprucht
sind, wird die Berechnungsmethode des "minimalen Gewichts" abgeleitet.
Die "Random"-Vibrationstheorie erlaubt es, das dynamische Verhalten des
Tragwerks festzustellen. Unter Annahme "elastischer" Kräfte und plastischer
Verformungen liefert die fortschreitende lineare Programmierung das
gesuchte Optimum. Beispiele werden gezeigt und Vergleiche angestellt.
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1. INTEODUCTIOK

The developments that have taken place in the last few years
in the field of optimization techniques applied to structural
Problems were restricted mainly to structures subjected to deterministic

loadings. The reasons for the lack of research activities
towards the analysis of structures under the effects of random
loadings could be attributed to the mathematical complication involved

in the procedure and the non-availability of sufficient and
reliable data regarding the past histories of the random exciting
force.

In this paper a simplified approach is reported to deal with
the structural optimization problems under non-stationary loadings
by making use of the upper bound probability of failure of the
structure. The analysis is carried out in two phases:

(A) to obtain an expression for the probability that the response
of the structure at a critical zone reaches for the first time an
upper limit value with time-dependent control-barriers, interms of
their rate of uperossings; and

(B) to seek an approximate Solution to the optimization problem,
using the result obtained in phase (A), with the probability of
failure, the natural frequency of Vibration and the frequency response

function of the system as restraints.
2. PHASE (A).

The estimation of the upper and lower bound probabilities of
failure of a structure in a closed internal of time, has been a
field of great interest among engineers dealing with random Vibration

problems. j.j Coleman1 for the first time, suggested an
approximate Solution to estimate the upper bound value interms of
the expected rates of the threshold crossings of the response process
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at positive and negative slopes. However, the process of independent
arrivals of failure, as assumed by Coleman, is unacceptable

especially for narrow band random process, such as the response of
lightly damped dynamic Systems. Besides, for low damped structural
Systems, crossings of response process tend to occur in 'clumps1 of
dependent crossings and hence the expected rate of threshold crossings

should be replaced by the average clumping rate. M Shinozuka2-
has developed a method applicable to stationary and non-stationary
cases as well, to estimate the upper and lower bounds for the
probability of the first excursion failure within an arbitrary semi-clo-
sed time internal (o, t) and constant barriers without the assumption
of independent threshold crossings. When the computed values of
the upper and lower bounds are sufficiently close to each other,
they are just as valuable as the mathematically exaet values of the
probability as a basis for making engineering decisions. In a
paper3 published later, Shinozuka has further extended his Solution
to take into aecount the effects of time-dependent barriers also.

The Solution to the above problem with time-dependent barriers,
presented in this paper is a modification to Shinozuka's approach
with a different Interpretation, interms of the expected rate of
crossings of the response-barriers.

Following Shinozuka's expression for the upper - bound probability
of failure of the structure,

P+ Lt ;-Y2Ct) ,YiCt)] < P* [t; -YxCt;,<J + P* [t i -*- Y.CtJ

_ Pt [£xct,3 <-YfcttO}£* CU) >Y, Ct)}] - - - -Cl)

where x(t) represents the response of the system at a critical zone
and the failure of the System, för the first time, is defined as
when ocCt) 2-Y,C±), or xCt) 4-Ya_Ct) in which Y-|(t) and
Y2(t) are positive barriers of response process.

Let N [Y.C-O ,tj_, hereafter referred as N-| represents a random
variable denoting the number of crossings of Y-|(t) from below
during the internal (0,t). The probability that N LY.Ct),tj
takes a value *-y' during (0,t), Pt[N(:t] can be expressed as:
P+ [N,= Tj Pt[N,=t- xCo)>/N,Co)J ¦+ P+[N,_ + ; XCo)< Y,Co;j Czj

Also,
P+ [t • -°c,Y,(t)J: P*(>(o)?Y|C<0 jN.^oJ+p+LxtoXY.Co^N.^l]

+ P+[xCo) Y,C<0,N,/>a] _ .C3j

Equation (3) can further be simplified as :

Pf Tt; -°c,Y,c-ol Pt[xc°) >y,co;1 + Pf [xcü)<y,Co;J pt[N,^ikoO<
1

Y(Co)J
4Pf[xco)?Y,Co)]+Pf[xCöXY,COJ £ sPr[N(--s\oc(0)

s~~' <Y,Co)J--C
Equation (4) with the help of equation (2) finally reduces to,
PrLt;-^,Y,Ct;]< Pr[xCo)>Yiro)J+ErM)]-Pr[5cCo3>/Y,Co)jE[Nl)oc^)>/YJCö)J

' " - CO

in which E denotes the expected value.

If NL-Y2.Ct), t] hereafter referred as Ng» represents a random
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variable denoting the number of crossings of -Y2(t) from above
during an internal (0,t),
Pr[t^-Yxct^Y,ctDJ < Pr[><o;<-va.(o;j+ Pr [xno; >y,ccoj +

P-r [xco3 >-XxCo3j E [_Mx|'XCoJ>-Yi.(o3j +

Py [X (oj <.Y,Cü)] E LNi[xCo3 eCY(CgJ] -
Pt [[xco)c-^xco3Hxco>x,ct)j] - - - -c<y

Equation (6) in effect represents the best upper bound probability
of failure of the structure interms of the rate of crossings of the
time-dependent barriers of response process.

In case the response process Starts from zero origin, such that
p (" tc(o) o"I= 1» equation (6) further simplifies to :

p, [t-,-Y.(t),Y,a)J<&[M1]+t[^J-p-[{^ct')<^ct,)}^cto>YlctolJ--C7;
The approach presented above, to estimate the upper bound value

becomes significant in dealing with those problems where a stationary
process for a finite time internal is observed, as in certain

control system problems.

3. PHASE (B).

An approximate Solution to the structural optimization problem
is attempted in this phase, making use of the results obtained in
phase (Aj, with the probability of failure of the structure and the
system-characteristics as restraints.

let z(d) be the objective function to be minimised subject to
the condition,

Pr[|JIiSi(x(4,t0»*c}]j.U^]j °°
and Sj (x(d,t)) < Vj - • ¦ ¦ - • - (YJ>

and coit 4 ^i £ wiu. - • ('oJ

where S-i (*Cd,u_) is the frequency response function of the System;
x Cd,t) represents the response (stress, strain or displacement)at a

critical zone to random excitation;
^LL ,uiu. are the lower and upper limits of the natural frequency of

Vibration of the structure, respectively;
[rfjj denotes the upper limit of the probability of failure under
mode j
Let P*[Sc(>u,t));^;j piGO • • • • <"->

Por example, if the safety of the structure is analysed on the basis
of the external load acting on it and its internal resistance, say
P and R respectively, both treated as statistically independent
normal distributions, then,

PCO ~±=- \°! *~*A doc 0*jJiTT T

where f R-F ' - - - - - ('.JJ



102 IIa - OPTIMIZATION TECHNIQUES UNDER RANDOM LOADING EFFECTS

in whichf and F are respectively the mean value of the resistance
and the load; tr^2- and ^P- are their variance.
Equation (8) now reduces to,

,k, ?c. frrrd.trt >v, U. - f£ K-cJJl: CI4Jp,[g,{SLC«^tO^ijJj - [fsl K-^j,
the limit of summation of the time variable being from -=cto°C
It follows,

ll h«>h *LWj, J£''^-- " c"°

In the case of non-stationary random excitations, for example,
ground acceleration due to earthquakes, the left hand side of
equation (15) may be replaced by the upper bound value of the
probability of failure of the structure as obtained in phase (A).

4. CONCLUSIONS.

Since a knowledge of the rate of crossings of the time-
dependent response-barriers is an essential pre-requisite to the
present analysis, a rigorous Statistical analysis of the past
records of the random exciting force is warranted to achieve a high
level of accuracy. A large class of optimization problems in
control system engineering could be advantageously studied using
this method.
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SUMMARY

A general Solution to deal with structural optimization problems under
non-stationary random loadings is presented, with the upper bound
probability of failure of the structure within time-dependent barriers and the
system characteristics as restraints.
RESUME

Une technique generale d'optimisation des structures est presentee
pour le cas de charges aleatoires. Les caracteristiques du Systeme et les
valeurs superieures de la probabilite de ruine en fonction du temps sont
prises en consideration.
ZUSAMMENFASSUNG

Es wird eine allgemeine Lösung der Bauoptimierungsprobleme für nicht
stationäre Unfallsbelastungen dargestellt, mit der oberen Grenze der
Versagenswahrscheinlichkeit innerhalb zeitabhängiger Grenzen und den

Systemcharakteristiken als Einschränkungen.
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1 - INTRODUCTION
L'ideal que cherchent ä atteindre tous ceux qui sont associes ä l'art de

construire est de realiser l'ouvrage qui donnera les meilleures garanties de
service dans des conditions requises de securite et au meilleur prix.

L'optimisation envisagee ainsi n'est aujourd'hui pas accessible par des
methodes deductives. Elle demeure un art. Cependant, pour les demarches qu'il
doit faire en vue de cette optimisation, l'ingenieur dispose de moyens de plus
en plus elabores. Les criteres qu'il faudra respecter dans ces choix sont dans
la pratique imposes par les autorites responsables de la securite, par les maitres
d'ouvrage et par les maitres d'oeuvre. On les trouve exposes soit dans les textes
reglementaires [l,2] soit dans des cahiers des charges.

