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Optimum Design of Steel Frame Subjected to Dynamic Earthquake Forces

Calcul optimal de cadres métalliques soumis aux forces dynamiques des
tremblements de terre

Optimierung von Stahlrahmen unter dynamischer Erdbebenlast

HIDETAKE ANRAKU
Researcher
Technical Research Institute, Ohbayashi-Gumi Ltd.
Tokyo, Japan

1. INTRODUCTION

The mathematical programing technique has already been adopted for the

1,2
optimization of the structures subjected to the dynamic excitations. Most of

these optimizations were dealt with beams, trusses or frames, subjected to
simple excitations such as harmonic waves or shock waves, and designed under
rather simple elastic constraints.

However, in case of earthquake loadings it becomes important to estimate
the dynamic forces correctly using the available model for the elastic design,
and to take into account the inelastic behaviour of structures during the very
strong ground motion.

Considering these problems, this paper presents a method for the automated
minimum weight design of wide-flange steel frames which gives the optimum
distribution of the moment of inertia of used members.

2. DYNAMIC ANALYSIS

An idealized dynamic model consist of bedrock, ground layres and a structure
is considered (see Fig. 1). Ground excitations are given by the model presented
by Kanai and Tajimi, and the dynamic response of the structure to this ground
motion is estimated by means of the random vibration theory and Davenport's
equation which gives the expected maximum value of a random process.

2.1 Vibration of Ground Surface

Kanai and Tajimi has presented the idea that spectrum observed at bedrock
is characterized by a constant pattern (white noise), while the spectrum at the
ground surface is amplified by the vibration property of the ground layre and

showed apower spectrum of this ground surface as follows:

1 + 4h 2(=2)2
gk (wgk)

5156 (1)
k=l 1 4 (4hgk2-2)(r§k)2 + (F-gﬁ“ <

where h,, and wgk are ground damping factor and predominant frequency, respective-
ly, S, is a constant power spectrum density function and where sy is a factor
which measures predominence of each component. This excitation of ground

surface becomes Gaussian process of zero mean.

2.2 Dynamic Response of Structure

The variance of elastic response of the structure subjected to the ground
motion mentioned above can be obtained by means of random vibration theory. Let
Qs and Gg_be the variance of story shear force and its time derivative,
respectively.
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4
Following Davenport, the mean value of possible maximum elastic response of _
story shear force can be given as

Q__: (2!{}_ vT)% + %12__1_ (2)
(2fn v1)?
where v = —i— Eﬁi- T
= 5% To.

and T represents the duration of the strong earthquake excitation which is fixed
10 seconds in this paper.

For very strong ground motion, the response of the structure is considered
to be inelastic, and the -relative displacements of each floor are estimated

following the idea of Newmark and et al. Equating the inelastic potential
energy of deformation to the elastic one which can be obtained supposing that
the structure responses elastically, the maximum ductility factor of floor
drift, {{, can be obtained as follows (see Fig. 2);

' 1 1 B 2
= +
M= =+ 5 ) (5)
Where(ly may be thought of as the yield level of the story shear force, and can

be obtained by means of a simple plastic analysis assuming the mechanism of
beam collapse type or column collapse one for each story.
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Fig. 1 Dynamic Model Fig. 2 Definition of Ductility Factor

3. DESIGN CONSTRAINTS

For the moderate earthquakes which give such a dynamic force as usually
presented in the design code, the members of the frame are designed elastically
in accordance with the design code of steel structure of Architectural Institute
of Japan (A.I.J). On the other hand, for the very severe earthquake, which is
rarely expected during their service lives, the frame 1is designed plastically
relying on the energy absorption which due to their inelastic deformation.

In this design procedure, the maximum ductility factor given by Eq.(}) is
constrained less than the allowable value which is fixed 4 in this paper.

To satisfy these ductility requirements, it is necessary for the frame to
prevent the weakening of the load-deflection curves caused by the lateral or
local buckling of members and P - A effects.

These problems are taken into account according to the plastic design code
of steel structure of A.I.J.. Namely, lateral buckling is prevented by the
correctly designed stiffners, and local buckling is prevented by selecting the
members which are on market to satisfy the width-thickness ratio of plate
elements imposed by the code mentioned above, or designing each member in-
accordance with these requirements after the optimum stiffness distribution of
frame member is decided. Moreover to avoid the excessive P - A effects, the
slenderness ratios and the axial compressive forces of columns are ristricted by
the code requirements.
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4. OPTIMIZATION

Wide-flange steel members on market are supposed to be mainly used in the
design. The moment of inertia of them, I, are the design variables and objective
function is the total weight of structural members. The emprical relationships
between member properties which are required in the design code and moment of
inertia of economical series of the steel wide-flange section was obtained by
plotting them. The calculation was proceeded using these equations and treating
the moment of inertia as continious design variable.

Sequential linear programming (s.L.P.) technique was successfully adopted for
the optimization of the frames. Objective function and constraint equations were
approximately linearlized, and using linear programming technique, the optimumly
modefied design variables were obtained at each design step. Repeating this
procedure, the optimum solusion, namely the distribution of moment of inertia of
members which gives the minimum weight of structural members, was obtained.

5. SENSITIVITY ANALYSIS

To optimize the structure by means of S.L.P. technique, the change of
member stress and deformation caused by the modefication of each members must be
quantitively estimated as the first order derivative of these values with respect
to the design variables.

Let P be the vector of external nodal forces of global coordinate, and X
and XK be the corresponding nodal displacement vector and stiffness matrix. Using
these notations

-1

X=K"P (4)

Therefore, the derivative of nodal displacements with respect to design
variable, I, is obtained as follows;

=9 xl.p sl p (5)
oI

The second term of the right hand side of the above equation contain the
derivative of the dynamic loads which vanish in the static problems. If these
values are obtained, the sensitivity coefficients of the stresses and deflections
can be evaluated applying the same procedure adopted for the static problems.

As the dynamic loads which is evaluated by means of random vibration theory
become the explicit function of natural frequencies and modg vectors of structure,

if the sensitivity coefficients of these values are evaluated, then that of these
dynamic loads can be obtained without difficulty.

6. NUMERICAL EXAMPLE
The method previously mentioned is
applied to the design of three-story

frames of equal span length, 6m, and TYPE| Tgi | hgi | A1 | Tgz | haz | e
equal story height, 3m, with uniformly

distributed load, w, on beams, subjected I o3los | 1o

to the four types of ground motions

whose characteristics are decided by i Lo | 06 | IO

the parameters presented in Table 1.
Frames are designed both elastically
for the power Sy of E .(1), and
plastically for the power of X times of
S, so that the story drifts should be
less than allowable ductility factor 4,
and beam collapse type mechanism is

Table 1 Ground Parameter



96 Ila — OPTIMUM DESIGN AND DYNAMIC EARTHQUAKE FORCES

considered for the calculation of yield levels of story shear forces. Steel used
is SS41 whose yield stress is 2.4 ton/cm2.

6.1 Three story one bay frames subjected to the ground motion of type I is
optimized for W =5 ton/m and S =5 cm/rad/sec3. In Fig, 3, the maximum
stresses and the maximum ductility factors of each story corresponding to the
final design are presented for({ equal 5 and 7 respectively. Where the maximum
stress is defined as the value in the most severely violated constraint equation
for elastic design whose allowable limit is normalized as unity. For the case
of A equals 5, the member size is desided by the elastic constraints and the
response ductility factors of each story are scattering. On the other hand, for
the case of O{ equals 7, the beams are not fully stressed for elastic design
constraints and for the plastic design constraints they are equally fully
constrained. Therefore it can be pointed out that for the optimum design of
earthquake resistance structures, it become important to consider the constraints
for the inelastic deflection expected during the very strong earthquakes.

6.2 Three story one bay frame subjected to the ground motion of type III and
IV is optimized for w = 2 ton/m, S, = 2 cm/rad/sec3 and®X = 7. The maximum
stresses of each member defined previously and the maximum ductility factors for
the final design are presented in Fig. 4. This shows that the optimum member
size restricted by both elastic and plastic constraints.

The acceleration response spectrum to these ground motions is presented in
FPig. 4 with the values of the spectrum correspond to the fundamental frequencies
of the structure of initial and final design. This shows that even if the initial
design is at the valley of the response spectrum, or final design is at the
vieinity of the maximum, this optimization technique can be successfully adopted.

Neglecting the derivative of dynamic forces which is used in Eqg. (5), the
optimization is also carried out for the same model. The final result obtained
starting from the same initial design mentioned above is presented in Fig. 6.
Compared with the above analysis, much more iterative calculations are carried
out and the real optimum solusion can not be obtained. This too happen for the
optimization of the structure subjected to the ground motion which have more
moderate response spectrum showing the importance of sensitivity analysis of
dynamic forces for these analysis.

6.3 Three story one bay and three bays frames are optimized for X = 7 by chang-
ing the parameters concerend with the distributed load and ground motion. The
ductility factors of story drift correspond to the final design are shown in
Table 2 with these parameters. Each story yield almost equally fully restricted
by the constraints of plastic deformation. Therefore it can be pointed out that
for this kind of structures, the optimum design correspond to such a structure
whose response ductility factors against very strong ground motion are almost
equal for all story.

7. CONCLUSION
As a result of this study, following conclusions can be pointed out.

(1) The analysises of Some examples shows the validity of the optimization
technique mentioned above together with the importance of the sensitivity
analysis of dynamic forces.

(2) The constraints concerened with the plastic deformation against the very
strong ground motions must be considered together with the constraints for
the elastic strength.

(3) For the type of structure dealt with in this paper, the minimum weight
design correspond to such a structure whose response ductility factors
against very strong ground motion are almost equal for all story.
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U
SPAN | W TYPE | Se
| 2 3
1 10 I 5 4.0 4.0 40
| 50 l 5 4.08 4.08 4.05
| 50 I} 5 404 404 404
] 5 m 2 4.0 4.0 4.0
| 5 1\ 2 40 368 392
I 2 w 2 40 4.0 40
| 50 1A% 5 399 3.82 396
3 10 o 5 4.04 408 | 408
3 30 I 5 3.92 3.96 392
3 30 i 5 4.12 4.04 404

Table 2 The Maximum Ductility Factor
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SUMMARY

The minimum weight design of unbraced steel frames subjected to
dynamic earthquake loads is presented. Random vibration theory is
adopted to elastic member strength and plastic story deflection, the
sequential linear programming technique is successfully adopted to
obtain the optimum design. Several examples are presented with the
analysis and comparisons are drawn.

RESUME

On présente le dimensionnement, pour un poids minimum, de cadres
métalliques soumis aux forces dynamiques des tremblements de terre.
La théorie des vibratiocns aléatoires permet de déterminer le comporte-
ment "dynamigque" de la structure. La programmation linéaire séquentielle
donne le dimensionnement optimal dans des conditions de comportement
élastique des éléments et de comportement plastique du cadre soumis a la
déflection.

ZUSAMMENFASSUNG

Fir unausgesteifte Stahlrahmen, die durch Erdbebenwirkung beansprucht
sind, wird die Berechnungsmethode des "minimalen Gewichts" abgeleitet.
Die "Random"-Vibrationstheorie erlaubt es, das dynamische Verhalten des
Tragwerks festzustellen. Unter Annahme "elastischer" Krdfte und plastischer
Verformungen liefert die fortschreitende lineare Programmierung das
gesuchte Optimum. Beispiele werden gezeigt und Vergleiche angestellt.
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1. INTRODUCTION

The developments that have taken place in the last few years
in the field of optimization techniques applied to structural
problems were restricted mainly to structures subjected to determi-
nistic loadings. The reasons for the lack of research activities
towards the analysis of structures under the effects of random
loadings could be attributed to the mathematical complication invo-
lved in the procedure and the non-asvailability of sufficient and
reliable data regarding the past histories of the random exciting

force.

In this paper a simplified approach is reported to deal with
the structural optimization problems under non-stationary loadings
by making use of the upper bound probability of failure of the
structure. The analysis is carried out in two phases:

(A) to obtain an expression for the probability that the response
of the structure at a critical zone reaches for the first time an
upper limit value with time-dependent control-barriers, interms of
their rate of uperossings; and

(B) to seek an approximate solution to the optimization problem,
using the result obtained in phase (A), with the probability of
failure, the natural frequency of vibration and the frequency respo-
nse function of the system as restraints.

2, PHASE (A).

The estimation of the upper and lower bound probabilities of
failure of a structure in a closed internal of time, has been a
field of great interest among engineers dealing with random vibra-
tion problems. J.J Coleman! for the first time, suggested an
approximate solution to estimate the upper bound value interms of
the expected rates of the threshold crossings of the response process
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at positive and negative slopes. However, the process of independ-
ent arrivals of failure, as assumed by Coleman, is unacceptable
especially for narrow band random process, such as the response of
lightly demped dynamic systems. Besides, for low damped structural
systems, crossings of response process tend to occur in 'clumps' of
dependent crossings and hence the expected rate of threshold cross-
ings should be replaced by the average clumping rate. M Shinozuka?
has developed a method applicable to stationary and non-stationary
cases as well, to estimate the upper and lower bounds for the proba-
bility of the first excursion failure within an arbitrary semi-clo-
sed time internal (o, t) and constant barriers without the assumption
of independent threshold crossings. When the computed values of

the upper and lower bounds are sufficiently close to each other,
they are just as valuable as the mathematically exact values of the
probability as a basis for making engineering decisions. In a
paper® published later, Shinozuka has further extended his solution
to take into account the effects of time-dependent barriers also.

The solution to the above problem with time-dependent barriers,
presented in this paper is a modification to Shinozuka's approach
with a different interpretation, interms of the expected rate of
crossings of the response-barriers.

Following Shinozuka's expression for the upper - bound probab-
1lity of failure of the structure,
P_' Lt ;_Y?_(.t) ,Yi(t)] £ Py Lt; ..Ylu_))oc_] + P+ [t 5 *aC,Y,(t]
— Py [{j((t,) <—YL(tL)}£'x (ta) >Y‘ (t)}] -7 -(i)

where x(t) represents the response of the system at a critical zone
and the failure of the system, fer the first time, is defined as

when x(t) Z Y, (t), or 2¢(t) < ~Yo (&), in which Yq(t) and
Yo(t) are positive barriers of response process.

Let hJ[Y]Ct),t]) hereafter referred as Nq, represents a random
variable denoting the number of crossings of Yq(t) from below
during the internal (O,t). The probability that N[V, (t),t]
takes a value ‘y> during (0,t), PriNiz+] can be expressed as:

Pr[N=1] = Pr[Ny=%, X (o) 2 V()] 4+ Pr [N 2F; X)L Y, (0)] - - --@)
Also,
Pr [ty -, ¥, (8] = Pr[90a) 7Y (o) , N1 20]4 Py [XCDLY (o) N, 2 1]
PP x@)=Y (D, NZe] - . oL @)
Equation (3) can further be simplified as :

Pr [t —oC, Y, (2] = Pr[x (o) »Y,(0)] + Pr [ XD L Yi(0) ) Pr[N;ZlI‘K(o)(J
Y;(O)

£ Pr [ 0) 24 ()] +Pr [X(6)< Y (o) ] ;{ls Pr[N(=5 | x (o) -
- Y, C0) -
Equation (4) with the help of equation (2) finally reduces to, !

Prit;-<,Y,()]4 Py (%) »Y,Co)]+ E[Ny] =Pr [ (o) 2 Y 0) ] E [N,}OCC()))/\(I(O)J
T (%)

in which E denotes the expected value.

If hi[—ﬂi(t),tj) hereafter referred as N,, represents a random
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variable denoting the number of crossings of -Yo(t) from above
during an internal (0,t),

Pr [t =Yp (t DY) ¢ Pr[x(0)<=-N (0] + Py [ (o) >N ()] +
Pv [ K (o) >=Y2(0d] E [Ny|2(0) >-Y,(0)]+
Py [x (o) €Y ()] ELNi[x(o) <Y ()] -
Pa [ § X(0)<=Y2(@F{ x>V, (£} ]- - -~ ®

Equation (6) in effect represents the best upper bound probability
of failure of the structure interms of the rate of crossings of the
time-dependent barriers of response process,

In case the response process starts from zero origin, such that
Py [ xC0)=0)= 1 equation (6) further simplifies to

Pr [ £, -Yo (1), Y, (&) CE[N]+ E[N,L]—Pw[{occmkv,_(t.)}{fx(t;) >V, (L) ] -7

The approach presented above, to estimate the upper bound value
becomes significant in dealing with those problems where a stationa-
ry process for a finite time internal is observed, as in certain
control system problems.

3, PHASE (B).

An approximate solution to the structural optimization problem
is attempted in this phase, making use of the results obtained in
phase (A), with the probability of failure of the structure and the
system—characteristics as restraints.

ILet Z(d) be the objective function to be minimised subject to
the condition,

k
Pr [ U, {Si (x(d,t)) 2 *f}]j < [P{‘]J S (8D
and Sj (x(dtd))<¥j - - - _ )
and W € W § PDiw (1o0)

where ES{(OC(dAﬂ) is the frequency response function of the system;
« (d,t) representSs the response (stress, strain or displacement)at a
critical zone to random excitation;

Wiy ,Yiuw are the lower and upper limits of the natural frequency of
vibration of the structure, respectively;

[ﬁjj denotes the upper limit of the probability of failure under
mode j.

Let P+[Sc(x,t)) 2] = ) - - - S

For example, if the safety of the structure is analysed on the basis
of the external load acting on it and its internal resistance, say
F and R respectively, both treated as statistically independent
normal distributions, then,

©
bed) = J_i‘:‘r jf Pl doc (12)
where ¢ = R-F : == = : s a8 . -~ = = LU

R T ()
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in which® and F are respectively the mean value of the resistance

and the lead; Gﬁf and s}l are their wvariance.

Equation (8) now reduces to, L
P[0, Si (=) 2n3 ]y = [g 0y, - W)
il

the limit of summation of the time variable being from -« to .
It fellows,

[ £ @) <lydj, Jebmom

In the case of non-stationary random excitations, fer example,
ground acceleration due to earthquakes, the left hand side of
equation (15) may be replaced by the upper bound value of the proba-
bility of failure of the structure as obtained in phase (A).

4., CONCLUSIONS.

Since a knowledge of the rate of crossings of the time-
dependent response-barriers is an essential pre-requisite to the
present analysis, a rigerous statistical analysis of the past
records of the random exciting force is warranted to achieve a high
level of accuracy. A large class of optimization problems in
eontrol system engineering could be advantageously studied using
this method.
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SUMMARY

A general solution to deal with structural optimization problems under
non-stationary random loadings is presented, with the upper bound proba-
bility of failure of the structure within time-dependent barriers and the
system characteristics as restraints.

RESUME

Une technique générale d'optimisation des structures est présentée
pour le cas de charges aléatoires. Les caractéristiques du systéme et les
valeurs supérieures de la probabilité de ruine en fonction du temps sont
prises en considération.

ZUSAMMENFASSUNG

Es wird eine allgemeine L&sung der Bauoptimierungsprobleme fir nicht
stationdre Unfallsbelastungen dargestellt, mit der oberen Grenze der
Versagenswahrscheinlichkeit innerhalb zeitabhdngiger Grenzen und den
Systemcharakteristiken als Einschrédnkungen.
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Optimierung von Tragwerken: Entscheidende Kriterien und Verfahren zur
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Structural Optimization: Prevailing Criteria and Proportioning
Approach in Steel Structures

J. BROZZETTI Y. LESCOUARC'H P.A. LORIN
Centre Technique Industriel de la Construction Métallique
Puteaux, France

1 - INTRODUCTION

L'idéal que cherchent & atteindre tous ceux qui sont associés a l'art de
construire est de réaliser l'ouvrage qui donnera les meilleures garanties de
service dans des conditions requises de sécurité et au meilleur prix.

L'optimisation envisagée ainsi n'est aujourd'hui pas accessible par des
méthodes déductives., Elle demeure un art. Cependant, pour les démarches qu'il
doit faire en vue de cette optimisation, 1'ingénieur dispose de moyens de plus
en plus élaborés. Les critéres qu'il faudra respecter dans ces choix sont dans
la pratique imposés par les autorités responsables de la sécurité, par les maltres
d'ouvrage et par les maitres d'oeuvre. On les trouve exposés soit dans les textes
réglementaires [1,2] , soit dans des cahiers des charges.

Par utilisation des techniques de programmation linéaire, le projeteur peut
dans la pratique optimiser sa structure en poids, tout en satisfaisant un certain
nombre de critéres aux états limites ultimes. Un programme de dimensionnement
optimal de structures a barres, visant ces objectifs, a été réalisé dans le cadre
de travaux entrepris au CTICM et nous montrerons un certain nombre d'exemples qui
mettent en lumiére 1l'influence que peut avoir le respect des critéres de vérifi-
cation sur l'optimisation de la structure.

2 - RAPPEL DES DIFFERENTS CRITERES A SATISFAIRE AUX ETATS LIMITES ULTIMES
Un état limite ultime est atteint lorsqu'un des phénoménes suivants se
produit :
a) perte d'équilibre de la structure
b) transformation de tout ou d'une partie de la structure en un mécanisme
¢c) instabilité de forme
- d'ensemble de la structure,
- individuelle d'une barre
d) déformations excessives
e) cumul de déformations sous charges répétées
f) rupture d'un élément (fragilité ou par fatigue).

Un état limite d'utilisation est atteint lorsque la structure devient inapte
aux fonctions normales pour lesquelles elle est congue, en particulier lorsque
les déformations excessives entralnent une interruption du service normal de la
structure ou des désordres dans les éléments non structuraux.

Dans le cadre actuel francais de la philosophie de la sécurité, pour vérifier
la sécurité vis-a-vis des états limites, le projeteur multiplie les valeurs
(caractéristiques ou nominales) des actions par des facteurs appelés coefficients
de pondération. Les valeurs de ces coefficients dépendent de 1l'état limite consi-
déré (état limite d'utilisation ou état limite ultime) du type d'action envisagé
(actions permanentes ou variables) et de la combinaison d'actions étudiée (inter-
vention simultanée d'actions variables).
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Ainsi, pour la vérification & 1'état limite ultime, on est conduit & consi-
dérer les plus défavorables des combinaisons d'actions données dans le tableau
ci-dessous :

Tableau 1
Cas de combinaisons
d'actions
prenant en compte une %Q + ':-:-G %Q + G
des trols actions 3 - 86 3 <so
SYMBOLES Q, S, W. 2 3 2
- Majuscules %w + %G %w +0
Q = action permanente 17 i e
G = surcharge prenant en compte 13 (Spt¥) + 36 o (SptH) +G
S = neige simultanément deux 17 Y -
W = vent des trois actions 17 (W) + 36 7 (M 6
. S, W. 17 u
- Indices % S, T (Q+s) + 3 G % (Q+s) +6
e = extréme prenant en compte
r = réduite simultanément trois %(Q + S, +t W+ G) § (Q+Sp+H) + G
des actions Q, S, W.
prenant en compte les Q+ Spe + W +G Q+ St Wer G
actions climatiques )
extrémes Q+5e+6 Q¥ 8, ¢

A 1'état limite d'utilisation, la vérification doit étre effectuée en consi-
dérant les combinaisons les plus défavorables des actions non pondérées.

Selon 1'état limite considéré, la vérification consiste en particulier a3
contrdler si la structure satisfait aux critéres de déformations, d'instabilité
ou de résistance.

I1 a paru utile, dans le cadre de cet article, de bien souligner les prin-
cipes sur la maniére de prendre en compte la sécurité dans l'optique des réglements
actuels frangais. Car il est de l'opinion des auteurs que ces considérations sont
de nature a avoir une influence trés importante, non seulement sur la fagon dont
on entend poser le probléme de 1'optimisation, mais aussi sur la nature des résul-
tats de cette optimisation.

L'étude et la mise au point d'un projet de construction passent toujours par
trois phases essentielles, d savoir

. le choix des dispositions générales de la construction,

. la détermination des dimensions de tous les éléments composants,

. la vérification que les dimensions adoptées sont acceptables et -en parti-

culier- conférent 3 la construction un degré de sécurité suffisant.

En ce qui concerne la premidre phase, on admet généralement que seul le choix
des dispositions générales de l'ouvrage et de sa conception constitue oeuvre
d'imagination créatrice, pour laquelle l'intuition et l'expérience de l'architecte
et du constructeur jouent un rdle essentiel.

La question qui nous préoccupe dans le cadre de cet exposé est de savoir s'il
existe des méthodes pratiques qui permettent de déterminer un choix préalable des
sections ou composants d'une structure quelconque et qui, d'une part satisfont a
l'ensemble des critéres de vérification que nous venons de décrire briévement et
d'autre part, conduisent 3 une optimisation de poids de la structure.

3 - TECHNIQUES D'OPTIMISATION DES STRUCTURES

Le cadre réduit de cet article ne nous permet pas d'exposer les fondements
de la méthode utilisée ni le détail de sa formulation en termes de programmation
linéaire. Cette étude a fait l'objet de plusieurs publications [5,6,7] od 1'on
trouvera la formulation du probléme de prédimensionnement optimal en termes de
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de programmation linéaire, avec le choix de la fonction objective (que 1l'on peut
linéariser) et la prise en compte, d'une part de l'interaction effort normal-
moment fléchissant et d'autre part du flambement.

L'approche utilisée par les auteurs se distinguent d'autres méthodes itéra-
tives [3,4] de type "heuristique", qui abordent le probléme de la recherche d'un
optimum au travers d'un processus complexe "d'itération-contrdle-modification"
permettant de prendre en considération de nombreux critéres de vérification
(contrainte, stabilité, déformabilité) de la structure étudiée. Ces méthodes
présentent, d défaut d'un manque de généralités et d'une incertitude sur
l'optimum atteint, l'avantage d'avoir été pensées comme un programme module
(PLADS-I PLASTIC ANALYSIS AND DESIGN SYSTEM, écrit dans un systéme général de
langage orienté : ICES INTEGRATED CIVIL ENGINEERING SYSTEM). A ce titre, il a le
mérite d'@tre immédiatement disponible et utilisable par 1l'ingénieur de bureau
d'études.

4 - EXEMPLES D'APPLICATION

Le programme de prédimensionnement automatique des structures permet de
prendre en compte la stabilité individuelle des barres et une combinaison quel-
conque d'états de charges pondérées., Il est cependant nécessaire, pour &tre en
conformité avec les réglements de calcul [1,2] , de contrdler que la solution
obtenue satisfait les critéres aux états limites d'utilisation et de vérifier
les conditions d'instabilité d'ensemble de la structure.

Nons donnons ci-aprés deux exemples qui démontrent que d'une part, la solu-
tion optimale recherchée dépend des critdres d'états limites adoptés, selon que
le dimensionnement se référe 3 un rdglement de calcul en élasticité [1] ou en
plasticité [2], d'autre part le prédimensionnement est d'autant plus proche de la
solution finale optimale que l'on considére ou non les conditions d'instabilité
individuelle.

Exemple 1 : A titre d'exemple, nous donnons les résultats obtenus sur la structure
donnée 3 la figure la. Les schémas 1b et lc donnent la valeur de deux combinaisons
de charges les plus défavorables pour la structure considérée, d savoir charges

permanentes + neige et charges permanentes + neige + vent.

IPE
i -________,__-_ﬁ__-_--l—_-_____‘~.*_-~l
*
m
w
I

1
HEB x

(a)

HEBy

L
r
.
3

17.1 17.1

Fig. 1

Les résultats sont résumés dans le tableau de la page suivante.



106 lla — CRITERES PREPONDERANTS ET METHODE DE PREDIMENSIONNEMENT

Tableau 2
Poids A4 . ﬁx( 1 Nbre plastification
(tonnes) ﬁ—(150) L 200 état limite utilisation
Elas. poteaux HEB 200 3.98 1 1 0
[1] traverse IPE 360 . 199,5 350
Plas. poteaux HEB 200 3.47 1 1 2
[2] traverse IPE 300 2 174 210
poteaux HEB 180 3 1 1
Pred. | { averse IPE 360 | -°° I 332

Dans cet exemple particulier pour leguel les conditions d'instabilité au
flambement sont vérifiées, l'optimisation est différente selon qu'elle est élas-
tique ou plastique. Dans les deux cas elle satisfait aux conditions de déforma-
bilité aux états limites d'utilisation ; par contre, la présence de 2 rotules
plastiques aux états limites d'utilisation n'est pas acceptée en élasticité. Le
gain de poids est ici de 12,8%.

Le prédimensionnement initial donnait une solution proche de la solution
élastique, mais la condition de déformabilité en téte du poteau n'était pas
vérifiée, quoique la condition de flambement du poteau était satisfaisante.

Exemple 2 : Soit la structure donnée en figure 2, avec le cas de charges pondérées

considéré. Les résultats du prédimensionnement sont rassemblés dans le tableau 3.

Fig. 2
B 8.04 8,04 . 2880 daN/m
l e J e :
® @ pas E: 2640 daN/m
@ 5 ® 8 2E
gr-:c
@ @ @ ) g!
| el -L’—!L ] 1 1
Tableau 3
Poteaux 1,2,5,6 Poutres 3,4 Poutres 7,8,9,10
)
;ani‘l lgzeg:;;z;em IPE 300 HEB 100 IPE 400
) 3
;"e; :t‘t;i‘;rcn;;;znt IPE 360 HEB 160 IPE 400
?
z:i‘;ﬁlgia‘s’ph] IPE 360 HEB 200 IPE 400

L'examen des résultats de ce tableau par le programme de prédimensionnement
automatique des structures montre que si le dimensionnement sans interaction M
et N est acceptable pour les poutres (c'est-d-dire lorsque la sollicitation de
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flexion est prépondérante), il n'en est pas de méme pour les poteaux ol l'effort
axial est prépondérant. Il est nécessaire alors d'introduire dans le prédimen-
sionnement les conditions d'interaction entre l'effort normal et le moment flé-
chissant et les conditions d'instabilité (voir 2éme ligne du tableau 3). L'intro-
duction de ces conditions améne généralement une redistribution des efforts entre
les sections et peut conduire aussi 3 une augmentation des sections simplement
fléchies (barres). La 3éme ligne du tableau 3 donne la solution finale compatible
avec les exigences d'un réglement élastique [1].

