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1. INTRODUCTION
The mathematical programing technique has already been adopted for the

1.2
optimization of the structures subjected to the dynamic excitations. Most of
these optimizations were dealt with beams, trusses or frames, subjected to
simple excitations such as harmonic waves or shock'waves, and designed under
rather simple elastic constraints.

However, in case of earthquake loadings it becomes important to estimate
the dynamic forces correctly using the available model for the elastic design,
and to take into aecount the inelastic behaviour of structures during the very
strong ground motion.

Considering these problems, this paper presents a method for the automated
minimum weight design of wide-flange steel frames which gives the optimum
distribution of the moment of inertia of used members.

2. DYNAMIC ANALYSIS
An idealized dynamic model consist of bedrock, ground layres and a structure

is considered (see Fig. l). Ground excitations are given by the model presented
by Kanai and Tajimi, and the dynamic response of the structure to this ground
motion is estimated by means of the random Vibration theory and Davenport's
equation which gives the expected maximum value of a random process.
2.1 Vibration of Ground Surface

Kanai and Tajimi has presented the idea that spectrum observed at bedrock
is characterized by a constant pattern (white noise), while the spectrum at the
ground surface is amplified by the Vibration property of the ground layre and

3
showed a power spectrum of this ground surface as follows:

t ; + «-P%^

where h^ and Wgk are ground damping factor and predominant frequency, respectively,
S0 is a constant power spectrum density function and where s^ is a factor

which measures predominence of each component. This excitation of ground
surface becomes Gaussian process of zero mean.

2.2 Dynamic Response of Structure
The variance of elastic response of the structure subjected to the ground

motion mentioned above can be obtained by means of random Vibration theory. Let
Q^_ and Q*£_ be the variance of story shear force and its time derivative,

respectively.
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Following Davenport, the mean value of possible maximum elastic response of
story shear force can be given as

QL- (2/n vT)^ +
°-5772

where
A oi

(2/n vT)2
(2)

and T represents the duration of the strong earthquake excitation which is fixed
10 seconds in this paper.

Por very strong ground motion, the response of the structure is considered
to be inelastic, and the relative displacements of each floor are estimated

5
following the idea of Newmark and et al. Equating the inelastic potential
energy of deformation to the elastic one which can be obtained supposing that
the structure responses elastically, the maximum ductility factor of floor
drift,/(, can be obtained as follows (see Fig. 2);

M 4r- + ±( 0. -Y (3)

where 6.y may be thought of as the yield level of the story shear force, and can
be obtained by means of a simple plastic analysis assuming the mechanism of
beam collapse type or column collapse one for each story.

n i i i i i i i i i i r.

Qmon

1 GROUND LAYER 1

BEDROCK

Fig. 1 Dynamic Model

US

Fig. 2 Definition of Ductility Factor

3. DESIGN CONSTRAINTS
For the moderate earthquakes which give such a dynamic force as usually

presented in the design code, the members of the frame are designed elastically
In accordance with the design code of steel structure of Architectural Institute
of Japan (A.I.j). On the other hand, for the very severe earthquake, which is
rarely expected during their service lives, the frame is designed plastically
relying on the energy absorption which due to their inelastic deformation.
In this design procedure, the maximum ductility factor given by Eq.(3) is
constrained less than the allowable value which is fixed 4 in this paper.

To satisfy these ductility requirements, it is necessary for the frame to
prevent the weakening of the load-deflection curves caused by the lateral or
local buckling of members and P-A effects.

These problems are taken into aecount according to the plastic design code
of steel structure of A.I.J.. Namely, lateral buckling is prevented by the
correctly designed stiffners, and local buckling is prevented by selecting the
members which are on market to satisfy the width-thickness ratio of plate
elements imposed by the code mentioned above, or designing each member in-
aecordance with these requirements after the Optimum stiffness distribution of
frame member is decided. Moreover to avoid the excessive P-A. effects, the
slenderness ratios and the axial compressive forces of columns are ristricted by
the code requirements.
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4. OPTIMIZATION
Wide-flange steel members on market are supposed to be mainly used in the

design. The moment of inertia of them, I, are the design variables and objective
function is the total weight of structural members. The emprical relationships
between member properties which are required in the design code and moment of
inertia of economical series of the steel wide-flange section was obtained by
plotting them. The calculation was proceeded using these equations and treating
the moment of inertia as continious design variable.

Sequential linear programming (S.L.P.) technique was successfully adopted for
the optimization of the frames. Objective function and constraint equations were
approximately linearlized, and using linear programming technique, the optimumly
modefied design variables were obtained at each design step. Repeating this
procedure, the optimum solusion, namely the distribution of moment of inertia of
members which gives the minimum weight of structural members, was obtained.

5. SENSITIVITY ANALYSIS
To optimize the structure by means of S.L.P. technique, the change of

member stress and deformation caused by the modefication of each members must be

quantitively estimated as the first order derivative of these values with respect
to the design variables.

Let P be the vector of external nodal forces of global coordinate, and X

and K be the corresponding nodal displacement vector and stiffness matrix. Using
these notations

X K (4)

Therefore, the derivative of nodal displacements with respect to design
variable, I, is obtained as follows;

ax
31

P + K-
ÖI

(5)

The second term of the right hand side of the above equation contain the
derivative of the dynamic loads which vanish in the static problems. If these
values are obtained, the sensitivity coefficients of the stresses and deflections
can be evaluated applying the same procedure adopted for the static problems.

As the dynamic loads which is evaluated by means of random Vibration theory
become the explicit function of natural frequencies and mode vectors of structure,

6

if the sensitivity coefficients of these values are evaluated, then that of these
dynamic loads can be obtained without difficulty.
6. NUMERICAL EXAMPLE

The method previously mentioned is
applied to the design of three-story
frames of equal span length, 6m, and
equal story height, 3m, with uniformly
distributed load, w, on beams, subjected
to the four types of ground motions
whose characteristics are decided by
the parameters presented in Table 1.
Frames are designed both elastically
for the power S0 of En.(l), and

plastically for the power of(X times of
S0 so that the story drifts should be
less than allowable ductility factor 4,
and beam collapse type mechanism is

TYPE Tgi hgi Al Tg 2 hg2 ßz

1 0.3 0.6 1.0

D 1.0 0 6 1.0

m Ol 03 0.2 1.0 0.3 0 8

rv 0.1 0.3 0.2 1.5 0.3 0.8

Table 1 Ground Parameter
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considered for the calculation of yield levels of story shear forces. Steel used
is SS41 whose yield stress is 2.4 ton/cm2.

6.1 Three story one bay frames subjected to the ground motion of type I is
optimized for W 5 ton/m and S0 5 cm/rad/sec3. In Fig. 3, the maximum
stresses and the maximum ductility factors of each story corresponding to the
final design are presented forO^ equal 5 and 7 respectively. Where the maximum
stress is defined as the value in the most severely violated constraint equation
for elastic design whose allowable limit is normalized as unity. For the case
of(X equals 5, the member size is desided by the elastic constraints and the
response ductility factors of each story are scattering. On the other hand, for
the case ofo( equals 7, the beams are not fully stressed for elastic design
constraints and for the plastic design constraints they are equally fully
constrained. Therefore it can be pointed out that for the optimum design of
earthquake resistance structures, it become important to consider the constraints
for the inelastic deflection expected during the very strong earthquakes.

6.2 Three story one bay frame subjected to the ground motion of type III and
IV is optimized for w 2 ton/m, S0 2 cm/rad/sec5 andOt 7. The maximum
stresses of each member defined previously and the maximum ductility factors for
the final design are presented in Fig. 4. This shows that the optimum member
size restricted by both elastic and plastic constraints.