Par utilisation des techniques de programmation lineaire, le projeteur peut
dans la pratique optimiser sa structure en poids, tout en satisfaisant un certain
nombre de criteres aux etats limites ultimes. Un programme de dimensionnement
optimal de structures ä barres, visant ces objectifs, a ete realise dans le cadre
de travaux entrepris au CTICM et nous montrerons un certain nombre d'exemples qui
mettent en lumiere l'influence que peut avoir le respect des criteres de verification

sur l'optimisation de la structure.

2 - RAPPEL DES DIFFERENTS CRITERES A SATISFAIRE AUX ETATS LIMITES ULTIMES
Un etat limite ultime est atteint lorsqu'un des phenomenes suivants se

produit :

a) perte d'equilibre de la structure
b) transformation de tout ou d'une partie de la structure en un mecanisme
c) instabilite de forme :

- d'ensemble de la structure,
- individuelle d'une barre

d) deformations excessives
e) cumul de deformations sous charges repetees
f) rupture d'un element (fragilite ou par fatigue).
Un etat limite d'utilisation est atteint lorsque la structure devient inapte

aux fonctions normales pour lesquelles eile est concue, en particulier lorsque
les deformations excessives entrainent une interruption du service normal de la
structure ou des desordres dans les elements non structuraux.

Dans le cadre actuel frangais de la philosophie de la securite, pour verifier
la securite vis-ä-vis des etats limites, le projeteur multiplie les valeurs
(caracteristiques ou nominales) des actions par des facteurs appeles coefficients
de ponderation. Les valeurs de ces coefficients dependent de l'etat limite considere

(etat limite d'utilisation ou etat limite ultime) du type d'action envisage
(actions permanentes ou variables) et de la combinaison d'actions etudiee
(Intervention simultanee d'actions variables).



104 IIa - CRITERES PREPONDERANTS ET METHODE DE PREDIMENSIONNEMENT

Ainsi, pour la verification ä l'etat limite ultime, on est conduit ä considerer

les plus defavorables des combinaisons d'actions donnees dans le tableau
ci-dessous :

Tableau 1

SYMBOLES

Majuscules
Q action permanente
G surcharge
S neige
W vent

Indices
e extreme
r reduite

Cas de combinaisons
d'actions

prenant en compte une

des trois actions
Q. S, W.

f<} G

f S.+ G

|w +G

prenant en compte

simultanement deux

des trois actions
Q. S, W.

•il (W*Q> * | G

if (Q+S) | G

ij(Sr+W) ->-G

ü (W+Q) 1- G

yf (Q+S) + G

prenant en compte

simultanement trois
des actions Q, S, H. j (Q + Sr + W + G) y (QtSr+W) + G

prenant en compte les
actions climatiques
extremes

Q t Sre Wg G

Q + S„ * G

<3 + Sret Wet G

Q + Se G

A l'etat limite d'utilisation, la verification doit etre effectuee en
considerant les combinaisons les plus defavorables des actions non ponderees.

Selon l'etat limite considere, la verification consiste en particulier ä

contröler si la structure satisfait aux criteres de deformations, d'instabilite
ou de resistance.

II a paru utile, dans le cadre de cet article, de bien souligner les principes

sur la maniere de prendre en compte la securite dans 1'optique des reglements
actuels frangais. Car il est de 1'opinion des auteurs que ces considerations sont
de nature ä avoir une influence tres importante, non seulement sur la facon dont
on entend poser le probleme de l'optimisation, mais aussi sur la nature des resultats

de cette optimisation.
L'etude et la mise au point d'un projet de construction passent toujours par

trois phases essentielles, ä savoir :

le choix des dispositions generales de la construction,
la determination des dimensions de tous les elements composants,
la verification que les dimensions adoptees sont acceptables et -en
particulier- conferent ä la construction un degre de securite süffisant.

En ce qui concerne la premiere phase, on admet generalement que seul le choix
des dispositions generales de l'ouvrage et de sa coneeption constitue oeuvre
d'imagination creatrice, pour laquelle 1'intuition et l'experience de l'architecte
et du construeteur jouent un röle essentiel.

La question qui nous preoecupe dans le cadre de cet expose est de savoir s'il
existe des methodes pratiques qui permettent de determiner un choix prealable des
sections ou composants d'une structure quelconque et qui, d'une part satisfont ä

l'ensemble des criteres de verification que nous venons de decrire brievement et
d'autre part, conduisent ä une optimisation de poids de la structure.

3 - TECHNIQUES D'OPTIMISATION DES STRUCTURES

Le cadre reduit de cet article ne nous permet pas d'exposer les fondements
de la methode utilisee ni le detail de sa formulation en termes de programmation
lineaire. Cette etude a fait l'objet de plusieurs publications [5,6,7] oü l'on
trouvera la formulation du probleme de predimensionnement optimal en termes de
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de programmation lineaire, avec le choix de la fonction objective (que l'on peut
lineariser) et la prise en compte, d'une part de 1'interaction effort normal-
moment flechissant et d'autre part du flambement.

L'approche utilisee par les auteurs se distinguent d'autres methodes iteratives

[3,4] de type "heuristique", qui abordent le probleme de la recherche d'un
optimum au travers d'un processus complexe "d'iteration-contröle-modification"
permettant de prendre en consideration de nombreux criteres de verification
(contrainte, stabilite, deformabilite) de la structure etudiee. Ces methodes
presentent, ä defaut d'un manque de generalites et d'une incertitude sur
l'optimum atteint, l'avantage d'avoir ete pensees comme un programme module
(PLADS-I PLASTIC ANALYSIS AND DESIGN SYSTEM, ecrit dans un Systeme general de
langage Oriente : ICES INTEGRATED CIVIL ENGINEERING SYSTEM). A ce titre, il a le
merite d'etre immediatement disponible et utilisable par l'ingenieur de bureau
d'etudes.

4 - EXEMPLES D'APPLICATION
Le programme de predimensionnement automatique des structures permet de

prendre en compte la stabilite individuelle des barres et une combinaison
quelconque d'etats de charges ponderees. II est cependant necessaire, pour etre en
conformite avec les reglements de calcul [l,2] de contröler que la Solution
obtenue satisfait les criteres aux etats limites d'utilisation et de verifier
les conditions d'instabilite d'ensemble de la structure.

Nons donnons ci-apres deux exemples qui demontrent que d'une part, la Solution

optimale recherchee depend des criteres d'etats limites adoptes, selon que
le dimensionnement se refere ä un reglement de calcul en eiasticite [lj ou en
plasticite [2], d'autre part le predimensionnement est d'autant plus proche de la
Solution finale optimale que l'on considere ou non les conditions d'instabilite
individuelle.
Exemple_l : A titre d'exemple, nous donnons les resultats obtenus sur la structure
donnee ä la figure la. Les Schemas lb et lc donnent la valeur de deux combinaisons
de charges les plus defavorables pour la structure consideree, ä savoir charges
permanentes + neige et charges permanentes + neige + vent.

IPE

(al

Fig. 1 la
0.65 t/m 0.4 t/mmmm

021 "O o
0.4

lb) thl

lb lc

1 0.4 t/m

Les resultats sont resumes dans le tableau de la page suivante.
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Tableau 2

Poids
(tonnes) H v150;

-iv, 1

irSoo
Nbre plastification
etat limite utilisation

Elas.
[1]

poteaux HEB 200
traverse IPE 360 3,98

1 1
0

199,5 350

Pias.
[2]

poteaux HEB 200

traverse IPE 300
3,1+7

1

174
1

210
2

Pred. poteaux HEB 180
traverse IPE 360 3,64

1

144
1

332

Dans cet exemple particulier pour lequel les conditions d'instabilite au
flambement sont verifiees, l'optimisation est differente selon qu'elle est
elastique ou plastique. Dans les deux cas eile satisfait aux conditions de deformabilite

aux etats limites d'utilisation ; par contre, la presence de 2 rotules
plastiques aux etats limites d'utilisation n'est pas acceptee en eiasticite. Le

gain de poids est ici de 12,8%.
Le predimensionnement initial donnait une Solution proche de la Solution

elastique, mais la condition de deformabilite en tete du poteau n'etait pas
verifiee, quoique la condition de flambement du poteau etait satisfaisante.
Exemgle_2 : Soit la structure donnee en figure 2, avec le cas de charges ponderees
considere. Les resultats du predimensionnement sont rassembles dans le tableau 3.

Fig. 2

I 8.04

®

©

®

_®_

©

© ©
®

© ©
1»-*-

1

11

2880 daN/m
4:44:'^pZy4?'PP.Z:-^'ZZZ-\-.-Z'- :¦:¦: E:-:^'7:T*E':*Tr':*:*'"":*^""^:r

2640daN/m
i> PPspimWiimiii

P-

Tableau 3

Poteaux 1,2,5,6 Poutres 3,4 Poutres 7,8,9,10

sans interaction
M, N, ni flambement

IPE 300 HEB 100 IPE 400

avec interaction
M, N et flambement

IPE 360 HEB 160 IPE 400

Solution opt.
selon Elas [l] IPE 360 HEB 200 IPE 400

L'examen des resultats de ce tableau par le programme de predimensionnement
automatique des structures montre que si le dimensionnement sans interaction M

et N est acceptable pour les poutres (c'est-ä-dire lorsque la sollicitation de
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flexion est preponderante), il n'en est pas de meme pour les poteaux oü l'effort
axial est preponderant. II est necessaire alors d'introduire dans le
predimensionnement les conditions d'interaction entre l'effort normal et le moment
flechissant et les conditions d'instabilite (voir 2eme ligne du tableau 3). L'introduction

de ces conditions amene generalement une redistribution des efforts entre
les sections et peut conduire aussi ä une augmentation des sections simplement
flechies (barres). La 3eme ligne du tableau 3 donne la Solution finale compatible
avec les exigences d'un reglement elastique [l].
5 - CONCLUSIONS

La methode mise au point dans le cadre d'etudes entreprises au CTICM trouve
son fondement dans l'application du theoreme statique en plasticite et les
techniques de programmation lineaire. Elle conduit d'une maniere pratique ä un
predimensionnement initial correct, ä condition toutefois de prendre en consideration

les conditions d'interaction entre sollicitation de flexion et effort axial
et les conditions de stabilite individuelle au flambement des barres.