5 - CONCLUSIONS

La méthode mise au point dans le cadre d'études entreprises au CTICM trouve
son fondement dans l'application du théoréme statique en plasticité et les tech-
niques de programmation linéaire. Elle conduit d'une maniére pratique 3 un pré-
dimensionnement initial correct, a condition toutefois de prendre en considéra-
tion les conditions d'interaction entre sollicitation de flexion et effort axial
et les conditions de stabilité individuelle au flambement des barres.

I1 y a lieu cependant de procéder d une vérification de ce prédimensionne-
ment initial, pour contrdler si la structure satisfait aux diverses exigences
imposées par les codes de calcul aux états limites d'utilisation.

La fonction & optimiser est le colt total de la structure, c'est-d-dire la
somme des colts des aciers, de la fabrication, du montage et de l'entretien. Une
étude factorielle de 1l'influence de ces divers colits dans 1'établissement d'une
fonction économique a été étudiée [8]. Si cette étude a montré qu'il était pos-
sible d'améliorer sensiblement la fonction économique, la qualité du dimension-
nement n'est cependant pas accrue dans les mémes proportions. En particulier, du
fait de nombreuses hypothéses au niveau de la prise en compte dans le prédimen-
sionnement de l'instabilité individuelle des barres, le gain de précision du a
1l'amélioration de la fonction économique est illusoire,

Le programme de prédimensionnement autematique des structures est valable
quelle que soit la configuration géométrique de la structure et la nature des
charges extérieures appliquées. Cependant, le nombre de sections potentiellement
critiques choisies et celui des contraintes résultant des conditions de plasti-
fication, d'interaction M et N et d'instabilité de flambement des barres compri-
mées et fléchies, en limitent 1'application pratique a des structures relativement
simples (portiques simples, portiques accolés, cadres multi-étagés de 2 niveaux,

3 baies).

6 - REFERENCES

l1] crIcw
Régles de calcul des constructions en acier
CTICM-ITBTP, décembre 1966

[2] cTIcM
Recommandations pour le calcul en plasticité des constructions en acier

CTICM, décembre 1974

[3] EMKIN L.Z., LITLE W.A.
Plastic Design of Multistory Steel Frames by Computer
Journal of the ASCE, vol. 96, n°ST11l, November 1870

"u] EMKIN L.Z., LITLE W.A.
Storywise Plastic Design for Multistory Steel Frames
Journal of the ASCE, vol. 98, n®ST1l, January 1970

[s] BROZZETTI J., LESCOUARC'H Y.
Prédimensionnement des structures métalliques a barres par la méthode

statique et la programmation linéaire
Revue Francgaise de Mécanique, n°48, 1973



108 lla — CRITERES PREPONDERANTS ET METHODE DE PREDIMENSIONNEMENT

[6] BROZZETTI J., LESCOUARC'H Y., LORIN P.A.
Le prédimensionnement des structures par assimilation du matériau
3 un solide rigide plastique
Annales de 1'ITBTP, Supplément au n°316, avril 1974

[7] LESCOUARC'H Y., SCHOULER B.
Recherche automatique d'un systéme complet de mécanismes indépendants
CTICM, Construction Métallique, n°3, 1973

[8] BouIiLLOT cC.
Dimensionnement optimal en plasticité des structures
Rapport interne du CTICM, juin 1974

RESUME

L'article expose briévement 1'état des conditions & satisfaire dans le
cadre d'une philosophie réglementaire aux états limites. Il est actuelle-
ment possible de tenir compte des conditions d'interaction effort normal-
moment fléchissant et des conditions de flambement dans l'optimisation des
structures a barres. Deux exemples montrent qu'il est important de prendre
en considération ces critéres si l'on veut aboutir & un prédimensionnement
valable.

ZUSAMMENFASSUNG

Der Artikel weist kurz auf die Bedingungen hin, die im Rahmen einer
vertretbaren Philosophie der Grenzzustdnde erfillt sein missen. Es ist
heutzutage mdglich, in der Optimierung von Stabtragwerken der gegenseitigen
Wirkung zwischen Normalkraft und Biegungsmoment und dem Knicken Rechnung zu
tragen. Zwei Beispiele zeigen, dass es wichtig ist, solche Kriterien in
Betracht zu ziehen, wenn eine glnstige Vorbemessung erreicht werden soll.

SUMMARY

The paper states briefly the conditions to be satisfied within the frame-
work of an ultimate state design philosophy. It is presently possible to
improve the coptimization of structures by taking into account interaction
between normal force and bending moment and buckling conditions. Two examples
show that it is important to consider such criteria, if we want to achieve
a proper members selection.
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1. Introduction Several classes of general solutions to the problem of mini-
mum weight plastic design of multi-story multi-span plane frames subjected to a
class of one set of practical design loads have been derived by the senior author
[1] by applying Foulkes' theory [2] and by extending it to a more general theory
[3] which incorporates the axial force-bending moment interaction yield condi-
tions. The present authors have further extended the result of [1] so as to in-
corporate the reaction constraints in [4]. These analytical general solutions
are of theoretical and practical interests. Firstly, they serve to clarify even
partially the general features of the minimum weight designs. Secondly, once an
analytical method is developed for simpler problems based upon the moment yield
condition [1], their general solutions would provide a good lead to the general
solutions to more complex problems based upon interaction yield conditions [3].
Thirdly, they will provide good initial feasible solutions for neighborhood
problems.

In this paper, a kinematical restricted maximization procedure is developed
by combining the primal-dual method of LP [5] with a semi-inverse approach simi-
lar to the idea of [1] and then applied to the problem of minimum weight plastic
design of multi-story multi-span plane frames subjected to five sets of design
loads.

2. Formulation of the Design Problem Fig.l shows a multi-story multi-span

plane frame to be designed by Foulkes' theory [2] and the five sets of design
i i 3 3 4 - — .
| : ; H 1 1. Wind Loads
] -
— — =t P i B el = Py 5 Vs
' ' ! : .:
\ | 2. Wind Loads
! L $ 4 4 $ ! = :
:_. I,_. ._..: ._1| { PWJ' i V‘jk)
1 i ! 1
1 | 5
L ) ) + 4 3. Gravity Loads
o V. 1= (05 A7)
e Ly | ] e - :
[ -—]
- ) ¢, e, ' 2 [ 4_1 4. Earthquake
: ) i 5‘7"' pdmt1 57" Bk d | Loads
(L. (- L $ i o - (st i ij]
P} (P..) (- . M-P,.}
Wi Ej Ly Wy . Earthquake
Lateral 77/ WAT 72 nrr 777 S \ Lateral l{.oads
Desi A . torey-shear Design -P.., V.}
L:asgn b = R == Distributions Loadg Ej Jk

Vertical Design Loads

Fig.1

Design Load Distributions, Notation and 5 sets of Design Loads
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loads. The fully-plastic moments of (j,k)-beam and (j,k)-column are denoted by

Bj,k and Cj k, respectively. Without loss of practical generality, it may be

assumed that the story-shear force distributions defined in Fig.l be such that
Qpj 2 ij for gj=1,2, ..., p, and (1)
BEj £ g for  g=p+1, ..., f.

The factor A for the design gravity loads is assumed to be A £ 2.0.
The design problem for five sets of design loads is treated in the following

three or four steps:

(i) Solve the basic problem for the two sets of co-directional lateral design
loads 1 and 4, i.e., for {Pyj;V;j x} and {PEjJVj,k}»

(ii) Construct a statically admissible bending moment field for the two sets of
design loads 2 and 5, i.e., for {'PWUJVj,k} and {‘PEjJV',k}’

(iii)Construct a statically admissible bending moment field for the design grav-
ity loads 3, i.e., for {O;XVij},

(iv) If the step (ii) or (iii) is not possible, modify the collapse mechanism
locally and find the corresponding modified design.
The basic problem (i) may be stated in terms of the static variables defined

in Fig.2(a) as follogs:

S+
Minimize G = g{kzlzkj=13jk +j=1hjk£jcjk}, (g: constant) (2)
. ad 7 L R B T
subject to: kzl(‘%k + Crjk) = hjR1j 5 PIjk * PIj k-17 Crj+1,k * CIjk >
%(b%jk - B+ FVik < By (3a-i)
-Bjk & b%jk < Bji » -Bjk S bgjk < Bjx 5 Bjx 2 0,
~Cix S Lk € Cjk » ~Cjk £ Lo S Cjk s Cik 2 05

where b%jka b?jk! c?jk and eI .. are free variables. In the expression (2), f and
s denote’ the numbers’of stori®s and spans, respectively. In the constraints (3),
the first subscript I denotes the kind of design loads and is to be either E or
W. The second and third subscripts refer to the story number from below and mem-
ber number from left, respectively. For the sake of brevity, the equations of
moment equilibrium about interior and exterior joints have been written in one
and the same form with the convention that all the undefined quantities with
respect to non-existent members shall be disregarded and dropped as null. This
convention will also be used hereafter, unless otherwise stated.
3. Kinematical Restricted Maximization Procedure-Semi-Inverse Primal-dual Method.

The idea of the proposed approach may be summarized by referring to Fig.3
as follows. A design problem formulated as a linear programming problem [6] of
a mixed type [S], may often be such that a certain set of constraints may be an-
ticipated to be inactive due to the nature of the problem. From the original
primal problem

[PO]: Minimize {G(x)|x € S;N Sy}
of a large size, a subproblem

[PS]: Minimize {G(X)|x € S;}
may be derived by tentatively disregarding a certain set of constraints which are
anticipated to be inactive and which define the set Sg. Then the dual problem to

b R
r | 1S Lik A kT e T Ak
e Wi
B. Ikl L - ﬁk
L — gk g Vil
brik [
N, Jk Fig.2
Definitions
] of the
Bending moment variables
diagram under
— o the design loads
cf_jk’.zf l (PIJ',-ij}
collapse mechanism
ik Cix

(a) Statiec variables (b) Kinematic variables
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[PS], i.e.

(DS]: Maximize {D(u)|u € V}
must involve a smaller number of dual variables and a greater number of equality
constraints. Therefore, if the solution u® to [DS] can be found more easily com-
pared to the solution to the dual problem of [PO], then the corresponding solu-
tion x9 to [PS] may also be readily found simply by solving the set of simultane-
ous linear equations derived from the duality theorem of LP. It remains then to
check if x? € §5. The procedure may also be called "a semi-inverse primal-dual
method."
4. A Class of General Solutions to the Problem (i) It is now shown that the
kinematical maximization procedure is fruitful for rectangular frames due to
their regularity in the optimality criteria based collapse mechanism. Let

So: (b%Jk, Tjk?2-Bjks (cI k)z -Cixs Bjrz0s Cjx20, (4a-d)
Then the dual prob{em [DS may e written 1n terms of t%e kinematic variables
defined in Fig. 2(b§ as follows:

Moximize D=8 3 h; (waYhU+QEJYEJ)+ {'%Zijk(¢wyk+¢Ejk)} (5)
J= k=1 g=1
subjeet to Yrj2 Mﬁx-{wljk; ij-l,k}

wIJk;quJ-k;O (k=1,2,..., 8), U)Ij,s-/-l;_(bl'js
1P, e 17200530+ (Vg3 VB  k#1120851) 1 = Bly (6a-d)

{(2Yw,]—q}w3"1,k”q)WJk)+(2YEJ-¢EJ—1,k-wEJk)} = GhJ
The inequalities (6a, b) restrict the directions of plastic hinge rotations and
the equalities (6c, d) are the generalized Foulkes conditions defined by Chan [6]
and Prager [7]. The latter will be referred to as FCP conditions.
The equations (6d) indicate that wW KVE K J (independent of k). The
Eroblem defined by (5) and (6) may then be 51mp11f1ed to a problem in terms of
Wik Ywje ¢va and ¢j only. After some manipulation on the inequalities, YW
may be expressed in terms of ww x and Y. only, and then ¢w ik, in terms of Wpk
and ¢j only. Finally, for those problems in which the load conditions:
[1 £ J £ p-1 for I=E,

thIj+hJ+1QI,J+1 = RZI kVik 5 ptl £ J £ f for I=W
S

(72,b)
holEpt2hp 4 19Ep+1-hp419pt1 2 kzlzkvpk >
and the geometrical conditions:
lp & Ly <81y , Iy £ 2hy (Ly= Mﬁn.{lk}) , (8a,b)
are satisfied, the problem [DS] may be reduced to the following form:
Maximize D*=O(-MMpE + AMyyn), (%)
subject to & = f%x.{prk}’ n = Mﬁn.{prk} (EZn)
E S Shps OtMin.{0,n}, Max.{57,6,E} < p+19+ﬂ= (10a-d)

Fig. 3 ﬂLﬂ 7T i Fig. 4
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02 whpk 2Zme (k=1,2,..., 8), a & whb,3+1 £ b,
a = Max.{-(1g-1,)0/2, ‘Wwps} <0
b = Min {1,6/2, Ly@-Uyps} 2 1,8/2 (10e-h)

where MM, = hp(QEp-QWP) 2 0 and AMp+1 = hp+1(QWP+1‘QEp+1) > 0. The solution to

this reduced problem may readily be derived as summarized in Table 1. In those
problems where (7) and (8) are satisfied, the generalized Foulkes mechanism de-
fined by the FCP conditions can thds be constructed as shown in Fig.4 for Case

(B) as an example.

The solution to the problem [PS] corresponding to this problem[DS] may also
be derived straightforwardly. By assuming that some statical restrictions de-
fined and checked later will be satisfied, the resulting bending moment diagram
may be understood best by conceiving it as the result of superposition of the
constituent elementary moment diagrams (with equal corner values for k#m) shown
in Fig.5. Such a decomposition was first introduced in [1]. Each diagram is
referred to as '"frame moment diagram.' The minimum weight plastic design corre-
sponding to Table 1 may be compactly summarized as Table 2 in terms of "Maximum
Story- Shear Force Design" defined by

gk = Maz. {BY oy ng gk = Maz. {ch, c’?k} (11a,b)
where {BY S Cg’} and {B Cgk} denote the designs only for {Phﬁi ij} and {PEj3

Jk}’ respectlvely, derlved by means of [1] B;k and C% ik are given by

5%, = L1V (km); Cy = (zk V5 kst s (k;ém, m+1)

B}, = (hQI+h o, 54 ZZk ) (1 £ $p-1 for I=E
gk Vgl g [p+1 2J < f for I=W andJ

J=p, I=E for Ny, g 412 and j=p, I=W for MMy, < AMp+1;
7 r
€t = =(hQ .- ) LoV ir 1s£jsp for I=E,
gn 4797y k#n-1,n kigk™ [ ptl £ g £ f for I—W,]
VJfk Y (-1)t Iy, i nem, w1 (12a-e)

=7
The yield inequalities in (3) provide restrictions on the design loads in
accordance with the classification of the solutions listed in Table 2. These

Table 1 Generalized Foulkes Mechanism
Y Yg; Yk Vejk by (kFm) | bpa (kfm) | b Opim
) 1, .1
J=1 S(hi+gl )@
2 2°m 1 1
0 0 L8 0 L 1,08
. 2 2°m 21K
J=2, ..., p-1 E(h,i*Zm)a
(a) 0 Lih +1,)8 0 ] 0 Li14-1_70
z(hp 7tm® 2 “k~m
8) |2t -n_ 00 |Lengen . 20 |dee -n_ )e| In e . *
i=p 2''m “p+l 2 P p+1 2 'm "p+l 2 pt+1
1 1 1 T,
(c) 218 78 21,0 0 21,-1,)8 0
| ine 1 0 10 YT . * 0
2'p 2'm 2'p 2 hP
1 1
() | Fper® 118
1 1
(8) 1.9 e 1®
J=pt1 1 1 1
(C) | §1h, +1p)@ 0 1.8 0 Li1,-1,00 0
D —{h th 00| 11 -n )6
o p"pt1 m'p

J 2 ..s f 2rha+zm)a 0
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restrictions may be summarized as ghown in Table 3, where
-1
MIj = Z(hJQIJ + hj-{—lQI,j‘f'l —kZIZkVJ'k) (13)

It may now be concluded that the present solutions (4~D) are the rigorous solu-
tions to the problems in which all the geometrical and lecading conditions are
satisfied.

5. Design for Five Sets of Design Loads. It may readily be confirmed that a
statically admissible bending moment field for {-Pp;; Vjx} and {-P.; ij} can be
constructed just by inverting the frame moment diagrams as shown in Fig.6.

For design gravity loads, it is convenient to consider again the decomposed
moment diagram with the respectively equal corner values AlyV.z/8, as shown in
Fig.7. The conditions that the bending moment diagram given %y superposing the
elementary diagrams in Fig.7 be statically admissible in a frame designed by the
procedure in Section 4, lead again to further restrictions on the design gravity
loads. An examination of these restrictions indicates that there are a number of
practically useful design solutions within the range defined by them.

6. Concluding Remarks It may now be concluded that, for the class of design
problems in which all the previous and supplementary conditions are satisfied,
the solutions (A~D) are the rigorous minimum weight plastic designs. The present
designs have apparently clarified the nature of minimum weight plastic designs.
While these designs must be modified for practical use so as to satisfy a number
of structural requirements, the present solutions will at least provide a basis
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for initial designs useful in such countries where fairly large lateral design
loads must be assigned for PLASTIC DESIGN so that frames can withstand against
strong winds and strong motion earthquakes. The present solutions may be said
to be a class of the most fundamental designs in the sense that a number of use-
ful designs to practical neighborhood problems can be derived by appropriate but
mostly local modifications. Three cases:

(a) hfpﬂf ;kzllkak s (b) L, 2 2h; and (c) alk 2 21, have been treated in [8].

The present solution and the solutions in [1, 3, 4] indicate that a frame
designed by these solutions would collapse in an extremely deteriorated overcom-
plete mechanism under a designated set of design loads according to the rigid-
plastic analysis. It is therefore necessary to confirm the safety of such a
frame against possible collapse due to inelastic instability according to a more
refined theory of large-deflection elastic-plastic analysis. For this purpose,
static and dynamic large-displacement analyses have been carried out on minimum
weight frames in [9~11] under alternating lateral loads well beyond their static
stability limits and under strong motion earthquake disturbances, respectively.

(1] Ryo Tanabasni & Tsuneyoshi Nakamura,"The Minimum Weight [7] W.Prager,"Foulkes Mechanism in Optimal Plastic Design for

Design of a Class of Tall Multi-story Frames Subjected Alternative Loads," Int.J.Mech.Sci.,Vol.13,971-973,1971.
to Large Lateral Forces,"Transactions of Architectural [8] Tadashi Nagase,"Minimum Weight Plastic Design of Multi-
Inst.Japan,Part 1,N0.118,10-18,0ec.1965 & Part II, No. story Multi-span Plane Frames,"(In Japanese),Thesis for
116,37-44, Jan.1966. Also Proc.15th Japan National Master of Engineering.(Kyoto Univ.) Chap.2,384, 1975,
Congr.Appl.Mech., 72-81,1965. [9] Yoshitsura Yokoo, Tsuneyoshi Nakamura,Shuzo Ishida &
[2] J.Foulkes,"The Minimum Weight Design of Structural Takashi Nakamura,"Cyclic Load-deflection Curves of Multi-
Frames," Proc.Royal Soc.London,Vol.223,482-494, 1954. story strain-hardening Frames Subjected to Dead and Re-
[3] Yoshitsura Yokoo, Tsuneyoshi Nakamura & Michio Keii, peated Alternating Loadings,"Pre.Rep.IABSE Symp.RESIST-
"The Minimum Weight Design of Multi-story Building ANCE AND ULTIMATE DEFORMABILITY OF STRUCTURES ACTED ON BY
Frames based upon the Axial Force-Bending Moment Inter- WELL-DEFINED REPEATED LOADS,81-87, Lisboa, 1973.
action Yield Condition,"Proc.1973 IUTAM Symp.Optimizat- [10]Ryo Tanabashi, Tsuneyoshi Nakamura & Shuzo Ishida,
ion in Structural Design, (Warsaw),Springer-Verlag,1975. "Gravity Effect on the Catastrophic Dynamic Response of
[4] Tsuneyoshi Nakamura & Tadashi Nagase, "The Minimum Strain-hardening Multi-story Frames," Proe.5th World
Weight Design of Multi-story Multi-span Plane Frames Conference Earthquake Engng.,Vol.2, 2140-2151, 1973.
Subject to Reaction Constraints,” To be published in [11]0samu Ohta, Tsuneyoshi Nakamura & Shuzo Ishida,"Collapse
J.Structural Mechanics,Vol.4, No.3, 1976. Behavior and Imperfection Sensitivity of Minimum Weight
[5] See for instance, W.A.Spivey & R.M.Thrall, LINEAR Plastic Frames," Swmmaries of Technical Papers at 1974
OPTIMIZATION, Holt,Rinehart & Winston, 1970. Annual Meeting of Architectural Inst.Japan, 753-754,1974.

[6] H.S.Y.Chan, "On Foulkes Mechanism in Portal Frame De-
sign for Alternative Loads,"J.Appl.Mech.,V01.36, 73-75,
1971.

SUMMARY

A kinematical restricted maximization procedure has been developed by
combining the primal-dual method of linear programming with a semi-inverse
approach. Some general solutions to practical problems of minimum weight
plastic design have been derived analytically by applying the proposed method.

RESUME

Une procédure cinématique de maximisation limitée a été développée par
combinaison de la méthode primale-duale de la programmation linéaire avec
une approche semi-inverse. Quelques solutions générales pour des problémes
pratiques de dimensionnement plastique, conduisant & un poids minimum ont
été obtenues analytiquement par application de la méthode proposée.

ZUSAMMENFASSUNG

Ein begrenztes kinematisches Maximierungsverfahren wird bei einer
Kombination der "primal-dual"-Methode der linearen Programmierung mit einem
"semi-inversen" Verfahren entwickelt. Allgemeine analytische L&sungen
praktischer Probleme der plastischen Bemessung auf Minimalgewicht werden
durch Anwendung der vorgelegten Methode gefunden.
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Optimality Criteria and Dual Methods in Truss Design

Critéres d'optimisation et méthodes duales dans le dimensionnement
de treillis

Optimierungskriterien und Dualmethoden in der Berechnung von Fachwerken

A.B. TEMPLEMAN
Department of Civil Engineering, The University
Liverpool, England

1. INTRODUCTION

In the Introductory Report of the 10th Congress of IABSE Gellatly and Dupree1
describe the optimality criteria approach to the optimum design of large structural
systems. In handling large structural systems the direct solution approach by
numerical mathematical programming methods is often excessively slow and cumbersome
as a result of the large numbers of variables which must be optimized. The
optimality criteria approach is intended to overcome the difficulties posed by
having large numbers of variables. Gellatly and Dupree consider the optimality
approach to the design of structures in which element mass and stiffness are
proportional. Such structures include those composed of axial force bars, membrane
plates and shear panels. For this class of structures Gellatly and Dupree derive
an optimality criterion, their equation (2), for the minimum weight design of a
truss subject to a single displacement constraint. They then use this optimality
criterion, (2), to develop a recursion relationship, (8), which allows any arbitrary
set of member areas to be modified iteratively so as to eventually produce an
optimal set of member sizes. The important time-saving feature of this approach
is that at each iteration the existing set of member sizes is altered by applying
the simple relationship (8) to each area in turn. There is no complicated numerical
search involved.

Gellatly and Dupree then continue to describe a large computer program,
OPTIM II, in which this optimality criterion and redesign formula is used to design
structures with multiple displacement constraints (stiffness requirements) and also
individual member size comstraints. They point out that neither the optimality
criterion itself nor the redesign formula is valid for anything other than a single
displacement constraint but, despite this lack of rigour, OPTIM II still obtains
remarkably good numerical results very quickly. This is not disputed here; OPTIM II
is an efficient program, but its lack of rigour is perplexing and it makes it
difficult to interpret and identify those occasional cases in which OPTIM II
performs poorly.

The purpose of this paper is to examine a new dual formulation of optimum
design problems for this class of structures. In particular the problem of how
best to handle multiple constraints is examined and an interpretation of the dual
problem is presented which has considerable relevance in the development of improved
optimum design algorithms for large structural systems.

2, THE OPTIMUM DESIGN PROBLEM

For simplicity of notation a truss structure composed onlyof axial force bars is
considered, being typical of the general class of structures with member stiffness
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proportional to member mass, The minimum weight (minimum volume) design problem
can be posed as that of finding the set of member areas Ai’ i=1, ..., N, which

Minimize W = Li A. L)

=] 1

He M 2

subject to M independent nodal displacement constraints (Gellatly and Dupree
consider only a single generalised stiffness constraint),

N
FUL 1
g =% (_.__Eg A—Sl m=1l, ..., M (2)
1

1=1 mi i

A,
= _l 1 =
BM+i - R <1 1 1, ..., N (3)

In constraints (2) F and U are the member actual forces and virtual forces
associated with unit displacement in the direction of the nodal constraint. &gy is
the maximum permitted displacement of a node in constraint my m =1, ..., M. E is
the elastic modulus, and each of constraints (2) is derived from specific applied
loads and virtual force systems, In constraints (3) A; is the minimum permissible
size of member i, derived either from maximum member stress limits or from
fabricational considerations,

In the above formulation it is assumed that F and U are constants, hence A;
is also constant. This assumption is wvalid for statically determinate trusses.
It is strictly invalid for indeterminate trusses, however, F, U and hence A; do
not usually alter appreciably as members sizes alter and it is common to assume
them constant, obtain an altered set of member sizes in some way, update the values
of F, U and Aj, solve again and continue in this iterative fashion until the
process converges to an optimum solution, This iterative solution technique is
used by both mathematical programming and optimality criterion devotees, the
essential difference between them being only the way in which the altered set of
member sizes is obtained. It is assumed here that this iterative method for
indeterminate structures is used and so in the above formulation F, U, L, E, § and
A are all known constants. Our problem is how best to find the optimal set of
member sizes.

Recently the present author? has shown that there is a dual formulation of
the problem expressed in relationships (1), (2) and (3). Derivation of the dual
problem is accomplished by exploiting the fact that the Lagrangian function of
the above problem has a saddle point as a stationarity condition., A full proof of
the dual formulation is given in reference? and here it is merely stated as

3 Mo opu A :
Maximise V = ? Li {z (EE . Am + T AM+i}
i=1 m=1 ml 1
M+N (4)
subject to £ x =1
m
m=1
Am >0 m=1, ..., M+ N

The solution of (4) is equivalent exactly to the solution of the primal problem,
(1), (2) and (3). At the solution point (minimum of W, maximum of V) the following
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transformation relationships hold, with superscript asterisk denoting optimal
values,

(Minimum) Wk = yx2 (Maximum)
M A, 4
FU 1 .
* = *® —— * — *x =
Ai = vk {¢ (Eé) . )\m+ T AM+.1} i=1, «v.y N (5)
=1 mi 1

The dual variables in dual problem (4) are the Ap, m =1, ..., M+ N and it
will be noted that there is a dual variable Ay for each of the primal constraints
(2) and (3). The dual variables are therefore similar to the unknown Lagrange
multipliers of the primal problem. All XA's must be non-negative; any value of
A = 0 denotes that the primal constraint to which it corresponds is inactive at the
optimum, The single constraint in dual problem (4) requires that all A's sum to
unity.

3. PROBLEMS WITH ONLY DISPLACEMENT CONSTRAINTS

Gellatly and Dupree! consider only a single displacement constraint and their
equations (2) and (8) represent an optimality criterion and a resizing formula for
this problem. Their equation (2) contains a single unknown Lagrange multiplier
corresponding to the single constraint. This unknown multiplier may be eliminated
by substitution into the constraint which must perforce be active; consequently
their resizing formula (8) contains no unknown multipliers. A major difficulty is
encountered if this method is extended to multiple displacement constraints. In
this case there will be M unknown Lagrange multipliers, one for each constraint,
and since it is not known a priori which of the multiple displacement constraints
are active and which are slack at the optimum it is not possible to eliminate the
unknown multipliers by substitution., Consequently when a member resizing formula
for multiple constraints is developed corresponding to Gellatly and Dupree's
equation (8) it contains all the M unknown Lagrange multipliers. In order to use
the resizing formula it is necessary to supply values to all the unknown Lagrange
multipliers but there is no way of knowing what these values should be. This
constitutes the major difficulty of using optimality criteria methods for
multiple constraints. In order to get round this difficulty OPTIM II uses the
envelope method which resizes each member according to the single conmstraint
resize formula for each displacement constraint and then selects the largest
resulting size., This process seems intuitively logical but has no theoretical
rigour.

If the dual approach is examined for multiple displacement constraints only,
the dual problem becomes

N M - 3 1
Maximise V=% L. {Z (== A}
; i ES” . 'm
1=1 m=1 ml ? (6)
M
subject to L A =1
m
m=1
A >’O m=1, lnl’M J
m

At the optimum, we have
(Minimum) Wk = V&2 (Maximum)

FU ;

% = V% et * = <

& v {Z=1 (E6 y An# 1=1, ee, N
ml
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Problem (6) consists of maximizing V, a non-linear function of the M dual variables
Ap subject only to a single linear equality constraint and non-negativity of the
dual variables. This is easily done by classical optimization methods. Once A%,
m=1, ..., M are known, relationships (7) give the minimum weight and optimal
member sizes directly.