The acceleration response spectrum to these ground motions is presented in
Fig. 4 with the values of the spectrum correspond to the fundamental frequencies
of the structure of initial and final design^ This shows that even if the initial
design is at the valley of the response spectrum, or final design is at the
vicinity of the maximum, this optimization technique can be successfully adopted.

Neglecting the derivative of dynamic forces which is used in Eq. (5), the
optimization is also carried out for the same model. The final result obtained
starting from the same initial design mentioned above is presented in Fig. 6.
Compared with the above analysis, much more iterative calculations are carried
out and the real optimum solusion can not be obtained. This too happen for the
optimization of the structure subjected to the ground motion which have more
moderate response spectrum showing the importance of sensitivity analysis of
dynamic forces for these analysis.

6.3 Three story one bay and three bays frames are optimized for 0( 7 by changing
the parameters concerend with the distributed load and ground motion. The

ductility factors of story drift correspond to the final design are shown in
Table 2 with these parameters. Each story yield almost equally fully restricted
by the constraints of plastic deformation. Therefore it can be pointed out that
for this kind of structures, the optimum design correspond to such a structure
whose response ductility factors against very strong ground motion are almost
equal for all story.

7. CONCLUSION
As a result of this study, following conclusions can be pointed out.

(1) The analysises of some examples shows the validity of the optimization
technique mentioned above together with the importance of the sensitivity
analysis of dynamic forces.

(2) The constraints concerened with the plastic deformation against the very
strong ground motions must be considered together with the constraints for
the elastic strength.

(3) For the type of structure dealt with in this paper, the minimum weight
design correspond to such a structure whose response ductility factors
against very strong ground motion are almost equal for all story«
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SUMMARY

The minimum weight design of unbraced steel frames subjected to
dynamic earthquake loads is presented. Random Vibration theory is
adopted to elastic member strength and plastic story deflection, the
sequential linear programming technique is successfully adopted to
obtain the optimum design. Several examples are presented with the
analysis and comparisons are drawn.

RESUME

On presente le dimensionnement, pour un poids minimum, de cadres
metalliques soumis aux forces dynamiques des tremblements de terre.
La theorie des vibrations aleatoires permet de determiner le comportement

"dyn<amique" de la structure. La programmation lineaire sequentielle
donne le dimensionnement optimal dans des conditions de comportement
elastique des elements et de comportement plastique du cadre soumis ä la
deflection.

ZUSAMMENFASSUNG

Für unausgesteifte Stahlrahmen, die durch Erdbebenwirkung beansprucht
sind, wird die Berechnungsmethode des "minimalen Gewichts" abgeleitet.
Die "Random"-Vibrationstheorie erlaubt es, das dynamische Verhalten des
Tragwerks festzustellen. Unter Annahme "elastischer" Kräfte und plastischer
Verformungen liefert die fortschreitende lineare Programmierung das
gesuchte Optimum. Beispiele werden gezeigt und Vergleiche angestellt.



IIa

Optimization Techniques under Random Loading Effects

Techniques d'optimisation et effets des charges aleatoires

Optimierungstechnik bei Wirkung von Zufallsbelastungen

S. BALASUBRAMONIAN K.S.S. IYER
Lecturer in Structural Engg. Professor of Mathematics

College of Military Engineering Military Technical College
Poona, India Baghdad, Iraq

1. INTEODUCTIOK

The developments that have taken place in the last few years
in the field of optimization techniques applied to structural
Problems were restricted mainly to structures subjected to deterministic

loadings. The reasons for the lack of research activities
towards the analysis of structures under the effects of random
loadings could be attributed to the mathematical complication involved

in the procedure and the non-availability of sufficient and
reliable data regarding the past histories of the random exciting
force.

In this paper a simplified approach is reported to deal with
the structural optimization problems under non-stationary loadings
by making use of the upper bound probability of failure of the
structure. The analysis is carried out in two phases:

(A) to obtain an expression for the probability that the response
of the structure at a critical zone reaches for the first time an
upper limit value with time-dependent control-barriers, interms of
their rate of uperossings; and

(B) to seek an approximate Solution to the optimization problem,
using the result obtained in phase (A), with the probability of
failure, the natural frequency of Vibration and the frequency response

function of the system as restraints.
2. PHASE (A).

The estimation of the upper and lower bound probabilities of
failure of a structure in a closed internal of time, has been a
field of great interest among engineers dealing with random Vibration

problems. j.j Coleman1 for the first time, suggested an
approximate Solution to estimate the upper bound value interms of
the expected rates of the threshold crossings of the response process
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at positive and negative slopes. However, the process of independent
arrivals of failure, as assumed by Coleman, is unacceptable

especially for narrow band random process, such as the response of
lightly damped dynamic Systems. Besides, for low damped structural
Systems, crossings of response process tend to occur in 'clumps1 of
dependent crossings and hence the expected rate of threshold crossings

should be replaced by the average clumping rate. M Shinozuka2-
has developed a method applicable to stationary and non-stationary
cases as well, to estimate the upper and lower bounds for the
probability of the first excursion failure within an arbitrary semi-clo-
sed time internal (o, t) and constant barriers without the assumption
of independent threshold crossings. When the computed values of
the upper and lower bounds are sufficiently close to each other,
they are just as valuable as the mathematically exaet values of the
probability as a basis for making engineering decisions. In a
paper3 published later, Shinozuka has further extended his Solution
to take into aecount the effects of time-dependent barriers also.

The Solution to the above problem with time-dependent barriers,
presented in this paper is a modification to Shinozuka's approach
with a different Interpretation, interms of the expected rate of
crossings of the response-barriers.

Following Shinozuka's expression for the upper - bound probability
of failure of the structure,

P+ Lt ;-Y2Ct) ,YiCt)] < P* [t; -YxCt;,<J + P* [t i -*- Y.CtJ

_ Pt [£xct,3 <-YfcttO}£* CU) >Y, Ct)}] - - - -Cl)

where x(t) represents the response of the system at a critical zone
and the failure of the System, för the first time, is defined as
when ocCt) 2-Y,C±), or xCt) 4-Ya_Ct) in which Y-|(t) and
Y2(t) are positive barriers of response process.

Let N [Y.C-O ,tj_, hereafter referred as N-| represents a random
variable denoting the number of crossings of Y-|(t) from below
during the internal (0,t). The probability that N LY.Ct),tj
takes a value *-y' during (0,t), Pt[N(:t] can be expressed as:
P+ [N,= Tj Pt[N,=t- xCo)>/N,Co)J ¦+ P+[N,_ + ; XCo)< Y,Co;j Czj

Also,
P+ [t • -°c,Y,(t)J: P*(>(o)?Y|C<0 jN.^oJ+p+LxtoXY.Co^N.^l]

+ P+[xCo) Y,C<0,N,/>a] _ .C3j

Equation (3) can further be simplified as :

Pf Tt; -°c,Y,c-ol Pt[xc°) >y,co;1 + Pf [xcü)<y,Co;J pt[N,^ikoO<
1

Y(Co)J
4Pf[xco)?Y,Co)]+Pf[xCöXY,COJ £ sPr[N(--s\oc(0)

s~~' <Y,Co)J--C
Equation (4) with the help of equation (2) finally reduces to,
PrLt;-^,Y,Ct;]< Pr[xCo)>Yiro)J+ErM)]-Pr[5cCo3>/Y,Co)jE[Nl)oc^)>/YJCö)J

' " - CO

in which E denotes the expected value.