II y a lieu cependant de proceder ä une verification de ce predimensionnement

initial, pour contröler si la structure satisfait aux diverses exigences
imposees par les codes de calcul aux etats limites d'utilisation.

La fonction ä optimiser est le coüt total de la structure, c'e"st-ä-dire la
somme des coüts des aciers, de la fabrication, du montage et de l'entretien. Une
etude factorielle de l'influence de ces divers coüts dans 1'etablissement d'une
fonction economique a ete etudiee [8]. Si cette etude a montre qu'il etait
possible d'ameliorer sensiblement la fonction economique, la qualite du dimensionnement

n'est cependant pas accrue dans les memes proportions. En particulier, du
fait de nombreuses hypotheses au niveau de la prise en compte dans le
predimensionnement de l'instabilite individuelle des barres, le gain de precision du ä

1'amelioration de la fonction economique est illusoire.
Le programme de predimensionnement automatique des structures est valable

quelle que soit la configuration geometrique de la structure et la nature des
charges exterieures appliquees. Cependant, le nombre de sections potentiellement
critiques choisies et celui des contraintes resultant des conditions de
plastification, d'interaction M et N et d'instabilite de flambement des barres comprimees

et flechies, en limitent l'application pratique ä des structures relativement
simples (portiques simples, portiques accoles, cadres multi-etages de 2 niveaux,
3 baies).
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RESUME

L'article expose brievement l'etat des conditions ä satisfaire dans le
cadre d'une Philosophie reglementaire aux etats limites. II est actuellement

possible de tenir compte des conditions d'interaction effort normal-
moment flechissant et des conditions de flambement dans l'optimisation des
structures ä barres. Deux exemples montrent qu'il est important de prendre
en consideration ces criteres si l'on veut aboutir ä un predimensionnement
valable.

ZUSAMMENFASSUNG

Der Artikel weist kurz auf die Bedingungen hin, die im Rahmen einer
vertretbaren Philosophie der Grenzzustände erfüllt sein müssen. Es ist
heutzutage möglich, in der Optimierung von Stabtragwerken der gegenseitigen
Wirkung zwischen Normalkraft und Biegungsmoment und dem Knicken Rechnung zu
tragen. Zwei Beispiele zeigen, dass es wichtig ist, solche Kriterien in
Betracht zu ziehen, wenn eine günstige Vorbemessung erreicht werden soll.

SUMMARY

The paper states briefly the conditions to be satisfied within the framework

of an ultimate State design philosophy. It is presently possible to
improve the optimization of structures by taking into aecount interaction
between normal force and bending moment and buckling conditions. Two examples
show that it is important to consider such criteria, if we want to achieve
a proper members selection.
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1. Introduction Several classes of general solutions to the problem of minimum

weight plastic design of multi-story multi-span plane frames subjected to a

class of one set of practical design loads have been derived by the senior author
[1] by applying Foulkes' theory [2] and by extending it to a more general theory
[3] which incorporates the axial force-bending moment interaction yield conditions.

The present authors have further extended the result of [1] so as to in-
corporate the reaction constraints in [4]. These analytical general solutions
are of theoretical and practical interests. Firstly, they serve to clarify even
partially the general features of the minimum weight designs. Secondly, once an

analytical method is developed for simpler problems based upon the moment yield
condition [1], their general solutions would provide a good lead to the general
solutions to more complex problems based upon interaction yield conditions [3].
Thirdly, they will provide good initial feasible solutions for neighborhood
problems.

In this paper, a kinematioal restricted maximization procedure is developed
by combining the primal-dual method of LP [5] with a semi-inverse approach similar

to the idea of [1] and then applied to the problem of minimum weight plastic
design of multi-story multi-span plane frames subjected to five sets of design
loads.
2. Formulation of the Design Problem Fig.l shows a multi-story multi-span
plane frame to be designed by Foulkes' theory [2] and the five sets of design

{v <v
Lateral 77777

Design
Loads

P ¦

_i_

jk

Jk

'Jk

-
i=o

2

i

Storey-shear
Distributions

Lateral
Design
Loads

Vertical Design Loads

Fig.l Design Load Distributions, Notation and 5 sets of Design Loads

1. Kind Loads

2 kind Loads

3 Gravity Loads
¦0 ; Xlt.k)

4. Earthquake
Loads

5. barthquake
Loads
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loads. The fully-plastic moments of (j,k)-beam and (j,k)-column are denoted by

Bj k and Cj k> respectively. Without loss of practical generality, it may be
assumed that the story-shear force distributions defined in Fig.l be such that

QEj Z Qwj for j=l,2, p, and n]
QEj 1 Qwj f°v 3=P+1* ••> f-

The factor X for the design gravity loads is assumed to be A 1 2.0.
The design problem for five sets of design loads is treated in the following

three or four Steps:
(i) Solve the basic problem for the two sets of co-directional lateral design

loads 1 and 4, i.e., for {PwjSvj,k^ and ipEj^vj}k^ >

(ii) Construct a statically admissible bending moment field for the two sets of
design loads 2 and 5, i.e., for i-PyjjVj /,.} and {-pEjivj,k4

(iii)Construct a statically admissible bending moment field for the design grav¬
ity loads 3, i.e., for {OiWj^y),

(iv) If the step (ii) or (iii) is not possible, modify the collapse mechanism

locally and find the corresponding modified design.
The basic problem (i) may be stated in terms of the static variables defined

in Fig.2(a) as follows:
Minimize

subject to:

G gi1 ik.
k=l

s+1

Lbo* +i
3=1
T

2I0

s+1

i\liCikh
+ oTJk) hjQij bIjk

(g: constant)

,R B T
bIj,k-l= °Ij+l,k + cIJk >

bijk)+ jWjk
-B3k * bljk
cok i 4.Jk

±Bök

^°jk
-B3k

-cjk ±

<L b
°3k

R

Ijk
Ijk

±B3k
^Cjk

Bjk * 0,

Cjk Z o,

(2)

V(3a-i)

where b\^y_, bjj^ c\^ and o?., are free variables. In the expression (2), / and

s denote the numbers of storres and spans, respectively. In the constraints (3),
the first subscript J denotes the kind of design loads and is to be either E or
W. The second and third subscripts refer to the story number from below and member

number from left, respectively. For the sake of brevity, the equations of
moment equilibrium about interior and exterior joints have been written in one
and the same form with the Convention that all the undefined quantities with
respect to non-existent members shall be disregarded and dropped as null. This
Convention will also be used hereafter, unless otherwise stated.
3. Kinematical Restricted Maximization Procedure-Semi-Inverse Primal-dual Method.

The idea of the proposed approach may be summarized by referring to Fig.3
as follows. A design problem formulated as a linear programming problem [6] of
a mixed type [5], may often be such that a certain set of constraints may be
anticipated to be inactive due to the nature of the problem. From the original
primal problem

[PO]: Minimize {G(x)\xG 82(^82}
of a large size, a subproblem

[PS]: Minimize {G(x)\x £ S^}
may be derived by tentatively disregarding a certain set of constraints which are
anticipated to be inactive and which define the set Sg. Then the dual problem to

Fig.2
Definitions
of the
variables

Ijk
Ijk

Ijk /~.
P

Ick

"jk "jk

Bending moment
diagram under
the design loads
irwvjit)

la) Static variables

IjkIjk Ij.k+l4
Xi.k n

tjk Ijk•Jk

^A Ijk

Ijk

collapse mechanism

tb) Kinematic variables



TSUNEYOSHI NAKAMURA TADASHI NAGASE 111

[PS], i.e.
[DS]: Maximize {D(u)\u 6 Vi

must involve a smaller number of dual variables and a greater number of equality
constraints. Therefore, if the Solution U° to [DS] can be found more easily
compared to the Solution to the dual problem of [PO], then the corresponding Solution

X° to [PS] may also be readily found simply by solving the set of simultaneous

linear equations derived from the duality theorem of LP. It remains then to
check if x° 6 So. The procedure may also be called "a semi-inverse primal-dual
method."
4. A Class of General Solutions to the Problem (i) It is now shown that the
kinematical maximization procedure is fruitful for rectangular frames due to
their regularity in the optimality criteria-based collapse mechanism. Let

T TD D rp

S2; (blök, bIjk^-Bjk> <cljk> °Xök)^-C3k' Bök-°> C3k-0'
Then the dual problem [DS] may be written in terms of the kii
defined in Fig.2(bl as follows: r,

Maximize D=Q{Jhj(QU;jywj+QE;jyEj)+l \\lkZ'jk($Wjk+*Ejk)}
J-1 k=l 3=1

subject to YijZMtjuc.{HJI;jk, ^jj.ltk)
^Ijk^Ijk^0 (k=l,2,..., s), l>IjjS+iZ-<r'Ijs

^%jk+^0,k+l+^Wjk) + ^Ejk+^E3,k+l+2hjk)} =Qlk (6a-d)

^^yj-%ö-l,k^Wjk) + (2"<Ej^Ej-l,k.^Ejk)] ehJ

The inequalities (6a, b) restrict the directions of plastic hinge rotations and
the equalities (6c, d) are the generalized Foulkes conditions defined by Chan [6]
and Prager [7]. The latter will be referred to as FCP conditions.