Several features of the dual problem can be noted, Firstly the number of
dual variables i1s M, the number of displacement constraints. This means that the
dimensionality of the original problem, which had N member size variables, is
greatly reduced. Thus a large structure with perhaps 1000 members to be sized and
5 displacement constraints has a dual problem which consists of maximizing a non-
linear function V of only 5 variables, In most large structural problems there
are usually many more members than displacement constraints so the reduction in
dimensionality afforded by the dual problem is of considerable advantage. Secondly,
the dual problem itself is of a convenient form for rapid solution. The single
linear equality constraint may be eliminated by substitution, converting the problem
to one of unconstrained form with non-negativity requirements., First and second
derivatives can be easily evaluated which makes solution comparatively simple.
Thirdly, the result gives immediate information about which constraints in the
primal problem are active and which are slack since a value of Ap = O corresponds
to a slack constraint. Finally the dual approach has the theoretical rigour
which is lacking in the emvelope method.

A physical interpretation of the primal/dual problems in terms of structural
behaviour is illuminating. Consider a structure constrained by M independent
displacement constraints, i.e.

Minimize W
(8)
Subject to gy € 1 m=1l, ..., M

If each of the M constraints in (8) is multiplied by a multiplier Ap, m =1, ..., M,
such that the sum of the Ap's is unity, and all the constraints are then summed
into a single surrogate constraint we have

Minimize W
M (9
Subject to Z A g
m
m=1

A
'_l

m

Examination of the dual problems corresponding to (8) and (9) shows them to be
identical providing the Ay 's in (9) solve problem (6) optimally. This demonstrates
that in responding to multiple constraints the structure apportions its member

sizes as if all the independent constraints were surrogated into a single generalised
stiffness requirement. The structure therefore responds to a single fictitious
surrogated stiffness requirement and, since the A must solve (6), the surrogate
stiffness requirement is such that the independen? sitffness requirements are
combined together in such a way as to maximize their constraining potential,

This physical interpretation may partly help to explain the good results often
obtained by the envelope method as used in OPTIM II., The envelope method resizes a
a member by applying a single resize formula to each constraint in turn and selects
the highest resulting member size. These highest sizes form a resized set. By
this means the constraining potential of all the constraints is maximized. This is
in the same spirit as the more rigorous dual approach outlined above but is
mathematically different and is not rigorous. However, it may be conjectured that
the good results obtained by OPTIM II correspond to problems in which the enveloping
and surrogation approaches are similar and that the occasional poor performance of
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OPTIM II corresponds to problems in which the member sizes obtained by enveloping
are very different from those which satisfy the more correct surrogated comstraint
in (9).

4. PROBLEMS WITH DISPLACEMENT AND MEMBER SIZE CONSTRAINTS

As Gellatly and Dupree demonstrate, a displacement constraint governs the
distribution of material throughout the structure. A member stress or size
constraint only controls the material in an individual member. Difficulties arise
when both types of constraints are present together since the distribution of
material required to optimally satisfy a displacement constraint may violate the
amount of material required to satisfy one or more of the individual member
constraints. There is no optimality criterion of practical use for combined types
of constraints. Somewhat ad hoc methods are usually used such as active/passive
sets of variables as in OPTIM II to handle both types of constraints.

The primal problem concerning us here is that given in (1), (2) and (3) and
the corresponding dual problem is given in (4) and (5). On examining the dual
problem it at first appears that its dimensionality, (M + N), is greater than that
of the primal problem, N. This would negate the advantage which the dual approach
has of reducing problem dimensionality. Fortunately, very recent research has
shown that the N dual variables corresponding to member size constraints may be
effectively eliminated by an iterative process. A brief summary of this now
follows.

Consider dual problem (4) for a single displacement constraint (with dual
variable 1p) and a full set of N member size constraints. If we write

W=, A 5, - =3

AE i

Wo=I W, § =1 &,
j=1 * is=1

and if § is the maximum permissible nodal displacement, dual problem (4) is

N s }
Maximize V = ¥ ,JW, {— 2 *+ .}
=1 1 8 1
N (10)
Subject to I Ai =1
i=o0
Ai 20 i=0, ..., N

Necessary conditions for a constrained maximum of V with respect to the N member
size dual variables only are that

%%T =0 i=1, .o., N
1

This leads to

Wl )\0 _ ﬁ -
et a2 Foe- L) TR an
1 q 8 W 1
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Substituting (11) into V of (10) gives

v i B2 (12)

If § < & this denotes that member sizes evaluated from the member size constraints
alone will satisfy the displacement constraint and hence Ay will be zero. We are
interested in the case where 6§ > § and the displacement constraint must be active.
In this case V as given in (12) is maximized by as large a value of Ay as is
possible. However, Ap may not increase to a value such as to drive any of the
A;%, i =1, ..., N in (11) below zero. The highest possible value of Ag is
therefore that value which first puts any X;* equal to zero, i.e.

H) (13)

This value of Ay drives one of the A\;* to zero. Let the variable driven to zero be
My * = 0. This is now eliminated as a slack member size constraint.

IISI
|7

Ao = Min <31 - % +
1,..0,N

i= y sy

=

1

A new dual problem may now be formed with Ay eliminated. This replaces
problem (10) and is

N-1 iy -q % F GN 3 W
Maximize V = iil W, 3= X+ M)+ (5 Aol
N-1 T (14)
Subject to I A, =1
i=o
A 20 i=0, ..., N=1 ]

Problem (l4) is treated in a similar way to problem (10). Relationships similar

to (11) are established for the X;*, this time for i =1, ,.., N- 1. An expressior
for V similar to (12) is found and a new value of Ay is determined as (13). If the
new value of Ay is greater than its previous value another of the XA;* is eliminated,
another problem similar to (14) but with(N = 2)va1ues of X{ is set up and the
process is continued in this iterative fashion until the value of Ay reduces. The
previous iteration's results for all the A's are then optimal. Relationships (5)
then give the minimum weight and optimal member sizes.

The iterative procedure described above forms into a very simple algorithm
since the relationships of the types of (11), (12) and (13) are very concise in
nature. Using this iterative dual approach the interactions of member size
constraints and a displacement constraint may be optimized very rapidly, the
dimensionality of the method being essentially unity. An advantage of the method
is that it starts essentially with a fully-stressed design (all member size dual
variables active and Aq = 0). The activity level of the displacement constraint,
Ao, is then progressively increased, knocking out member size constraints as they
become slack. In many practical design situations a first requirement is to
examine the fully-stressed design and check it against possible displacement
limitations. If the displacements are excessive the fully-stressed design needs
to be altered in some way so as to optimally satisfy displacement limitatioms.
This is precisely how the dual approach outlined above tackles the problem and it
is therefore well suited to implementation in practical optimum design programs.

The treatment above is limited to the combination of a single displacement
constraint and member size constraints. If multiple displacement constraints are
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present the iteration algorithm is more complex and has not yet been fully investi-
gated. However, it has already been shown in this paper that multiple displacement
constraints behave as a single surrogated constraint. This suggests a possible
solution algorithm in which the multiple constraints are first solved separately
and the single surrogate constraint formed and then the above algorithm used to
handle the interacfions of the surrogate constraint and the member size constraints.
This remains to be further investigated.

5. CONCLUSIONS

This paper has examined a dual approach to the optimum design of structures
whose elements have stiffness proportional to mass. It has shown that a study of
duality gives insight and rationale for some of the successful, non-rigorous
approaches to truss design such as the optimality criterion approach used in
OPTIM II. It would have been more satisfying to give numerical results confirming
the speed and efficiency of the-dual algorithms suggested in this paper but space
limitations preclude this. Nevertheless it can be stated that the dual approach
does provide a means of very rapidly solving optimum design problems for large
structural systems. The reduction in dimensionality and the ease with which the
dual problems may be manipulated and solved makes the approach a very serious
competitor to the much-used, less rigorous optimality criteria methods. From a
practical structural engineering point of view it should be stressed that although
duality theory and the associated algebra may seem unnecessarily complicated and
abstract, the algorithms which may be developed from it are rigorous and are very
simple to operate, giving practically useful results very rapidly. Furthermore the
dual-based algorithms often tend to be similar to those suggested by engineering
intuition. This is very satisfying and a firmer theoretical basis for intuitive
design approaches adds considerable strength to them.

As the present author has commented in the Introductory report to the 1Oth
IABSE Congress?® a major advantage of a study of dual methods is that it sheds new
light on well-known problems and enables the nature of the problems to be understood
more deeply. Sometimes, as in the case here, this extra insight allows new solution
algorithms to be developed. The ultimate usefulness of these algorithms remains to
be fully investigated in a continuing program of research,
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SUMMARY

The paper examines a new dual approach to the cptimum design of trusses
with multiple displacement and member size constraints. Comparison is made
with optimality criteria approaches to the same problem. Reductions in
problem dimensionality and simple solution algorithms arise from casting
the problem into dual space, which also gives insight into some ad hoc,
intuitive artifices often employed in the solution of these problems.
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RESUME

Une nouvelle méthode duale est présentée pour le dimensionnement
optimal de treillis, soumis & des contraintes de déplacements multiples
et de types de profils. Une comparaison est faite avec la méthode des
critéres d'optimisation. Des réductions de la dimension des problémes
ainsi que des algorithmes simples pour leur résolution sont obtenus en
situant le probléme dans l'espace dual, ce qui permet également d'analyser
guelques artifices de calcul souvent utilisés dans la solution de tels
problémes.

ZUSAMMENFASSUNG

Der Bericht behandelt eine neue Dualmethode fiir die Optimierung von
Fachwerken mit mehrfachen Formdnderungs- und Formgebungsrestriktionen.
Die Ergebnisse werden mit der Methode der Optimalit&tskriterien verglichen.
Eine Abminderung der Komplexitdt und einfache L&sungsalgorithmen resultie-
ren aus der Problemprojektion in einem Dualraum, was auch Einblick in
gewisse intuitive Verfahren gewdhrt, die bei der L&sung solcher Probleme
oft angewendet werden.
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Rdle de la méthode des forces et des déformations dans I'optimisation
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1. Problemstellung

Im Konstruktiven Ingenieurbau stehen heute eine Reihe leistungsfihiger
Berechnungsverfahren zur Verfligung. Das Dimensionieren von Tragwerken erfolgt
dagegen durch den Ingenieur, wobei Konnen und Erfahrung eine wesentliche Rolle
spielen. Kann man eine Gewichts— oder Kostenfunktion definieren, so 148t sich
dieses Problem als Optimierungsaufgabe formulieren, die als Folge der Bemes-
sungskriterien i.a. nichtlinear und nichtkonvex ist. Aus der Vielzahl der L&-
sungsverfahren zur Bestimmung eines lokalen Minimums [1/ wird hier das Verfah-
ren der Optimalitidtskriterien betrachtet, das eine problemorientierte Variante
der Lagrange 'schen Multiplikatorenmethode darstellt.

Dem Optimierungsmodell liegt ein durch n Elemente diskretisiertes Trag-
werk zugrunde. Es wird vorausgesetzt, daB fiir jedes Element i die Element-
flexibilitdt £i+) umgekehrt proportional von einer Querschnittsvariablen (Ent-
wurfsvariable) o; > 0 abhingt und daB sich das Gewicht des Tragwerkes als li-
neare Funktion (Zielfunktion) dieser Entwurfsvariablen darstellen 1l3Bt:

n n
W o= 2 w, = 2 Tii a, (n
i=1 i=]

Als Nebenbedingungen werden Spannungs- und Verformungsrestriktionen beriicksich-
tigt, wobeil oio und 6;9 die zuldssige Spannung des Elementes i bzw. die zu-
ldssige Verformung in Richtung des Freiheitsgrades j infolge Lastfall 1 be-
deutet. Zusitzlich kann eine Einschrankung der Variablen durch untere und obere
Schranken u‘].f bzw. ag vorgegeben werden. Damit ergibt sich folgende Optimie-
rungsaufgabe :

n
linimiere W o= 3 w. a.
i=]

unter Beriicksichtigung der Restriktionen

+ ¥ . 3 .
) Matrizen und Spaltenvektoren werden durch Unterstreichen gekennzeichnet, ein
hochgestelltes T bedeutet die Transponierte.
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o - 021 < o (i=1,...,n ; 1=1,...,p) , (2)
65 - 6‘;1 < 0 (3=1,...50 5 1=l,...,p) (3
a; - a; < O (i=1,...,0) (4)
a; - a7 g 0 £ o R (5)

Es bedeutet q die Anzahl der Freiheitsgrade und p die Anzahl der Lastfidlle.
Die Spannungen o und die Verformungen ¢é sind nichtlineare Funktionen der
Entwurfsvarieblen o« , so daB die Restriktionen einen nichtkonvexen L&sungsbe-
reich beschreiben. Da die Problematik bei einem Lastfall bzw. mehreren Last-
fillen dieselbe ist, wird im folgenden aus Griinden der Ubersichtlichkeit auf den
Belastungsindex 1 verzichtet.

2. _Notwendige und hinreichende Optimalit#tsbedingungen

Die Herleitung notwendiger Extremalbedingungen der nichtlinearen Optimier-
rungsaufgabe erfolgt mit der verallgemeinerten Lagrange 'schen Multiplikatoren-
methode [2/. Da s#mtliche Variablen a nichtnegativ definiert und alle Restrik-
tionen als Ungleichungen gegeben sind, sind diese Bedingungen hinreichend fiir
ein lokales Minimum der Zielfunktion /3/. Bezeichnet man mit G; <0 die allge-
meine Form der Restriktionen (2) und (3), so lautet die Lagrange'sche Funktion:

n
) + X g (ag -a)) . (6)

m n 5
J = W+ 3 A, G + 2 wu (a. - a.
i Vi i i

j=1 3 J ia *

Die Lagrange'schen Parameter Aj' vy und n; sind festgelegt durch:

\, 20, fur cj 2 0 (G=1,...,0) (7
. = u .

My > o , fiir a, > ai (i=1,...,n) (8)
. = o :

ns >0 , fiir a, < @ (i=1,...,n) (9)

Als notwendige und hinreichende Bedingung fiir einen stationiren Wert von W
missen die partiellen Ableitungen von J nach den Variablen o verschwinden.

Mit a(...)/aak = ("'),k erhilt man:

m
Wk + 2D ij T oMt = 0 (k=1,...,0) (10)
j=] b ]

Mit (8) und (9) folgt:

o
i 2 W’k %y a
- . 4 - . u [o]
3'%1 A G5y L , fur € o < a < o) ()
u
B b

Flir alle "passiven " Restriktionen G: <O 1ist nach (7) der Lagrange'sche Pa-
rameter A: gleich Null, so daB in dgr Optimalititsbedingung (11) nur die "ak-
tiven" Restriktionen Gj = 0 berlicksichtigt zu werden brauchen.
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3. Rekursionsformeln zur Bestimmung der optimalen Konstruktion

3.1 Aktive Verformungsrestriktionen

Einzelne VerformungsgrdBen kdnnen mit Hilfe des Prinzips der virtuellen
Krifte berechnet werden. Es gilt:

n n T
= = ] s ]
By = iZ=l €ij i{l S; £ 3 (G=1,...59") (12)

wobei e.. die virtuelle Verzerrungsenergie, S. die SchnittgrdBen infolge der
Belastuﬁé, §i die SchnittgrdoBen infolge der Yirtuellen Einheitsbelastung in
Richtung der gesuchten VerformungsgroBe des Elementes i und q' die Anzahl
der aktiven Verformungsrestriktionen darstellt. Als partielle Ableitung nach
den Variablen a (k=1,...,n) erhdlt man mit ekj = Ekj/uk :

k
- 2
S T TG %
Bezeichnet k € Nl eine "aktive" Variable a,  mit dem Wert aE <a < uz und
k € N2 eine "passive'" Variable mit a_ = a2 “oder a, = a® , so muR fiir alle
aktiven Variablen k € NI das Gleichheitszeichen in der Optimalitidtsbedingung

(11) erfiillt sein. Mit W K = Wk und (13) folgt:
1 ]

q _ 5 _
A, . = ;

j%l 5 % / @y v, (¥k € N1) (14)

Diese Gleichung stellt i.a. ein hochgradig nichtlineares Gleichungssystem mit

den Unbekannten A. (j=l,...,q9') und a (k=1,...,n) dar, das nur iterativ

geldst werden kann: Ist nur eine einzige Verformungsrestriktion zu beriicksich-

tigen, d.h.

(13)

o —_—

6. = 3 e ./la + 3 e. 5 (15)
] kent K3k e M

so liRt sich der Lagrange'sche Parameter A. eliminieren. Die Gleichungen (14)

aufgel8st nach uk (k € N1) wund in (15) eiAgesetzt, liefert:

o= (L0 X e W, )P mit & = %= 5 e .. (16)
J 6 KENI ] kenz

Bei mehreren aktiven Verformungsrestriktionen ist eine Bestimmung von A.
(j=1,...,9"') aus (14) nur dann moéglich, wenn e . / a‘° als invariant be-
trachtet werden. In diesem Fall stellt (l4) ein * {iberbestimmtes lineares Glei-
chungssystem in A dar:

6 A= E (17
mit G =|e./w uz] (18)

- kj k "k

und E = {I,...,l} fiir alle k € NI und j=1,...,q'. Mit Hilfe der ersten
GauB'schen Transformation kann eine Lésung fiir A gefunden werden. Es gilt:

=[] e (19)
In Bezug auf die urspriingliche Gleichung (17) stellt ) die beste Losung im
Sinne der kleinsten Quadrate dar. Mit den bekannten A-Werten und der Annahme
invarianter GrdBen @, : (bei stat. best. Systemen) entkoppelt sich das Glei-
chungssystem (14), so daB die aktiven Variablen o (k € N1) bestimmt werden
kdnnen:

]
o = (X A 5. /w2 (20)
k jai 3 k) k
Bei stat. unbest. Systemen sind die GrdBen e,. komplizierte Funktionen von

a . Da sich eine Anderung von o in erster JLinie auf die SchnittgrdBen des

k
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Elementes k auswirkt, kann (20) iterativ angewendet werden, d.h.

q|
v+1l v —v - 1/2
%k ¢ j‘§, Ao ) : 21
wobei v den Iterationsschritt kennzeichnet und A" j=|,...,q¢) fiir q'=1
aus (16) bzw. fiir q' 2 2 aus (19) mit den Werten 1&g, und «a berechnet
wird. Da die passiven Variablen « (k € N2) 1i.a. J nicht im voraus be-

kannt sind, muB ihre Bestimmung ebenfalls iterativ erfolgen. Dabei kdnnen die

Schranken a% und a° durch die Bedingungsgleichungen
o v+1
>
a o 2 o
v+l v+l . u v+l o
a = @ fiir ak < ak < ak (22)

u v+l u

4 kS %

beriicksichtigt werden. Alle Variablen, fiir die a¥ bzw. o maBgebend ist,

werden in der nidchsten Iteration zu den passiven gezihlt.

3.2 Aktive Spannungsrestriktionen

Sind ausschlieBlich Spannungsbeschrinkungen vorgeschrieben, so kann die
Bestimmung der Variablen a nach der bekannten "stress-ratio'- Methode [4] er-
folgen, in der jedes Element entsprechend seiner spannungsmiBigen Auslastung
dimensioniert wird. Es gilt:

v+l v v o]

a a 'ok / O i (23)
wobei o die mafRgebende Spannung des Elementes k im v~ten Iterationsschritt
bedeutet. Als Ergebnis erhilt man eine sogenannte '"voll-beanspruchte" Konstruk-
tion, die in jedem Element die zulissige Spannung ausnutzt, wenn nicht der durch

GE festgelegte minimale Querschnitt maRgebend ist.

Bei aktiven Verformungsrestriktionen k&nnen Spannungsbeschrinkungen beriick-
sichtigt werden, wenn man in jeder Iteration die nach (23) berechneten o-Werte
in der Bestimmungsgleichung (22) als zusitzliche untere Schranken auffaBt.

3.3 Konvergenz des Verfahrens

Die Anwendung der Gleichungen (16), (19), (21) bis (23) verlangt nach je-
der Iteration eine vollstindige Berechnung der Konstruktion. Um jeweils eine zu-
ldissige Losung zu erhalten, werden sidmtliche Variablen @’ mit einem globalen
Skalierungsfaktor multipliziert, so daB keine der Restriktionen (2) und (3) ver-
letzt und mindestens eine identisch erfiillt wird. Danach erfolgt die Bestimmung
der aktiven Verformungsrestriktionen, wobei alle Verformungen, die im Verlauf
des Iterationsprozesses einmal ihren zulidssigen Wert erreicht haben, weiterhin
zu den aktiven gezdhlt werden. Ergibt sich jedoch nach (19) ein negativer A-Wert
so mufl die entsprechende Restriktion aufgrund der Nichtnegativititsbedingung (7)
wieder eliminiert werden. Erst wenn alle aktiven Verformungen bekannt sind, ist
mit einer schnellen Konvergenz zu rechnen. Das Konvergenzverhalten kann durch
eine Begrenzung der Schrittweite in aufeinanderfolgenden Iterationen beeinfluft
werden. Mit

:+l - u: (k=1,...,n)
ist die optimale Konstruktion gefunden, fiir die das Gewicht ein (lokales) Mini-
mum annimmt,
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4, Die Bedeutuggrdes Kraft- und WeggriBenverfahrens

Bisher wurde nur das Iterationsverfahren zur Lésung der Optimierungsauf-
gabe betrachtet, Uber die Lagrange'schen Parameter A bei mehreren aktiven Re-
striktionen wurde im Sinne der kleinsten Quadrate verfiigt. Im Vergleich mit an-
deren Verfahren [4] ergibt sich hierdurch ein stabiles Konvergenzverhalten bei
nur wenigen Iterationsschritten. Die wiederholte Berechnung des Tragwerkes nach
der Finiten-Elementmethode erfordert bei den vorliegenden Problemen einen erheb-
lichen Rechenaufwand und verdient damit besondere Beachtung. Ohne auf die Mog-
lichkeiten der Ableitung von Elementmatrizen [5/ einzugehen, werden hier nur
die L&sungsverfahren betrachtet. Diese Verfahren folgen direkt aus den klassi-
schen Minimalprinzipien elastischer Tragwerke.

Das Prinzip vom Minimum der Potentiellen Energie

Min{-;—éTEQ-BTQ} ; (24)
mit der positiv definiten Gesamtsteifigkeitsmatrix K, den Lasten P und
den Verschiebungen &6 , liefert als notwendige und hinreichende Bedingung die
Grundgleichung der Verschiebungemethode:

K6 = P . (25)

Das Prinzip vom Minimum der Komplementdrenergie

Min{-;-gTig §§=g} , (26)
mit der Hyperdiagonalmatrix f der Elementflexibilitdtsmatrizen, den verallge-
meinerten Spannungen S wund der Gleichgewichtsmatrix N ergibt die Grundglei-

chungen der Kraftmethode:

NS = P (Gleichgewicht) ,
T (27)
B £S = 0 (Vertridglichkeit) .
-—x—-—
Ei ist der Kern der Gleichgewichtsmatrix (E_Ei = 0) .

dert im allgemeinen die Verschiebungsmethode: Der einfache Aufbau, die positive
Definitheit und Bandstruktur der q x q Matrix K erleichtert die Berechnung.
Bei einer mehrmaligen Berechnung des Tragwerkes mit variabler Flexibilitdt f
zeigt jedoch die Kraftmethode gewisse Vorteile: Die q Gleichgewichtsgleichungen
(27) miissen nur einmalig geldst werden, die Vertrdglichkeitsbedingungen lassen
sich einfacher darstellen und mit geringerem Aufwand fiir jede Wiederbemessung
16sen. Als Losung erhidlt man die n SchnittgrdBen S. zur Iteration nach (12).
Mit dem in /6/ niher beschriebenen Ldsungsverfahren kann zudem die Bandstruktur
der Gleichgewichtsgleichungen gewahrt werden. Ein genauer Vergleich des numeri-
schen Aufwandes beider Methoden fiihrte zu dem Ergebnis, daB mit steigender Zahl
der Wiederbemessungen der Aufwand A, der Kraftmethode abnimmt. Das Verhdltnis
des Aufwandes der Verschiebungsmethode zur Kraftmethode nimmt jedoch bei
wachsendem n/q ab. In den fiir die Praxis wichtigen Stabtragwerken ist jedoch
i.a. n/q < 2 . Fiir ein System mit 1000 Freiheitsgraden der Verschiebung und ei-
nem speziellen Elementtyp (s) ergibt sich die in Bild | dargestellte Abhingig-
keit [6/.

Umfangreiche numerische Untersuchungen /[7/ an den aus der Literatur bekann-
ten optimalen Tragwerken bestitigen in allen Fillen die Uberlegenheit der Kraft-
methode.
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20 . )
Anzohi d Freiheitsgrade ©  n=1000
Elemenityp: s=20
W Anzohl der Iterationen © V
O
L5 <
N \
Q
<
2
e 10 - - e
3 N v =8
D
g 2
05 e
it Kraftmethode
i oufwendiger

n/q

Bild 1: Vergleich der Kraft— und
Verschiebungsme thode

Lastfall | Knoten (Pz=-1000 1bs)

1

1-4,7-13,19-28,37
1-37

1,4-7,13-19,28-37

SN —

Tabelle 1: Belastungsangaben

240 IN.

Bild 2: Fachwerkkuppel
5. Numerische Ergebnisse

Die Zuverlissigkeit des Optimierungsverfahrens soll hier an einem ausge-
wihlten Beispiel gezeigt werden. Die in Bild 2 dargestellte Fachwerkkuppel, die
in den Knoten 38 - 61 unverschieblich gelagert ist, wird durch vier Lastfille
beansprucht. Die genauen Belastungsangaben sind in Tabelle | zusammengestellt.
Als Material wird Aluminium mit einem Elastizititsmodul von E = 107 psi und dem
spezifischen Gewicht von p = 0.1 1lbs/in3 verwendet. Fiir alle Stibe betridgt der
minimale Querschnitt 0.1 in? , wobei die zulissige Spannung von + 25000 psi
nicht {iberschritten werden darf. Die Verschiebungen simtlicher Freiheitsgrade in
z-Richtung werden auf # 0.l in. begrenzt. Alle Entwurfsbedingungen sind mit denen
aus /8/ identisch.

Ausgehend von einer zulissigen Konstruktion mit querschnittsgleichen Stiben
(Wl=358.85 1bs) wird die optimale Kuppel nach 15 Iterationen und einem Gewicht
von 161.63 1bs gefunden, das um 10.77

il geringer ist als in /8/ . Wihrend zu
Beginn der Optimierung nur die Ver-
T \ w2 35005 schiebung von Knoten 1 (LF 1) den
20 1= maximal erlaubten Wert von -0.1 in.
2M-——-§z erreicht, sind von der 13. Iteration
590 O an 4] Verformungsrestriktionen zu
20 beriicksichtigen, die jeweils durch
o0 @ | einen der 4 Lastfille aktiviert wur-
@ den. Spannungen waren in keiner Pha-
we \\ se des Iterationsprozesses maRgebend.
180 “~£25 Bild 3 zeigt das stabile Konvergenz-—
170 '“““i;LJ————C) verhalten, wobei insgesamt eine Ge-
B \\h~"_“'ﬁk: wichtsreduktion von 557 erreicht wird.
= ! ! l | Die Querschnittsflichen der optimalen
r2 03 ¢ s s 7 8 9 wom 22 2k 5V Kyppel, die symmetrisch zu den beiden

Bild 3: Iterationsverlauf Achsen 38-50 und 44-56 ausgebildet
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ist, sind in Tabelle 2 zusammengestellt. Bei n/q=1.19 konnte die Kraftmethode
duBerst wirtschaftlich eingesetzt werden. Die Rechenzeit (TR 440) betrug nur
182 sec.

Stab | Flache Stab | Flache Stab | Fliche Stab | Fldche
4 11.0176 36 0.4831 | 62 | 0.3177 111 0.1003
511.1732 371 0.3051 63 | 0.6572 112 ] 0.2403
9 10.9720 38| 0.3514 80 | 0.3062 113} 0.3088
10 | 0.8322 56 | 0.3207 81 10.2128 114 | 0.1429

21| 0.2990 571 0.1904 82 | 0.1003 115 | 0.5000
22 |1 0.3395 58| 0.3378 83 | 0.1003 116 | 0.1003
231 0.5773 59 | 0.3431 84 | 0.3347 117 | 0.4381
24 | 0.4148 60| 0.29 6 109 | 0.1003 118 | 0.3312
25 [ 0.6776 61| 0.5494 110 | 0.4961 119 1 0.1003

Tabelle 2: Optimale Querschnittsfldchen (in?) eines Quadranten
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ZUSAMMENFASSUNG
Es wird eine spezielle Anwendung der Lagrange'schen Multiplikatoren-
methode, die als Verfahren der Optimalitdtskriterien bekannt wurde, dar-

gestellt. Eine lineare Transformation der Lagrange-Parameter fihrte zu
einer schnellen und gleichmdssigen Konvergenz.

SUMMARY

A special application of the Lagrangian-Multiplier-Technique, known as
the optimality-criterion-method, is presented. A simple linear transfor-
mation of the Lagrange parameters leads to fast and uniform convergence.

RESUME

Une application spéciale de la technique des multiplicateurs de Lagrange,
dite méthode des critéres d'optimisation est présentée. Une transformation
linéaire entralne une convergence rapide et uniforme.
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Uber das Leistungsvermégen von Tragwerken am Beispiel von Balken,
Druckbogen und Zugbogen

Capacity Range of Structures, such as Beams, Compression Arches and
Tension Arches

Capacité de résistance de structures telles que poutres, arcs de
compression et arcs de tension

HELMUT BOMHARD
Direktor der Dyckerhoff & Widmann AG
Miinchen, BRD
1. Einfihrung

Balken, Druckbogen und Zugbogen sind die Grundformen aller
Tragwerke zur Bewdltigung von Spannweiten. Die eine Spannweite be-
stimmenden Gréfien und ihr Zusammenwirken, die Bandbreite technisch
méglicher Spannweiten, lassen sich denn auch an diesen Grundformen
am besten studieren. Dies um so mehr als die GesetzmdfBiigkeiten ver-
hdltnismdBig leicht analytisch faBbar sind.