If NL-Y2.Ct), t] hereafter referred as Ng» represents a random
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variable denoting the number of crossings of -Y2(t) from above
during an internal (0,t),
Pr[t^-Yxct^Y,ctDJ < Pr[><o;<-va.(o;j+ Pr [xno; >y,ccoj +

P-r [xco3 >-XxCo3j E [_Mx|'XCoJ>-Yi.(o3j +

Py [X (oj <.Y,Cü)] E LNi[xCo3 eCY(CgJ] -
Pt [[xco)c-^xco3Hxco>x,ct)j] - - - -c<y

Equation (6) in effect represents the best upper bound probability
of failure of the structure interms of the rate of crossings of the
time-dependent barriers of response process.

In case the response process Starts from zero origin, such that
p (" tc(o) o"I= 1» equation (6) further simplifies to :

p, [t-,-Y.(t),Y,a)J<&[M1]+t[^J-p-[{^ct')<^ct,)}^cto>YlctolJ--C7;
The approach presented above, to estimate the upper bound value

becomes significant in dealing with those problems where a stationary
process for a finite time internal is observed, as in certain

control system problems.

3. PHASE (B).

An approximate Solution to the structural optimization problem
is attempted in this phase, making use of the results obtained in
phase (Aj, with the probability of failure of the structure and the
system-characteristics as restraints.

let z(d) be the objective function to be minimised subject to
the condition,

Pr[|JIiSi(x(4,t0»*c}]j.U^]j °°
and Sj (x(d,t)) < Vj - • ¦ ¦ - • - (YJ>

and coit 4 ^i £ wiu. - • ('oJ

where S-i (*Cd,u_) is the frequency response function of the System;
x Cd,t) represents the response (stress, strain or displacement)at a

critical zone to random excitation;
^LL ,uiu. are the lower and upper limits of the natural frequency of

Vibration of the structure, respectively;
[rfjj denotes the upper limit of the probability of failure under
mode j
Let P*[Sc(>u,t));^;j piGO • • • • <"->

Por example, if the safety of the structure is analysed on the basis
of the external load acting on it and its internal resistance, say
P and R respectively, both treated as statistically independent
normal distributions, then,

PCO ~±=- \°! *~*A doc 0*jJiTT T

where f R-F ' - - - - - ('.JJ
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in whichf and F are respectively the mean value of the resistance
and the load; tr^2- and ^P- are their variance.
Equation (8) now reduces to,

,k, ?c. frrrd.trt >v, U. - f£ K-cJJl: CI4Jp,[g,{SLC«^tO^ijJj - [fsl K-^j,
the limit of summation of the time variable being from -=cto°C
It follows,

ll h«>h *LWj, J£''^-- " c"°

In the case of non-stationary random excitations, for example,
ground acceleration due to earthquakes, the left hand side of
equation (15) may be replaced by the upper bound value of the
probability of failure of the structure as obtained in phase (A).

4. CONCLUSIONS.

Since a knowledge of the rate of crossings of the time-
dependent response-barriers is an essential pre-requisite to the
present analysis, a rigorous Statistical analysis of the past
records of the random exciting force is warranted to achieve a high
level of accuracy. A large class of optimization problems in
control system engineering could be advantageously studied using
this method.
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SUMMARY

A general Solution to deal with structural optimization problems under
non-stationary random loadings is presented, with the upper bound
probability of failure of the structure within time-dependent barriers and the
system characteristics as restraints.
RESUME

Une technique generale d'optimisation des structures est presentee
pour le cas de charges aleatoires. Les caracteristiques du Systeme et les
valeurs superieures de la probabilite de ruine en fonction du temps sont
prises en consideration.
ZUSAMMENFASSUNG

Es wird eine allgemeine Lösung der Bauoptimierungsprobleme für nicht
stationäre Unfallsbelastungen dargestellt, mit der oberen Grenze der
Versagenswahrscheinlichkeit innerhalb zeitabhängiger Grenzen und den

Systemcharakteristiken als Einschränkungen.
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1 - INTRODUCTION
L'ideal que cherchent ä atteindre tous ceux qui sont associes ä l'art de

construire est de realiser l'ouvrage qui donnera les meilleures garanties de
service dans des conditions requises de securite et au meilleur prix.

L'optimisation envisagee ainsi n'est aujourd'hui pas accessible par des
methodes deductives. Elle demeure un art. Cependant, pour les demarches qu'il
doit faire en vue de cette optimisation, l'ingenieur dispose de moyens de plus
en plus elabores. Les criteres qu'il faudra respecter dans ces choix sont dans
la pratique imposes par les autorites responsables de la securite, par les maitres
d'ouvrage et par les maitres d'oeuvre. On les trouve exposes soit dans les textes
reglementaires [l,2] soit dans des cahiers des charges.

Par utilisation des techniques de programmation lineaire, le projeteur peut
dans la pratique optimiser sa structure en poids, tout en satisfaisant un certain
nombre de criteres aux etats limites ultimes. Un programme de dimensionnement
optimal de structures ä barres, visant ces objectifs, a ete realise dans le cadre
de travaux entrepris au CTICM et nous montrerons un certain nombre d'exemples qui
mettent en lumiere l'influence que peut avoir le respect des criteres de verification

sur l'optimisation de la structure.

2 - RAPPEL DES DIFFERENTS CRITERES A SATISFAIRE AUX ETATS LIMITES ULTIMES
Un etat limite ultime est atteint lorsqu'un des phenomenes suivants se

produit :

a) perte d'equilibre de la structure
b) transformation de tout ou d'une partie de la structure en un mecanisme
c) instabilite de forme :

- d'ensemble de la structure,
- individuelle d'une barre

d) deformations excessives
e) cumul de deformations sous charges repetees
f) rupture d'un element (fragilite ou par fatigue).
Un etat limite d'utilisation est atteint lorsque la structure devient inapte

aux fonctions normales pour lesquelles eile est concue, en particulier lorsque
les deformations excessives entrainent une interruption du service normal de la
structure ou des desordres dans les elements non structuraux.

Dans le cadre actuel frangais de la philosophie de la securite, pour verifier
la securite vis-ä-vis des etats limites, le projeteur multiplie les valeurs
(caracteristiques ou nominales) des actions par des facteurs appeles coefficients
de ponderation. Les valeurs de ces coefficients dependent de l'etat limite considere

(etat limite d'utilisation ou etat limite ultime) du type d'action envisage
(actions permanentes ou variables) et de la combinaison d'actions etudiee
(Intervention simultanee d'actions variables).
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Ainsi, pour la verification ä l'etat limite ultime, on est conduit ä considerer

les plus defavorables des combinaisons d'actions donnees dans le tableau
ci-dessous :

Tableau 1

SYMBOLES

Majuscules
Q action permanente
G surcharge
S neige
W vent

Indices
e extreme
r reduite

Cas de combinaisons
d'actions

prenant en compte une

des trois actions
Q. S, W.

f<} G

f S.+ G

|w +G

prenant en compte

simultanement deux

des trois actions
Q. S, W.

•il (W*Q> * | G

if (Q+S) | G

ij(Sr+W) ->-G

ü (W+Q) 1- G

yf (Q+S) + G

prenant en compte

simultanement trois
des actions Q, S, H. j (Q + Sr + W + G) y (QtSr+W) + G

prenant en compte les
actions climatiques
extremes

Q t Sre Wg G

Q + S„ * G

<3 + Sret Wet G

Q + Se G

A l'etat limite d'utilisation, la verification doit etre effectuee en
considerant les combinaisons les plus defavorables des actions non ponderees.