The equations (6d) indicate that 'i'wjk^Ejk-^j (independent of k) The

problem defined by (5) and (6) may then be simplified to a problem in terms of
Vwjk1 ^Wj1 ^Wjk and ^i only. After some manipulation on the inequalities, Yj^-

(4a-d)
kinematic variables

(5)

may be expressed in terms of ^yjk and ^j only, and then ^wjk> in terms of ^^k
and r- only.ü Finally, for those problems in which the load conditions:

S rl i 3 £ p-1 for
h+1 * 3 1 /h3®l3+h3+lQI,3+l * l^V3k for

I=E,)
I=W,}

s

kl,Vp"hpQEp+2hp+1QEp+1-hp+1QWp+1 ^

and the geometrical conditions:
lm <, Ik ^2lm Im i 2hj (lm= Min. {10)

are satisfied, the problem [DS] may be reduced to the following form:

(7a,b)

(8a,b)

Maximize D*=Q( -MpC + AM.
p+1

subject to £ Max.{iiw ^]s

r\),
n Min.iipi^k), (&r\)

k\ % ^hp+1<SH-Min.{0,r\}, Max.ijl^Q £ i^p+1&+T\.

0)

(lOa-d)

dual

primal
S' ^

\/-

^s1" ~2

U V :

Fig.3 7T7TT Fig. 4
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where Mr

0 ^ ^Wpk * -fnß> (k=l,2,..., s), a £ ^pjS+I & b,

a E Max.{-(l8-lm)Q/23 -t^g} 1 0

b Min.{lse/2, l„ß-<\>wpS} £ W=>/2 (lOe-h)

p - y«£p-<v - °and mv+i - hp+i(Qvp+i-QEp+4 °- The solution to

this reduced problem may readily be derived as summarized in Table 1. In those
problems where (7) and (8) are satisfied, the generalized Foulkes mechanism
defined by the ECP conditions can thiis be constructed as shown in Fig.4 for Case

(B) as an example.
The Solution to the problem [PS] corresponding to this problem[£S] may also

be derived straightforwardly. By assuming that some statical restrictions
defined and checked later will be satisfied, the resulting bending moment diagram
may be understood best by conceiving it as the result of superposition of the
constituent elementary moment diagrams (with equal corner values for h/m} shown

in Fig.5. Such a decomposition was first introduced in [1]. Each diagram is
referred to as "frame moment diagram." The minimum weight plastic design
corresponding to Table 1 may be compactly summarized as Table 2 in terms of "Maximum

Story-Shear Force Design" defined by

B-k E Max •«?*• ^ C.s Max
3k 3k' 3k' (lla.b)

where ~{BW.., Cw.Ps and {BE-k, (£, } denote the designs only for {Pwjj Vjk) and {PEj,

Vjk), respectively, derived by means of [1]. B and C are given by

Bjk 4lkv3k <**">i cjk i(lk-ivj,k-l+lkvjk)j (k^> m+1>

Bjk i(h3^i3+h3+lQl^l-Jjkvjk^ (* S { <=. P-J f™ fJ J" kjkn Kp+1 £ 3 & f for I=W and1

j=p, I=E for ISMp ^ IsM +1, and j=p, I=W for tsMp 1 tsM'j

T^Mir. IJn ^ZPj-^Wjkl'
V3k l (-14-'

1-=3
Vik

1 £ 3 1 P for I=E,
P+l £ 3 £ f for I=W,
n=m, m+1

(12a-e)

The yield inequalities in (3) provide restrictions on the design loads in
accordance with the Classification of the solutions listed in Table 2. These

Table 1 Generalized Foulkes Mech amsni

ywj Y« %k *Ejk *„Jk(k*0 *m"+" yjm, Ejm

j-1
0

Wk»
0 fv 0 hh-v*

0

j=2, p-1 fw>

3=9

lA) 0 j'hp+hn)» 0 k9 0 ff'W9
IB) frv-W« Whp+1>* irvw9 ¥p+s* ' *

IC) k9 k«2 P K8 0 l<W» 0

(D) 2 p lv iV f^-vy« A *

i-P+1

(A) h+i* fv

fv 0 l'h-W* 0

IB) iv fw
IC) H*i*v« 0

tD) l'^V" hi-hj*2 tn p

j=p+2, f fw 0
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restrictions may be summarized as shown in Table 3, where

MIj \(Hql3 + h3+lQU+l ~XlkVjk) (13)

It may now be concluded that the present solutions (4~0) are the rigorous
solutions to the problems in which all the geometrical and loading conditions are
satisfied.
5. Design for Five Sets of Design Loads. It may readily be confirmed that a

statically admissible bending moment field for {-PEji Vjk) an^ {-Py-il V'-j4 can be
constructed just by inverting the frame moment diagrams as shown in Fig.6.

For design gravity loads, it is convenient to consider again the decomposed
moment diagram with the respectively equal corner values XlkV^-js/8, as shown in
Fig.7. The conditions that the bending moment diagram given Dy superposing the
elementary diagrams in Fig.7 be statically admissible in a frame designed by the
procedure in Section 4, lead again to further restrictions on the design gravity
loads. An examination of these restrictions indicates that there are a number of
practically useful design solutions within the ränge defined by them.
6. Concluding Remarks It may now be concluded that, for the class of design
problems in which all the previous and supplementary conditions are satisfied,
the solutions (A-D') are the rigorous minimum weight plastic designs. The present
designs have apparently clarified the nature of minimum weight plastic designs.
While these designs must be modified for practical use so as to satisfy a number
of structural requirements, the present solutions will at least provide a basis
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for initial designs useful in such countries where fairly large lateral design
loads must be assigned for PLASTIC DESIGN so that frames can withstand against
strong winds and strong motion earthquakes. The present solutions may be said
to be a class of the most fundamental designs in the sense that a number of useful

designs to practical neighborhood problems can be derived by appropriate but
mostly local modifications. Three cases:

(a) hjPw~ < l lkVfk ' (b) lm i 2hl and Cc) Bl-k ^ 2lm have been treated in [8].

The present Solution and the solutions in [1, 3, 4] indicate that a frame
designed by these solutions would collapse in an extremely deteriorated overcom-
plete mechanism under a designated set of design loads according to the rigid-
plastic analysis. It is therefore necessary to confirm the safety of such a
frame against possible collapse due to inelastic instability according to a more
refined theory of large-deflection elastic-plastic analysis. For this purpose,
static and dynamic large-displacement analyses have been carried out on minimum
weight frames in [9-11] under alternating lateral loads well beyond their static
stability limits and under strong motion earthquake disturbances, respectively.
[1] Ryo Tanabashi 8 Tsuneyoshi Nakamura,"The Minimum Weight [7] W.Prager."Foulkes Mechanism in Optimal Plastic Design for

Design of a Class of Tall Multi-story Frames Subjected Alternative Loads." Int.J.Mech.Sei.,Vol.13,971-973,1971.
to Large Lateral Forces."Transactions of Architectural [8] Tadasni Nagase,"Minimum Weight Plastic Design of Multi-
Inat.Japan.P&rt I,No.118,10-18,Oec.1965 8 Part II, No. story Multi-span Plane Frames,"(In Japanese).Thesis for
119,37-44, Jan.1966. Also Proc.1ith Japan national Master of Engineering.(Kyoto Univ.) Chap.2,384, 1975.
Congr.Appl.Mech., 72-81,1965. [9] Yoshitsura Yokoo, Tsuneyoshi Nakamura,Shuzo Ishida &

[2] J.Foulkes,"The Minimum Weight Design of Structural Takashi Nakamura,"Cyclic Load-deflection Curves of Multi¬
Frames," Proc.Royal Soc.London,Vol.223,482-494, 1954. story strain-hardening Frames Subjected to Dead and Re-

[3] Yoshitsura Yokoo, Tsuneyoshi Nakamura 8 Michio Keii, peated Alternating Loadings,"Pre.Rep.IABSE Symp.RESIST-
"The Minimum Weight Design of Multi-story Building ance and ultimate deformabilite of structures ACTED Oll Bi
Frames based upon the Axial Force-Bending Moment Inter- well-defined REPEATED LOADS,BI-&7 Lisboa, 1973.
action Yield Condition,"Proc.1971 IUTAM Symp.Optimizat- [10]Ryo Tanabashi, Tsuneyoshi Nakamura 8 Shuzo Ishida,
ion in Structural Design,(Warsaw),Springer-Verlag ,1975. "Gravity Effect on the Catastrophic Dynamic Response of

[4] Tsuneyoshi Nakamura 8 Tadashi Nagase, "The Minimum Strain-hardening Multi-story Frames," Proc.Sth World
Weight Design of Multi-story Multi-span Plane Frames Conference Earthquake Engng.,Vol.2, 2140-2151, 1973.
Subject to Reaction Constraints," To be published in [11]ösamu Ohta, Tsuneyoshi Nakamura 8 Shuzo Ishida,"Collapse
J.Structural Mechanics,Vol.4, No.3, 1976. Behavior and Imperfection Sensitivity of Minimum Weight

[5] See for instance, W.A.Spivey & R.M.Thrall, LINEAR Plastic Frames," Summaries of Technical Papers at 1974
OPTIMIZATION, Holt.Rinehart 8 Winston, 1970. Annual Meeting of Architectural Inst.Japan, 753-754,1974.