Ziel des Beitrags sind Spannweitenfunktionen fiir alle drei
Grundformen bei allgemeinen Baustoffgesetzen und ggf. Gleichgewicht
am verformten System, wenn notig mit nichtlinearen Geometriebezie-
hungen, auf deterministischer Basis und flur statische Belastung.

Die Spannweitenfunktionen bilden wichtige Grundlagen fir jeden
Entwurf und jede Tragwerkentscheidung und sind Hilfen bei der Opti-
mierung.

2. Die Spannweitenfunktion

Die Spannweite ist Ausdruck des Leistungsvermdgens. Sie ist
bei einem bestimmten Versagenszustand eine Funktion des Systems
(S), der Form (F) und der Baustoffe (M) des Tragwerks sowie der
Fremdlast (L), die getragen werden muB:

1 = f (System, Form, Baustoff, Fremdlast) (1).

"Fremdlast" ist fir das Tragwerk alles, was nicht Teil seiner tra-
genden Form (= aktives Gewicht ga) ist, wie etwa das Gewicht von

Pfetten (= passives Gewicht gp), die quer zu einem Balken gespannt
sind und die gesamte Verkehrslast p.

Die Spannweitenfunktion (1) 14Bt sich unter bestimmten Voraus-

setzungen als Produkt dreier KenngréBen K schreiben:
1l =K + K « K. =1 + K (2a),
S+F1éngs M+Fquer L Gr L

ndmlich dann, wenn 1. das System sich statisch bestimmt verhdlt,
2. das Gleichgewicht am unverformten System angeschrieben werden
kann und 3. Fremdlast g_ + p und aktives Gewicht 8, affin sind. Es
beschreiben: P

KS+F das System und die Verteilung der Tragwerkmasse
langs in seiner Langsrichtung,

KM+F die Baustoffe und die Verteilung der Tragwerk-
quer masse in Systemquerrichtung,

K die Fremdlast.

L
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So aufgeschlisselt sind die sehr unterschiedlichen Einflilisse, die
1 bestimmen, am leichtesten durchschaubar.

Bei Lastaffinitdt allein ist: 1 = KS+F+M' KL = lGr' KL (2b).

Die Einfliisse aus System, Form und Baustoff lassen sich dann nicht
mehr trennen.

I _ 1
In (2) ist: KL_1+(8P+P)/€a’ 0< K £1 (3).

Die Grenzspannweite lGr ist demnach die Spannweite bei verschwin-
dender Fremdlast (KL = 1). Sie kann nicht mehr iibertroffen werden:
Das Leistungsvermégen des Tragwerks ist erschopft.

Den Untersuchungen liegen der Einfachheit halber Spannweiten-
funktionen nach (2) zugrunde. Die so gewonnenen Aussagen bleiben
qualitativ giiltig, auch wenn Fremdlast und tragendes aktives Ge-
wicht nicht affin sind.

3. Die Tragwerkformen

3.1 Balken

Grenzfdlle von Balkensystemen sind der "einfache Balken" und
der "Kragbalken". Mit ihnen ist der gesamte Leistungsspielraum von
Balkensystemen faBbar. Der einfache Balken begrenzt das Leistungs-
vermégen nach unten, der Kragbalken nach oben. Seilverspannte Bal-
ken werden nicht betrachtet. Sie besitzen bei engen Seilabstanden
hohes Leistungsvermdgen und sind dann dem Kragbalken mit dem Ideal-
querschnitt my; = 1 (s. Bild 2) vergleichbar,

Der EinflufB3 der Baustoffe und der Querschnittform ist bei
beiden Systemen gleich:

PR My
K = —_— = (4).
M+Fquer Y
Dabei bedeuten:
N R Rechenfestigkeit des Bezugsbaustoffs
¥=ayg Berechnungsgewicht des Balkenmaterials im >
Beschleunigungsfeld a (Erde a = 9,81 m/s“)
/ ReiBldnge bzw. Zerdriickhdhe des Balkenmaterials
R’ ¥

bei zugfestem bzw. druckfestem Bezugsbaustoff
bezogenes Bruchmoment MU/F d ﬁR’

als MaB der Beanspruchbarkeit des Querschnitts
(Flache F, Hohe d, Breite b) mit dem GroBtmoment

v Gesamtsicherheitsbeiwert.

Wenn fiir das Tragvermégen ausnahmsweise der Gebrauchszustand maB-
gebend ist, muB in (&) mU/‘v durch m des Gebrauchszustands er-
setzt werden.

My

Die Bandbreite des Faktors KS+F ist dagegen sehr ver-
schieden: langs
—— = 5,5 )
o 0 : ideal
8 = <K < . : (6)
M 1 S+Fléngs Bild 1: real
}6“““_[ —“"—>l d 1
< oo : ideal
% 2 T = ~ Bild 1: real (7)
(1/4 der Werte)



Die Werte auf der linken Seite gehoren zu Balken mit konstantem
Querschnitt, die auf der rechten zu - in jedem Querschnitt - voll-
beanspruchten mit konstanter Hohe und idealem Zweipunktquerschnitt
(quasi Fachwerkbalken). Im einen Fall ist die Tragwerkmasse dem-
nach lberhaupt nicht auf den Momentenverlauf abgestimmt, im ande-
ren dagegen vollkommen.

45“/d)K5+Fumgs gp+ P =const. Der ideale Wert o besagt
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nicht, daB 1 auch bei realen
(3) 4#—=—F d=const. © Kragbalken oo groB oder auch nur
+ volibeansprucht,nur L u. sehr grof3 werden kann. Durch
b= £ nicht affine Fremdlast und einen
@ HVOilb—ansprufhinS \\\\ im Bereich der Kragbalkenspitze
T
\\ (2 2% " ne o groBe Leistungsspielraum
“\ i schrumpft z.B. allein durch eine
i, konstante Fremdlast auf den in
Bild 1 schraffierten endlichen
Bereich zusammen. Der bauprak-

technologisch bedingten Mindest-
+ t : } + >
Bild 1 10 20 Gg/“3p+P) tisch nutzbare Spielraum ist

balkenquerschnitt sinkt das Lei-
stungsvermogen auBlerordentlich
ab: der in %6) und (7) angegebe-
noch kleiner, vor allem wenn d

+ const. ist (im Bild gerastert) oder unterschiedliche Lastfille

zu berilicksichtigen sind. -

3.2 Druckbogen

Die nach oben gekrimmte Bogenform ist keine Form minimaler
potentieller Energie. Ein Druckbogen hat deshalb den Drang, nach
unten durchzuschlagen, sein Tragvermdgen geht spdtestens mit dem
Einsetzen des Durchschlags verloren. Obwohl Durchschlagvorginge
nur mit einer geometrisch nichtlinearen Theorie faflbar sind, geniigt
fiir die numerische Traglastrechnung im Schlankheitsbereich, den die
technischen Baubestimmungen erlauben, die geometrisch linearisierte
Theorie. Bei den baupraktisch allein bedeutsamen Pfeilverhdltnissen
f/1 2 0,1 kann auBerdem die Achsdehnung unberiicksichtigt bleiben.

Das Leistungsvermdégen ist am kleinsten, wenn der Durchschlag-
vorgang ohne Gleichgewichtsverzweigung ablduft. Dazu gehdren Last-
kombinationen, die die jeweils kritische Ausweichform durch gleich-
sinnige Stormomente beglinstigen: antimetrische Momente beim 2-Ge-
lenk-Bogen, beim gelenklosen Bogen und beim steilen 3-Gelenk-Bogen,
symmetrische dagegen, wenn dieser flach ist (etwa f/1 < 0,3). Die
kritische Fremdlast muB demnach zwei Anteile enthalten: einen vor-
aussetzungsgemil zu 8, affinen - durch KL erfa3iten - und einen an-

deren, - durch [} gekennzeichneten - der die Stdrmomente erzeugt
(B = [ KL/ga,G bei antimetrischer Stérlast qanti’n:=QGKL/ga,G1

bei symmetrischer Storlast QG im Bogenscheitel).
Fir den als Stiitzlinie fiir 8y geformten Kettenlinienbogen (F =
const.) sind die KenngréBen fiir System, Form und Baustoff KS+F+M=

e VA e —
E: ULPkt cos TA 1Y Y [ﬂg — (%)Z:I(H;QCOSZP )
cos fA E
T 1-cosfp 1) Pr B0, Eer
o TPA— -f) ,K, COSFE Y (9)
‘I—cosf’A 1 N n _ 2m
m—cos Pa (?) -;-J—PE cos]OE[—lll—vE ¥ TA(%) sinf’E:'cr (10).
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Die bezogenen kritischen SchnittgrdBen n = N/FDR und m ent-

halten implizit die Einfliisse aus (S), (F), (M) und (L). Bis auf
das Glied mit vG,der lotrechten Verschiebung des Scheitelgelenks

beim 3-Gelenk-Bogen, stimmen (8)(9)(10) formal mit den Ausdriicken
der Theorie 1. Ordnung iiberein. Ab etwa f/1 > 0,3 gilt (9) auch
fiir den 3-Gelenk-Bogen. T o B BES

Pa 1 . .12

Fiir flache Kettenlinienbogen ist —— N 8 T (11).

Damit kann bis etwa f/1 < 0,3 gerechnet werden.

Das Leistungsvermégen ist um so kleiner, je grdéBer die Stor-
momente sind und je schlanker der Bogen ist. Es wird dann auch
mehr und mehr f/l-unabhdngig. Nur bei sehr kleinen Stormomenten
werden in etwa die klassischen Extremstellen fiir max. 1 erreicht
(z.B. f/1 = 0,3 beim Kettenlinienbogen). Der Leistungsabbau kann
in allgemeiner Form nur qualitativ angeschrieben werden:

ng,er 2 Pp,u11 < Pp,ut < MU, (m = 0) (12}
Bei ny ist wegen m = 0 das Leistungsvermdgen des Querschnitts aus-
genutzt, durch die Stérmomente nimmt es ab auf n ,UT? durch den
EinfluB der Bogenverformungen auf nﬂ,UII; bei "Stabilitdtsversa-
gen" geht das Tragvermdgen bereits im Innern des n-m-Interaktions-
diagramms verloren, n or ist dann>n JUII® Numerische Berechnung

ohne besonderen Aufwand nach [1] méglich, dort und in [2] Beispie-
le zu (12).

GroBes Leistungsvermdgen setzt gedrungene Bogen voraus. Quer-
schnitte, die dem idealen 2-Punkt-Querschnitt nahekommen, bringen
Leistungssteigerung vor allem bei groBem 1/d, f/1 und groBen Stor-
momenten. Der gelenklose Bogen ist am leistungsstdrksten. Auswei-
chen senkrecht zur Bogenebene bedeutet zusdtzlichen Leistungsabbau.

3.3 Zugbogen
Ein biegesteifer Zugbogen vermag, dem Druckbogen &hnlich, das
Leistungsvermégen des Querschnitts nicht auszunutzen:

", U (13),
< nU’ (m = O)

wenn auch bei ihm die Systemverformungen (nn UII > p UI) lei-
stungssteigernd wirken. 4 4

Ein Zugbogen muB aber nicht biegesteif sein: Die h&8ngende Bo-
genform ermdglicht als Form minimaler potentieller Energie den
biegeweichen Bogen mit voller Querschnittausnutzung

M,er = %0, (mn = 0)
Er wird dadurch zum leistungsfdhigsten System.
Baupraktisch bedeutsam ist allein der flache Kettenlinienbogen

f,er T UA,UII

(14).

mit Ny N
A | fozwf KM‘“Fquer:T v ) ) (15)
8 f.qf
Ks+F I8 T (183

e | — Langs [y | 16(%/1)2
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Je nach Bogenbaustoff kann statt nUA/v auch der Wert des Ge-

brauchszustandes n,= n(m = @) maBgebend sein. Der Zirkumflex

kennzeichnet das Pfeilverhdltnis des verformten Bogens

F1=£/1 \1+3/8 ¢ (1/D)2 - (b - b/ (17)
mit der gedehnten Bogenl&nge b.

Von allen Tragwerkformen fiir Baukonstruktionen diirfen beim
biegeweichen Bogen als einziger die Geometriebeziehungen nicht von
vornherein linearisiert werden. Dem entspricht (17). Die lineare
Beziehung geht um so eher verloren, je flacher der Bogen ist.

Der biegeweiche Bogen ist kinematisch verschieblich, weil sei-
ne Achse stets Seillinie der jeweiligen Belastung sein muB. Kri-
tisch sind antimetrische Stdrungen zusammen mit hoher Entlastung.
Sie kénnen mit wachsendem f/1 AnlaB groBer Verformungen sein, ein
zu leichter oder ein in anderer Weise nicht ausreichend stabili-
sierter Bogen kann nach oben durchschlagen. Dieses Durchschlagpro-
blem, das in [2] behandelt ist, beeintrichtigt das Leistungsverms-
gen nicht.

4. Die Baustoffe
Die LeistungskenngroBen K enthalten den BaustoffeinfluB3 in
allgemeingiltiger Form als Produkt
N/ - ny bzw. Op/y - my (18)

Die Spannungsdehnungslinien stecken dabei in n und m, ebenso die
Querschnittform und der kritische Dehnungszustand.

Das Leistungsvermdgen widchst mit der ReiBl&nge und der Zer-
drickhdhe. Hochfeste Stdhle und hochfeste Betone und Leichtbetone
kennzeichnen die Entwicklung,mit der Tendenz, auch im Betonbau zu
Werten zu kommen, die denen von Baustahl vergleichbar sind.

Fur ny und myg lassen sich von der Spannungsdehnungslinie un-
abhidngige obere Grenzwerte angeben:

nU =1 mU = 0,5 mU = 1,0
Eprm 172-F EEEE. 1-F -
beliebig 1/2-F - 0F ®
Bild 2 Bp= Pz = PR Pp=Pr: Pz/fp—>w

bei homogenem Material. ny = 1 ist im biegeweichen Zugbogen reali-
sierbar. my = 0,5 und 1,0 lassen sich als die Beanspruchbarkeiten
der Querschnitte von Fachwerkbalken deuten, deren Diagonalengewicht
verschwindend klein ist. Tatsdchlich brauchen alle biegebeanspruch-
ten baupraktischen Querschnitte gewisse Zuggurtmassen und, vor al-

lem im Vollwandbereich, Stegmassen, die das Leistungsvermdgen ver-
ringern. FUr sie sind deshalb oy = 0,5 und 1,0 unerreichbare Grenz-

werte: 0,5 flir die Querschnitte des Stahlbaus, 1,0 filir die des
Spannbetonbaus.

Flr Betontragwerke seien noch einige weitere Angaben gemacht:

4,1 Balken

Das Leistungsvermdgen der Balkenquerschnitte wird durch die
Tragfidhigkeit der Biegedruckzone begrenzt (Grenzstauchung EbU)'

Voll nutzbar wird es durch eine entsprechend hohe Bewehrung der Bie-
gezugzone, wobei die Bewehrungsgrenze normalerweise aus dem Wunsch
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folgt, ein Versagen der Druckzone zu vermeiden, bevor die Zugbe-
wehrung flieBt (Bruchvorankiindigung durch - %0) .

Im ilibrigen wird hohes Leistungsvermdgen durch geschicktes For-
men der Querschnitte erreicht. Wie groB dabei der Spielraum ist,
zeigen die Grenzformen "Rechteckquerschnitt" mit my = 0,25 und

"idealer Zweipunktquerschnitt" mit my = 1,0 bei unbewehrter Druck-

zone. Die Bandbreite der realen, baupraktischen Querschnitte ist
der in Zuggurt und Steg allein schon technologisch bedingten Beton-
fldchen wegen betrédchtlich schmaler. Die bei groBen Spannweiten
bisher gebauten Formen vollwandiger Balken besitzen etwa

0,35 < myy <0,60

0,40 = = uflg/ ilg =<0,65
Je hoher my ist, um so weniger ist die Beanspruchbarkeit von der
6 -€ -Linie des Betons abhédngig.

Nur mit Hilfe der Vorspannung gelingt es, dem Idealquerschnitt
mit my = 1,0 nahezukommen, denn nur durch Vorwegnehmen der Stahl-

dehnung werden hochfeste Stdhle ausnutzbar, so daB sich groBle und
grofte Zugkrafte in verhdltnismédBig kleinen Betonquerschnitten un-
terbringen lassen. Die damit erzielbare Einsparung an Querschnitt-
fldche wdchst mit der Spannweite. Der Vorspanngrad selbst beein-
fluBt i.a. nur das Verhalten im Gebrauchszustand, nicht aber das
Leistungsvermdgen. Auch eine "Druckspannbewehrung" zur Zugvorspan-
nung der Druckzone erhoht das Leistungsvermégen nur durch den Be-
wehrungsgehalt der Druckzone. Wenn die Gebrauchsfdhigkeit dies zu-
148t, soll auch bei Vorspannung nicht mehr Bewehrung eingelegt wer-
den, als der Bruchzustand erfordert mit einem mdglichst hohen An-
teil an Spannstahl.

(19).

4,2 Druckbogen

Im Druckbogen sind zweipunktnahe Querschnittformen der einfa-
chen Rechteckform nicht so selbstverstdndlich weit iberlegen wie im
Balken, weil die ihnen eigene Uberragende Steifigkeit verlorengeht,
sobald einer der Gurte reiB3t. Die Tragfahigkeit fdllt dann j&ah ab,
auf Werte, die sich von denen des Rechteckquerschnitts meist nur-
mehr unwesentlich unterscheiden. Hohlquerschnitte sind deshalb nur
dann entscheidend leistungsfdhiger, wenn sie im gesamten Beanspru-
chungsbereich ungerissen bleiben. Dazu bedarf es vielfach gedrunge-
ner Bogen, vor allem bei merklichen Stormomenten und mit wachsendem
£f/1. Auch eine Vorspannung kann manchmal zweckmdBig sein.

Mit dem Bewehrungsgehalt ist das Leistungsvermdégen nur im Zug-
bruchbereich entscheidend zu beeinflussen. Die Wirkung wéchst mit
den Stormomenten und wird durch die Schlankheit beschleunigt. Doch
ist selbst bei grofBen Stormomenten eine bewehrungsproportionale
Leistungssteigerung nicht erreichbar. Nahezu ohne Wirkung bleibt
der Bewehrungsgehalt bei Stabilitédtsversagen, zu dem sehr Kkleine
bis kleine Stormomente gehdren. Dann kommt es vor allem auf die
G - € -Linie des Betons an.

Die Bandbreite der nﬂ A
tersucht. d

4.3 Zugbogen

Im biegeweichen Zugbogen hat der Beton, anders als in den mit
Biegung arbeitenden Systemen, keine wesentliche Tragfunktion, die-
se ilibernehmen die Spannglieder. Der Beton bildet vor allem Raumab-
schluB oder Fahrbahn, formstabilisierendes Element (Schale, Platte,

des Zweigelenkbogens ist in [2] un-
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Gewicht) und Korrosionsschutz der Bewehrung.
Wenn Spannglieder der Festigkeit ﬁz die Bewehrung bilden, ist

noys = Mz z/ PR (20).
Der Bewehrungsgehalt;&z hat nur technologische Grenzen: Die Spann-

glieder sollen des einfachen Korrosionsschutzes wegen im Beton-
querschnitt Platz finden. Das ergibt

etwau, < 0,15 (21).

Bei Balken und Druckbogen setzt das Tragvermégen der Biegedruckzo-
ne dem Bewehrungsgehalt weit niedrigere technische Grenzen:

M, = ﬂR/ g oder 44, = 1 als oberste Schranke beim idealen Zwei-
punktquerschnitt mit m; = 1 und etwau, < 0,65 oderu, < 0,015

bei den baupraktischen Vollwandquerschnitten (19). Der biegeweiche
Zugbogen kann demnach etwa 10mal so stark bewehrt werden wie Bal-

ken oder Druckbogen. Das, zusammen mit einem hohen ﬁz, begriindet

sein Uberlegenes Leistungsvermdgen.

Die nutzbare Stahlfestigkeit ﬂz hangt allein vom plastischen

Verformungsvermégen des Bogens ab. Sein Gleichgewicht verlangt ein
Spannungsgefédlle von den Ké@mpfern zur Bogenmitte. Deshalb ist das
plastische Verformungsvermégen nur mit Stdhlen nutzbar, die einen
Verfestigungsbereich besitzen. Das ist bei allen SpannstZhlen mehr
oder weniger ausgeprdgt der Fall. Da sich der Bogen nicht beliebig
weit in den Verfestigungsbereich hinein verformen darf, wird []z

durch das Erreichen kritischer Spannstahldehnungen begrenzt, etwa
crit. Ez < (1,0 bis 1,5) 10'2 + EZ(O) (22),

mit der SpannbettdehnungEZ (o) [3] Bei Bogen bis etwa £/1<0,1
wird dadurch ﬂz so grof, daB die im Gebrauchszustand zulédssige
Stahlspannung zul G, mit n, su, zul ESZ/[ER (23)

das Leistungsvermdgen bestimmt. - Bei St&hlen mit idealelastisch-
idealplastischem bzw. sprodem Verhalten ware ﬂz = ﬂs bzw. []z zZu
setzen.

5. Die Tragwerkmasse
Die das aktive Gewicht g, bildende Tragwerkmasse ist dann am

wirksamsten eingesetzt, wenn sie

- an Jjeder Tragwerkstelle und

-~ in Jeder Querschnittfaser voll ausgenutzt ist und

- selbst méglichst wenig Beanspruchung erzeugt.
Damit ist hohes Leistungsvermogen gegeben, nicht aber unbedingt
auch ein optimales Tragwerk vom Aufwand und Nutzen her gesehen.
Je weniger das Leistungsvermdgen gefordert wird, um so mehr darf
und wird man von diesen Kriterien abweichen.

Das Abstimmen von Tragwerkmasse und Momentenverlauf lohnt
sich demnach am meisten beim Kragbalken, der dadurch viel lei-
stungsfdhiger als der einfache Balken wird. Dieser reagiert darauf
viel weniger empfindlich, weshalb bei ihm der mégliche Leistungs-
gewinn nur ein ziemlich grobes Abstimmen rechtfertigt (5) (6). Be-
grindet ist dies in der unterschiedlichen V6lligkeit des Momenten-
bildes beider Systeme: Der Kragbalken braucht, im Gegensatz zum
einfachen Balken, die Tragwerkmasse dort, wo sie nur mit kleinem
Hebelarm momentenwirksam ist. Ein Tragwerk aus aneinandergereih-
ten, richtig geformten Kragbalken ist deshalb auch leistungsféhi-
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ger als ein solches mit Einhd&ngebalken oder aus Durchlaufbalken. Da
der einfache Balken auch "Ersatzbalken" der Bogen ist, lohnen auch
diese das Abstimmen der Tragwerkmasse auf den Beanspruchungsverlauf
nur mit einem Zhnlich eng begrenzten Leistungszuwachs. Der Zweige-
lenkdruckbogen nach (9) kann dadurch wenig mehr als 10 % weiter ge-
spannt werden. Beim biegeweichen Zugbogen scheidet diese Mdglich-
keit, Leistung zu gewinnen, fast ganz aus.

Nicht ausgenutzte Tragwerkmasse kann sich sehr unterschiedlich

bemerkbar machen: solange sie die Grenzspannweite lGr unbeeinfluft

148t, bedeutet sie eine Leistungsreserve und wirkt wie eine erhohte
Fremdlast, sobald durch sie aber 1Gr kleiner wird, wirkt sie lei-

stungsmindernd. Das typische Beispiel fiir eine solche Leistungsmin-
derung ist der Kragbalken mit F = const.

Bei jedem Tragwerk diirfen bestimmte Mindestabmessungen nicht
unterschritten werden, die untere Grenze der Tragwerkmasse ist des-
halb technologisch bedingt. Auch das sind nicht ausgenutzte Trag-
werkmassen und leistungsmdBig dementsprechend zu behandeln.

6. Die Fremdlast

Beide Anteile der Fremdlast, die nutzungsbedingte Verkehrslast
p und das konstruktionsbedingte passive Gewicht beeinflussen das

Leistungsvermdgen gleich nachteilig durch Klf< 1,0. Vor allem bei
hoher Leistungsforderung muf3 deshalb so klein wie moglich gehal-
ten werden. ist nicht immer nur Gewicht, auch die formstabili-

sierende Vorspannung in Seilwerken und Seilnetzen z8hlt dazu. Fla-
chentragwerke nutzen die Baumasse vielfdltig, sie haben daher meist
ein verhdltnismédBig kleines , Stabtragwerke mit ihren eindimen-

sionalen Traggliedern dagegen ein groflies.

Eine zur Tragwerkmasse nicht affine Fremdlast ist leistungs-
mdBig liber ihre beanspruchungswirksamenHebelarme zu beurteilen.
Sind sie groBer als die der Tragwerkmasse, wirkt die Nichtaffinitét
leistungsmindernd. Nur beim Kragbalken mit einer auf die Beanspru-
chung abgestimmten Tragwerkmasse ist die Annahme einer Affinitiat
keine gute erste Nadherung, weil bei ihm eine konstante Fremdlast
sehr leistungsmindernd ist.

7. Das MaBstabgesetz

Die Spannweitenfunktion (1) beschreibt 1 als absolute GroBe;
mit 4 /A multipliziert enthdlt sie nur mehr relative GrdBen:

1- ¢/ Ny =9/ 0Ng * £ (Verhdltniswerte fir (s),(F),(M),(L)) (1a).

Das ist das MaBlstabgesetz des Leistungsvermdgens. Beispiel:

1 X _ g Ty d 1
MR v T T+Tg /e,
Die linke Seite sagt nun aus, wie weit die ReiBl&nge oder Zerdriick-

hohe des Bezugsbaustoffs als Spannweite nutzbar ist, - ilber 3= ay
ist der Einflufl allgemeiner Schwerkraftfelder enthalten.

Wenn die Beanspruchbarkeit ausgenutzt und damit wie die ReifB-
ldnge und Zerdriickhche ein Festwert ist, miissen die MaBstabsfakto-
ren: X\ flir die Spannweite, %'d/l fiir das Bauhdhenverhdltnis und

X}( fiir das Lastverhdltnis die Bedingung
L
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A= hgjt hg oder N=X/Ng/ = Nk, (24)

erfiillen. Statt )\K interessiert )\g , der MaBstabsfaktor fiir die

L a
Tragwerkmasse, der mit ihm verkniipft ist. Bei konstant bleibender
Fremdlast ist dieser

2 _—
-1 -K < 2 -
Ea IS AN -
5 . ) . besteht
)\ga < O: Leistungsvermdgen versagt.

Bei)\g = X2 und)\d/1 = 1 ist das gesamte Tragwerk affin groBer
a
geworden. KL ist auf das Ausgangstragwerk bezogen.

Die Auswertung zeigt: Nur bei kleinen Spannweiten ist es mdg-
lich, ein Tragwerk, das sich bei einer Bauaufgabe bewdhrt hat,
durch bloBl affines VergroBern einer grofBeren Aufgabe anzupassen.
Bei groflen Spannweiten muBl stets und vor allem auch das Bauhthen-
oder Pfeilverhdltnis vergrofBert werden.

Das bedeutet: GrofBe Tragwerke miissen nicht nur massiger sein
als kleine, System, Form und Baustoffe sind schliefllich nicht mehr
frei wdhlbar, sondern werden eine Funktion der absoluten GroSe.

(25) ist flir Balken ermittelt. Die damit gewonnenen Aussagen
gelten qualitativ auch fiir Bogen.

8. Das wirtschaftliche Leistungsvermégen

Das technische Leistungsvermogen endet mit der Grenzspannwei-
te 1Gr' Tatsdchlich wird ein Tragwerk aber lange vorher bedeu-

tungslos, weil seine Wirtschaftlichkeit verlorengeht.

Aus (2) (3) folgt das aktive Gewicht, das bei gegebener
Fremdlast aufzuwenden ist, um eine gegebene Spannweite zu bewdlti-
gen: 1

g, = TE;7T_:_T (gp-+p) = technolog. g4 (26).

Die Tragwerkmasse, beschrieben durch 80 wdchst demnach hyperbo-
lisch mit abnehmendem Verh&dltnis lGr/l oder je mehr das techni-

sche Leistungsvermdgen ausgeschopft wird. Sie wird schliefSlich un-
wirtschaftlich grof, bei lGr/l = 1 unendlich grof3, auch wenn die

Fremdlast noch so klein ist.

Ziel des Entwerfens muB3 es demnach sein, System und Baustoffe
so zu wdhlen, das System so zu formen und das passive Gewicht so
zu beeinflussen, daB der Abstand lGr - 1 grof3 genug bleibt, um 84

vernlinftig klein zu halten. Wird fir ein bestimmtes Tragwerk g

unwirtschaftlich grofl, muB3 ein leistungsfdhigeres mit grodBerer

Grenzspannweite gewdhlt werden. Ausreichendes Leistungsvermogen
ist dabei im gesamten Spannweitenbereich notig.

Die Tragwerkmasse zeigt zwar, daB die wahren Leistungsgrenzen
wirtschaftlich bedingt sind, doch ist das im Leichtbau sinnvolle
Prinzip des minimalen Gewichts kein allgemein brauchbares Krite-
rium fuir niedrige Herstellkosten oder gar fiir ein wirtschaftliches
Bauwerk. Dazu sind die Stoff- und Verarbeitungskosten der einzel-
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nen Baustoffe viel zu unterschiedlich. Wenn z.B. im Stahlbau
ga/(gpﬁ-p) < 0,5 die wirtschaftliche Grenze wire, miiBte sie im

Betonbau um ein Vielfaches hoher sein. AuBlerdem ist der Aufwand
fir die Stiitzkonstruktionen einzubeziehen, der vom einfachen Bal-
ken liber den Kragbalken und Druckbogen bis zum erdverankerten Zug-
bogen grofBer und groBer wird. Die Wirtschaftlichkeit eines Bau-
werks ist deshalb - wenn liberhaupt - nur im Einzelfall und nur als
Ganzes zutreffend zu beurteilen.
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ZUSAMMENFASSUNG

Balken, Druckbogen und Zugbogen sind die Grundformen aller zur Bewdl-
tigung von Spannweiten geeigneten Tragwerke. Die fir sie im gesamten
Leistungsbereich massgebenden Spannweitenfunktionen werden angegeben und
die diese bestimmenden Kenngrdssen untersucht und diskutiert. Nichtlineari-
tdten der Baustoffe und - soweit erforderlich - auch der Geometrie werden
berlcksichtigt. Der Einfluss unterschiedlicher Baustoffgesetze und der
Vorspannung wird studiert. Die Grenzen der Wirtschaftlichkeit und ihre
Kriterien werden aufgezeigt.