Selon l'etat limite considere, la verification consiste en particulier ä

contröler si la structure satisfait aux criteres de deformations, d'instabilite
ou de resistance.

II a paru utile, dans le cadre de cet article, de bien souligner les principes

sur la maniere de prendre en compte la securite dans 1'optique des reglements
actuels frangais. Car il est de 1'opinion des auteurs que ces considerations sont
de nature ä avoir une influence tres importante, non seulement sur la facon dont
on entend poser le probleme de l'optimisation, mais aussi sur la nature des resultats

de cette optimisation.
L'etude et la mise au point d'un projet de construction passent toujours par

trois phases essentielles, ä savoir :

le choix des dispositions generales de la construction,
la determination des dimensions de tous les elements composants,
la verification que les dimensions adoptees sont acceptables et -en
particulier- conferent ä la construction un degre de securite süffisant.

En ce qui concerne la premiere phase, on admet generalement que seul le choix
des dispositions generales de l'ouvrage et de sa coneeption constitue oeuvre
d'imagination creatrice, pour laquelle 1'intuition et l'experience de l'architecte
et du construeteur jouent un röle essentiel.

La question qui nous preoecupe dans le cadre de cet expose est de savoir s'il
existe des methodes pratiques qui permettent de determiner un choix prealable des
sections ou composants d'une structure quelconque et qui, d'une part satisfont ä

l'ensemble des criteres de verification que nous venons de decrire brievement et
d'autre part, conduisent ä une optimisation de poids de la structure.

3 - TECHNIQUES D'OPTIMISATION DES STRUCTURES

Le cadre reduit de cet article ne nous permet pas d'exposer les fondements
de la methode utilisee ni le detail de sa formulation en termes de programmation
lineaire. Cette etude a fait l'objet de plusieurs publications [5,6,7] oü l'on
trouvera la formulation du probleme de predimensionnement optimal en termes de
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de programmation lineaire, avec le choix de la fonction objective (que l'on peut
lineariser) et la prise en compte, d'une part de 1'interaction effort normal-
moment flechissant et d'autre part du flambement.

L'approche utilisee par les auteurs se distinguent d'autres methodes iteratives

[3,4] de type "heuristique", qui abordent le probleme de la recherche d'un
optimum au travers d'un processus complexe "d'iteration-contröle-modification"
permettant de prendre en consideration de nombreux criteres de verification
(contrainte, stabilite, deformabilite) de la structure etudiee. Ces methodes
presentent, ä defaut d'un manque de generalites et d'une incertitude sur
l'optimum atteint, l'avantage d'avoir ete pensees comme un programme module
(PLADS-I PLASTIC ANALYSIS AND DESIGN SYSTEM, ecrit dans un Systeme general de
langage Oriente : ICES INTEGRATED CIVIL ENGINEERING SYSTEM). A ce titre, il a le
merite d'etre immediatement disponible et utilisable par l'ingenieur de bureau
d'etudes.

4 - EXEMPLES D'APPLICATION
Le programme de predimensionnement automatique des structures permet de

prendre en compte la stabilite individuelle des barres et une combinaison
quelconque d'etats de charges ponderees. II est cependant necessaire, pour etre en
conformite avec les reglements de calcul [l,2] de contröler que la Solution
obtenue satisfait les criteres aux etats limites d'utilisation et de verifier
les conditions d'instabilite d'ensemble de la structure.

Nons donnons ci-apres deux exemples qui demontrent que d'une part, la Solution

optimale recherchee depend des criteres d'etats limites adoptes, selon que
le dimensionnement se refere ä un reglement de calcul en eiasticite [lj ou en
plasticite [2], d'autre part le predimensionnement est d'autant plus proche de la
Solution finale optimale que l'on considere ou non les conditions d'instabilite
individuelle.
Exemple_l : A titre d'exemple, nous donnons les resultats obtenus sur la structure
donnee ä la figure la. Les Schemas lb et lc donnent la valeur de deux combinaisons
de charges les plus defavorables pour la structure consideree, ä savoir charges
permanentes + neige et charges permanentes + neige + vent.

IPE

(al

Fig. 1 la
0.65 t/m 0.4 t/mmmm

021 "O o
0.4

lb) thl

lb lc

1 0.4 t/m

Les resultats sont resumes dans le tableau de la page suivante.
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Tableau 2

Poids
(tonnes) H v150;

-iv, 1

irSoo
Nbre plastification
etat limite utilisation

Elas.
[1]

poteaux HEB 200
traverse IPE 360 3,98

1 1
0

199,5 350

Pias.
[2]

poteaux HEB 200

traverse IPE 300
3,1+7

1

174
1

210
2

Pred. poteaux HEB 180
traverse IPE 360 3,64

1

144
1

332

Dans cet exemple particulier pour lequel les conditions d'instabilite au
flambement sont verifiees, l'optimisation est differente selon qu'elle est
elastique ou plastique. Dans les deux cas eile satisfait aux conditions de deformabilite

aux etats limites d'utilisation ; par contre, la presence de 2 rotules
plastiques aux etats limites d'utilisation n'est pas acceptee en eiasticite. Le

gain de poids est ici de 12,8%.
Le predimensionnement initial donnait une Solution proche de la Solution

elastique, mais la condition de deformabilite en tete du poteau n'etait pas
verifiee, quoique la condition de flambement du poteau etait satisfaisante.
Exemgle_2 : Soit la structure donnee en figure 2, avec le cas de charges ponderees
considere. Les resultats du predimensionnement sont rassembles dans le tableau 3.

Fig. 2

I 8.04

®

©

®

_®_

©

© ©
®

© ©
1»-*-

1

11

2880 daN/m
4:44:'^pZy4?'PP.Z:-^'ZZZ-\-.-Z'- :¦:¦: E:-:^'7:T*E':*Tr':*:*'"":*^""^:r

2640daN/m
i> PPspimWiimiii

P-

Tableau 3

Poteaux 1,2,5,6 Poutres 3,4 Poutres 7,8,9,10

sans interaction
M, N, ni flambement

IPE 300 HEB 100 IPE 400

avec interaction
M, N et flambement

IPE 360 HEB 160 IPE 400

Solution opt.
selon Elas [l] IPE 360 HEB 200 IPE 400

L'examen des resultats de ce tableau par le programme de predimensionnement
automatique des structures montre que si le dimensionnement sans interaction M

et N est acceptable pour les poutres (c'est-ä-dire lorsque la sollicitation de
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flexion est preponderante), il n'en est pas de meme pour les poteaux oü l'effort
axial est preponderant. II est necessaire alors d'introduire dans le
predimensionnement les conditions d'interaction entre l'effort normal et le moment
flechissant et les conditions d'instabilite (voir 2eme ligne du tableau 3). L'introduction

de ces conditions amene generalement une redistribution des efforts entre
les sections et peut conduire aussi ä une augmentation des sections simplement
flechies (barres). La 3eme ligne du tableau 3 donne la Solution finale compatible
avec les exigences d'un reglement elastique [l].
5 - CONCLUSIONS

La methode mise au point dans le cadre d'etudes entreprises au CTICM trouve
son fondement dans l'application du theoreme statique en plasticite et les
techniques de programmation lineaire. Elle conduit d'une maniere pratique ä un
predimensionnement initial correct, ä condition toutefois de prendre en consideration

les conditions d'interaction entre sollicitation de flexion et effort axial
et les conditions de stabilite individuelle au flambement des barres.

II y a lieu cependant de proceder ä une verification de ce predimensionnement

initial, pour contröler si la structure satisfait aux diverses exigences
imposees par les codes de calcul aux etats limites d'utilisation.