[6] H.S.Y.Chan, "On Foulkes Mecnanism in Portal Frame De¬

sign for Alternative Loads,"J.Appl.Mech. ,Vol.36, 73-75,
T971.

SUMMARY

A kinematical restricted maximization procedure has been developed by
combining the primal-dual method of linear programming with a semi-inverse
approach. Some general solutions to practical problems of minimum weight
plastic design have been derived analytically by applying the proposed method.

RESUME

Une procedure cinSmatique de maximisation limitee a £te developpSe par
combinaison de la methode primale-duale de la programmation lineaire avec
une approche semi-inverse. Quelques solutions generales pour des problemes
pratiques de dimensionnement plastique, conduisant ä un poids minimum ont
6tö obtenues analytiquement par application de la methode proposee.
ZUSAMMENFASSUNG

Ein begrenztes kinematisches Maximierungsverfahren wird bei einer
Kombination der "primal-dual"-Methode der linearen Programmierung mit einem
"semi-inversen" Verfahren entwickelt. Allgemeine analytische Lösungen
praktischer Probleme der plastischen Bemessung auf Minimalgewicht werden
durch Anwendung der vorgelegten Methode gefunden.
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Criteres d'optimisation et methodes duales dans le dimensionnement
de treillis

Optimierungskriterien und Dualmethoden in der Berechnung von Fachwerken
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Department of Civil Engineering, The University
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1. INTRODUCTION

In the Introductory Report of the lOth Congress of IABSE Gellatly and Dupree1
describe the optimality criteria approach to the optimum design of large structural
Systems. In handling large structural Systems the direct Solution approach by
numerical mathematical programming methods is often excessively slow and cumbersome
as a result of the large numbers of variables which must be optimized. The

optimality criteria approach is intended to overcome the difficulties posed by
having large numbers of variables. Gellatly and Dupree consider the optimality
approach to the design of structures in which element mass and stiffness are
proportional. Such structures include those composed of axial force bars, membrane

plates and shear panels. For this class of structures Gellatly and Dupree derive
an optimality criterion, their equation (2), for the minimum weight design of a

truss subject to a single displacement constraint. They then use this optimality
criterion, (2), to develop a recursion relationship, (8), which allows any arbitrary
set of member areas to be modified iteratively so as to eventually produce an
optimal set of member sizes. The important time-saving feature of this approach
is that at each iteration the existing set of member sizes is altered by applying
the simple relationship (8) to each area in turn. There is no complicated numerical
search involved.

Gellatly and Dupree then continue to describe a large Computer program,
OPTIM II, in which this optimality criterion and redesign formula is used to design
structures with multiple displacement constraints (stiffness requirements) and also
individual member size constraints. They point out that neither the optimality
criterion itself nor the redesign formula is valid for anything other than a single
displacement constraint but, despite this lack of rigour, OPTIM II still obtains
remarkably good numerical results very quickly. This is not disputed here; OPTIM II
is an efficient program, but its lack of rigour is perplexing and it makes it
difficult to interpret and identify those occasional cases in which OPTIM II
performs poorly.

The purpose of this paper is to examine a new dual formulation of optimum
design problems for this class of structures. In particular the problem of how
best to handle multiple constraints is examined and an interpretation of the dual
problem is presented which has considerable relevance in the development of improved
optimum design algorithms for large structural systems.

2. THE OPTIMUM DESIGN PROBLEM

For simplicity of notation a truss structure composed only of axial force bars is
considered, being typical of the general class of structures with member stiffness
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proportional to member mass. The minimum weight (minimum volume) design problem
can be posed as that of finding the set of member areas A. i 1, N, which

N

Minimize W Z L. A. (1)

i-l X X

subject to M independent nodal displacement constraints (Gellatly and Dupree
consider only a single generalised stiffness constraint),

«ta8? ,§fi.k(1 m 1 M (2)
1=1 mi l

and subject also to N member size constraints, one for each member

AT
„ _i s 1 i-l, N (3)
^M+i A.i

In constraints (2) F and U are the member actual forces and virtual forces
associated with unit displacement in the direction of the nodal constraint. &m is
the maximum permitted displacement of a node in constraint m, m 1, M. E is
the elastic modulus, and each of constraints (2) is derived from specific applied
loads and virtual force Systems. In constraints (3) A^ is the minimum permissible
size of member i, derived either from maximum member stress limits or from
fabricational considerations.

In the above formulation it is assumed that F and U are constants, hence A£

is also constant. This assumption is valid for statically determinate trusses.
It is strictly invalid for indeterminate trusses, however, F, V and hence A^ do

not usually alter appreciably as members sizes alter and it is common to assume
them constant, obtain an altered set of member sizes in some way, update the values
of F, U and Ä^, solve again and continue in this iterative fashion until the
process converges to an optimum Solution. This iterative Solution technique is
used by both mathematical programming and optimality criterion devotees, the
essential difference between them being only the way in which the altered set of
member sizes is obtained. It is assumed here that this iterative method for
indeterminate structures is used and so in the above formulation F, U, L, E, 6 and
Ä are all known constants. Our problem is how best to find the optimal set of
member sizes.

Recently the present author2 has shown that there is a dual formulation of
the problem expressed in relationships (1), (2) and (3). Derivation of the dual
problem is accomplished by exploiting the fact that the Lagrangian function of
the above problem has a saddle point as a stationarity condition. A füll proof of
the dual formulation is given in reference2 and here it is merely stated as

N M Ä7 i
Maximise V L L. {I (—) X__ + — X„ .}i VE6' m L. M+ii=l m=l mi l

M+N

subject to Z \mm=l
A 5 0 m-l M + N

m

(A)

The Solution of (4) is equivalent exactly to the Solution of the primal problem,
(1), (2) and (3). At the Solution point (minimum of W, maximum of V) the following
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transformation relationships hold, with superscript asterisk denoting optimal
values,

(Minimum) W* V*2 (Maximum)

A.*
1

M

V* {Z
m-l

(IE)
A.

m L. M+i i 1, (5)

The dual variables in dual problem (4) are the An =1, M + N and it
will be noted that there is a dual variable Am for each of the primal constraints
(2) and (3). The dual variables are therefore similar to the unknown Lagrange
multipliers of the primal problem. All A's must be non-negative; any value of
A 0 denotes that the primal constraint to which it corresponds is inactive at the
optimum. The single constraint in dual problem (4) requires that all A's sum to
uni ty.

3. PROBLEMS WITH ONLY DISPLACEMENT CONSTRAINTS

Gellatly and Dupree1 consider only a single displacement constraint and their
equations (2) and (8) represent an optimality criterion and a resizing formula for
this problem. Their equation (2) contains a single unknown Lagrange multiplier
corresponding to the single constraint. This unknown multiplier may be eliminated
by Substitution into the constraint which must perforce be active; consequently
their resizing formula (8) contains no unknown multipliers. A major difficulty is
encountered if this method is extended to multiple displacement constraints. In
this case there will be M unknown Lagrange multipliers, one for each constraint,
and since it is not known a priori which of the multiple displacement constraints
are active and which are slack at the optimum it is not possible to eliminate the
unknown multipliers by Substitution. Consequently when a member resizing formula
for multiple constraints is developed corresponding to Gellatly and Dupree's
equation (8) it contains all the M unknown Lagrange multipliers. In order to use
the resizing formula it is necessary to supply values to all the unknown Lagrange
multipliers but there is no way of knowing what these values should be. This
constitutes the major difficulty of using optimality criteria methods for
multiple constraints. In order to get round this difficulty OPTIM II uses the
envelope method which resizes each member according to the single constraint
resize formula for each displacement constraint and then selects the largest
resulting size. This process seems intuitively logical but has no theoretical
rigour.

If the dual approach is examined for multiple displacement constraints only,
the dual problem becomes

N M
.FU. i

Maximise V Z L. {I (.•—) A }
l Eö m

1=1 m=l mi

subject to Z A 1

m=l
A 5 0

m

1

m 1, M

(6)

At the optimum, we have

(Minimum) W* V*2

M
,FU,

(Maximum)

A * V* {£ (—) x*}
m=l Eo m i-l, N

C7)
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Problem (6) consists of maximizing V, a non-linear function of the M dual variables
Am subject only to a single linear equality constraint and non-negativity of the
dual variables. This is easily done by classical optimization methods. Once A^,
m 1, M are known, relationships (7) give the minimum weight and optimal
member sizes directly.

Several features of the dual problem can be noted. Firstly the number of
dual variables is M, the number of displacement constraints. This means that the
dimensionality of the original problem, which had N member size variables, is
greatly reduced. Thus a large structure with perhaps 1000 members to be sized and
5 displacement constraints has a dual problem which consists of maximizing a
nonlinear function V of only 5 variables. In most large structural problems there
are usually many more members than displacement constraints so the reduction in
dimensionality afforded by the dual problem is of considerable advantage. Secondly,
the dual problem itself is of a convenient form for rapid Solution. The single
linear equality constraint may be eliminated by Substitution, Converting the problem
to one of unconstrained form with non-negativity requirements. First and second
derivatives can be easily evaluated which makes Solution comparatively simple.
Thirdly, the result gives immediate information about which constraints in the
primal problem are active and which are slack since a value of Am 0 corresponds
to a slack constraint. Finally the dual approach has the theoretical rigour
which is lacking in the envelope method.