SUMMARY

Beams, compression arches and tension arches are the fundamentals of all
structures suitable to cope with spans. The standard span functions for the
whole capacity range are specified and their characteristic values examined
and discussed. Nonlinearities of building materials and - as far as necessa-
ry - of the geometry are considered. The effects of different laws of
building material and of prestressing are studied. Limits of economy and
their criteria are shown.

RESUME

Des poutres, des arcs de compression et des arcs de traction constituent
les formes fondamentales de toutes les structures franchissant une certaine
portée. Les fonctions de portées déterminantes sont indiguées, leurs valeurs
caractéristiques sont examinées et commentées. Des non-linéarités des
matériaux de construction et - si nécessaire - de la géométrie sont con-
sidérées. L'influence de différentes lois relatives aux matériaux de con-
struction ainsi que de la précontrainte sont étudiées. Les limites
économiques et leurs critéres sont donnés.
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A Basic Parameter for Optimum Design of Arch and Suspension Bridges
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Ein Grundparameter fir die Optimierung von Bogen- und Hangebrucken
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1. Introduction

The purpose of this paper is to propose a basic parameter effective to the
optimum designs of arch and suspension bridges. Since the dynamic factors ( e.
g., eigenvalues and eigenvectors ) and the static factors ( e.g., influence
lines for deflection and bending moment ) of an arch ( or suspension ) bridge
are subjected to this parameter only, designated by F , we are able to deter-
mine the F value which satisfies the structural optimization of the bridge,
which means that one constraint can be made for the design variables of the
bridge. For the optimum design of an arch ( or suspension ) bridge, its geom-
etry and the cross sectional areas of the elements such as the arch and the
stiffening girder will be the design variables. These design variables are
usually found by mathematical and numerical search methods. Although these
search methods are applicable to a variety of problems, they require repeating
similar calculation changing the values of the design variables until the opti-
mum conditions are satisfied. So, it will save much computer cost to give the
one constraint for the design variables.

There are many analogous points between a suspension bridge and an arch
bridge, and they may be said to be essentially of the same type of structure
from the view-point that they have girders stiffened with parabolic members (
= cable and arch ) respectively. S0, both structures can be analyzed by a
common theory (2).

In general, the cross sections of the elements such as the arch and the

stiffening girder are variable. For these elements, the average values should
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be used as approximate values. The errors due to the approximation seem to be

small judging from numerical examples.

2. Theory

In this paper, the bridges are assumed to satisfy the following conditions:
(i) The stiffening girder is of uniform cross section and simply supported at
both ends.
(ii) The cross section of the arch ( or cable ) is constant and its mass is
transferred to the stiffening girder.
(iii) The flexural rigidity of the arch can be transferred approximately to the
stiffening girder.
(iv) The arch ( or cable ) configuration is given by a parabolic function.
(v) The arch ( or cable ) and stiffening girder are connected with an infinite
number of hangers whose elongations are completely neglected.

When the arch and stiffening
girder shown in Fig. 1 is forcibly

deformed by the amount given by

Aq
w =) a, sin—ﬂgi— (1) >
% auy Aqg El 4?
|
where [ : span, the horizontal ! L '
thrust AH of the arch is found Fig. 1
from the compatibility condition:
6 a
g = 2LEB g for n =1,3,5,... (2)
n
A n
= 0 for n = 2,h,6,... (3)
Aa
where B = 7 (L)
a 2 L
7 +1+8(—~ZL) +l9'2(_'lf_)
g
Aa( Ag ) : cross sectional area of arch ( girder ). From this, we see that

the arch resists symmetric deformation only and does not resist asymmetric de-
formation. In other words, for asymmetric deformation the arch bridge 1is re-
duced to a simple girder.

The amplitude of the simple girder loaded with a periodical uniform load

pg sinwt ( in Fig. 2 ) is given by

hpg 1

™

sin( ngx ) (5)

u = 2 2
n nlw -w%)
g'n
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where

( = n-th natural frequency of the
girder ) and p : mass per unit

P
. g
length of the girder.

AHa— b bn i b PV AH

When the arch bridge is forced A

to vibrate at the amplitude re-

Fig. 2
presented by Eq. (5), the thrust =

AH caused in the arch is computed directly from Egs. (2) and (5), i.e.,

_  6LfEB 1
M=)~ (6)
™ol n n(

When the arch is isolated from the girder, retaining its deformation, a uniform
load p, must be placed on the arch to let it satisfy the equilibrium condi-

tion of force and moment, and its magnitude is determined from,(3)

Py = - 0 = SlEEfiB l %= Py (7)
) Tpl n n(w_ -w)
Fig. 3
Let us superpose the arch and
girder to restore the arch bridge. F(X) T
-2 m=|5 | m=3 m=|
The arch bridge constructed in this X107 TN
way is subjected to a uniform load 10 -«i-;
with the magnitude PO i gl o 13 u
.._.F.l_ 1 B I o 8 0

1 IRERRRIE 1 TH]

| I i

— + 1

Py = Py * Py (8) 5 =¢ S s inm agens 55
4 ;L T

Using the condition that the applied s T T T

force must be zero for free vibration, : } ., :

i.e., 2 HH %
I-5 -

+ = —+ e —
Py * Py 0 (9) : HHE L
we arrive at the following frequency ' = T

I
equation: P = “,___;j;: Sases
)‘ H
5128f°B 1 _ 05
1+ ) =0 L] AT
ﬂeplh 72 (w2 -u®) 04
gn 4 5 7 10 15 20 30 40
X102 N
n=1,3,5,..4, (10)

Bg. 10 VB
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which can be expressible in the following nondimensional form, (1)

n6I 1
Bl = =1 —g 5 - l.00Lk (11)
51278 # n°(1-n"2%)
where x % me |
w . -
A om—L. gy om (YR JED 10 } A AT
N gl L P { —.— 001200
—— 001620
12) oslAN] T oozsso
The left hand side, i.e., F -- [ ST T 88?926%

value 1s a non-dimensional value

to be determined from the dimen-
sions of the arch bridge. The
relation between F and A 1is

shown in Fig. 3. The m-th

natural mode ¢m(x) is computed

by substituting the m-th natu-

ral frequency W obtained

from Eq. (11), into Eq. (5).

That is, Fig. &
_ ; nne _ 1
¢, (z) = ) b, sin —— (b, =—3—> ) (13)
n n(w” -w)
For the normalized mode @m(x) , We have
_ . nmx 2 _ , 2 2 -1
¢ (x) =C z b . sin ( 7 7 5 ¢, = (_Ef_ (3 b ) (14)

The first normalized mode ¢m=l(m) is shown in Fig. 4 for some F-values.

Once the m-th natural frequencies w  and the normalized modes @m(x) have
been found, the dynamic and static responses are easily determined.

The static deflection Wy at x due to the force PO applied at xj is

found from

® (x) ¢ (x.)
w, = ) il 2m d P, (15)
m w

and the bending moment MB is calculated from

2
dw

M = - BT -2 (16)
dx
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Note that these responses are subjected to the non-dimensional parameter F .
For example, the influence lines for deflection at /4 and 1/2 points are

shown in Figs. (5) and (6).
Fig. 5

21
*TET / p
' Fig.
-00! ]
7 | 21
~_ NN\ } _ i (Xi=1/4)
O =<3\ F=Q0100 !
SIN3\N\5 6 7 8 . .
SO\ (L/2) —— 0Q0I63 TN
A \\ -0.04 —-—  0.0200 7T
0.01 ARAY ‘*1 | —— 00304 T
‘\‘ \ \.\ _0_02 | b s 00400 /’1‘1
0.02 S ) o J —---—  0.0500 4
’ \\ kY . l i /Il
\ . i 0 J | ‘ 8 y/
\ . . 2 4 6 77100 12 14 |
0.03 SR\ - 7 o
ARt \] 002 i
0.04 4N \N A
N 004 o
| 'y
| b A
0.05 . f
(X =1/2) N 0.06 /}'1
| I \ I N/
O O 6 ; N\ \] 008 2 \:\?{‘,’-’/vl
F=0.0100 '
007 — — 00Ie3 L
—-— 0.0200 |
—— 00304
—————— 0.0400 ;
............. 00500 Fig. 7
The aforementioned equations mm (m
can be used for the arch & 7y

bridges shown in Fig. T by

changing the cross sectional

areas and flexural ridigities : : :; E:

of arches and stiffening gird-

by
Iy

ers. For the system (e) in
Fig. 7, the flexural ridigity
Ig of the girder is zero and

the cross sectional area A

Fig. 8

of the girder is infinity.

The above equations derived for

arch bridges can be applied to

suspension bridges. For the
suspension bridge shown in Fig.

8, the B in Eq. (L) is
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Ac
B = " 7 7 (17)
f 2 f 1 3 2 3
1+ 8 7 )< + 19.2( T )7+ —7 secTo, + —7— sec™o,
where Ac : cross sectional area of the cable.
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SUMMARY

This paper proposes a basic parameter effective to the optimum design
of arch and suspension bridges. The dynamic factors (for example, eigen-
value problem) and static factors (for example, stress and deformation)
of these bridges are subjected to this parameter only, which means that
one constraint can be made for some design variables. So, numerical cal-
culation will easily be done on the basis of this parameter. Several
diagrams are shown.

RESUME

Ce mémoire propose un paramétre fondamental qui est efficace pour le
calcul optimal de ponts suspendus et en arc. Les facteurs dynamiques
(par exemple le probléme des valeurs principales) et les facteurs statiques
(par exemple la contrainte et la déformation) de ces ponts ne dépendent que
de ce paramétre. Le nombre de variables peut alors étre réduit et les
calculs numériques effectués facilement. Quelques diagrammes sont présentés.

ZUSAMMENFASSUNG

In Qieser Mitteilung wird ein fir die Optimierung von Bogen- und Hinge-
briicken geeigneter Grundparameter vorgeschlagen, der dynamische Faktoren
(z.B. Eigenwertprobleme) und statische Faktoren (z.B. Spannung und Deforma-
tion) dieser Briicken berticksichtigen kann. Dies bedeutet, dass die Zahl der
Entwurfsvariablen reduziert und die Berechnung vereinfacht werden kann.
Diagramme fiir die praktische Anwendung werden angegeben.
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1. Introduction

When a long-span suspension bridge is planned, the selection
of its floor system as well as its suspended structure has great
influence on its safety and economy, and its erection and mainte-
nance. When a floor system is planned at a long-span suspension
bridge provided with stiffening truss girders, many kinds of floor
systems can be proposed as discussed later in this paper. At the
present study, structural features of various floor systems are
examined and compared with one another on such condition as fabri-
cation, erection, maintenance, economy, etc..

Through discussions the relationship of planning of the
floor system with construction methods will be evaluated in detail
for a design example cf bridge in Japan.

2. Suspended Stiffening Structures and Floor System

In the planning of a long-span ﬂ
suspension bridge two type of sus- 1
pended stiffening structures are con- Steel Plate Open Grating
sidered: one is a truss type struc- Deck ‘ Floor

ture and another is a box girder type
one. Since the former is more con-
ventional than the latter in Japan, 0 i el
a truss type stiffening structure =

with a floor system combined with an ;?{;ZCSJESQES
open grating floor, as shown in
Fig. 1.

Many kinds of construction meth-

ods for the floor system can be pro-
posed as discussed later in this pa-
per. Now, the comparative study was

carried out on a heavy weight floor =
system (closed steel grating floor)
with a light weight one (steel plate Fig. 1 Cross Section of
deck) in steel amount and cost at Suspension Bridge

—
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their construction time, at an illustrated suspension bridge, which
has a length of 1630 m consisting of a main span of 870 m and two
side spans of each 380 m, and has a width of 30 m. The result of
this comparision is given in the Table 1, which shows that the
bridge with the light weight floor system has the advantage of the
heavy weight one in steel amount and cost. Since there is an opin-
ion that the floor system had better be heavier judged from the
aerodynamic stability of a long-span suspension bridge, the rela-
tive merits for aerodynamic stability between heavy and light
weight floor systems have to be discussed separately.

Table 1 Comparision for steel construction of
super-structure at suspension bridge

Bridge with Closed Bridge with Steel
Steel Grating Floor Plate Deck
Steel Works Weight Ugig Sum of Weight UniF Sum of
rice| Money Price | Money
(ton) (10’ yenX10° yen) (ton) K10’ yenX10° yen)
Floor System 11 420 350 3 997| 11 930 400 4 772
Stiffening Structure| 26 750 400 10 700 26 250 400 10 500
Cable 20 840 600 12 504 18 580 600 11 148
Tower 10 930 400 4 372| 10 230 400 4 112
Anchorage 5 660 300 1 698] 4 980 300 1 494
Total 75 600 33 271} 61 970 32 026

3. Outline of Each Floor System

In planning of a floor system for a long-span suspension
bridge, its laod-carrying capacity, durability, aerodynamic sta-
bility, deformation adaptability, easy and fast erection, easy
maintenance, overall cost saving and so on, have to be examined.
Several floor systems including new construction methods which have
been developed by authors, will be discussed as follows:

(1) Floor system with reinforced concrete slab: A conventional
reinforced concrete slab deck is considered to be generally
cheapest one among various floor decks at present day in Japan.
On the other hand, site works of forming and reinforcing at
high elevation of a bridge are not always suitable for safe and
fast erection.

(2) Floor system with closed steel grating Floor™: This type of
floor, as shown in Fig. 2, was
adopted in Verrazano Narrows

Distributing Bars
Concrete :

Stringer Steel Plate

Fig. 3 Detail of Precast Concrete
Fig. 2 Detail of Grating Floor System Steel Grating Floor



(3)

(4)

(5)

(6)

Bars

Haunch
Plate

TOSHIKAZU SURUGA — YUKIO MAEDA 151

(UAS), Kanmon Bridge (Japan) and so on.

Floor system with precast concrete steel grating floor:

This floor is illustrated in Fig. 3, and its slab concrete is
precast at a shop and after it is connected to steel stringer,
concrete is cast between slab and slab, and also between slab
and stringer.

Floor system with prefabricated steel deck plate sandwiching
concrete: This deck proposed by authors?¥, consists of two
steel plates and concrete sandwiched between them. These
plates are connected with stud bolts, and stud shear connectors
are welded to both of the plates making a steel-concrete com-
posite deck. Photo. 1 shows shop assembly of this deck before
filling up concrete. Fig. 4

and 5 show jointing methods L. 6 5 {
of this deck. t#;'}_;?j}u’?si e A
[ 1 3 1 0 50 1 0 S R T Ay .= [ .= N -
'Y T | VY Y

w
Fig. 4 Jointing of Deck Plates

Photo. 1 Assembly of deck

Fig. 5 Jointing of Deck Plate to Beam

Floor system for prefabricated composite girder:

This composite girder, proposed by the authors4 as shown in
Fig. 6, consists of an inverted steel T-beam without an upper
flange and a steel grating floor frame, which is directly at-
tached at a shop. After the prefabricated floor deck is con-
nected to main cross beam of stiffening trusses, the slab con-
crete is cast at the site.

Floor system with orthotropic steel plate deck: A typical
steel deck panel which is well known is shown in Fig. 7.

Pavement

Stringer
Fig. 6 Detail of Prefabricated Fig. 7 Ditail of Orthotropic
Composite Girder Steel Plate Deck

(7)

Hollow steel plate deck: This deck developed by the authors
has such a cross section as shown in Photo. 2, and the welded
steel deck consists of two face plates and core plates which
are installed diagonally as shown Photo. 2. To apply this deck
to a floor system at a suspension bridge, it is set on main
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A b st
In order to evaluate which 7 e

floor system will be the most suit- 3
able for a long-span suspension o
bridge, the design of each floor
system outlined above was carried Photo. 2 Hollow Steel

out under the same design require- Plate Deck

ments that each floor system has a

span length of 12 m and a width of 11 m, and carries a live load of
20 tons truck specified at the Specification for Design of Highway
Bridges, Japan Road Association, 1974. As the result of the design,
dimension and construction cost of each floor system were obtained,
and then unit weight and unit cost per square meters of a floor
area could be calculated as shown in Table 2. The value of unit
weight and unit cost show that the heaviest reinforced concrete
slab is cheapest in cost while the lightest steel plate deck and
hollow steel plate deck are high-priced. Therefore, it might be
not only very difficult, but also risky to make decision only by
these two conditions, because for a long-span suspension bridge the
third condition expressed in terms of a kind of function or per-
formance of the floor system has to be examined.

cross beams of trusses direct-
ly without stringer.

4. Comparision of Floor Systems
in Terms of Weight and Cost

5. Function Condition and Decision Matrix

As function conditions, fabrication, erection, construction
time, wind-resistance, paving, maintenance and overall economy may
be considered for long-span suspension bridges. Each of the func-
tion conditions are defined as follows:

(1) Fabrication condition: the nature of fabrication works to
evaluate easiness or hardness of steel works at a shop and time
requirement for fabrication.

(2) Erection condition: the nature of erection works to evaluate
easiness or hardness of field works and safety for operation at
the site.

(3) Construction time: the time nature of erection works to evalu-
ate a construction period.

(4) Wind-resistance: the condition of resistance against wind de-
pending upon the height of a floor system and some other re-
quirements.

(5) Paving: the nature of paving works depending upon the smooth-
ness floor surface.

(6) Maintenance: the nature of maintenance works to be evaluated
by painting on steel surface of a floor system, etc..

(7) Overall economy: an effect of the weight of a floor system on
an overall construction cost of the whole bridge, because as
seen in Table 1, the weight of the floor system of a suspension
bridge may have great influence on the overall construction
cost of the bridge.

While the weight and cost of a floor system is deterministic
and certain, these function or performance conditions are uncertain
and not deterministic. Therefore, it will be reasonable to evalu-
ate a degree of those conditions by "excellent", "good", "ordinary"
and "undesirable", to which marks may be given, respectively, with
4 points, 3 points, 2 points and one point for trial. Furthermore,
a so-called emphasis coefficient k, may be proposed to evaluate
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Table 2 Comparision of Floor Systems

2 8 1 S' 'E)' 1 2 v
(] (] = o] )] E 3 o
o - © QU —~ & ap Q ] 1]
)] Q - ISy v o (] (] L |
> = ) ) - A
N °) wow | o2 o W
o ~ [ SR =) Qo o O [ ] Q —
= ()] = A oA A [E ] I Q
o o Q o g 32 =~ g O o« 1]
o [}] i ] O @ g © o ~ — ke
— 8] v O ~ - C @ B [+ ¥} W
2% o o v 4 o@ 2 o
o o o~ 0 n oo L0 @ 2
TR AR EEI T
Conditions = 8 3 a0 v o Q0 O £ Q o ¢ —~ 0
Q —~ —~ = | o U O 4 O o o
o [x, o o A N A O C A w (<ol
Unit Weight of Floor 530 460 490 380 470 220 220
System(é%)lin Ranking 7 4 6 3 5 1 1
Unit COfet of Floor 50 000 | 60 00065 000| 70 000 |65 000 |85 000 |75 000
n
System[j;dlin Ranking 1 2 3 5 3 7 6
i Fi 4 3 2 1 1 1 2
Fabrication = 2 8 6 4 2 5 2 4
: F2 1 3 3 2 3 4 4
Erection k2= 3 3 9 9 6 9 12 12
Construction F3 1 2 3 3 3 4 4
Time k3= 3 3 6 9 9 9 12 12
Wind- Fy 3 3 3 3 3 3 4
Resistance ke= 2 6 6 6 6 6 6 8
Fs 3 3 3 2 3 2 2
Paving T B 6 6 6 4 6 4 4
Maintenance F¢ 3 2 3 ) . % 2
ke= 2 6 4 6 4 4 4 4
Overrall F1 1 2 2 3 2 4 4
Economy k7= 3 3 6 6 9 6 12 12
F; 16 18 19 16 17 20 22
Total Tk F 35 43 46 40 42 52 56
3 in Point [2.29 [2.57 |2.71 |2.29 |2.43 [2.86 [3.14
| ZF;/ 7 -
3 in Ranking 6 4 3 6 5 2 1
gl LkiFi_|in Point 2.06 2.53 2.71 2.35 2.47 3.06 3.29
| 2| Eki |in Ranking 7 4 3 6 5 2 1

relative importance among the function condition or to emphsize
relatively a specific condition. Here, the value of k is taken
tentatively two or three, because it is very difficult to give de-
terministic numbers verified by numerical statistical data.

As shown in Table 2, each floor system depending on construc-
tion mehtods and each function condition with its emphasis coeffi-
cient will make a decision matrix and its outcome will express
functional nature or performance evaluated by marks. In Table 2,

F; the i-th function condition with i=1 to 7,

k; the i-th emphasis coefficient with i=1 to 7.
The decision-making for function or performance will be made by
either LF; /7 or Lk;F; /EK;, where

LFi /7 = a mean value for k;=1

Lk; F; /Tk; = a weight mean value.

The final decision has to be made in the overall result for
weight, cost and function of each floor system, depending on the
importance of these three factors because there is no common objec-
tive function among the factors for the most optimum floor system.
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6. Conclusion

The following decision-making in planning will be concluded
from Table 2 as an example:

(1) The most conventional reinforced concrete floor system 1is
cheaper in construction cost, but is heavier in weight and
undesirable in performance or function.

(2) Steel plate deck or hollow steel plate deck is more expensive
in construction cost, but is lighter in weight and more desir-
able in performance or function, especially in erection and
overall economy.

(3) The emphasis coefficient has to be determined more precisely,
objectively by various field conditions at the site of bridge
erection and subjectively by designer’s judgement. With well-
selected values of the emphasis coefficient, more weighted
evaluation for the nature of function or performance could be
made.

(4) When the suitability of a floor system cannot be judged from
deterministic ranking alone based on its comparative designs,
the relative evaluation of the floor system on its performance
or function which is generally uncertain, will be of great help
to approach to its optimum construction method.
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SUMMARY

The present study is intended to plan properly the floor system which
will be optimum for a long-span suspension bridge with stiffening truss.
Various construction methods for the floor system are examined in con-
struction cost and weight by comparative designs, and also in its per-
formance or function by a decision matrix.

RESUME

Le but de cette étude est de concevoir de fagon optimale le systéme de
platelage d'un pont suspendu de longue portée, dont le tablier est une
poutre & treillis. Plusieurs types de platelage sont considérés, du point
de vue méthode de construction, colt, poids, performances, utilisation;

une matrice de décision est proposée.
ZUSAMMENFASSUNG

Zweck dieses Berichtes ist es, das Deckensystem weitgespannter H&nge-
brlicken mit Fachwerkaussteifung zu optimalisieren. Verschiedene Decken-
systeme werden vom Standpunkt der Ausfihrung, der Kosten, des Gewichts
und der Nutzung anhand einer Entscheidungsmatrix iiberprift.
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1. Introduction

The deterministic optimization of statically indeterminate
reinforced concrete or steel structures of non-linear behaviour
has been worked out in detsail e.g. [1, 2, 3]. In contrast to this
in the field of the stochastic frame optimization a great number
of problems are left insolved.

It is well known [Ag that the failure probability of static-
ally indeterminate structures is lower than that of statically
determinate ones. This is due to the fact that in the semiproba-
listic design used almost all over the world, the failure proba-
bility is associated with one critical cross section /elementary
beam length/ only. In reality, the failure of a statically in-
determinate structure is not characterized with the failure of
one, but of several critical sections /elementary beam lengths/.
Obviously, the probability of the simultaneous failure of several
critical sections /elementary beam lengths/ is lower than the
failure probability of one critical section /elementary beam
length/ alone.

In this contribution the increase of the plastic collapse
load of a given probebility is investigated for statically in-
determinate linear plane structures on the basis of the investig-
ations carried out at the Hungarian Institute for Building Science

[5, 6, 7] .

2. The structural model

The model of the structures investigated is characterized

with the following conditions:

/a/ the plane structure is formed of linear bars;

/b/ only one-parametric concentrated static loads are taken
into account, with the restriction, that constant moment
length cannot appear;

/c/ the influence of shear and normal forces and longitudinal
deformations is neglected;

/d/ the collapse mechanism is determined by plastic hinges
due to bending only;

/e/ rigid-plastic material behaviour is assumed, i.e. the
rotations are concentrated in the plastic hinges and the
bars between the plastic hinges are rigid;

/f/ the critical elementary bar lengths /hereinafter referréd
to as critical sections/ at which, in cese of concentrated
loads, plastic hinges can be formed are the discontinuity
points of the functions or the first derivatives of the
bending moments or those of the plastic moment capacities;

/g/ all the quantities influencing collapse load are assumed
deterministic but the bending moment capacity is assumed
random variable with infinitely divisible distribution
function (8] .
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As the consequence of conditions /c/ and /d/ the stability
problem is not investigated.

Condition /b/ regarding the lack of constant bending moment
lengths means that the position of the critical sections is de-
terministic. If constant bending moment lengths exist, the posi-
tion of the critical sections should be & random variable and
together with the moment capacity can be characterized with an
extremal distribution functiorionly.

In accordance with condition /g/ the distribution function
among others could be the normal or gamma-type distribution.

3. Formulation and solution of the problem

The problem is solved by the kinematic approach of the
plastic analysis to determins the smallest load factor in case
of which a collapse mechanism can be formed. For the solution
the so called Combinations of Iechanisms method was used in
which from a set of independent elementary mechanisms the real
collapse mechanism with the smallest load factor is determined
from the linear combination of these elementary mechanisms.
This method which is well known for the deterministic model
(9, 1, 2] was developed for the stochastic model. A related
economic problem was independently solved in [10] .

The problem for both models can be formulated as one of
mathematical progra:.ming, where the objective function is the

A load factor

A= Q*M -~ min /1/

and the constraints are the following system of linear
equations

%

*- ~
0= £ O f2l
te = 1 /3/
where @ ig the vector of the inelastic rotations
at 8 critical sections;
g

f 1is the matrix of the inelastic rotations of
the set of m independent elementary mecha-
nisms
and m = s-n, where n is the degree of
statical indeterminecy;

8 is the vector of external work, done by
loads during the formation of elementary
mechanisms;

t is the vector of constants of the linear

combinations forming critical collapse
mechanism.

The_vector of the inelastic rotetions was divided according
to (1, 2] as
0=0"-0" /4/

and the method was completed with the justification of the
uniqueness condition for /4/ in [6,7] as

+ =
i'eg=1 /5/
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where the symbol © is the so called logical product. The
justification showed for both the deterministic and the
stochastic model that the uniqueness condition /5/ is always
fulfilled automatically for the extrema of the objective
function. Consequently, this non linear cendition can be
neglected and the remaining constraints are linear.

The vector t can be written in the form

b=t -3 /6/

where 3’ is the new variable vector which in case of
subsequent t" will 2lways be non-negative,
1"
t 1is a constant vector.
Having /4/ and /6/ the objective function can be written
in the following form
A= M* . x > min /7/
(2s+m) ( 2s+m)

and the constraints will be replaced by the following system
of linear equations

/8/

* * \
A= I -I -8 b = -9
M*and M~ are vectors of the positive and negative plastic

moment capacities at the critical sections and
1 Oﬂd~£ are identity matrices of appropriate signs.

The plastic moment capacities for the deterministic model
are fixed values, but for the stochastic model they are random
variables of known distribution function. The combination of
these plastic moment capacities results in the collapse load
factor, which, consequently, will also be a random variable of
the same type of distribution function.

Any point of the distribution function of the collaepse load
factor i.e. the collapse load of a given probability can be de-
termined as follows.

It is well known [8] that any linear combination of random
variables with infinitely divisible distribution function will be
of the same type of distribution function. The mean value, the
standard deviation etc. of the resulting distribution can be
expressed knowing the mean values, standard deviation etc. of
the initial distribution and the combination coefficients as:

a= (@) M+ (@) W /9/

o2(3)-{{e7 o+ &) o /10/
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+ - 3 . y
where q and q are the variances of the respective plastic
- ~ moment capacities.

Assume according to [11] that the failure probability of a
structure will be p_=8,2.10"2. Knowing the distribution function
of A determine tha? value of A_, depending on vectors 8% and

© for which the probability of~occurence of the smallest X
will be less than the given p.. If u_ will be the gquantile p
of the standardized distributfon fungtion, then this :xs valSe
will be

Mg = D(2) uy +2 /11/

Using the previous expressions the value of Ag can be given as
function of rotation vectors as

Ag=Ug{x*Q x + M x /12/

where(l=<:qﬂ q‘) is a diagonal matrix, formed of vectors
T e e g'and q.

The minimum of this objective function, which in this way is
deterministic, will be the collapse load of the given probability
according to the stochastic model.

Ffor the deterministic model the objective function is linear
and for its solution the simplex method is appropriate. However,
for the stochastic model, the objective function is concave as
was shown in [E] . This type of problem, with linear constraint
can be solved by the cutting plane method [12] well suitable for
computer applications Bﬁ] "

4, Practical application of the method

The effectiveness of the more exact stochastic model was chedked
on some practical examples of different parameters.

The deterministic and stochastic models can be compared by
prescribing similar failure probabilities for critical sections
using the deterministic model /p./ and for the whole structure
using the stochastic model /p_/ and determining how much the load
bearing capacity computed accgrding to the deterministic model
will be exceeded by the one computed according to the stochastic
model.,

It was proved [7] that for this condition the deterministic
load bearing capacity will be a2 lower bound solution of the sto-
chastic load bearing capacity. In [}, 7] two simple upper bound
solutions were also given.