La fonction ä optimiser est le coüt total de la structure, c'e"st-ä-dire la
somme des coüts des aciers, de la fabrication, du montage et de l'entretien. Une
etude factorielle de l'influence de ces divers coüts dans 1'etablissement d'une
fonction economique a ete etudiee [8]. Si cette etude a montre qu'il etait
possible d'ameliorer sensiblement la fonction economique, la qualite du dimensionnement

n'est cependant pas accrue dans les memes proportions. En particulier, du
fait de nombreuses hypotheses au niveau de la prise en compte dans le
predimensionnement de l'instabilite individuelle des barres, le gain de precision du ä

1'amelioration de la fonction economique est illusoire.
Le programme de predimensionnement automatique des structures est valable

quelle que soit la configuration geometrique de la structure et la nature des
charges exterieures appliquees. Cependant, le nombre de sections potentiellement
critiques choisies et celui des contraintes resultant des conditions de
plastification, d'interaction M et N et d'instabilite de flambement des barres comprimees

et flechies, en limitent l'application pratique ä des structures relativement
simples (portiques simples, portiques accoles, cadres multi-etages de 2 niveaux,
3 baies).
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RESUME

L'article expose brievement l'etat des conditions ä satisfaire dans le
cadre d'une Philosophie reglementaire aux etats limites. II est actuellement

possible de tenir compte des conditions d'interaction effort normal-
moment flechissant et des conditions de flambement dans l'optimisation des
structures ä barres. Deux exemples montrent qu'il est important de prendre
en consideration ces criteres si l'on veut aboutir ä un predimensionnement
valable.

ZUSAMMENFASSUNG

Der Artikel weist kurz auf die Bedingungen hin, die im Rahmen einer
vertretbaren Philosophie der Grenzzustände erfüllt sein müssen. Es ist
heutzutage möglich, in der Optimierung von Stabtragwerken der gegenseitigen
Wirkung zwischen Normalkraft und Biegungsmoment und dem Knicken Rechnung zu
tragen. Zwei Beispiele zeigen, dass es wichtig ist, solche Kriterien in
Betracht zu ziehen, wenn eine günstige Vorbemessung erreicht werden soll.

SUMMARY

The paper states briefly the conditions to be satisfied within the framework

of an ultimate State design philosophy. It is presently possible to
improve the optimization of structures by taking into aecount interaction
between normal force and bending moment and buckling conditions. Two examples
show that it is important to consider such criteria, if we want to achieve
a proper members selection.
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1. Introduction Several classes of general solutions to the problem of minimum

weight plastic design of multi-story multi-span plane frames subjected to a

class of one set of practical design loads have been derived by the senior author
[1] by applying Foulkes' theory [2] and by extending it to a more general theory
[3] which incorporates the axial force-bending moment interaction yield conditions.

The present authors have further extended the result of [1] so as to in-
corporate the reaction constraints in [4]. These analytical general solutions
are of theoretical and practical interests. Firstly, they serve to clarify even
partially the general features of the minimum weight designs. Secondly, once an

analytical method is developed for simpler problems based upon the moment yield
condition [1], their general solutions would provide a good lead to the general
solutions to more complex problems based upon interaction yield conditions [3].
Thirdly, they will provide good initial feasible solutions for neighborhood
problems.

In this paper, a kinematioal restricted maximization procedure is developed
by combining the primal-dual method of LP [5] with a semi-inverse approach similar

to the idea of [1] and then applied to the problem of minimum weight plastic
design of multi-story multi-span plane frames subjected to five sets of design
loads.
2. Formulation of the Design Problem Fig.l shows a multi-story multi-span
plane frame to be designed by Foulkes' theory [2] and the five sets of design

{v <v
Lateral 77777

Design
Loads

P ¦

_i_

jk

Jk

'Jk

-
i=o

2

i

Storey-shear
Distributions

Lateral
Design
Loads

Vertical Design Loads

Fig.l Design Load Distributions, Notation and 5 sets of Design Loads

1. Kind Loads

2 kind Loads

3 Gravity Loads
¦0 ; Xlt.k)

4. Earthquake
Loads

5. barthquake
Loads
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loads. The fully-plastic moments of (j,k)-beam and (j,k)-column are denoted by

Bj k and Cj k> respectively. Without loss of practical generality, it may be
assumed that the story-shear force distributions defined in Fig.l be such that

QEj Z Qwj for j=l,2, p, and n]
QEj 1 Qwj f°v 3=P+1* ••> f-

The factor X for the design gravity loads is assumed to be A 1 2.0.
The design problem for five sets of design loads is treated in the following

three or four Steps:
(i) Solve the basic problem for the two sets of co-directional lateral design

loads 1 and 4, i.e., for {PwjSvj,k^ and ipEj^vj}k^ >

(ii) Construct a statically admissible bending moment field for the two sets of
design loads 2 and 5, i.e., for i-PyjjVj /,.} and {-pEjivj,k4

(iii)Construct a statically admissible bending moment field for the design grav¬
ity loads 3, i.e., for {OiWj^y),

(iv) If the step (ii) or (iii) is not possible, modify the collapse mechanism

locally and find the corresponding modified design.
The basic problem (i) may be stated in terms of the static variables defined

in Fig.2(a) as follows:
Minimize

subject to:

G gi1 ik.
k=l

s+1

Lbo* +i
3=1
T

2I0

s+1

i\liCikh
+ oTJk) hjQij bIjk

(g: constant)

,R B T
bIj,k-l= °Ij+l,k + cIJk >

bijk)+ jWjk
-B3k * bljk
cok i 4.Jk

±Bök

^°jk
-B3k

-cjk ±

<L b
°3k

R

Ijk
Ijk

±B3k
^Cjk

Bjk * 0,

Cjk Z o,

(2)

V(3a-i)

where b\^y_, bjj^ c\^ and o?., are free variables. In the expression (2), / and

s denote the numbers of storres and spans, respectively. In the constraints (3),
the first subscript J denotes the kind of design loads and is to be either E or
W. The second and third subscripts refer to the story number from below and member

number from left, respectively. For the sake of brevity, the equations of
moment equilibrium about interior and exterior joints have been written in one
and the same form with the Convention that all the undefined quantities with
respect to non-existent members shall be disregarded and dropped as null. This
Convention will also be used hereafter, unless otherwise stated.
3. Kinematical Restricted Maximization Procedure-Semi-Inverse Primal-dual Method.

The idea of the proposed approach may be summarized by referring to Fig.3
as follows. A design problem formulated as a linear programming problem [6] of
a mixed type [5], may often be such that a certain set of constraints may be
anticipated to be inactive due to the nature of the problem. From the original
primal problem

[PO]: Minimize {G(x)\xG 82(^82}
of a large size, a subproblem

[PS]: Minimize {G(x)\x £ S^}
may be derived by tentatively disregarding a certain set of constraints which are
anticipated to be inactive and which define the set Sg. Then the dual problem to

Fig.2
Definitions
of the
variables

Ijk
Ijk

Ijk /~.
P

Ick

"jk "jk

Bending moment
diagram under
the design loads
irwvjit)

la) Static variables

IjkIjk Ij.k+l4
Xi.k n

tjk Ijk•Jk

^A Ijk

Ijk

collapse mechanism

tb) Kinematic variables
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[PS], i.e.
[DS]: Maximize {D(u)\u 6 Vi

must involve a smaller number of dual variables and a greater number of equality
constraints. Therefore, if the Solution U° to [DS] can be found more easily
compared to the Solution to the dual problem of [PO], then the corresponding Solution