A physical interpretation of the primal/dual problems in terms of structural
behaviour is illuminating. Consider a structure constrained by M independent
displacement constraints, i.e.

Minimize W

Subject to g $ 1 m-l,m

]
If each of the M constraints in (8) is multiplied by a multiplier Am, m 1,
such that the sum of the Am's is unity, and all the constraints are then summed

into a single Surrogate constraint we have

Minimize W

M

Subject to Z A g $ 1J m öm
m=l

(9)

Examination of the dual problems corresponding to (8) and (9) shows them to be
identical providing the Am's in (9) solve problem (6) optimally. This demonstrates
that in responding to multiple constraints the structure apportions its member
sizes as if all the independent constraints were surrogated into a single generalised
stiffness requirement. The structure therefore responds to a single fictitious
surrogated stiffness requirement and, since the A must solve (6), the Surrogate
stiffness requirement is such that the independent sitffness requirements are
combined together in such a way as to maximize their constraining potential.

This physical interpretation may partly help to explain the good results often
obtained by the envelope method as used in OPTIM II. The envelope method resizes a

a member by applying a single resize formula to each constraint in turn and selects
the highest resulting member size. These highest sizes form a resized set. By
this means the constraining potential of all the constraints is maximized. This is
in the same spirit as the more rigorous dual approach outlined above but is
mathematically different and is not rigorous. However, it may be conjectured that
the good results obtained by OPTIM II correspond to problems in which the enveloping
and surrogation approaches are similar and that the occasional poor performance of
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OPTIM II corresponds to problems in which the member sizes obtained by enveloping
are very different from those which satisfy the more correct surrogated constraint
in (9).

4. PROBLEMS WITH DISPLACEMENT AND MEMBER SIZE CONSTRAINTS

As Gellatly and Dupree demonstrate, a displacement constraint governs the
distribution of material throughout the structure. A member stress or size
constraint only controls the material in an individual member. Difficulties arise
when both types of constraints are present together since the distribution of
material required to optimally satisfy a displacement constraint may violate the
amount of material required to satisfy one or more of the individual member
constraints. There is no optimality criterion of practical use for combined types
of constraints. Somewhat ad hoc methods are usually used such as active/passive
sets of variables as in OPTIM II to handle both types of constraints.

The primal problem concerning us here is that given in (1), (2) and (3) and
the corresponding dual problem is given in (4) and (5). On examining the dual
problem it at first appears that its dimensionality, (M + N), is greater than that
of the primal problem, N. This would negate the advantage which the dual approach
has of reducing problem dimensionality. Fortunately, very recent research has
shown that the N dual variables corresponding to member size constraints may be

effectively eliminated by an iterative process. A brief summary of this now
follows.

Consider dual problem (4) for a single displacement constraint (with dual
variable Ag) and a füll set of N member size constraints. If we write

W. L. A.l ii -= Ä1
AE i

N

W Z W.

i-l X

N
& Z &.

i-l r

and if 6 is the maximum permissible nodal displacement, dual problem (4) is

N rr^ &-
Maximize V Z Jltl. (t^ xci * *•)' i 6 u l 1

Subject to E A. 1

i=o
A. > 0l i 0, N

(10)

Necessary conditions for a constrained maximum of V with respect to the N member
size dual variables only are that

3V
3A.

0 1 N

This leads to

w7 xo __

1
w

5 L
wT lJ

1

1 N (11)
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Substituting (11) into V of (10) gives

V -e^Tu + A0 [4-2- } (12)

If 6 < 6 this denotes that member sizes evaluated from the member size constraints
alone will satisfy the displacement constraint and hence A0 will be zero. We are
interested in the case where 6 > 6 and the displacement constraint must be active.
In this case V as given in (12) is maximized by as large a value of Aq as is
possible. However, Aq may not increase to a value such as to drive any of the
A^*, i 1 N in (11) below zero. The highest possible value of A0 is
therefore that value which first puts any A^* equal to zero, i.e.

Min (a -1 * IL !i)>
i-l nX 6 w7

6 ' (13)

This value of A0 drives one of the A^* to zero. Let the variable driven to zero be
Ajj * 0. This is now eliminated as a slack member size constraint.

A new dual problem may now be formed with X^, eliminated. This replaces
problem (10) and is

N-1 <—i 6. |N-i j—i o. i rn o i

Maximize V Z J«. iji 10 + \P + Jw^ {— A0}
i=l

N-1
Subject to Z A. ¦ 1

1=0 l
A. 3 0 i 0 N

l

(14)

Problem (14) is treated in a similar way to problem (10). Relationships similar
to (11) are established for the X^*, this time for i 1, N - 1. An expressiot
for V similar to (12) is found and a new value of A0 is determined as (13). If the
new value of Aq is greater than its previous value another of the X^* is eliminated,
another problem similar to (14) but with(N - 2)values of A^ is set up and the
process is continued in this iterative fashion until the value of Aq reduces. The

previous iteration's results for all the A's are then optimal. Relationships (5)
then give the minimum weight and optimal member sizes.

The iterative procedure described above forms into a very simple algorithm
since the relationships of the types of (11), (12) and (13) are very concise in
nature. Using this iterative dual approach the interactions of member size
constraints and a displacement constraint may be optimized very rapidly, the
dimensionality of the method being essentially unity. An advantage of the method
is that it Starts essentially with a fully-stressed design (all member size dual
variables active and A0 =0). The activity level of the displacement constraint,
Aq, is then progressively increased, knocking out member size constraints as they
become slack. In many practical design situations a first requirement is to
examine the fully-stressed design and check it against possible displacement
limitations. If the displacements are excessive the fully-stressed design needs
to be altered in some way so as to optimally satisfy displacement limitations.
This is precisely how the dual approach outlined above tackles the problem and it
is therefore well suited to implementation in practical optimum design programs.

The treatment above is limited to the combination of a single displacement
constraint and member size constraints. If multiple displacement constraints are
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present the iteration algorithm is more complex and has not yet been fully investigated.

However, it has already been shown in this paper that multiple displacement
constraints behave as a single surrogated constraint. This suggests a possible
Solution algorithm in which the multiple constraints are first solved separately
and the single Surrogate constraint formed and then the above algorithm used to
handle the interactions of the Surrogate constraint and the member size constraints.
This remains to be further investigated.

5. CONCLUSIONS

This paper has examined a dual approach to the optimum design of structures
whose elements have stiffness proportional to mass. It has shown that a study of
duality gives insight and rationale for some of the successful, non-rigorous
approaches to truss design such as the optimality criterion approach used in
OPTIM II. It would have been more satisfying to give numerical results confirming
the speed and efficiency of the-dual algorithms suggested in this paper but space
limitations preclude this. Nevertheless it can be stated that the dual approach
does provide a means of very rapidly solving optimum design problems for large
structural Systems. The reduction in dimensionality and the ease with which the
dual problems may be manipulated and solved makes the approach a very serious
competitor to the much-used, less rigorous optimality criteria methods. From a

practical structural engineering point of view it should be stressed that although
duality theory and the associated algebra may seem unnecessarily complicated and

abstract, the algorithms which may be developed from it are rigorous and are very
simple to operate, giving practically useful results very rapidly. Furthermore the
dual-based algorithms often tend to be similar to those suggested by engineering
intuition. This is very satisfying and a firmer theoretical basis for intuitive
design approaches adds considerable strength to them.

As the present author has commented in the Introductory report to the lOth
IABSE Congress3 a major advantage of a study of dual methods is that it sheds new

light on well-known problems and enables the nature of the problems to be understood
more deeply. Sometimes, as in the case here, this extra insight allows new Solution
algorithms to be developed. The ultimate usefulness of these algorithms remains to
be fully investigated in a continuing program of research,
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SUMMARY

The paper examines a new dual approach to the optimum design of trusses
with multiple displacement and member size constraints. Comparison is made

with optimality criteria approaches to the same problem. Reductions in
problem dimensionality and simple Solution algorithms arise from casting
the problem into dual space, which also gives insight into some ad hoc,
intuitive artifices often employed in the Solution of these problems.
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RESUME

Une nouvelle möthode duale est presentee pour le dimensionnement
optimal de treillis, soumis ä des contraintes de deplacements multiples
et de types de profils. Une comparaison est faite avec la methode des
criteres d'optimisation. Des reductions de la dimension des problemes
ainsi que des algorithmes simples pour leur resolution sont obtenus en
situant le probleme dans l'espace dual, ce qui permet egalement d'analyser
quelques artifices de calcul souvent utilises dans la Solution de tels
problemes.