Simple one span, one storey frames wvere analysed in case of

7 loading schemes, consisting of vertical and horizontal con-
centrated loads. The possible distributed loads were modelled by
a system consisting of an odd number of concentrated loads,

The distribution function of the plastic moment capacities

of the critical sections was assumed to be of normal distribution.

The span /!l / to height /h/ ratio was assumed as L|/h=2,4,1/2.
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The assumed ratios of the plastic moment capacities of the
girder /Ml/ and the column /Mh/ are shown in the Table 1.

Table 1
Plastic moment 1 2 3
capacity type
+ 3/2 1 3
I\il/Mh
_ 1 2/3 3/2

Signs + and - indicate moments, producing tension at the inner
and outer side, respectively, of the bars. The coefficient of
variation of the plastic moment capacities was assumed as
r=0.015, 0.05, 0.15 and 0.25. Of course for the latter and
small failure probabilities the assumed normal distribution
gives a considerable error. The convergence of the solution
was very slow in case of high coefficients of variations, too.

Altogether 30 frames were °1TTTTT’°
investigated using both the &P
deterministic and the stochastic el
model.
The results of the calculation 27 7
for the frame shown in Fig.l ey oy
are given in Table 2. 6§

Fig.l

Table 2
~._parameters plastic moment A Ty

\/h capacity type 9?0 = Py
number do

of example
s l.1l04 o553 1,9,107<

1o 2 1 1.051 0.782 |1.6.10°3
1.078 |0.663 |6,1.1073
13 4 1 1.026 | 0.887 | 4.1.10-4
1.116 | 0.500 | 3,0.2072
16 1/2 1 1.061 | 0.738 | 2.7.10"3
1,082 | 0,648 | 7.4.1073
22 2 3 1,032 | 0.862 | 5.8.10-4
where A 5o and D‘do are the collapse load factors for the

stochastic and for the deterministic
model, respectively,
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T is the coefficient of variation of the collapse load
factor for the frame,

"o is the coefficient of variation of the plastic moment
capacity at the critical sections,

P; is failure probability of the plastic moment capacity

at the critical sections, assuming the failure proba-
bility of the whole frame pj = 8,2.1072.

The two values in each box in Table 2 correspon: to the lower
and upper bound values after iterations consuming prefixed
computer time.

5. Discussion of the results

/a/ Fron the results it became clear, that a substantial
difference is observed between the load bearing capa-
city of the deterministic and the stochsstic struc-
tural models. This difference is given in Table 3.

Table 3
iy 0,015 0.05 0.15
A0 7 Mao 2-3 % 3-12 4 22 %

/b/ The different aneslyses according to the deterministic and
stochastic models give not only different collapse load
factors, but in some cases different failure mechanisms
too, as is shown in Fig.2.

A- 24P

A-6P J

-20 -8
! +20
-8 +Q +208
Z 1 Z. 2 7 % 7
g 4 £ : k b) C)
Fig.2
a - the frame scheme; b - failure mechanism according to
the deterministic model; ¢ - failure mechanism according

to the stochastic model.

/c/ The coefficients of variation of the collapse load factor
of the frame for the stochastic model are much lower than
for the deterministic model, a2s can be seen in Teble 2. The
ratio of r, /r was between 0,5 and o0,78.

/d/ There is another way of comparison of the results obtained
according to the two models. This is the determination of
the failure probaebilities of the plastic moment capacities
at the critical sections Py at s givenfailure probasbility

of the whole frame Po= 8,2.10'5 according to the stochastic
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model. These values of gi in case_of examples oi good convergence
were in the range of 107" - 2.,10"2, which is much higher than in
case of the deterministic model, where in each critical section
p; = 8,2.10-5 should be maintained.

6. Conclusions

The stochastic structural model for statically indeterminate
plane structures formed from linear bars gives considerably higher
load bearing capacity, lower coefficient of variation, higher
failure probability in each critical section, than the determin-
istic structural model. In some cases the failure mechanisms can
also be different for stochastic and deterministic models.

It is plamed to investigate distributions more realistic
than the normal one taking the elastic-plastic material behaviour
and the randomness of the critical semtion position into account.
Examples of more complicated structural schemes are planned to
be analysed by applying computational methods of better con-
vergence.,
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SUMMARY

The increase of the plastic collapse load of a given probability is
investigated for statically indeterminate linear plane structures,
assuming the plastic moment capacities at the critical section to be
random variables of infinitely divisible distribution. The Combinations
of Mechanisms method was developed for the stochastic structural model.
The mathematical and computational problems were solved and 30 simple
frame examples were investigated. The results showed higher plastic
collapse load, lower coefficient of variation and higher possible
critical section failure probabilities for the stochastic model as
compared to the deterministic one.

RESUME

L'augmentation de la charge plastique de rupture pour une probabilité
donnée est examinée pour des systémes de barres hyperstatiques en plan,
sous la condition que les capacités de moment plastique sont des variables
probables d'une distribution infiniment divisible. La "combinaison des
mécanismes" est développée pour le cas du modéle stochastique. Les problémes
mathématiques et d'ordinateur sont résolus et 30 portiques simples examinés.
Les résultats ont montré pour le modéle stochastique une charge de rupture
plastique élevée, un moindre coefficient de variation et une plus grande
probabilité de rupture possible comparé au modéle déterministique.

ZUSAMMENFASSUNG

Die Erhéhung der plastischen Bruchlast gegebener Wahrscheinlichkeit
wurde bei statisch unbestimmten ebenen Stabwerken unter der Bedingung
gepriift, dass die plastische Momenten-Tragfdhigkeit in den kritischen
Querschnitten eine unbegrenzt dividierbare Zufallsvariante ist. Die
Methode der "Kombination der Mechanismen" wurde im Fall eines stochasti-
schen Konstruktionsmodells weiterentwickelt. Mathematische und rechnungs-
technische Fragen wurden gelést und das Zahlenmaterial von 30 einfachen
Rahmen geprift. Die Ergebnisse zeigen eine hdhere plastische Bruchlast,
kleinere Variationskoeffiziente und grdssere mégliche Wahrscheinlichkeit
der Zerstdérung im Falle des stochastischen Modells gegeniber dem determi-
nistischen Modell.
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1. INTRODUCTION

The complexity and difficulty arised in the optimization procedure of a prac-
tical structural system are caused mainly by the various characteristic and numer-
ous design variables and constraints involved in a structural system. The metho-
dological expansion on the treatment of such design variables and constraints has
been expected for the efficient optimum design method of the structural systems.
This paper presents practical optimization methods intended to solve the problems
based on suboptimization of structural elements,

In the optimum design methods presented herein, suboptimization of the struc-
tural elements are performed first for the range of possible loadings and design
variables, then suboptimized relationships between an intensive design variable
and design constraints, objective function etc. are introduced. Using these rela-
tionships logical reductions in the number of design variables and constraints,
and introduction of material selection variables may be possible. Objective fun-
ction is also simplified, and geometrical and discrete variables can be treated
easily. The optimum solutions are found by sequential linear programming algorithm
and graphical approach. Examples of cost minimization problems of highway girders
and minimum weight design of trusses are presented. Using the methods direct opti-
mum design diagrams for highway girders have been established.

2. OPTIMUM DESIGN USING SUBOPTIMIZATION OF STRUCTURAL ELEMENTS AND SLP METHOD
2.1 Girder Problems

Problem Formation - The cost minimization problems of constant-depth highway
welded plate girders are solved by SDP method using suboptimization of girder
elements. The design variables are assumed as cross sectional dimensions, length,
#, and steel type, M, to be used for each girder segment. Design criteria imposed
in the steel girder section are constraints on allowable stresses, plate thick-
nesses for stability of the girder and minimum rigidities of vertical and hori-
zontal stiffeners which are taken from "Specifications for Steel Highway Bridges'.
(Ref. 13) Discrete constraints on commercial availability of plate thicknesses
are also considered.

Total cost of the girder, TCOST, is assumed to consist of material cost, CM,
fabrication cost, CFFx(1+FF), and welding cost, CWM + CWFx(1+FF), which are evalu-
ated with reference to "Tables of Prime Costs for Steel Highway Bridges'.(Ref. 14)

NH NM
TCOST = LCOSTy x f; = L[ CM+ CFEx(L+FF) + Ciii+ CWEx(1+FF) 1 x g (1
=1 =

in which FF = factor of indirect fabrication cost, CWM = cost for welding materi-
als, CWF = welding cost.

Suboptimization of Girder Elements - In the girder problems, behavior vari-
ables are determined by the arrangement of moment of inertia, I, and length, 4,
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of each girder segment and usually dimensions of a girder section are determined

by applied maximum bending moment.

For this reason suboptimization of the girder

sections are performed first for various combinations of steel types, M, web
heights, WH, and bending moments, BM, by taking into account all of the design

variables and constraints.

The mixed-discrete nonlinear optimization
problems of the girder sections may be solved
quite effectively by a modified branch and bound
algorithm and SLP method, where the order to
branch and bound of discrete variables is pre-
assigned according to their importance for the
design of girder section, and only two adjacent
discrete values to the continuous optimum solu-
tion are examined for their optimality, Macro
flow chart of the algorithm is shown in Fig. 1.
The results of suboptimization of girder ele-
ments are arranged in terms of moment of inertia
and I-RBM, I-COST, I-SDIM, RBM-GW relationships
for each steel type and web height are intro-
duced, where RBM = maximum resisting bending
moment, COST = minimum cost per unit length,
SDIM = optimum sectional dimensions, GW = girder
weight per unit length. I-RBM and I-COST rela-
tionships shown in Fig. 2 may be expressed as

RBM(I) = a-I + b, COST(I) = ¢-I + d (2)
The coefficients a, b, ¢ and d are all con-
stants for the particular range of I, M and WH.
Since flange plate thicknesses are increased
discretely as applied bending moment increases,
unit price of the steel plate and size of the
fillet welding are changed also discretely and
I-COST relationships are varied discontinuously
at such points. On the contrary I-RBM relation-
ships are varied linearly and may be expressed
by several linear equations accurately.

Simplification of Problem and Introduction
of Material Selection Variables - I-RBM rela-
tionships introduced by this method express the
allowable upper limit of resisting bending
moments of the girder sections to satisfy all of
the constraints. Minimum costs of the girder
sections with I, WH and M may be evaluated di-
rectly from related I-COST relationships. There-
fore by using these relationships I of each
girder element may be considered as a new design
variable instead of all of the sectional dimen-
sions if web height is preassigned as a design
parameter and BM < RBM relationship comes to a
new intensive constraint in place of all of the
restrictions, This reduction in the number of

INPUT DATA

DESIGN VARlAELES‘,
X =[Xe, - Xad

SLP SUBROUTINE
CONTINUOUS VARIABLES= X1,X¢
CONSTANT— Xi

OPTIMUM SOLUTIUN

X‘ X """.X
x" Ex: .xﬁ'

s X:(
integer or discrete
value ?

[ x=x-~# Drop X3 from Xz

and add it to Xi

=i+

SLP SLP
SUBROUTINE SUBROUTINE
[op. soLuTion (1)) [oP. SoLuTIOon (2)

Determine Xy

PRINT FINAL RESULT

Fig. 1 Macro Flow Chart of Modified Branch and Bound Method
with SLP Subroutine
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Fig. 2 [I-RBM, I-COST Relationships for Girders
with Web Height = 1700 mm

design variables and constraints to be considered simultaneously gives signifi-
cant advantages to solve complex structural optimization problems, such as sim-
plification of the problem formulation and evaluation of the sensitivities,
reduction of the core size and computation time, improvement of the convergency
to the optimum solution. Furthermore the differences of values between two
material types at a value of I in the I-RBM and I-COST relationships may be
considered as the partial derivatives with respect to the design variable for
selecting optimum steel type to be used for each girder element.(Fig. 2) The
material selection variables M are introduced based on this concept, which
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consist of MP and MM, The former are provided for selection of the stronger steel
type and the latter are for the weaker. MP and MM are treated as independent con-
tinuous variables same as I and 2.

Optimization by SLP Method - The girder is analysed by the displacement
method and the behavior variables and their partial derivatives with respect to
I, 2, M are evaluated by using the influence line analysis. Partial derivatives
of RBM and COST with respect to I, £, M are also evaluated from related I-RBM
and I-COST relationships. The nonlinear optimum design problem is approximated
with a linear programming problem by the first order terms of Taylor series ex-
pansion and an improved solution is determined by Simplex algorithm. Adaptive
move limit constraints on the changes of design variables are also added to en-
sure the convergency to optimum solution. Since the material selection variables
are assumed here as continuous variables, which are modified to the nearest dis-
crete steel types at every iteration of analysis. If a solution comes closely to
the optimum solution, all steel types are fixed as most profitable and material
selection variables are eliminated from a set of the design variables. Then the
problem is reanalysed until optimum solution is obtained. The optimum sectional
dimensions for each girder element may be decided directly from the related
I-SDIM relationships.

Examples - The method has been applied to many cases of simple span, 2~ 3-
span continuous constant-depth highway girders and three examples are presented
in Table 1 in which the solutions are compared with the results by graphical
approach described later. In Table 1 BW = bridge width, SL = span length, WH =
web height, P, = a concentrated live

load, q, = uniformly distributed live Table 1 Optimum Solutions by SLP Method and Graphical Method
load, q, = distributed dead load which Seq] (ﬂp Method GmmﬁulM?Md Design Condition
r : : No.|L (em) [T (em*) [M*[L (cm) [ I (cm*) [M"| BW=8.00 m
differs with each girder segment, but [ 1] 2%6.7 (1389224 [ 4T| 293.7 [ 1376687 41| SL= 30.0 m
averaged value in the girder is shown Z| 2| 701.2 (1507252 | 58 | 710.0 | 1520473 | 58 | WH= 200  cm
. o 3 11500.0 [2113595 | 58 | 1500.0 | 2113532 | 58 | Pa= 17.990 t
in the table. ' [Min.TCOST | 1643675 VEN 16436 %vzn; q.= 1.259 t/m
. —|_CPU TIME 50~200(sec 10~ sec qq= 2.310 t/m
Approximate convergency to the TeoF Tter T 520 ¢ &

{mum : s : i T] 323.1| 779103 50| 285.0] 697606 | 50 =B5.00 m
optlmu. so%utlo? including material | | 2| 725.7 | 1430407 | 50| 618.8 | 1288148 | 50| SL= 30.0 m
selection is quite well by using move | 3]1997.0 | 1695642 | 50| 1962.0 | 1712473 | 50 | WH= 170 cm
1imi o b z =| 4 |2683.0,] 1085665 | 50 | 2702.2 | 1136303 | 50 | p,= 17.955 t/m

imit constraints, but computation 5| 5 [ 3000.07 1429441 | 58| 3000.0 Mazm)ss Q= 1.257 t/m
. ) ] - Min.TCOST | 2891515(YEN 2893060 (YEN q,= 2.300 t/m
time and number of iteration ?f re ™ ChUTiME T 60~100(sec = Tl !
analysis required for the optimum | {No.of Tter,[ 20-25 5~ 8
. 1| 248.8 | 888658 | 41| 233.8 | 8465024 =8.00 m
solution are increased so much as 2| 559.9 | 1250520 | 50 | 546.5 1238921 |50 | BL= 90.0 m
- : . | 3(1850.0 | 1700003 | 50 | 1805.6 | 1723537 | 50 [ WH= 130  cm
number of design variables and con- § | 4 [2486.0,/1217784 | 50| 2501.5] 1217830 | 50 | Span Ratio =
: : : =| 5 |2812.57| 2180159 | 50 | 2812.57| 2128666 | 50| 1 : 1.2 : 1
straints increases as seen 1n Tablg 1. 2| 6 [3153.0 [ 2180159 | 50 | 3153.5 | 2128666 | 50 | p,= 18.042 t
Comparisons of several solutions with | 7 13841.0 (1159787 | 50 | 3898.8 [ 1112415 | 50 | p,,= 17.747 t
X X . . ™| 8 14500.0 | 1486529 | 50 | 4500.0 | 1529952 [ 50 | q,= 1.263 t/m
different initial inputs should be Min, TCOST 4mm3(uu 4224079 nﬂ Q= 1.242 t/m
. . CPU TIME |300-~450(sec 10~ 15 (sec q,= 2.030 t/m
made for confirmation of the global e oF Tter T 25= 35 =T qve 2.031 t/m
optimum solution. .::Cakulated by FACOM 230-28 * 41 = ss41 (JIS) Steel
Calculated by HITAC 8800/8700 50 = SM50 (JIS) Steel
2.2 TRUSS PROBLEMS (s) indicats intermediate support 58 = SM58 EJIS Steel

The truss problems are solved as
weight minimization problems and cross sectional dimensions of the member and
coordinates of the panel points are considered as design variables. The steel
is fixed as SS41 (JIS) only.

Suboptimization of member elements - In the truss problems, suboptimiza-
tion of the compression and tension members for many combinations of applied
loads and member lengths are treated first, then sectional area A - maximum
allowable stress §,, A - optimum sectional dimensions, SDIM, relationships for
various member lengths are introduced., A-6, Relationships at any member length
may closely be approximated as

Ga = {a(A-b)}h‘+ C or Ga=4d.A+ e (3)

in which a, b, ¢, d, e and n are all constants related to the member length and
A. A- 6,relationships express the allowable upper limits of the stresses of
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members with A which are guaranteed to satisfy
all of the constraints prescribed to the member
design.

By using A-0, relationships all design
variables and constraints imposed in the member
design can be replaced only by A and 0<0, rela-
tionships respectively, moreover the deriva-
tives of 0, with respect to the geometry vari-
ables Xg can be evaluated simply as

90ai _ ACai

0Xy; — DXy, “
in which A0,; represents the change in 0, at
i-th member due to the change in i-th member
length. The problem is approximated as a linear
programming problem and reanalyzed until opti-
mum solution is obtained.

() x 10*(cM?)

TOTAL VOLUME

[

(cM?)

P
o
w

Examples - An example of eleven bar truss
subjected to the moving loads P=50 ton, q,=4
ton/m, and the dead load q,=2 ton/m is shown in -
Fig. 3. The panel length is fixed as 5 m. Sec-
tional areas of member 1 to 6 and coordinates
of panel point 1 and 2, Y,, Y,, are assumed as e LG 4
the design variables and only 0<0, constraints . i Ik
of the members are taken into account. The 20 P S R R R w = S Y
initial Y, and Y, are assumed as 500 cm, how- @h 3 5 7 9 n 13 a5 1
ever they are reduced finally to 340 cm and 483 NO. OF ITERATIOM
cm respectively. Furthermore, members 1, 2, 3, Fig. 3 11-Bar Truss, Moving Loads, 6<e Constraints
4 and 6 are fully stressed, while sectional
area of member 5 is determined by the maximum slenderness ratio requirement. The
minimum total volume obtained is 25.56 x 10*em® and maximum live loads displace-
ment is 1.17 cm at panel point 5.

In the case maximum live loads displacements of the panel points are limit-
ed to 1.0 cm, the optimum solution is found such that the sectional areas A; are
29.58, 45.45, 66,71, 45.13, 39.30, 62.90(cm?®) respectively and Y, = 428 ¢m, Y, =
549 cm with the total volume 27.53 x 10%cm®. The total volume increases 7.7% more
than previous solution and only member 3 and 6 are fully stressed.

A

30
@[ s
\___"—\

Topological Member Arrangement - If the constraints on lower limits of
member sections are not imposed, sectional areas of unnecessary members come to
0 cm?. Then optimum topological member arrangement of truss may also be deter-
mined. Several simple examples on this problem are shown in Ref. 2).

3. GRAPHICAL OPTIMIZATION OF HIGHWAY GIRDERS BASED ON SUBOPTIMIZATION OF
GIRDER ELEMENTS

SLP method has been used successfully on a wide range of large and complex
structural optimization problems, however in the optimization procedures partial
derivatives of the behavior variables and objective function with respect to the
design variables should be evaluated at every iteration of reanalysis. Therefore
as depicted in the previous girder examples computation time is so much increased
as number of design variables increases and more efficient methods to solve the
large optimization problems are expected. Graphical optimization method, an ap-
proximate approach based on suboptimization of girder elements, has been develop-
ed for solving such problems and applied to the cost minimization girder problems.

Design Procedure by Graphical Method - In the graphical approach, a minimum
cost diagram related to the initial girder arrangement is developed first by
using maximum bending moment diagram of the girder and I-RBM, I-COST relation-
ships. Then improvement of I, £ and M of each girder segment is performed by
investigation of the change in minimum cost at the adjoining two segments due
to a change of segment length, A%. In case of Fig. 4, the change of minimum cost
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of the girder, ATCOST;, due to a change of AL,
can be evaluated as
ATCOST , = ACOST,- &~ ACOST; A%,  (5)

If ATCOST, is positive, AL; may proceed to -Af; ==
direction. The improvement due to A%; may be | | orioinal Min. coST Disgram
finished when ATCOST; converges to zero them next 15 P S, SE—
improvement on % ,,,is performed. After the im- N /
provement of all segments is accomplished, the
girder is reanalyzed with new I, £ and M and the i
procedure is repeated until a converged solution aaaniééﬁi%?-zw;
will be obtained. Three highway girder examples acosTy P V2
are given in Table 1.

In this approach, attention is paid only to

COST;

L
-
E

_ COSTie1

e

Fig. 4 The Change of TCOST due to &Li

(X10°YEN)

the change of objective function in order to im- 300

prove the design variables of a girder segment, t SR10GE WIDTH = 8.00 M
and effects to the over all behavior variables L e
caused by changes of the design variables are 298 [ {if;iﬁqfqiiff%

evaluated by reanalysis of the girder. In this

sense graphical method is more approximate ap-

proach than SLP method, but convergency to the

global optimum solution by this method is quite
well as seen in Table 1. Computation times re-

quired for optimum solution are reduced notably
as 3~5 sec., and 10~15 sec. on HITAC 8800/8700
for 2 and 3-span continuous girder problems re-
spectively, which are 1/12~1/30 cpu. time com- i
pared with SLP method. Larger reduction in cpu. 565

time is made as number of variables and con- [
straints increases.

TCOST
~n
3

292

o o N

1
T
40.
0.

Optimum Web Height - To decide the optimum T T
web height at each span length, optimum solutions 160 180 200 220 240
for several web heights should be compared with HH e}
each other. Fig. 5 shows an example for 2-span Fig. 5 WH-TCOST, §/Smt Relationships for 2-Span

“ - . i i = , BW = 8.00
continuous girder with span length 30 m. As seen Gencingas KTrtes SE Sl = ")

clearly in the figure, several local minimum so-

lutions exist on web heights and the girder with WH=170 cm gives absolutely mini-
mum cost in this example. For this reason, web height should be treated as a
parametric variable in cost minimization highway girder problems.

Optimum Design Diagrams for Highway Girder Bridges - For the purpose of
direct optimum design or planning of 1~ 3-span constant-depth highway welded
plate girders, various optimum design diagrams and tables such as span length -
minimum total cost, optimum WH, I, %, M,and I - SDIM relationships for the gird-
ers with nonuniform cross sections, and bending moment - minimum cost, optimum WH,
I, M, GW diagrams for the girders with uniform cross sections have been es-
tablished by using the graphical method, and they will be published soon.®%®

The optimum design diagrams mentioned above may be utilized as one of the
suboptimized structural size design programs in a general purpose system program
for highway bridges.

4, CONCLUSIONS

Practical structural optimization methods based on suboptimization of struc-
tural elements, SLP and graphical method are presented.

An element size optimization for minimum cost is formulated as a mixed-dis-
crete nonlinear programming problem, and a modified branch and bound algorithm
with SLP can be solved the problem effectively. Cpu. time was 1.0 sec. on FACOM
230-75 required for an optimum solution of the girder sectiom.

By using the relationships obtained from suboptimization of structural ele-
ments, structural optimization problems may be simplified and be solved effective-
ly. Moreover material selection variables and graphical optimization algorithm

LYy
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have been developed on the basis of this design concepts.

SLP method may be utilized successfully on a wide range of large and complex
structural optimization problems and its approximate convergency to the optimum
solution is quite well, however computation time and number of iteration of re-
analysis increases so much as design variables and constraints increases.

Graphical optimization method is a practical and efficient design method
for the cost minimization problems of highway girders. Formation of the computer
program is simple, and excellent convergency to the global optimum solution and
existence of several local minima on web height have been confirmed. Design dia-
grams prepared for direct cost minimum design or planning of highway girders have
been established by this method. The design diagrams may be utilized as one of
the suboptimized structural size design data in a general purpose system program
for highway bridges.
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SUMMARY - The optimum design concepts based on suboptimization of struc-

tural elements are presented. Large scale and complex structural
cost minimization problems may be simplified, and treatments of various types
of design variables and constraints such as sizing, material selecticn, geo-
metry, continuous, discrete come to ease by this concept . SLP method and
graphical optimization method are used effectively to find the minimum cost
solutions of highway girder and truss examples.

RESUME - Les concepts de l'optimisation basés sur la suboptimisation d'élé-

ments structuraux sont présentés. Cette suboptimisation permet de
simplifier des problémes de minimisation de colt de structures complexes de
grande dimension; elle facilite le traitement de variables de projet, de
contraintes de types variés telles que dimensionnement, sélection de matéri-
aux, géométrie, continu, discret,... La méthode "SLP" et la méthode d'opti-
misation graphigue s'emploient pour trouver efficacement des solutions per-
mettant de construire, au colit minimum, des ponts et des charpentes.

ZUSAMMENFASSUNG - Das Konzept des optimierten Entwurfes aufgrund der Sub-
optimierung struktureller Elemente wird dargestellt. Durch dieses Konzept
lassen sich die Probleme der Kostenminimierung vereinfachen sowie die Behand-
lung verschiedener Arten wvon Entwurfsvariablen und Randbedingungen, wie z.B.
Abmessungen, Materialwahl, Geometrie, stetige und unstetige Formen, Uberdies
erleichtern. Die SLP-Methode und die Methcde graphischer Optimierung werden
verwendet, um die effektiven Minimalkosten eines Brickentr&gers une eines
Fachwerks zu erhalten.
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Optimierungsprobleme beim Projektieren von Stahlbetonbriicken
Optimization Problems in the Design of Concrete Bridges

Problemes d’optimisation dans les projets de ponts en béton armé

B.J. ULIZKIJ J.M. JEGORUSCHKIN
Dr. d. techn. Wissensch., Professor Kand. d. techn. Wissensch.
Z.N.1.1.S., Ministerium fir Verkehrsbauwesen der UdSSR
Moskau, UdSSR

Die Aufgabe der Automatisierung des Projektierungsablaufs im
Stahlbetonbriickenbau kann als Aufgabe der mathematischen Programmierung
betrachtet werden, Es soll der Vektor ( eingeordneter Briickenparameter-—
Satz) ermittelt werden, der dem gegebenen System von Einschridnkungen
entspreche und eine Funktion des Zweckes minimisierte,

Der Optimjsierungsvorgang umfasst den Projektierungsablauf die
Varianteneinschatzung und die Auswahl von optimalen Lo't'su.ngen.

Eine der wichtigsten und aufwendigsten Stufen, die den grossten
Teil der Maschinenzeit in Anspruch nimmt ist die Berechnung unter
Beriicksichtigung der Raumwirkung der Konstruktion, der Einfliisse der
plastischen Verformungen, der dynamischen Einwirkungen der Belastungen,

Da bei der Auswahl der optimalen LiGsungen eine grosse Anzahl von
Varianten zu untersuchen und zu analysieren war, waren ausfiihrliche
( aufwendige) Berechnungsverfahren unter Anwendung von EDV auch
in der Stufe des Skizzenprojektierens schwer zu verwirklichen sind,

Man muss wenig aufwendige Berechnungsverfahren mit geniigender Gena-

uigkeit schaffen,
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Allgemeine Verfahren flir vereinfachte Berechnungen, die auf grobanna-
hrender Idealisierung des Berechnungsschemas gegriundet sind, fiuhren meist
zu wesentlichen Fehlern, was mit sich irrationelle Verteilung des Materi-
als in der Konstruktion bringt,

Es wird eine prinzipiell neue Auffassung der Ausarbaitung neuer
vereifachten, Berechnungsverfahren empfohlen, welches auf der mathema-
tischen Verarbeitung des gewonnenen Resultats von den in den EDV
durchgefiihrten strengen raumlichen Berechnungen basiert [ 1] %

Gegenwartig sind Algorithmus und Programm (SPIKA) fir einen
vollen Zyklus der raumlichen Berechnung der Plattenbalkenkonstruktionen
ausgearbeitet, die die konstruktion Einflussflachen fiir verschiedene Span—
nungen und Verschiebungen, ihre Belastungen an den ungunstigsten Stellen,
die Ermittlung des Exiremums der rechnerischen und massgebenden Werte
fur Spannungen und Verschiebungen einschliessen,

Das Programm SPI KA fiir raumliche Berechnung von Plattenkons—
truktionen ist mehrmals beim Projektieren von Bricken und anderen
Bauwerken verwendet,

Indem man umfangreiche bel der raumlichen Berechnung dev Bric—
kenuberbauten gewonnene Ergebnisse ausnutzt, kann man einfache mathe~
matiche Modelle zusammenstellen, welche auch Abhangigkeiten zwischen
Form, Anordnung, Grosse der Bauteile und verformtem - gespanntem
Zustand der Konstruktion unter standiger, unglinstiger Verkehrslas sowie
anderen rechnerischen Belastungen widerspiegelt. Zur Herstellung solcher
mathematischen Modelle ist die Anlage der Regressionsanalyse wverwendet,

Die Verfahren der Regressionsanalyse sind auf der Aufwendung
einer grossen Anzahl von gespeicherten statischen Angaben begrilindet,

die aus Versuch, langzeitiger Beobachtung des Verhaltens der tatsach~
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lichen Konstruktion oder aus ubrigen Quellen erhalten sind., In gegebenen
Falle ist die Information als Ergebnis mehrmals durchgefiihrter raumlicher
Berechnungen gespeichert.