X° to [PS] may also be readily found simply by solving the set of simultaneous

linear equations derived from the duality theorem of LP. It remains then to
check if x° 6 So. The procedure may also be called "a semi-inverse primal-dual
method."
4. A Class of General Solutions to the Problem (i) It is now shown that the
kinematical maximization procedure is fruitful for rectangular frames due to
their regularity in the optimality criteria-based collapse mechanism. Let

T TD D rp

S2; (blök, bIjk^-Bjk> <cljk> °Xök)^-C3k' Bök-°> C3k-0'
Then the dual problem [DS] may be written in terms of the kii
defined in Fig.2(bl as follows: r,

Maximize D=Q{Jhj(QU;jywj+QE;jyEj)+l \\lkZ'jk($Wjk+*Ejk)}
J-1 k=l 3=1

subject to YijZMtjuc.{HJI;jk, ^jj.ltk)
^Ijk^Ijk^0 (k=l,2,..., s), l>IjjS+iZ-<r'Ijs

^%jk+^0,k+l+^Wjk) + ^Ejk+^E3,k+l+2hjk)} =Qlk (6a-d)

^^yj-%ö-l,k^Wjk) + (2"<Ej^Ej-l,k.^Ejk)] ehJ

The inequalities (6a, b) restrict the directions of plastic hinge rotations and
the equalities (6c, d) are the generalized Foulkes conditions defined by Chan [6]
and Prager [7]. The latter will be referred to as FCP conditions.

The equations (6d) indicate that 'i'wjk^Ejk-^j (independent of k) The

problem defined by (5) and (6) may then be simplified to a problem in terms of
Vwjk1 ^Wj1 ^Wjk and ^i only. After some manipulation on the inequalities, Yj^-

(4a-d)
kinematic variables

(5)

may be expressed in terms of ^yjk and ^j only, and then ^wjk> in terms of ^^k
and r- only.ü Finally, for those problems in which the load conditions:

S rl i 3 £ p-1 for
h+1 * 3 1 /h3®l3+h3+lQI,3+l * l^V3k for

I=E,)
I=W,}

s

kl,Vp"hpQEp+2hp+1QEp+1-hp+1QWp+1 ^

and the geometrical conditions:
lm <, Ik ^2lm Im i 2hj (lm= Min. {10)

are satisfied, the problem [DS] may be reduced to the following form:

(7a,b)

(8a,b)

Maximize D*=Q( -MpC + AM.
p+1

subject to £ Max.{iiw ^]s

r\),
n Min.iipi^k), (&r\)

k\ % ^hp+1<SH-Min.{0,r\}, Max.ijl^Q £ i^p+1&+T\.

0)

(lOa-d)

dual

primal
S' ^

\/-

^s1" ~2

U V :

Fig.3 7T7TT Fig. 4
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where Mr

0 ^ ^Wpk * -fnß> (k=l,2,..., s), a £ ^pjS+I & b,

a E Max.{-(l8-lm)Q/23 -t^g} 1 0

b Min.{lse/2, l„ß-<\>wpS} £ W=>/2 (lOe-h)

p - y«£p-<v - °and mv+i - hp+i(Qvp+i-QEp+4 °- The solution to

this reduced problem may readily be derived as summarized in Table 1. In those
problems where (7) and (8) are satisfied, the generalized Foulkes mechanism
defined by the ECP conditions can thiis be constructed as shown in Fig.4 for Case

(B) as an example.
The Solution to the problem [PS] corresponding to this problem[£S] may also

be derived straightforwardly. By assuming that some statical restrictions
defined and checked later will be satisfied, the resulting bending moment diagram
may be understood best by conceiving it as the result of superposition of the
constituent elementary moment diagrams (with equal corner values for h/m} shown

in Fig.5. Such a decomposition was first introduced in [1]. Each diagram is
referred to as "frame moment diagram." The minimum weight plastic design
corresponding to Table 1 may be compactly summarized as Table 2 in terms of "Maximum

Story-Shear Force Design" defined by

B-k E Max •«?*• ^ C.s Max
3k 3k' 3k' (lla.b)

where ~{BW.., Cw.Ps and {BE-k, (£, } denote the designs only for {Pwjj Vjk) and {PEj,

Vjk), respectively, derived by means of [1]. B and C are given by

Bjk 4lkv3k <**">i cjk i(lk-ivj,k-l+lkvjk)j (k^> m+1>

Bjk i(h3^i3+h3+lQl^l-Jjkvjk^ (* S { <=. P-J f™ fJ J" kjkn Kp+1 £ 3 & f for I=W and1

j=p, I=E for ISMp ^ IsM +1, and j=p, I=W for tsMp 1 tsM'j

T^Mir. IJn ^ZPj-^Wjkl'
V3k l (-14-'

1-=3
Vik

1 £ 3 1 P for I=E,
P+l £ 3 £ f for I=W,
n=m, m+1

(12a-e)

The yield inequalities in (3) provide restrictions on the design loads in
accordance with the Classification of the solutions listed in Table 2. These

Table 1 Generalized Foulkes Mech amsni

ywj Y« %k *Ejk *„Jk(k*0 *m"+" yjm, Ejm

j-1
0

Wk»
0 fv 0 hh-v*

0

j=2, p-1 fw>

3=9

lA) 0 j'hp+hn)» 0 k9 0 ff'W9
IB) frv-W« Whp+1>* irvw9 ¥p+s* ' *

IC) k9 k«2 P K8 0 l<W» 0

(D) 2 p lv iV f^-vy« A *

i-P+1

(A) h+i* fv

fv 0 l'h-W* 0

IB) iv fw
IC) H*i*v« 0

tD) l'^V" hi-hj*2 tn p

j=p+2, f fw 0
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restrictions may be summarized as shown in Table 3, where

MIj \(Hql3 + h3+lQU+l ~XlkVjk) (13)

It may now be concluded that the present solutions (4~0) are the rigorous
solutions to the problems in which all the geometrical and loading conditions are
satisfied.
5. Design for Five Sets of Design Loads. It may readily be confirmed that a

statically admissible bending moment field for {-PEji Vjk) an^ {-Py-il V'-j4 can be
constructed just by inverting the frame moment diagrams as shown in Fig.6.

For design gravity loads, it is convenient to consider again the decomposed
moment diagram with the respectively equal corner values XlkV^-js/8, as shown in
Fig.7. The conditions that the bending moment diagram given Dy superposing the
elementary diagrams in Fig.7 be statically admissible in a frame designed by the
procedure in Section 4, lead again to further restrictions on the design gravity
loads. An examination of these restrictions indicates that there are a number of
practically useful design solutions within the ränge defined by them.
6. Concluding Remarks It may now be concluded that, for the class of design
problems in which all the previous and supplementary conditions are satisfied,
the solutions (A-D') are the rigorous minimum weight plastic designs. The present
designs have apparently clarified the nature of minimum weight plastic designs.
While these designs must be modified for practical use so as to satisfy a number
of structural requirements, the present solutions will at least provide a basis
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for initial designs useful in such countries where fairly large lateral design
loads must be assigned for PLASTIC DESIGN so that frames can withstand against
strong winds and strong motion earthquakes. The present solutions may be said
to be a class of the most fundamental designs in the sense that a number of useful

designs to practical neighborhood problems can be derived by appropriate but
mostly local modifications. Three cases:

(a) hjPw~ < l lkVfk ' (b) lm i 2hl and Cc) Bl-k ^ 2lm have been treated in [8].