ZUSAMMENFAS SUNG

Der Bericht behandelt eine neue Dualmethode für die Optimierung von
Fachwerken mit mehrfachen Formänderungs- und Formgebungsrestriktionen.
Die Ergebnisse werden mit der Methode der Optimalitätskriterien verglichen.
Eine Abminderung der Komplexität und einfache Lösungsalgorithmen resultieren

aus der Problemprojektion in einem Dualraum, was auch Einblick in
gewisse intuitive Verfahren gewährt, die bei der Lösung solcher Probleme
oft angewendet werden.
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1. Problemstellung

Im Konstruktiven Ingenieurbau stehen heute eine Reihe leistungsfähiger
Berechnungsverfahren zur Verfügung. Das Dimensionieren von Tragwerken erfolgt
dagegen durch den Ingenieur, wobei Können und Erfahrung eine wesentliche Rolle
spielen. Kann man eine Gewichts- oder Kostenfunktion definieren, so läßt sich
dieses Problem als Optimierungsaufgabe formulieren, die als Folge der
Bemessungskriterien i.a. nichtlinear und nichtkonvex ist. Aus der Vielzahl der
Lösungsverfahren zur Bestimmung eines lokalen Minimums [\J wird hier das Verfahren

der Optimalitätskriterien betrachtet, das eine problemorientierte Variante
der Lagrange'schen Multiplikatorenmethode darstellt.

Dem Optimierungsmodell liegt ein durch n Elemente diskretisiertes Tragwerk

zugrunde. Es wird vorausgesetzt, daß für jedes Element i die
Elementflexibilität £±*' umgekehrt proportional von einer Querschnittsvariablen
(Entwurfsvariable) <i£ > 0 abhängt und daß sich das Gewicht des Tragwerkes als
lineare Funktion (Zielfunktion) dieser Entwurfsvariablen darstellen läßt:

n n
W - X w. - 7 w. o. (1)

• i s. ..11i=I i-l
Als Nebenbedingungen werden Spannungs- und Verformungsrestriktionen berücksichtigt,

wobei o-? und 6-9 die zulässige Spannung des Elementes i bzw. die
zulässige Verformung in Richtung des Freiheitsgrades j infolge Lastfall 1

bedeutet. Zusätzlich kann eine Einschränkung der Variablen durch untere und obere
Schranken aV bzw. a? vorgegeben werden. Damit ergibt sich folgende
Optimierungsaufgabe :

n
Minimiere W - T w. a.

i-l
unter Berücksichtigung der Restriktionen

Matrizen und Spaltenvektoren werden durch Unterstreichen gekennzeichnet, ein
hochgestelltes T bedeutet die Transponierte.
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°il - 0

"ii IIA 0

6jl - >°» IIA 0

ua.
1 - a.l IIA 0

a.l - 0
a.i IIA 0

(i"l n ; 1-1 p)

(j-1 q 5 1"1 p)

(i=l n)

(i»l,...,n)

(2)

(3)

(4)

(5)

Es bedeutet q die Anzahl der Freiheitsgrade und p die Anzahl der Lastfälle.
Die Spannungen a und die Verformungen 6 sind nichtlineare Funktionen der
Entwurfsvarieblen a_ so daß die Restriktionen einen nichtkonvexen Lösungsbereich

beschreiben. Da die Problematik bei einem Lastfall bzw. mehreren
Lastfällen dieselbe ist, wird im folgenden aus Gründen der Übersichtlichkeit auf den
Belastungsindex 1 verzichtet.

2. Notwendige und hinreichende Optimalitätsbedingungen

Die Herleitung notwendiger Extremalbedingungen der nichtlinearen Optimier-
rungsaufgabe erfolgt mit der verallgemeinerten Lagrange'schen Multiplikatorenmethode

[2j. Da sämtliche Variablen ot_ nichtnegativ definiert und alle Restriktionen

als Ungleichungen gegeben sind, sind diese Bedingungen hinreichend für
ein lokales Minimum der Zielfunktion [2j. Bezeichnet man mit Gj < 0 die allgemeine

Form der Restriktionen (2) und (3), so lautet die Lagrange1sehe Funktion:

W + Z. X. G. +

j-1 j j £ "i (ai - -i> X. n. (a. - a.)ii li»l
(6)

Die Lagrange'schen Parameter A., u. und n. sind festgelegt durch:

(j-1,...,m)

(i»l n)

(i-l,...,n)

A.
J

All 0 > für G. <
J

0

"i All 0 * für a. >l
u

0
1

n.i All 0 f für a. Zl
o

a.l

(7)

(8)

(9)

Als notwendige und hinreichende Bedingung für einen stationären Wert von W

müssen die partiellen Ableitungen von J nach den Variablen tx verschwinden.
Mit 6(...)/8a, erhält man:

m

Z o.
j-i

Mit (8) und (9) folgt

m

X X. G.

j-1 J J'k

j,k " "lc +

V

(k-1,...,»)

für •< < a < <*:

(10)

(in

Für alle "passiven " Restriktionen G: <0 ist nach (7) der Lagrange'sehe
Parameter A. gleich Null, so daß in der Optimalitätsbedingung (11) nur die
"aktiven" Restriktionen G- - 0 berücksichtigt zu werden brauchen.
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3. Rekursionsformeln zur Bestimmung der optimalen Konstruktion

3.1 Aktive Verformungsrestriktionen

Einzelne Verformungsgrößen können mit Hilfe des Prinzips der virtuellen
Kräfte berechnet werden. Es gilt:

6, - £ e.. - X ßhh (j"' q,) ' (12)
J i=l J i-l

wobei e.. die virtuelle Verzerrungsenergie, S. die Schnittgrößen infolge der
Belastung, S. die Schnittgrößen infolge der virtuellen Einheitsbelastung in
Richtung der gesuchten Verformungsgröße des Elementes i und q' die Anzahl
der aktiven Verformungsrestriktionen darstellt. Als partielle Ableitung nach
den Variablen a, (k=l n) erhält man mit e, e~, /a :

Gj,k -\j'\ •

u

<'»

Bezeichnet k C NI eine "aktive" Variable a, mit dem Wert a < a, < a, und
k C N2 eine "passive" Variable mit a, - a" oder a, a° so muß für alle
aktiven Variablen k € NI das Gleichheitszeichen in der Optimalitätsbedingung
(11) erfüllt sein. Mit W - w und (13) folgt:

X X. e I cx\ w (Vk C NI) (14)
j-1 J RJ

Diese Gleichung stellt i.a. ein hochgradig nichtlineares Gleichungssystem mit
den Unbekannten A. (j=l,...,q') und afc (k=l,...,n) dar, das nur iterativ
gelöst werden kann. Ist nur eine einzige Verformungsrestriktion zu berücksichtigen,

d.h.
6° X e / a + X e (15)

J kGNl K;l kGN2 J

so läßt sich der Lagrange'sehe Parameter A. eliminieren. Die Gleichungen (14)
aufgelöst nach a (k G NI) und in (15) eingesetzt, liefert:

A- -* X V ek. w
"

)2 mit 6* - 6° - X e (16)
J 6 kGNl J k kCN2 KJ

Bei mehreren aktiven Verformungsrestriktionen is_t eine Bestimmung von A.

(j=I,...,q') aus (14) nur dann möglich, wenn e, / cC als invariant
betrachtet werden. In diesem Fall stellt (14) ein " überbestimmtes lineares
Gleichungssystem in A^ dar:

G A - E (17)

mit - " | e'-- v<- a'Z 1 (18)
2

*kj ' "k \
und E_ » { I,..., l) für alle k C NI und j-1 q' Mit Hilfe der ersten
Gauß'sehen Transformation kann eine Lösung für X gefunden werden. Es gilt:

h'4 1 GT E (19)

In Bezug auf die ursprüngliche Gleichung (17) stellt A^ die beste Lösung im
Sinne der kleinsten Quadrate dar. Mit den bekannten ^-Werten und der Annahme

invarianter Größen e. • (bei stat. best. Systemen) entkoppelt sich das
Gleichungssystem (14), so daß die aktiven Variablen a. (k C NI) bestimmt werden
können:

«k - (X *j ekj /wk)
1/2

(20)

Bei stat. unbest. Systemen sind die Größen e, komplizierte Funktionen von

£ Da sich eine Änderung von o in erster JLinie auf die Schnittgrößen des
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A* /

Elementes k auswirkt, kann (20) iterativ angewendet werden, d.h.

„v+l £ P^ ,:r 1/2

j-1
wobei v den Iterationsschritt kennzeichnet und \".
aus (16) bzw. für q' > 2 aus (19) mit den Werten

—v

Jekj (21)

U*'
wird. Da die passiven Variablen a (k G N2) i.a. 'kj

1,...
und

nicht

für q'-l
berechnetVim voraus

bekannt sind, muß ihre Bestimmung ebenfalls iterativ erfolgen. Dabei können die
Schranken otu und

v+1

durch die Bedingungsgleichungen

v+1
k
v+1\
u

für °k<
v+1

v+1
< a. (22)

<=\
berücksichtigt werden. Alle Variablen, für die au bzw. a° maßgebend ist,
werden in der nächsten Iteration zu den passiven gezählt.

3.2 Aktive Spannungsrestriktionen

Sind ausschließlich Spannungsbeschränkungen vorgeschrieben, so kann die
Bestimmung der Variablen c^ nach der bekannten "stress-ratio"- Methode fh]
erfolgen, in der jedes Element entsprechend seiner spannungsmäßigen Auslastung
dimensioniert wird. Es gilt:

v+1 <> (23)

wobei o, die maßgebende Spannung des Elementes k im v-ten Iterationsschritt
bedeutet. Als Ergebnis erhält man eine sogenannte "voll-beanspruchte" Konstruktion,

die in jedem Element die zulässige Spannung ausnutzt, wenn nicht der durch
o. festgelegte minimale Querschnitt maßgebend ist.

Bei aktiven Verformungsrestriktionen können Spannungsbeschränkungen
berücksichtigt werden, wenn man in jeder Iteration die nach (23) berechneten a-Werte
in der Bestimmungsgleichung (22) als zusätzliche untere Schranken auffaßt.