Das mathematische Modell des raumlichen Verhaltens der Konstruke
tion vom vorgegebenen Schema stellt eine Formel dar, wo die gesuchte
Extremspannung oder ~ verschiebung als von den geometrischen Haupt-~
parametern der Konstruktion und von den physisch ~ mechanischen
Eigenschaften des Materials und der Belastung abhdngige Funktion dar—
gestellt ist,

Die Extremspannung oder - wverschiebung in einem Bauteil der

Plattenbalkenkonstruktion einer frei gelagerter Briicke kann als Funktion

P="f(E,G,BhD‘L,K,M,H,CB7X.,Y) (1)

ausgedruckt werden
wobei:
8 -~ Spannweite,
G ~ Durchfahrtsprofil,
-~ geometrische Parameter der Trédger ( ( = 1, 2, oy k),
, = geometrische Parameter von Platten,
K - Anzahl von Tragern,
M - physisch~-mechanische Kennwerte vom Material,
H ~ Belastungsangaben,
CB—' Information uber Anordnung des Briickeniberbaues,

x'y--' Koordinaten des Uberbauguerschnitts,

Die Formeln wie (1) lassen den Einfluss von mehreren Parametern
auf den gespannten-verformten Zustand der Konstruktion analysieren,

Praktisch Ist es zweckméssiger fiir gestellte Aufgaben nur einen Teil



172 llb — OPTIMIERUNGSPROBLEME BEIM PROJEKTIEREN VON STAHLBETONBRUCKEN

von Parametern der Funktion (1) zu beriicksichtigen, die anderen werden

festgestellt,
Bei der Konstruktion der mathematischen Modelle sind flir die EDV

bestimmte Programme der Regressionsanalyse verwendet, Mit diesen

Programmen kann man ein polynomiales Modell gegebenen Grades Zusammen=

stellen;

P =ﬁo+z Bixp+2 ﬁ’tjxtxj"'---:

1£i6N 1% sz&n

wobel
ﬁl— ~ unbekannte Faktoren,

xl. ~ zuberiicksichtigende Parameter,

n - #Anzahl von Parameter,
Werden wir die einfachsten Beispiele fiir Konstruktion der Verhdltnisse

wie (1) betrachten,
1, Der frei gelagerte Uberbau ohne Querscheiben von Autobahre

bricken aus Stahlbeton mit gleichen Tragern,
Beim angegebenen Durchfahrtsprofil kann das rechnerische Biege~

moment von der Verkehrslast in Haupttrdgern des Uberbaues mit der Formel

MB=—-A,+-£—(A2+A3£+A41:) (2)

ermittelt,

wobei
M ~ rechnerischer Extrembiegemoment von der Verkeh-

rslast (es werden Lasten HK~80, H~30 und Tré&ger
fur Pussgdngerstege unter Berlcksichtisung des

Uberlastungsfaktors und des dynamischen Faktors be-

trachtet),

E -~ Spannweite,
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K, - Anzahl von Haupttragern,
t -~ Lange der Fussgangerauskragungery
Al-— uhbekannte Keeffizienten,

2. Der freigelagerte Platteniuberbau,

Beim angegebenen Durchfahrtsprofil kbnnen Biegemomente mit den

Formeln:

M, =(B,+B,L)E+ B, %Ez"'(B‘! Q,n"'BsPt)ezs
My = (Cot CoB) 8+ Cyq o LH(CagntCsRE

ermittelt,
wobei
M ’My ~ rechnerische extremale Quer -~ und Langsbiegemomente;
qc - Eigengewicht,
qn -~ Belastung aus Fahrbahndecke,
Pt ~Gewicht der Fussgangerstege,
B“cl = unbekannte Koeffizienten,
Ai. B (. - Koeffizienten sind mittels mathematischen Bearbeitung
1 Aad T3

der gewonnenen Ergebnisse der raumlichen Berechnung

flr verschiedene Durchfahrtsprofile gewonnen, Analogisch

sind auch Abhédngigkeiten zur Ermitllung von anderen
Arten der Spannungen und Verschiebungen erhalten,
Die Genauigkeit der mittels Regressionsanalyse gewonnenen Formeln
héangt wesentlich vom Umfang der gespeicherten Information ab,Daraufhin,
sind Resultate aller nach Programm SPIKA durchgefihrten raumlichen
Berechnungen im langzeitlichen Speicher von EDV fiir nachfolgende mathew
matische Verarbeitung gesammelt,
Die Formeln wie (2,3) finden ihren Einsatz in der Anfangsstufe des
Projékiierens, wenn alle Varianten untersucht werden, alle Kombinationen

und Ausmasse von Konstruktionsbautellen vorgesehen werden und mehr—
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malige wiederholte Berechnungen notig sinde.
Die Anwendung solcher Formeln beim optimalen Projektieren wvon
Brickenilberbauten lasst stark die Wirksamkeit des Suchens nach opti-

malen Losungen steigern,

1, Ulizkij BeJs, Potapkin A.A.. Rudenko W.,L, Ssacharowa LD.,
Jegoruschkin J,M, "Raumliche Briickenberechnungen (unter Anwendung

von EDV)! M, Verkehrsverlag, 1967,

ZUSAMMENFASSUNG

Es werden einige Optimierungsprobleme beim Projektieren von Stahl-
betonbricken mitgeteilt, die auf einer neuen Auffassung der Ermittlung
des Spannungs—- und Formdnderungszustandes der Brlickenkonstruktion
basieren. Dabei erzielt man reduzierten Berechnungsaufwand und erhdéhte
Wirksamkeit beim Suchen nach optimalen Ldsungen.

SUMMARY

Some optimization problems in the design of concrete bridges are solved
with a new approach for predicting stress-strain state of bridges. This
method reduces to a considerable degree time consuming calculations and
increases the efficiency of search of optimal solution.

RESUME

Quelques problémes d'optimisation sont résolus grdce & une nouvelle
conception de 1l'état contraintes-déformations des ponts. Cette méthode
permet une diminution importante du temps de calcul et une augmentation
d'efficacité de l'optimisation.
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Structural Optimization through Sensitivity Coefficients
Optimisation des structures au moyen des coefficients de sensitivité

Optimierung der Tragwerke mittels Sensitivitatskoeffizienten

C.S. GURUJEE
Lecturer, Civil Engineering Department
Indian Institute of Technology
Bombay, India

l. INTRODUCTION

There are basically two approaches to the solution of a
structural optimization problem. In one approach which is follow-
ed by Schmit [1] and by Schmit and Fox [2], both kinds of variables
namely the design variables and the behaviour variables are treat-
ed as unknowns in the programming problem. In the other approach
which is followed by Romstadt and Wang [3] and by Vanderplaats and
Moses [4] the solution procedure consists of a series of analysis -
programming cycles. In each programming stage the most recent set
of behaviour variables is treated as known and the design variables
are treated as unknowns. The advantage of the first approach is
that the programming problem is to be solved only once. The size
of the programming problem depends on the number of nodes, the
number of members and the number of load conditions. Generally
for any practical case the size of the problem becomes almost un-
manageable. In the second approach though the programming problem
has to be solved many times the size of the problem is smaller.
Hence the second approach is preferred to the first.

In the present paper the second approach is followed but the
solution procedure consists mostly of solving a series of programm-
ing problems. It is observed that in the conventional approach
(e.ge that followed by Romstadt and Wang [3]) the time required
for the solution of a problem increases rapidly with the increase
in the statical indeterminancy of the structure. In such cases
the proposed approach is more economical.

2, THEORETICAL ANALYSIS

2.1 Formulation and solution

Formulation of the structural optimization problem as a pro-
gramming problem has been very well brought out by several authors
such as Vanderplaats and Moses [4] or by Brown and Ang [5]. It is
therefore assumed here that a structural optimization problem can
be formulated as the following non-linear programming problem.

Minimize F(X) }

(1)
Subject to Gj(X,Y) < 0 j=1,eeesm
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where X is a vector of design variables and Y is a vector of
behaviour variables. The objective function can be any function
which can be expressed as a function of the design variables.
Usually weight of the structure is treated as the objective func-
tion. The constraints can be any inequalities which have to be
satisfied by the structure such as stress limitations, size limita-
tions or the deflection limitations. In this formulation no
distinction is made between the constraints and the restraints.

The optimization process (see fig. 1) is started with an ini-
tial set of design variables, Xpe. The analysis of the structure
(by stiffness matrix method) is carried out to give the associated
set of behaviour variables Y,. After this analysis is over it is
found out what is the change in each behaviour variagble due to a
100 per cent change in each of the design variables. This informa-
tion is stored in a matrix called sensitivity matrix which is
denoted by CHe A general element CHj4 of this matrix stands for
the change in ith behaviour variable aue to a wnit change in jth
design variable. The structural optimization problem is then
formulated in terms of Xp and Yo to yield new set of design vari-
ables X, (see block A). The corresponding set of behaviour vari-
ables is now found from the matrix equation

Yl = Y0+ CHX (Xo-Xo) (see block B)

The next programming cycle then makes use of this vector Y; to
yield new solution of the design variables Xj. The process thus
continues till the difference between the design vectors obtained
from two successive programming cycles is fournd to be smaller than
a predetermined vector €. It is clear that the sensitivity co-
efficients calculated for the initial design will not be useful if
the structure is statically indeterminate to a high degree and the
original design has undergone a lot of change. In that case the
sensitivity coefficients are recalculated (see block C).

The optimization of the structure is thus consisting of mostly
the solution of a series of programming problems.

2.2 Calculation of the Sensitivity Coefficients

With the initial set of design variables the stiffness matrix
of the structure is assembled in half-band form. If one design
parameter is changed by 100 per cent the new stiffness matrix is
obtained by recomputing the element stiffness matrix only for one
member and then making the appropriate changes in the overall
stiffness matrix. Knowing the original set of displacements, the
external forces and the new stiffness matrix; new displacements
are computed using Jacobi iteration [6]. With new nodal displace-
ments known the new set of behaviour variables and hence the change
in each of them due to 100 per cent change in one design wvariable
is computed. These changes when divided by the original wvalue of
the design variables give one column of the sensitivity matrix.
Before computing the next colummn the stiffness matrix is reduced
to the original matrix.

2.3 Solution of the Programming Problem
The programming problem stated in (1) is solved by using
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exterior penalty function [6] method which consists of solving a
sequence of unconstrained minimization problem:

Min $(X,Y,r) = F(X)+r <Gj>2

for increasing values of r which is called penalty. The uncon-
strained minimization method which is found to be most efficient

is the Davidson-Fletcher-Powell [6] method of variable metric and
the unidirectional approach that is used is the direct root method.
If the number of components in X is large the programming problem
given in (1) may not lead to convergence. Hence the vector X is
split into subvectors Xl’ Xz, ..o etce where each of the subvec-

tors is of a much smaller dimensions than the original vector X [7]
The solution of the programming problem (1) then consists of solv-
ing a series of smaller programming problems where only one of the
subvectors such as X,;, Xp are treated as unknowns . The use of
exterior penalty function is found to be better when solving such
partitioned problems.

3. COMPUTER PROGRAMMING AND NUMERICAL WORK

A general computer program based on the proposed method is
written separately for trusses and for frames. The program is
written in FPRTRAN IV language and is compatible with IBM 360,
CDC 3600, DEC 10 and EC 1030 (called Ryad in some countries) com-
puter systems. Several truss and frame problems for minimum
weight design have been solved.

4, CONCLUSIONS

A general optimization algorithm for any structural problem
has been suggested.
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SUMMARY

Structural optimization problem is generally solved as a sequence of
analysis-programming cycles. In this paper it is shown how this problem
can be treated as a series of programming problems. The relation between
the changes in the behaviour variables due to a specified change in each
of the design variables is found and stored in the form of "Sensitivity
Matrix". This matrix directly gives the solution corresponding to a given
set of design variables. The availability of this matrix dispenses with
the frequent analysis.

RESUME

Le probléme d'optimisation des structures est résolu généralement par
une série de cycles dans un programme de calcul. On montre comment ce
probléme peut &tre traité par une série de problémes de programmation.
La relation entre les changements des variables de comportement et ceux
de 1l'une quelcongue des variables du projet est determinée et compilée
sous forme de "matrice de sensitivité". Cette matrice donne directement
la solution correspondant & un ensemble donné de variables du projet.

On peut donc é€liminer avec cette matrice de nombreux calculs.

ZUSAMMENFASSUNG

Das Problem der Optimierung von Strukturen wird allgemein als eine Reihe
von analytischen Programmierungszyklen gelést. Im vorgelegten Beitrag wird
gezeigt, wie die allgemeine Methode der Optimierung als eine Reihe von
Programmierungsproblemen behandelt werden kann. Die Beziehungen zwischen den
Verhaltensvariablen und den Entwurfsvariablen werden hergestellt und als
"Sensitivitdtsmatrix" gespeichert. Aus dieser Matrix ergibt sich direkt die
der gegebenen Gruppe von Entwurfsvariablen entsprechende L&sung. Die
Benlitzung dieser Matrix vermeidet eine Wiederholung der Berechnung.
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Earthquake- Resistant Design of the Tower and Pier System of Suspension
Bridges
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Die Erdbebenbemessung des Systems von Pylon mit Sockel bei Hangebricken
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1. INTRODUCTION

Economical applications of mathematical programming methods in structural
optimization are limited to specific structures as mentioned in Introductory

1)

Report. In the case of structures with relatively simple and bulky dimensions,
the mathematical programming method could be applied efficiently even if the
structures are designed under relatively complicated design conditions. Dynam-
ic loading problems are not treated in Introductory Report, and loading condi-
tions appearing in optimal design have been mostly limited to the static ones.
Studies on aseismic design of long-span suspension bridges were carried
out for many years in Japan, and the results of investigations were published
as the official or individual reports. According to the studies on aseismic
design of the suspension bridges, design of the tower and the pier is very

important?) These parts of the bridge must be investigated as a system because
of the interaction of these parts during the earthquake. The tower and pier
system of suspension bridges involves rigid, massive, and large pier and
relatively flexible and slender tower, so that the system has very complicated

interaction?) The combination of the methods of mathematical programming and
dynamic structural analysis is in fact well suited to the aseismic design of
the tower and pier system of suspension bridges.

To formulate earthquake action for aseismic design, the method of response
spectrum is employed in the design codes of the long-span suspension bridges in
Japan. In this paper, the response spectrum method is mainly applied in the
dynamic analysis and design of the system. Another approach based on more
probabilistic concepts using power spectrum density of earthquake action and
random vibration theory is possible using design constraints for relisbility.

Some approximation conceptSB) are used to save the computing time and to
decrease the design variables in this paper.

2. THE STRUCTURAL SYSTEM

The system to be designed is the tower and pier system of the suspension
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bridges as shown in Fig.l, height hT of

the tower and hP of the pier are deter-

mined from the environmental attribute
of the bridge, and width bl of the pier h

is determined from geometrical relation
with the bridge width. The design var-
iables in global sense are, therefore, - — -

the longitudinal width b, of the pier h

2
and the stiffness of the tower. The
/77777
combination of these two variables Sl 7177777
induces very complicated dynamic prop- F—4 L‘;‘*4
2 b
erties of the system. 2 1

i System
3. DYNAMIC ANALYSIS OF THE SYSTEM Fig.1 Structural Syste

Analytical Model The analytical model of the tower and pier system of the
suspension bridge treated in this paper is shown in Fig.2. The tower is as-
sumed to be the lumped mass system, and the following assumptions are made:
(1) The foundation has elastic property.
(2) The reaction of the cable at the top of the tower is taken into account by
applying the equivalent axial thrust and using an equivalent spring for

the cable.

(3) The pier is assumed to be perfectly rigid
and to be a single-degree-of-freedom
capable of rocking motion.

Model of Earthquake Excitation Earthquake ex-
citation is represented by response acceleration
spectrum. In this study, the standard spectrum
as shown in Fig.3 is used which is authorized by
Honshu-Shikoku Connection Bridge Authority of
Japan. In this figure, the longitudinal axis
refers to be response magnification factor B, and
standard acceleration in this design is 180 gal.

Dynamic Response Analysis The equation of mo-
tion for this multi-degrees-of-freedom-system
can be written as:

(MI{FH+[c]{y + (K] {y}=-[M]{z}

: N . . Ve
where [M] is a mass matrix, [C] is a damping ma-

trix, [K] is a stiffness matrix, {y} is a dis- Fig.2 Analytical Model
placement vector, {z} is an earthquake accelera- ‘

tion vector. With the aid of modal matrix [®] and the generalized displacement
vector {q}, where {y}=[¢]{q}, then the equation of motion rewritten in the
following form assuming proportional damping.

. - . -~ 2
[T1{g}+ [ (2n w ) Ha+ [ (w, )"~ Hq}=-{P}
where w, refers to natural frequency, and hi is damping constant of i-th mode.

The maximum displacement of point Jj, y(J)

nax® ¢20 be evaluated by root mean

square method:
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s\ o0l a, 02 B
where Fi refers to the participa- 2.0 Upper Structures
tion factor of i-th mode, ¢§j) 1.0E
refers to the relative displacement E
of point j in i-th mode. TR is 0.5 ;SubStructures

obtained from response spectrum
given in Fig.3:

Caisson(h=0.1)

Concrete Pile(h=0.05

. >
Y max—PiZnax’% Steel Pile(h=0.02)

where % is the maximum earth- 0l L bl ! . A
max _ 0.1 0.5 d: 5 10

quake acceleration. natural period T (sec)

L. DESIGN MODEL Fig.3 Earthquake Excitation Model

Approximation Concepts of the Tower To save culculation time and to improve

reliability of solution, two design variables of the system are selected: One
is the moment of inertia of the tower, the other is the longitudinal width of
the pier. Other variables of the system are defined by approximation con-

3)

cepts’

Let I, A and Z refer to the moment of inertia, the ” X
cross sectional area and the section modulus respective- 1
ly, the empirical relation such as following may hold:

1
A=1.21%1%-33

7=0.55%10+ 12 X, X,

The moment of inertia of the tower can be varied along
the height in two ways: One is linearly varied; the
other is stepwise varied into two portions. These

design models are shown in Fig.lh. X3 X3

Foundation Model The modulus of elasticity of the Fig.l Design Model
foundation is denoted by E. In the result of the past

studies%) complicated dynamic phenomena due to the foundation condition, width
of the pier, and the rigidity of the tower were observed. In the cases where
two of the natural frequencies are very close, the coupled vibration of the
tower and pier occurs, and the structural systems of such cases should be

. . - 4 2
avoided. In this study, the modulus of elasticity ranges from 10*%10 +ton/m to
lSO*th ton/m2 taking into account wide variety of foundation conditions.
Damping Constant The damping constant is assumed to be 0.1 for the mode
where the vibration of the pier is predominant, and to be 0.02 for the vibra-
tion of the tower. For the coupling modes 0.05 for both modes is assumed.

5. OPTIMIZATION

Objective Function The generalized cost, W, is selected to be the objec-
tive function:

= »
W WT+k WP
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where WT represents the weight of the tower and WP’ of the pier, and k refers

to the ratio of unit cost of the pier to that of the tower.

Constraints The following constraints are considered:

(1) Stress of the tower shaft does not exceed the given allowable stress
defined against earthquakes.
Displacement of the pier top does not exceed the given allowable value.
Tower shaft is safe against buckling.
Pier is safe against overturning.
Other geometric conditions.

A~~~
V1 Fw
—

Optimization Technique Objective func-

a . X K
tion and constraints obtained in this way c
become non-linear and undifferential type,
so SUMT by Powell’s direct search method ' Pw=297h3 ton

wit?o?t d%fferenti?l is employed as K =45650 ton/m
optimization technique. h c
hT=18h.0 m

6. NUMERICAL EXAMPLE AND INVESTIGATIONS _
hP—52.O m

As a numerical example, the tower and bl=50.0 m
pier system shown in Fig.5 is considered,
and the results of the computation are hP
shown in Table 1,2. These computation A
were performed using the design model with BEHFEHA S LL
stepwise varied cross section. In making Fig.5 Tower and Pier System
Table 1, the following data was used:

cost ratio .... 0.2
maximum acceleration .... 180 gal
allowable value of pier top displacement .... 0.05 m

allowable stress of steel .... 37700 ton/m2
From Table 1, the following investigations may be made:

(1) When elastic modulus of foundation, E, is small, the design of the system
is determined only by the displacement constraint at the pier top. When
the value of E is large, it tend to be determined by overturning of the
pier and buckling of the tower, and the pier width tends to decrease. It
shows that the pier width is closely related with E.

(2) The generalized cost is greatly affected by the modulus of elasticity of
the foundation. Thus, the investigation of the foundation is very
important.

(3) When E is large, the effect of earthquake response tend to decrease, and
stiffness of the tower becomes uniform along the height of the tower.
From this, when E is large enough, it is not necessary to increase the
cross section of the lower part of the tower.

The design is controlled severely by the constraint of the displacement of the
pier top in the range of small E. When this constraint is relieved to 0.065 m,
the results are shown in Table 2. From these Tables, the following remarks
may be made:

(1) In the range of small E, when the constraint of the piler top displacement
is relieved slightly, the generalized cost decrease considerably. This
result shows that the allowable value of the displacement of the pier top
has a significant effect.

(2) In the range of large E, the result is not so affected by the constraint
on displacement.

T. CONCLUSION
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Table 1
4 Constraints
)y E 5 I(m) bE(m) " Pier Tower
(10 ton/m”) | Upper | Lower (1)(2)| Top (3) Base [(4)
10 11.22 | 62.26 | 38.97 | 521L6 X
20 16.52 | 65.97 | 2k.45 | 36077 | X
30 5.81 | 24.90| 19.91 | 27865 | X
50 L.,78121.80| 14.37 | 20896 X1 X X
70 L,75 | L.77| 14.35| 20509 X X
150 L.75 | 4.77| 14.35 | 20509 X X
(1): Displacement of the pier top (2): Overturning
(3): Stress of the tower shaft (4): Buckling
Table 2
L Constraints
L E 5 I (m) bQ(m) w Pier Tower
(10 ton/m™) | Upper | Lower (1)(2)| Top (3) Base [(L)
10 8.15 | 32.71| 28.76 | 39081 X
20 13.65 | 24.43 | 18.56 | 27053 | X
30 L.75 8.41 | 1k.skL | 208kL2 X X
50 L.77 L.78 | 1k.35 | 20511 X X
70 .77 | 4.78 1 14.35 | 20511 X X
150 L.75 L.771 1L.35 | 20508 X X

(1): Displacement of the pier top (2): Overturning
(3): Stress of the tower shaft (L): Buckling

The optimal design of the tower and pier system on the elastic foundation
subjected to earthquake excitation is studied by using response spectrum and
modal analysis. Investigation in this study shows that necessity or importance
of displacement condition of the pier top must be discussed more precisely from
the point of safety of the structure in the range of small E, and that necessi-
ty of earthquake-resistant design must be discussed more precisely from the
dynamic response of the structure in the range of large E.

PROBABILISTIC APPROACH SF(w)*102
Probabilistic approach using power 2.0
spectrum density for earthquake and
based on random vibration theory can be 1.5k
formulated as follows.
Earthquake load 1s represented by 1.0L

power spectrum density function shown

in Fig.6.5) As earthquake is assumed to 0.5k
have zero mean and to be stationary
probabilistic process, variances of the L 1 | 1 L

displacement and of the velocity can be 5 10 15 20 25 33
evaluated based on the random vibration .
theory. Fig.6 Power Spectrum Density

Failure probability can be com-
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puted through dynamic reliability theory using displacement and velocity vari-
ances. Thus, it is possible to formulate optimization by probabilistic
approach using failure probability as constraints.
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SUMMARY

Effective application of the structural optimization method is limited

to some specific types of structures in civil engineering structures. In
the case of structures with relatively simple and bulky dimensions, the
mathematical programming method could be applied efficiently. In this
paper, the authors carried out the optimal design of the tower and pier
system of suspension bridges on the elastic foundation subjected to
earthquake ground motion using response spectrum and dynamic analysis.

RESUME

Une application pratique de la méthode d'optimisation structurale est

limitée & certaines structures du génie civil. Dans le cas de structures
relativement simples et de grandes dimensions, la méthode de programmation
mathématique peut étre appliquée efficacement. Dans cet article les
auteurs ont fait le calcul d'optimisation du systéme de pyldne et pile

des ponts suspendus sur fondation élastique subissant le tremblement de
terre, a 1'aide d'une analyse dynamique.

ZUSAMMENFASSUNG

Die Anwendung der Tragwerks-Optimierung ist auf einige spezielle

Strukturarten im Bauingenieurwesen begrenzt. Bei Strukturen mit einfachen
und massigen Abmessungen lisst sich das mathematische Programmierungsver-
fahren erfolgreich verwenden. In diesem Aufsatz wird eine Optimierung des
Pylonsystems auf elastischem Untergrund unter Erdbebenlast entwickelt.
Hierbei werden Verhaltensspektren und dynamische Analysen angewendet.
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1. INTRODUCTION

The optimum design for I-section girders has been investigated considerably,
and most of the investigations aim at a minimum-weight-design or a design includ-
ing only the cost of shop welding in the fabrication cost. Considering all of the
fabrication costs, however, the optimum values of design variables will vary
remarkably. Therefore, a total cost optimum design, in which an objective func-
tion considers material cost as well as fabrication cost including costs of
full-scale-drawing, machining, shop welding, shop assembly and shop painting,
has to be done. Since such variables as plate thickness, surface area and weight
of members, material grade, etc., are included in fabrication costs, the optimum
value of the objective function may not be exactly computed, if some of variables
are omitted. Therefore, the design variables to be used in this investigation
include almost all dimensions of a cross section.

At the present study, a computer-aided, optimum design for single simply
supported2§irders is carried out by SLP method (Sequence of Linear Programming
method) 2% If their upper and lower lateral bracings and sway bracing are
designed and their dimensions are determined, it is posible to do an automated
design by the use of an automated drawing machine.

2. OPTIMUM DESIGN FOR I-SECTION GIRDERS

Material S, cover plate thickness T., cover plate width B., flange plate
thickness Tf, flange plate width Bg, web plate thickness T, web plate height By,
and segment length of a girder section Cy are selected as design variables.
Concerning S, steel of 4l1kg/mm% in tensile strength is expressed with 4, 50kg/mm*
is expressed with 5 and 58kg/mm* with 6, and an intermediate value is set on a
continuous function.

The constraints contain limit of stress, limit of deflection, limit of plate
width to thickness, as specified at the Specifications, 1imit of flange width to
web height, namely Bg/B,=1/3~1/6, and upper and lower limits of the values of
design variables, which are also used as move limits.

When an allowable tensile stress and an allowable compressive stress of a
material are given by oy, and oy, respectively, and a ratio of height to thick-
ness of web plate is given by y, 0,4, 0Oac and y are expressed as a function of §
as follows:

Uat=0at(S), oac=cac(8) SRlsb kol
'Y=Y(S) .......... (2)
Then, an objective function Z is expressed with

Z=§—f'\//'C'CN+ %‘%H‘}'SNH'?{;%H&.E'SHH/ .......... (3)

where V;: volume of the j-th element, p: unit weight of steel material, C:
coefficient for unit cost of steel material, CM: unit cost of steel material,

SMH: unit cost for one man hour work, Hij:work man hour of the i-th manufacturing
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operation of the j-th element as a function of design variables,'ﬁkl: work man
hour of the k-th manufacturing operation of the 1-th element as a fixed value.
When, C is considered as a function of T, S and B, and C;, Cz and Cs indicate the
case of the function of T, C, the case of the function of S, C and the case of
the function of B, C, respectively, the following expressions are obtained:

C,(T)=O.O348T2—0;0845T+1.2091

C2(8)=0.278-0.08 b, (4)

Cz (B)=1.0 for B<200(cm)

C3 (B)=1.0+(B-200)/(0.3 CM)x0.01 for BZ200(cm)
where T: plate thickness, B: plate width. H;j: can be considered as a function of
S, T, W and Ay, where W: weight, A.: surface area. HA is the coefficient of work
man hours depending on S, and the following equation may be obtained:

Hij=HiijA(s)= .......... (5)
where

HA(S)=0.045%-0.29S+1.52. reeeeseees (6)
The coefficients of Eqs. (4) and (6) are obtained on the basis of actual examples
at a bridge fabricating shop in Japan. In the case of welded joints, the work man
hours of butt welded joint, Hj;, and fillet welded joint, H{-, become a function
of total welded length, but théir calculation is to be made with a ratio, n, of
equivalent welded length to 6™ fillet. Assumed as a function of T, Hij and Hij
are calculated by the following equations, that is, in the case of butt welds,

Hjj=H;jj (L), L,=L, xn, (T), n/(T)=1.2T2+3.8T+1.3 """""" (Ma
and in %illet welds, 5

H(j=H{j(Lg), Ly=L2 xn,(T), na(T)=0.0476T +0.1952T+0.7572 ~"~"°"""*"**° (Mo
where t,, n;: in the case of butt welds, total equivalent welded length and ratio

of equivalent welded length, respectively; La,
nz: in the case of fillet welds, the same as L,,
n;. Hj; for marking and painting may be consid-
ered a” function of Ar.

The procedure of this optimum design is
shown by a block flow chart as in Fig.1l, in
which X shows the variables to be computed by
the simplex method and X° shows their initial
values.

At this study, single main girders without AND STRESSES
lateral bracings and sway bracing are treated, OMPUTE VgLUE OF
because omitting of the bracings does not affect OBJECTIVE FUNCTION
the optimum value of total cost. ‘

COMPUTE D
3. EXAMPLE OF OPTIMUM DESIGN OF CONSTRAINTS AND

OBJECTIVEJFUNCTION

3.1 The conditions of design are given as
SIMPLEX TABLEAU

follows:
1) type: I-shaped and deck-type welded railway OPTIMIZE BY SIMPLE
plate girder, 2) live load: KS18 specified at METHOD

the Railway Bridge Specifications in Japan, 3)
span length: 5 kinds of span length, 16", 19M,
22,3m, 25.5M and 30M, 4)specifications: the
Japanese Specifications for Design of Steel
Railway Bridges?