The present Solution and the solutions in [1, 3, 4] indicate that a frame
designed by these solutions would collapse in an extremely deteriorated overcom-
plete mechanism under a designated set of design loads according to the rigid-
plastic analysis. It is therefore necessary to confirm the safety of such a
frame against possible collapse due to inelastic instability according to a more
refined theory of large-deflection elastic-plastic analysis. For this purpose,
static and dynamic large-displacement analyses have been carried out on minimum
weight frames in [9-11] under alternating lateral loads well beyond their static
stability limits and under strong motion earthquake disturbances, respectively.
[1] Ryo Tanabashi 8 Tsuneyoshi Nakamura,"The Minimum Weight [7] W.Prager."Foulkes Mechanism in Optimal Plastic Design for

Design of a Class of Tall Multi-story Frames Subjected Alternative Loads." Int.J.Mech.Sei.,Vol.13,971-973,1971.
to Large Lateral Forces."Transactions of Architectural [8] Tadasni Nagase,"Minimum Weight Plastic Design of Multi-
Inat.Japan.P&rt I,No.118,10-18,Oec.1965 8 Part II, No. story Multi-span Plane Frames,"(In Japanese).Thesis for
119,37-44, Jan.1966. Also Proc.1ith Japan national Master of Engineering.(Kyoto Univ.) Chap.2,384, 1975.
Congr.Appl.Mech., 72-81,1965. [9] Yoshitsura Yokoo, Tsuneyoshi Nakamura,Shuzo Ishida &

[2] J.Foulkes,"The Minimum Weight Design of Structural Takashi Nakamura,"Cyclic Load-deflection Curves of Multi¬
Frames," Proc.Royal Soc.London,Vol.223,482-494, 1954. story strain-hardening Frames Subjected to Dead and Re-

[3] Yoshitsura Yokoo, Tsuneyoshi Nakamura 8 Michio Keii, peated Alternating Loadings,"Pre.Rep.IABSE Symp.RESIST-
"The Minimum Weight Design of Multi-story Building ance and ultimate deformabilite of structures ACTED Oll Bi
Frames based upon the Axial Force-Bending Moment Inter- well-defined REPEATED LOADS,BI-&7 Lisboa, 1973.
action Yield Condition,"Proc.1971 IUTAM Symp.Optimizat- [10]Ryo Tanabashi, Tsuneyoshi Nakamura 8 Shuzo Ishida,
ion in Structural Design,(Warsaw),Springer-Verlag ,1975. "Gravity Effect on the Catastrophic Dynamic Response of

[4] Tsuneyoshi Nakamura 8 Tadashi Nagase, "The Minimum Strain-hardening Multi-story Frames," Proc.Sth World
Weight Design of Multi-story Multi-span Plane Frames Conference Earthquake Engng.,Vol.2, 2140-2151, 1973.
Subject to Reaction Constraints," To be published in [11]ösamu Ohta, Tsuneyoshi Nakamura 8 Shuzo Ishida,"Collapse
J.Structural Mechanics,Vol.4, No.3, 1976. Behavior and Imperfection Sensitivity of Minimum Weight

[5] See for instance, W.A.Spivey & R.M.Thrall, LINEAR Plastic Frames," Summaries of Technical Papers at 1974
OPTIMIZATION, Holt.Rinehart 8 Winston, 1970. Annual Meeting of Architectural Inst.Japan, 753-754,1974.

[6] H.S.Y.Chan, "On Foulkes Mecnanism in Portal Frame De¬

sign for Alternative Loads,"J.Appl.Mech. ,Vol.36, 73-75,
T971.

SUMMARY

A kinematical restricted maximization procedure has been developed by
combining the primal-dual method of linear programming with a semi-inverse
approach. Some general solutions to practical problems of minimum weight
plastic design have been derived analytically by applying the proposed method.

RESUME

Une procedure cinSmatique de maximisation limitee a £te developpSe par
combinaison de la methode primale-duale de la programmation lineaire avec
une approche semi-inverse. Quelques solutions generales pour des problemes
pratiques de dimensionnement plastique, conduisant ä un poids minimum ont
6tö obtenues analytiquement par application de la methode proposee.
ZUSAMMENFASSUNG

Ein begrenztes kinematisches Maximierungsverfahren wird bei einer
Kombination der "primal-dual"-Methode der linearen Programmierung mit einem
"semi-inversen" Verfahren entwickelt. Allgemeine analytische Lösungen
praktischer Probleme der plastischen Bemessung auf Minimalgewicht werden
durch Anwendung der vorgelegten Methode gefunden.
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Optimierungskriterien und Dualmethoden in der Berechnung von Fachwerken
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Department of Civil Engineering, The University
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1. INTRODUCTION

In the Introductory Report of the lOth Congress of IABSE Gellatly and Dupree1
describe the optimality criteria approach to the optimum design of large structural
Systems. In handling large structural Systems the direct Solution approach by
numerical mathematical programming methods is often excessively slow and cumbersome
as a result of the large numbers of variables which must be optimized. The

optimality criteria approach is intended to overcome the difficulties posed by
having large numbers of variables. Gellatly and Dupree consider the optimality
approach to the design of structures in which element mass and stiffness are
proportional. Such structures include those composed of axial force bars, membrane

plates and shear panels. For this class of structures Gellatly and Dupree derive
an optimality criterion, their equation (2), for the minimum weight design of a

truss subject to a single displacement constraint. They then use this optimality
criterion, (2), to develop a recursion relationship, (8), which allows any arbitrary
set of member areas to be modified iteratively so as to eventually produce an
optimal set of member sizes. The important time-saving feature of this approach
is that at each iteration the existing set of member sizes is altered by applying
the simple relationship (8) to each area in turn. There is no complicated numerical
search involved.

Gellatly and Dupree then continue to describe a large Computer program,
OPTIM II, in which this optimality criterion and redesign formula is used to design
structures with multiple displacement constraints (stiffness requirements) and also
individual member size constraints. They point out that neither the optimality
criterion itself nor the redesign formula is valid for anything other than a single
displacement constraint but, despite this lack of rigour, OPTIM II still obtains
remarkably good numerical results very quickly. This is not disputed here; OPTIM II
is an efficient program, but its lack of rigour is perplexing and it makes it
difficult to interpret and identify those occasional cases in which OPTIM II
performs poorly.

The purpose of this paper is to examine a new dual formulation of optimum
design problems for this class of structures. In particular the problem of how
best to handle multiple constraints is examined and an interpretation of the dual
problem is presented which has considerable relevance in the development of improved
optimum design algorithms for large structural systems.

2. THE OPTIMUM DESIGN PROBLEM

For simplicity of notation a truss structure composed only of axial force bars is
considered, being typical of the general class of structures with member stiffness



116 IIa - OPTIMALITY CRITERIA AND DUAL METHODS IN TRUSS DESIGN

proportional to member mass. The minimum weight (minimum volume) design problem
can be posed as that of finding the set of member areas A. i 1, N, which

N

Minimize W Z L. A. (1)

i-l X X

subject to M independent nodal displacement constraints (Gellatly and Dupree
consider only a single generalised stiffness constraint),

«ta8? ,§fi.k(1 m 1 M (2)
1=1 mi l

and subject also to N member size constraints, one for each member

AT
„ _i s 1 i-l, N (3)
^M+i A.i

In constraints (2) F and U are the member actual forces and virtual forces
associated with unit displacement in the direction of the nodal constraint. &m is
the maximum permitted displacement of a node in constraint m, m 1, M. E is
the elastic modulus, and each of constraints (2) is derived from specific applied
loads and virtual force Systems. In constraints (3) A^ is the minimum permissible
size of member i, derived either from maximum member stress limits or from
fabricational considerations.