3.3 Konvergenz des Verfahrens

Die Anwendung der Gleichungen (16), (19), (21) bis (23) verlangt nach
jeder Iteration eine vollständige Berechnung der Konstruktion. Um jeweils eine
zulässige Lösung zu erhalten, werden sämtliche Variablen a mit einem globalen
Skalierungsfaktor multipliziert, so daß keine der Restriktionen (2) und (3)
verletzt und mindestens eine identisch erfüllt wird. Danach erfolgt die Bestimmung
der aktiven Verformungsrestriktionen, wobei alle Verformungen, die im Verlauf
des Iterationsprozesses einmal ihren zulässigen Wert erreicht haben, weiterhin
zu den aktiven gezählt werden. Ergibt sich jedoch nach (19) ein negativer A-Wert
so muß die entsprechende Restriktion aufgrund der Nichtnegativitätsbedingung (7)
wieder eliminiert werden. Erst wenn alle aktiven Verformungen bekannt sind, ist
mit einer schnellen Konvergenz zu rechnen. Das Konvergenzverhalten kann durch
eine Begrenzung der Schrittweite in aufeinanderfolgenden Iterationen beeinflußt
werden. Mit

v + 1 v rs s \«H, " «i, (k"' n)

ist die optimale Konstruktion gefunden, für die das Gewicht ein (lokales) Minimum

annimmt.
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4. Die Bedeutung des Kraft- und Weggrößenverfahrens

Bisher wurde nur das Iterationsverfahren zur Lösung der Optimierungsaufgabe
betrachtet. Über die Lagrange'schen Parameter A^ bei mehreren aktiven

Restriktionen wurde im Sinne der kleinsten Quadrate verfügt. Im Vergleich mit
anderen Verfahren [kj ergibt sich hierdurch ein stabiles Konvergenzverhalten bei
nur wenigen Iterationsschritten. Die wiederholte Berechnung des Tragwerkes nach
der Finiten-Elementmethode erfordert bei den vorliegenden Problemen einen
erheblichen Rechenaufwand und verdient damit besondere Beachtung. Ohne auf die
Möglichkeiten der Ableitung von Elementmatrizen f5j einzugehen, werden hier nur
die Lösungsverfahren betrachtet. Diese Verfahren folgen direkt aus den klassischen

Minimalprinzipien elastischer Tragwerke.

Das Prinzip vom Minimum der Potentiellen Energie

Min I j £T K £ - P_T ^ [

mit der positiv definiten Gesamtsteifigkeitsmatrix K, den Lasten P_ und
den Verschiebungen 6 liefert als notwendige und hinreichende Bedingung die
Grundgleichung der Verschiebungemethode:

K£ - _P (25)

Das Prinzip vom Minimum der Komplementärenergie

(24)

f 1 T I

Min J j £ f_ £ N £ P } (26)

(27)

mit der Hyperdiagonalmatrix _f der Elementflexibilitätsmatrizen, den
verallgemeinerten Spannungen S_ und der Gleichgewichtsmatrix N_ ergibt die Grundgleichungen

der Kraftmethode;

N_ £ - P_ (Gleichgewicht)

BT
f_ £ - 0 (Verträglichkeit)

T T
]ä ist der Kern der Gleichgewichtsmatrix (N_ B_ - 0

Den geringsten Aufwand für die einmalige Berechnung eines Tragwerkes erfordert
im allgemeinen die Verschiebungsmethode: Der einfache Aufbau, die positive

Definitheit und Bandstruktur der q x q Matrix K erleichtert die Berechnung.
Bei einer mehrmaligen Berechnung des Tragwerkes mit variabler Flexibilität f_

zeigt jedoch die Kraftmethode gewisse Vorteile: Die q Gleichgewichtsgleichungen
(27) müssen nur einmalig gelöst werden, die Verträglichkeitsbedingungen lassen
sich einfacher darstellen und mit geringerem Aufwand für jede Wiederbemessung
lösen. Als Lösung erhält man die n Schnittgrößen S. zur Iteration nach (12).
Mit dem in £6j näher beschriebenen Lösungsverfahren kann zudem die Bandstruktur
der Gleichgewichtsgleichungen gewahrt werden. Ein genauer Vergleich des numerischen

Aufwandes beider Methoden führte zu dem Ergebnis, daß mit steigender Zahl
der Wiederbemessungen der Aufwand A- der Kraftmethode abnimmt. Das Verhältnis
des Aufwandes Aj. der Verschiebungsmethode zur Krafttnethode nimmt jedoch bei
wachsendem n/q ab. In den für die Praxis wichtigen Stabtragwerken ist jedoch
i.a. n/q < 2 Für ein System mit 1000 Freiheitsgraden der Verschiebung und
einem speziellen Elementtyp (s) ergibt sich die in Bild 1 dargestellte Abhängigkeit

[dj.
Umfangreiche numerische Untersuchungen [lj an den aus der Literatur bekannten

optimalen Tragwerken bestätigen in allen Fällen die Überlegenheit der
Kraftmethode.
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Anioni C Fretheitsgracie ru lOOO

Eierr.enttyp s* 20
Ansaht der Iterationen V

<1.5

v W
a 1.0

X'O'imethode
Outtvendiger

n/q

Bild 1: Vergleich der Kraft- und
Verschiebungsmethode

Lastfall Knoten (P ^1000 lbs)z
1

2

3
4

1

1-4,7-13,19-28,37
1-37

1,4-7,13-19,28-37

Tabelle 1: Belastungsangaben

5. Numerische Ergebnisse

4

com

Bild 2: Fachwerkkuppel

W llbsl

Die Zuverlässigkeit des Optimierungsverfahrens soll hier an einem
ausgewählten Beispiel gezeigt werden. Die in Bild 2 dargestellte Fachwerkkuppel, die
in den Knoten 38-61 unverschieblich gelagert ist, wird durch vier Lastfälle
beansprucht. Die genauen Belastungsangaben sind in Tabelle 1 zusammengestellt.
Als Material wird Aluminium mit einem Elastizitätsmodul von E 10^ psi und dem

spezifischen Gewicht von P 0.1 lbs/in? verwendet. Für alle Stäbe beträgt der
minimale Querschnitt 0.1 in? wobei die zulässige Spannung von + 25000 psi
nicht überschritten werden darf. Die Verschiebungen sämtlicher Freiheitsgrade in
z-Richtung werden auf +0.1 in. begrenzt. Alle Entwurfsbedingungen sind mit denen
aus ßlj identisch.

Ausgehend von einer zulässigen Konstruktion mit querschnittsgleichen Stäben
(W.-358.85 lbs) wird die optimale Kuppel nach 15 Iterationen und einem Gewicht

von 161.63 lbs gefunden, das um 10.7%
geringer ist als in f8j Während zu
Beginn der Optimierung nur die
Verschiebung von Knoten 1 (LF 1) den
maximal erlaubten Wert von -0.1 in.
erreicht, sind von der 13. Iteration
an 41 Verforraungsrestriktionen zu
berücksichtigen, die jeweils durch
einen der 4 Lastfälle aktiviert wurden.

Spannungen waren in keiner Phase

des Iterationsprozesses maßgebend.
Bild 3 zeigt das stabile Konvergenzverhalten,

wobei insgesamt eine
Gewichtsreduktion von 55% erreicht wird.
Die Ouerschnittsflachen der optimalen
Kuppel, die symmetrisch zu den beiden
Achsen 38-50 und 44-56 ausgebildet

\\ w, 358.85

\

©\ ©
\ l

\

\ -,,3)H
^® [

1
\~~~">~. << •)

1

i

I6E

—\
6J

tO 11 12 13 lt 15

Bild 3: Iterationsverlauf
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ist, sind in Tabelle 2 zusammengestellt. Bei n/q=1.19 konnte
äußerst wirtschaftlich eingesetzt werden. Die Rechenzeit (TR
182 see.

die Kraftmethode
440) betrug nur

Stab Fläche Stab Fläche Stab Fläche Stab Fläche

k 1.0176 36 0.4831 62 0.3177 111 0.1003
5 1.1732 37 0.3051 63 0.6572 112 0.2403
9 0.9720 38 0.3514 80 0.3062 113 0.3088

10 0.8322 56 0.3207 81 0.2128 114 0.1429
21 0.2990 57 0.1904 82 0.1003 115 0.5000
22 0.3395 58 0.3378 83 0.1003 116 0.1003
23 0.5773 59 0.3431 84 0.3347 117 0.4381
24 0.4148 60 0.29 6 109 0.1003 118 0.3312
25 0.6776 61 0.5494 110 0.4961 119 0.1003

Tabelle 2: Optimale Querschnittsflächen (in?) eines Quadranten
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ZUSAMMENFASSUNG

Es wird eine spezielle Anwendung der Lagrange'schen Multiplikatorenmethode,
die als Verfahren der Optimalitätskriterien bekannt wurde,

dargestellt. Eine lineare Transformation der Lagrange-Parameter führte zu
einer schnellen und gleichmässigen Konvergenz.

SUMMARY

A special application of the Lagrangian-Multiplier-Technique, known as
the optimality-criterion-method, is presented. A simple linear transformation

of the Lagrange parameters leads to fast and uniform convergence.

RESUME

Une application speciale de la technique des multiplicateurs de Lagrange,
dite methode des criteres d'optimisation est presentee. Une transformation
linSaire entraine une convergence rapide et uniforme.

Bg. 9 vs
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