It is assumed that a girder can be provid-
ed with three kinds of variation of sections as
seen in Fig.2 with NA=2, 3 and 4, in which NA
means the number of different girder sections.
The upper cover and flange plates are symmetri- Fig.l, Flow chart of optimum
cal with the lower plates. design of girders

Oat, Oac and y are respectively given at
the Specificatiog as:

0,+=(0,1255"-0.792S+2.168)x1300 . biiiiieeees
oggz 505§+50.55+199—(0.253-1.38+2.5)X(3/Bff' ‘} (1)a




Table 1. Comparison of optimum values for span length of 2230¢M
SMH [NA| S, | S2| S3 | T, Ter | Tez | Tea | Ty Be Ber | B2 Bea | By SLEG; | SLEG, | SLEGj3 | SLEGy
1900] (cm) | (cm) | (cm) | (cm) | (cm) | (cm) | (cm) | (cm) | (cm) | (cm) (em) [ (cm) | (em) | (em)
0.0| 2] 4.0 2,00 1.86 1.19| 48.1 | 44,7 183.8 | 740.2 | 1115.0
1.6 2| 4.0 1.83| 2.09 1.15| 43.9{50.2 178.5 | 672.5 | 1115.0
3.2| 2| 4.0 1.62 | 2.33 1.11| 38.9 | 56.0 172.4 [589.2 | 1115.0
0.0| 3{4.0| 4.0 1.95(2.00( 1.40 1.15| 46.8 | 48.0 | 29.6 177.8 | 712.6 | 1027.2 [ 87.8
1.6 3|4.0| 4.0 1.80|2.29|1.40 1.07 | 43.2 | 54.9 | 27.8 166.5 | 644.1 | 1027.2 [87.8
3.213|4.0(4.0 1.65|2.35|1.40 1.09 | 39.7 | 56.4 | 28.2 169.3 | 597.6 | 1027.2 [87.8
0.0/ 4}4.0[4.0| 4.0 [1.58]|2.29|1.86|1.40|1.14 | 38.0 |54.9 [44.7|29.5|177.2 |583.0|766.3 |150.0 | 199.1
1.6|/414.0/4.0| 4.0 (1.45|2.41|1.83|1.40|1.12| 34.9|57.9 {44.0(29.0|173.7 |533.3|788.9 [137.8 | 188,3
3.2|4|4.014.0| 4.0 (1.30|2.68|1.82|1.40 1,11} 31.2|57.3|43.6(28.6|171.8 |472.7 |800.4 |[132.3|182.3
SMHINA| &, | 82 | Z Weght | B Oa1 | ™1 Oaz | O2 Oaz | O3 Oaw | Oy a SLEG, | SLEG, | SLEG3
0o0e)|  |(cm)|(cm)|a000yer) (ton) Kgen) | (Kefend)| (Kgenf) (Kgend)|(Kglend)|(Kglend)| (Kglenf) (Kglerf) 0.5L |0.5L | 0.5L
0.0 2]2.21|1.85[288.3[4.92 | 1.01 | 1155 [ 1155 | 1166 | 1166 12.1 | 0.664
1.6 212.30/1.93[555.6(4.91 | 0.97 | 1170 | 1170 | 1174 | 1174 12.5 | 0.603
3.2 2(2.40|2.01{804.9(4.95| 0.93 | 1184 | 1184 | 1179 | 1179 12.9 [ 0.528
0.0 3(2.30{1.92/284.1{4.83| 0.96 | 1165 | 1165 | 1171 | 1171 | 1122 | 517 12.5 | 0.639 |0.921
1.6 3|2.48|2.08|571.5|4.83| 0.88 | 1182 | 1182 | 1178 | 1178 [ 1111 | 607 13.4 | 0.578 [0.921
3.213(2.45/2.05(841.0(4.83 | 0.90 | 1185 | 1185 | 1179 | 1179 | 1114 [ 583 13.2 | 0.536 |[0.921
0.0| 4(2.34]/1.96{270.1]4.58 | 0.96 | 1182 | 1182 | 1178 | 1178 | 1166 | 1166 | 1122 | 1122 12.6 [ 0.523 |0.687 | 0.134
1.6| 4 |2.40|2.01|578.2|4.57 | 0.94 [ 1188 | 1188 | 1180 | 1180 | 1165 | 1165 | 1119 | 1119 12.8 | 0.478 [0.708 | 0.124
3.2| 42.42|2.03|873.7(4.58 | 0.92 | 1186 | 1186 | 1180 | 1180 | 1165 | 1165 | 1117 | 1117 13.0 | 0.424 |0.718 | 0.119

IHSINOX 1HONNSYA

VA3V OIXNA
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¥=2.55"-47.55+305" " (2)a
where f represents a distance
between fixed points of a SLEG, N
flange plate. If o is assumed ¢
to be a value of a span Tes Tg2 Ter Tc
length divided by a web .f : ,__Jr_%=
height, the initial values Aqu G s .

of , By, T., Bgand T

areBgalcﬁlatgd ugder thg <:> Oa“(§> a3 a2 (:D Oal
assumption of «, but the T
initial values of S and
locations of joint are given Cys Cg2 Cor
as constant values independ- =SLEG, =SLEG,

ently of a. Now, the calcu- <
lation of the initial values |
by a computer, makes it

possible to do an automated - . IRf’ Sl B : PR —
design.

3.2 Results of Calculation

As an example of the
results of calculation, the
case of span length of 22.3™
are summarized in Table 1, in which SLEG: values shown in Fig.1, 8, :deflections
due to live load and dead load at the span center, 6z: deflections due to live
load at the span center, Z: values of objective function, B: coefficients to be
given later.

Fig.Z2, Notations for deck plate girder

3.3 Discussion

As the result, the followings are discussed:
(1) The materials were considered as the design variables too, but the calcula-
tion shows that the case of S=4, namely SS41 steel will give optimum values.
(2) In the case of material cost only, the value of an objective function becomes
the cheaper, with an increase of the number of different sections. On the other
hand, in the case of material cost and fabrication cost, the value of the
objective function becomes the higher and the girder weight becomes the lighter,
with an increase of the number of different sections.
(3) Conventionally a web height B,, used to be expressed in terms of the following
relation:

M saassamewe

Bw=BJo T

where B: coefficient, M: bending moment. The values of B,calculated by the opti-
mum values, are shown in Table 2. They do not change greatly as to span lengths,
but generally become the larger , the longer the span length is.

Table 2. Values of coefficient B

svi | Na~E | 1600°™ | 1000°™ | 2230°™ | 2550°™ | 3000°™

2 10.96 10.97 [1.01 [1.02 |1.00
0.0/ 3 |0.93 |o0.94 |0.96 |0.99 |1.00

4 |0.92 |o0.94 |0.96 |0.98 |1.03

2 10.92 [0.94 [0.97 |0.97 |1.01
1.6 3 |o0.89 |o0.88 |o0.8 |0.91 |[1.01

4 |o0.89 |0.93 |0.94 |o0.93 |1.04

2 10.92 [0.93 [0.93 |0.95 |Ll.02
3.2 3 |o0.89 |o0.90 |0.90 |0.90 |1.03

4 |o0.87 |o0.89 |0.92 |o0.94 |1.05

(4) The values of SLEG/0.5L are shown in Table 3, where L: span length. In the
table, SLEG, is the shorter, the higher SMH is, while flange plate lengths do not
change greatly.
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Table 3. Values of SLEG/0.5L

s | Na | sTEL | 1600°™ | 1900°™ | 2230™ | 2550°™ | 3000°™
2 [ SLEG, ] 0.651 | 0.661 | 0.664 |0.671 | 0.681
3| SLEG, [0.625 [ 0.651 ]0.639 |0.645 | 0.658
0.0| 3|sLEG, |o0.921 |o0.921 |o0.921 |o0.921 | o0.921
4| SLEG, [0.492 | 0.505 [0.523 ]0.539 | 0.558
4|sLeG, |0.668 | 0.679 |0.687 |0.696 | 0.698
4| sLec; |o0.140 | 0.140 |0.134 |o0.131 | 0.117
7 [ SLEG, | 0.554 | 0.582 | 0.603 ] 0.619 | 0.641
3 SLEG, [0.537 [ 0.565 [0.578 |0.594 [ 0.611
1.6 | 3|sLEc, |0.921 | 0.921 |0.921 |0.921 | 0.921
4 [ SLEG, [0.447 | 0.455 [0.478 |0.492 | 0.489
4|sLec, |0.700 | 0.698 |0.708 |0.715 | 0.693
4| stEGy |o0.115 | 0.124 |0.124 |o0.128 | 0.118
2 SLEG; | 0.492 ] 0.489 ]0.528 | 0.558 | 0.588
3 SLEG, [0.485 | 0.506 |[0.534 |0.548 | 0.556
3.2| 3|SLEG, |0.921 |o0.921 |0.921 [0.921 |o0.921
4 SLEG, | 0.356 | 0.373 [0.424 |0.440 | 0.396
4|sLeG, |o0.694 | 0.717 |0.717 |0.707 | 0.673
4| steG, |0.148 | 0.138 |0.120 [0.131 | 0.143

(5) Except for the value of oz in NA=3, the other maximum working stresses reach
up to the full allowable stresses. gz does not become fully-stressed, because the
flange plate at this position is determined by its minimum thickness 1.4¢™ and by
its width calculated at BgZBy/6.

(6) T. and B. are the smaller, the higher the fabrication cost is. On the other
hand, T¢; and Bg) are the larger, the higher the fabrication cost is. There is no
remarkable difference due to the difference of fabrication cost at the dimension
of flange section at the other positions.

(7) The leg length at fillet welds is the smaller and the fabrication cost is the
cheaper, the wider the flange plate is and the thinner the flange plate is.

(8) At the present example of design, the optimum dimensions of section for
5-kinds of the span length are calculated, but they can be calculated for the
other span lengths by the following procedure. By is calculated from Eq. (8) by
assuming ¢ and Ty, and using M and B. Then, the position of joint is obtained
from Table 3, and except Tgz and Bgo in NA=3, the dimension of girder section at
the span center and all of the positions of joint can be found by the fully
stressed design. However, in NA=3, Tgp=1.4¢M and Bg,=B,/6 or Bgz24“M are applied.
(9) As seen in the value of B, for the case of material cost only the optimum
girder height varies, but for variable unit fabrication costs it does not greatly
vary.

4. CONCLUSION

It is indicated that it is possible to carry out the optimum design consider-
ing material cost and total shop fabrication cost by means of a program for
computer design which is presented at the present study, and it will be possible
to extend this program to the computation for a girder with different upper flange
section from lower flange section, a composite girder and a continuous girder;
and a part of this program has been completed already.

At the present program, transportation and erection costs depending on site
conditions are omitted, but in the future, in the case of a specific or individ-
ual bridge, it would be necessary to investigate on an overall cost optimum
design containing the transportation and erection costs.

3g. 13 VB
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SUMMARY

A program of optimum design considering material cost and total shop
fabrication cost for the most foundamental I-section girders of steel
bridges is presented with design examples. The influence of 16 design
variables on the total cost is discussed, to improve the computer-aided
automated optimum design.

RESUME

Un programme de dimensionnement optimal tenant compte du coit des
matiéres et des colits de fabrication est appliqué aux plus élémentaires
sections en I des poutres de pont métallique. Des exemples sont donnés.
L'influence de 16 variables de dimensionnement sur les coilts totaux est
étudié afin d'améliorer le dimensionnement optimal & l'ordinateur.

ZUSAMMENFASSUNG

Es wird ein Programm flur die Optimierung von I-Stahltrdgern mit Rick-
sicht auf Material- und Herstellungskosten pré&sentiert und dessen Anwendung
an Beispielen dargelegt. Der Einfluss von 16 Entwurfsvariablen auf die
Totalkosten wird untersucht, um die computerunterstiitzte Entwurfsoptimierung
zu verbessern.
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Optimierung von Eisenbahnfachwerkbriicken
Optimization of railway truss girder bridges

Optimisation de ponts ferroviaires en treillis
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1. Grundsatzliches

Bei den praktischen Optimierungsaufgaben kann man grund-
sdtzlich drei verschiedene Verfahren anwenden [ 1] .

Bei dem ersten Verfahren werden einige zweckmassig ausge-
wahlte Varianten durchgearbeitet und die Ergebnisse miteinander
verglichen. Ein erfahrener Entwurfsingenieur gewinnt auf..diese
Weise mit ertrdglichem Arbeitsaufwand eine ausreichende Ubersicht.

Bei dem zweiten Verfahren versucht man, die Bezishungen
zwischen der vorgegebenen Belastung und Geometrie der Konstruktion
einerseits und Konstruktionsabmessungen oder Kosten andererseits
mathematisch zu erfassen. Eine ausfithrliche Beschreibung der dazu
anwendbaren mathematischen Methoden ist im Einfuhrungsbericht dar-
gelegt [2]. Jedoch weist dieser mathematischer Weg zwei grundsatz-
liche Nachteile auf. Durch die unumgzangliche Vereinfachung und Ide-
alisierung zu komplizierter mathematischer Beziehungen werden die
Ergebnisse in meist unibersehbarer Weise unscharf und gelegentlich
sogar fehlerhaft., Ferner ist der praktische Entwurf einer Konstruk-
tion durch die vorgegebene Dispositionsforderungen, das Walzpro-
gramm, die Standartsbestimmungen, verschiedene Konstruktiongricht-
linien und ubliche Durchfiihrung der Details usw. weitgehend einge-
engt. Die MOglichkeit der Anwendung der allgemeinen mathematischen
Methoden [2] , die meist nur durch Einsatz moderner Computer denk-
bar ist, ist bei praktischen Beispielen oft nicht gegeben.

Daher wurde_in letzter Zeit ein drittes Optimierungsver -
fahren entwickelt [1)] , dass die Kapazitdt moderner Computer in
anderer Weise sausniitzt und die Vorteile der beiden beschriebenen
Methoden vereinigt. Man stellt dabei ein Programm auf, das den
Entwurfs- und Bemessungsprozess des untersuchten Konstruktionsty-
pes nachbildet. Dabei ist es nicht schwierig, z.B. die richtigen
Werte der Knickzahl, die Abstufung des gﬁltigen Walzprogrammes,ver-
schiedene Richtlinien und Normbestimmungen, ubliche Konstruktionsde-
tails usw. zu berlicksichtigen. Durch Variieren der Eingangsparame-
ter stellt man ziemlich leicht den Bereich von optimalen Losungen
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fest, die dem angestrebten Minimum der Untersuchten Zielfunktion
(Materialverbrauch oder Kosten oder Arbeitsaufwand) nahe liegen.

Das neue Verfahren wurde zuerst zur Optimierung der Ver-
bundtridger angewandt. Hier hangt der Stahlverbrauch praktisch nur
von der HOhe des Tragers und von der Schlankheit seines Steges ab.
Daher konnte man hier unter Verbrauch von wenigen Minuten der Com-
puterzeit die optimalen Querschnitte von Eisenbahn- oder Strassen-
briicken, fiir Verbundtrager oder auch Verbundkastentridger feststel-
len.

Bei Fachwerkbriicken war die Anwendung des neuen Optimierungs-
verfahrens durch die gréssere Zahl der Eingangsparameter umst&nd-
licher. Es wurden die ublichen Tragerform nach Abb,l, drei Fahrbahn-
typen (offene Fahrbahn, direkt befahrene mit den Haupttrdgern mit-

wirkende Blechfahrbahn und

¥ durchgehendes Schotterbett
x auf einer mitwirkender Blech-
fahrbahn), mit geschlossenem

oder offenem Bruckenquer -

A N . :
l., Nasl I schnitt, Ein- und Zweigleis-

brucken und wirtschaftliche

Abb.1 Kombination der Stahlsorten
% St 37 und St 52 bis zur Spann-

weite von L 100 m untersucht. Es hat sich dabei eindeutig ge -
zeigt, dass die optimale Tragerform mit dem minimalen Stahlver -
brauch, evtl., minimalen Baukosten der tragenden Konstruktion vor
allem von der Spannweite L , von der Felderzahl N , von der
Tragerhthe H und von der Hohe v der idealisierten Stabquer -
schnitte (Abb.2) abhdngt, wihrend der Einfluss der evtl. be -
schrankten Konstruktionshohe des Fahrbahnrostes und der Grdsse des
Konstruktionbeiwertes vernachlédssigbar klein erscheint.

= . | |
1 =1 Abb.2
ot Lt E
> r i —— § — b & c—
; . . : — - = . .
| | geschle- I offene
{ Gurten f U ssene ' Diago-
! | Diagona- I nalen
i len Pfosten
Yy
t v AE LA

Das Programm wurde so aufgestellt, dass nach der Angabe von
L , N und Eigengewicht der Fahrbahn zuerst die geometrische Form
fir eine ziemlich niedrige Trdgerhdhe H berechnet wurde, dann
wurden die Langs- und Quertrager berechnet und dimensioniert. Nach
der Ermittlung von Stabkraften wurden einzelne Stabguerschnitte
mit ziemlich kleinem Wert von v dimensioniert. Da esultierende
Gesamtgewicht wurde mit dem anfanglichen aus empiriscger Formel
eingesetzten Wert verglichen; wenn der Unterschied grdsser als der
vorgegebene Wert war, wurde die ganze Dimensionierung mit korri-
gierten Verten wiederholt. Zuletzt wurde die Durchbiegung kontrol-
liert und die Anstrichsfliache festgestellt. ‘

Im weiteren Schritt vergraserte das Computer des Ausgané%
wert v um Av, wodurch die Senkung der Zielfunktion 2Z , d.h\.
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des Stahlverbrauches oder der Kosten erzielt wurde. Man wieder -
holte dann die Vergrosserung von Vv einigemal, bis das Minimum

von Z erreicht wurde. Dadurch wurde das Optimum flir bestimmte

Hohe H festgestellt.

Nachher vergrosserte das Computer den Ausgangswert H um
AH , wodurch wieder die Senkung des Wertes Z erreicht wurde;
diese Iteration wurde so lange wiederholt, bis der Endwert von 2
grosser war als sein Wert bei dem ersten Iterationschritt (Abb.3).

§00
+ - [-/00»;
+ + + 4 + +
4+ 4+t + -
o N=8
=
N
300
15 | +£=8€’ﬂ
L +“"++++++"""+ N=8
S
o
<
5
} 200
180
_ L=60m
-+ -‘—J.+ Al .t
460 'l'++ ___"f L [=)
1ho
120
S U B g -
N=é
400 “ "
é ) © 12 4 16 18 — Trdgerhbhe H (m)
Abb,3

Der Abb. % kann man entnehmen, dass die Streung der Werte
Z in der Umgebung vom Minimum sehr flach ist und somit die Gros-
se von Z auf kleine Variationen der TrdgerhShe H nicht emp-
findlich ist. Deshalb ist es angebracht, nicht von einer optima-
lgn Hohe zu sprechen, sondern von dem Bereich B von optimalen
Hohen, dessen Breite durch die Differenz Z festgelegt wird

(Abb.4). Zum Beispiel filir die Differenz von AZ = 0,02 Z wur-
den die unteren und oberen
N Z Grenzen des Bereiches von op-
2 e timalen Hohen wie folgt fest-
bl S ——— tellt :
'\:Fz + Z e
[—“ zl'm'n J °
B Abb.4

i
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M
offene ll direkt durchgehendes
Spann- Feld- Fahrbahn || befahrene Schotterbett
Querschnitt weite teilung ! _Fahrbahn |
der Grenze des Bereiches
Brucke L N der optimalen Hohe H/L
(m) (-) untere % untere untere
obere ﬁ obere obere
Ailt
offen 50 8 1/8,5 |1/6,0 ¢ 1/9,1 | 1/6,3 /9,3 | 1/5,8
805Ch10558n 50 8 1/7’1 1/4,9 ﬁ 1/7,4 1/4,9 1/7,5 1/4’8
Was die optimale Kombination des iiblichen Stahles St 37

mit Stzhlen hBherer Festigkeit betrifft, ist deren Einsatz nur bel
jenen Stdben wirtschaftlich, bei welchen die Stahlverbrauchser -
sparnis hoher als der zustidndige Preisunterschied der fertigen Kon-
struktion ist. Somit ist es wirtschaftlich, bei Spannweiten von

40 bis 100 m, bei offenen Fahrbahnen beide Gurtungen, bei einer
Blechfahrbahn die obere Gurtung und die Langstriger aus St 52

zu entwerfen, sowie auch die '"schweren'" PRiagonalen in der Nahe von
Stutzen der Briicken mit grosseren Spannweiten.

Es wurde gezeigt und am Beispiel einer Eisenbahnbriicke demon-
striert, dass bei den Konstruktionen, deren Kosten nur von wenigen
Eingangsparametern abhingen, wahrend viele andere Parameter der
Konstruktion mit der Spannweite, mit dem Konstruktionstyp und
-zweck zusammenhzngen und nicht viel veranderlich erscheinen, wor-
teilhaft ist, das Berechnungs- und Bemessungsprozess des Entwurf-
ingenieurs in einem Computerprogramm nachzuahmen und den Bereich
der optimalen LoOsungen durch Variieren der Eingangsparameter fest-
zustellen,

Literatur:

ﬁ] Schindler, A.: Zur Optimierung von Stahlkonstruktionen.
Bauplanung-Bautechnik, 22 (1968), H.84S. 395-398

[2] Templeman, A., B.: Optimization Concepts anthechniques in
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ZUSAMMENFASSUNG

Es werden drei Optimierungsverfahren definiert und die Anwendung des
dritten Verfahrens am Beispiel der Eisenbahnfachwerkbriicken erliutert.

SUMMARY

Three ways of optimization are presented. An application is demonstra-
ted on railway truss girder bridges.

RESUME

On définit trois procédés d'optimisation. L'usage du troisiéme procédé
est démontré pour des ponts ferroviaires en treillis.
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1. Optimum design and automated design

Automated design has been studied as a part of automation and
labor saving problems by those who are engaged mainly in the prac-
tical design work, while the optimum design has been researched and
developed by researchers who study mainly the mathematical decision
method in connection with this design work. However, it is unrea-
sonable to say that design by the automated design system does not
have to be optimum design. If optimum design should be used for
a practical application, its concept and method should be used for
the automated design system and, therefore, we believe that they
should be combined.

Under the present conditions, where the method of optimum
design is not employed extensively in practical fields, whether the
results of study are adopted or not is decided by designers and, in
many cases, the designers modify the results before they utilize
them. The practical design work is undisciplined and, in most of
Ccases, constraints and objective function are never represented by
well arranged formulas and thus contain many factors which depend
upon the man's intuition and, therefore, the CAD system is con-
veniently used for ensuring a smooth execution of design work. At
the present time, the practical method by which we can most prob-
ably ensure constant and high quality design is the CAD system
which is processed in such a way that the method of optimum design
is used for deciding algorism of automated design, allowing the
system to supply designers with the data necessary for them to make
judgements and, according to such data, the system proceeds on the
basis of the man-machine relationship.

Whether a designer can accomplish high quality design by using
such a system or not depends on (1) whether the ability of the de-
signer who utilizes this system is proper or not or (2) whether the
system can conveniently and quickly supply the required data in an
easily usable form and if the system can fully carry out "trial
and error" in a short time.
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Combination of the above methods is indispensable for the im-
provement of quality of design and the mathematical decision method
is also an indispensable factors.

Even if data of the best quality, when viewed from the stand-
point of optimum design, is not supplied from the system, it is
expected that the designers may be able to accomplish a design of
a considerably high quality, if he can use the system conveniently,
which means utilizing both mathematical decision method and the
judgement of the designers. Under these conditiohs, the writers of
this report have developed the CAD system for bridge design and
used it for practical applications. The following describes the
design system of a girder bridge.

2. Design system of girder bridge

i ROAD

2.1 Outline Coodinate

Most ordinary bridges are of the girder Calculation
bridge type and, therefore, it is necessary to
prepare a system which can be used conveniently and
withstand the changes, additions and deletions of GRID
shape data, designing conditions, manufacturing Structural
conditions, etc. Analysis

The overall system consists of four sub-
systems as shown in Fig.l which are consistently 1GAC
controlled through the data base. Emphasis has D ;

: o etail

been placed on partial optimizing and data that can Design
be used conveniently and utilized easily by
designers.
2.2 ROAD Sub System DRAW

This is a universal type system of coordinate Drawing
calculation. When the form of road, pier layout,
main girder and cross beam arrangement are defined,
this ROAD Sub System calculates thevrequired values Fig. 1

of coordinates. Consequently, the table of values,
plan, longitudinal section and cross section are
supplied as an output. For the following systems,
various figures are filed in phase with each value being taken into
consideration.

2.3 GRID Sub System

This system is a structural analysis system which employs
a displacement method. When the input of the displacement method
is fed independently, the coordinates, stiffness, loads, etc. are
mostly fed as input data as far as the GRID is concerned, which
is rather complicated for the designers. As for the matters con-
cerning the coodinates, especially, since the results of the above
ROAD Sub System are handed from the file, the input load is greatly
alleviated.

When girder height is fed into this system as an input, a pre-
liminary analysis is made for a simplified model structure by the
stress-method as a preparatory calculation. An assumed stiffness
and steel weight are set automatically and, thereafter, the number
of input joints is about 200, thus requiring about 20 cards.

2.4 TIGAC Sub System

Detailed design is conducted for the main girder section,spli-
ces, stiffeners, shear connectors, sway bracings and lateral brac-
ings. As for the coordinates and sectional force, the results of the
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previous system can be used and, there- STEP 1
fore, the designers feed the assembling
method of sway bracing and lateral bracing Design

as an input. It is also possible to make Condition
various kinds of special designations. }
Usually, when 10-20 cards are fed as an

input, the optimizing process is carried Z//13relirninary
out in the system, one set is decided upon Design
and the design calculation sheet and

sectional variation diagrams are produced STEP 2

as an output and filed. However, the Modify
designer's personal taste, interchangeabil- with CRT
ity of parts, etc. should also be taken
into consideration when the decision is
made and, therefore, there arises a demand

that some modification should be made
after studying the outputs. Meanwhile,

‘

No

Judgement

questions and modifications can be made by e
using CRT(IBM 2250). STEP 3
This system consists of the following ,
three steps; Calculation
Step 1; Temporary decision concerning the Sheet
main girder, cross beam and

lateral bracing, preparation of
data to be studied(substitute
plan included) and filing into Fig. 2
Step 2.

Step 2; Question and modification by using CRT device. Filing
into Step 3.

Step 3; Preparing a design calculation sheet. Filing into DRAW
Sub-System.

Step 2 is provided with the CRT pictures of sections, splices,
stiffeners, shear connecters, cross beams and lateral bracings. In
one particular section, for example;

a. What kind of section can be made if the material at a certain
location is changed?

b. What will be the best section if this location is moved 30cm?

c. What will be the thickness of plate when the upper flange
width is changed to 50cm?

Various questions such as are listed above are given and if
the answers from the system are accepted, the files are renewed
accordingly and, thus, the design is modified continuously. Then,
the final results are filed for the DRAW Sub System of design
drawing.

The final stiffness is filed and the GRID can be reopened by
using the file.

Fig.3 An example of the
CRT pictures
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Fig.4 Sectional variation diagram

2.5 DRAW Sub System

This is a system which is used for deciding the details of
structures and for making drawings. The results of design calcu-
lation are insufficient when they are used as the data for making
drawings and, therefore, the mode of structure should be decided
in detail. In many cases, however, the details of structure are
different depending on each customer. Because of these reasons,
the details of structure most often used to meet the standards and
design requirements of customers are stored in the system, thus
expanding the range of applications. The input designates the
items which change the standard of the systm . As for the coor-
dinates, the file is used as a reference and, therefore, the
designated item is usually represented by about 10 cards. The
outputs are; main girder, cross beam, lateral bracing, detailed
design drawing, diagram and the list of steel materials, welding
lengths, painting area, etc.

For making the drawings, COM(Computer Output Microfilming) of
CALCOMP CO. 1is used. Unlike the plotter or the drafter in which
a pen moves mechanically, this COM is so designed that the locus
of an electronic beam is traced on film. One drawing is completed
in about five seconds and the operating cost is also very low.

3. Postscript

With this system, the fundamental design(deciding girder
arrangement, girder height, etc.) is made after full "traial and
error" by means of the ROAD and GRID and, then, the detailed
design made by IGAC system is corrected by means of CRT and
drawings are made by DRAW. The fundamental design and detailed
design are separated, but when the optimum property of design is
taken into consideration, we do not believe that there will be
much trouble in the actual application if the fundamental values
are properly selected.

When this system is used, one designer can complete within one
week about 50 drawings, material lists and design calculation
sheets for a bridge constructed with five main girders and three
span-continuous I girders. Only girder bridges, are described in
this report.
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A drawing of lateral bracings by COM
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SUMMARY

A "Total Computer System for Bridges" has been developed, which is
aimed at combining the optimum design and the judgement of designers.
This system has already been used for actual applications and has
procduced good results. This report introduces design of a girder
bridge in the overall system.

RESUME

Un systéme global pour le projet de peonts au moyen de l'ordinateur
a été développé. Ce systéme combine le calcul optimal et le jugement
de l'ingénieur. Il est déja utilisé en pratique et donne des résultats
excellents. Cet article présente la partie du projet de pont en poutres
dans le systéme global.

ZUSAMMENFASSUNG

Ein totales Computersystem flir einen optimierten BriGckenentwurf wird
entwickelt. Das System verbindet die Absichten des Entwurfes mit einer
optimalen Problemlésung; in praktischer Anwendung hat das System bereits
gute Resultate geliefert. Am Entwurf von Brickentrédgern stellt der vor-
liegende Beitrag einen Teil des gesamten Computersystems vor.
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