In the above formulation it is assumed that F and U are constants, hence A£

is also constant. This assumption is valid for statically determinate trusses.
It is strictly invalid for indeterminate trusses, however, F, V and hence A^ do

not usually alter appreciably as members sizes alter and it is common to assume
them constant, obtain an altered set of member sizes in some way, update the values
of F, U and Ä^, solve again and continue in this iterative fashion until the
process converges to an optimum Solution. This iterative Solution technique is
used by both mathematical programming and optimality criterion devotees, the
essential difference between them being only the way in which the altered set of
member sizes is obtained. It is assumed here that this iterative method for
indeterminate structures is used and so in the above formulation F, U, L, E, 6 and
Ä are all known constants. Our problem is how best to find the optimal set of
member sizes.

Recently the present author2 has shown that there is a dual formulation of
the problem expressed in relationships (1), (2) and (3). Derivation of the dual
problem is accomplished by exploiting the fact that the Lagrangian function of
the above problem has a saddle point as a stationarity condition. A füll proof of
the dual formulation is given in reference2 and here it is merely stated as

N M Ä7 i
Maximise V L L. {I (—) X__ + — X„ .}i VE6' m L. M+ii=l m=l mi l

M+N

subject to Z \mm=l
A 5 0 m-l M + N

m

(A)

The Solution of (4) is equivalent exactly to the Solution of the primal problem,
(1), (2) and (3). At the Solution point (minimum of W, maximum of V) the following
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transformation relationships hold, with superscript asterisk denoting optimal
values,

(Minimum) W* V*2 (Maximum)

A.*
1

M

V* {Z
m-l

(IE)
A.

m L. M+i i 1, (5)

The dual variables in dual problem (4) are the An =1, M + N and it
will be noted that there is a dual variable Am for each of the primal constraints
(2) and (3). The dual variables are therefore similar to the unknown Lagrange
multipliers of the primal problem. All A's must be non-negative; any value of
A 0 denotes that the primal constraint to which it corresponds is inactive at the
optimum. The single constraint in dual problem (4) requires that all A's sum to
uni ty.

3. PROBLEMS WITH ONLY DISPLACEMENT CONSTRAINTS

Gellatly and Dupree1 consider only a single displacement constraint and their
equations (2) and (8) represent an optimality criterion and a resizing formula for
this problem. Their equation (2) contains a single unknown Lagrange multiplier
corresponding to the single constraint. This unknown multiplier may be eliminated
by Substitution into the constraint which must perforce be active; consequently
their resizing formula (8) contains no unknown multipliers. A major difficulty is
encountered if this method is extended to multiple displacement constraints. In
this case there will be M unknown Lagrange multipliers, one for each constraint,
and since it is not known a priori which of the multiple displacement constraints
are active and which are slack at the optimum it is not possible to eliminate the
unknown multipliers by Substitution. Consequently when a member resizing formula
for multiple constraints is developed corresponding to Gellatly and Dupree's
equation (8) it contains all the M unknown Lagrange multipliers. In order to use
the resizing formula it is necessary to supply values to all the unknown Lagrange
multipliers but there is no way of knowing what these values should be. This
constitutes the major difficulty of using optimality criteria methods for
multiple constraints. In order to get round this difficulty OPTIM II uses the
envelope method which resizes each member according to the single constraint
resize formula for each displacement constraint and then selects the largest
resulting size. This process seems intuitively logical but has no theoretical
rigour.

If the dual approach is examined for multiple displacement constraints only,
the dual problem becomes

N M
.FU. i

Maximise V Z L. {I (.•—) A }
l Eö m

1=1 m=l mi

subject to Z A 1

m=l
A 5 0

m

1

m 1, M

(6)

At the optimum, we have

(Minimum) W* V*2

M
,FU,

(Maximum)

A * V* {£ (—) x*}
m=l Eo m i-l, N

C7)
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Problem (6) consists of maximizing V, a non-linear function of the M dual variables
Am subject only to a single linear equality constraint and non-negativity of the
dual variables. This is easily done by classical optimization methods. Once A^,
m 1, M are known, relationships (7) give the minimum weight and optimal
member sizes directly.

Several features of the dual problem can be noted. Firstly the number of
dual variables is M, the number of displacement constraints. This means that the
dimensionality of the original problem, which had N member size variables, is
greatly reduced. Thus a large structure with perhaps 1000 members to be sized and
5 displacement constraints has a dual problem which consists of maximizing a
nonlinear function V of only 5 variables. In most large structural problems there
are usually many more members than displacement constraints so the reduction in
dimensionality afforded by the dual problem is of considerable advantage. Secondly,
the dual problem itself is of a convenient form for rapid Solution. The single
linear equality constraint may be eliminated by Substitution, Converting the problem
to one of unconstrained form with non-negativity requirements. First and second
derivatives can be easily evaluated which makes Solution comparatively simple.
Thirdly, the result gives immediate information about which constraints in the
primal problem are active and which are slack since a value of Am 0 corresponds
to a slack constraint. Finally the dual approach has the theoretical rigour
which is lacking in the envelope method.

A physical interpretation of the primal/dual problems in terms of structural
behaviour is illuminating. Consider a structure constrained by M independent
displacement constraints, i.e.

Minimize W

Subject to g $ 1 m-l,m

]
If each of the M constraints in (8) is multiplied by a multiplier Am, m 1,
such that the sum of the Am's is unity, and all the constraints are then summed

into a single Surrogate constraint we have

Minimize W

M

Subject to Z A g $ 1J m öm
m=l

(9)

Examination of the dual problems corresponding to (8) and (9) shows them to be
identical providing the Am's in (9) solve problem (6) optimally. This demonstrates
that in responding to multiple constraints the structure apportions its member
sizes as if all the independent constraints were surrogated into a single generalised
stiffness requirement. The structure therefore responds to a single fictitious
surrogated stiffness requirement and, since the A must solve (6), the Surrogate
stiffness requirement is such that the independent sitffness requirements are
combined together in such a way as to maximize their constraining potential.

This physical interpretation may partly help to explain the good results often
obtained by the envelope method as used in OPTIM II. The envelope method resizes a

a member by applying a single resize formula to each constraint in turn and selects
the highest resulting member size. These highest sizes form a resized set. By
this means the constraining potential of all the constraints is maximized. This is
in the same spirit as the more rigorous dual approach outlined above but is
mathematically different and is not rigorous. However, it may be conjectured that
the good results obtained by OPTIM II correspond to problems in which the enveloping
and surrogation approaches are similar and that the occasional poor performance of
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OPTIM II corresponds to problems in which the member sizes obtained by enveloping
are very different from those which satisfy the more correct surrogated constraint
in (9).

4. PROBLEMS WITH DISPLACEMENT AND MEMBER SIZE CONSTRAINTS

As Gellatly and Dupree demonstrate, a displacement constraint governs the
distribution of material throughout the structure. A member stress or size
constraint only controls the material in an individual member. Difficulties arise
when both types of constraints are present together since the distribution of
material required to optimally satisfy a displacement constraint may violate the
amount of material required to satisfy one or more of the individual member
constraints. There is no optimality criterion of practical use for combined types
of constraints. Somewhat ad hoc methods are usually used such as active/passive
sets of variables as in OPTIM II to handle both types of constraints.

The primal problem concerning us here is that given in (1), (2) and (3) and
the corresponding dual problem is given in (4) and (5). On examining the dual
problem it at first appears that its dimensionality, (M + N), is greater than that
of the primal problem, N. This would negate the advantage which the dual approach
has of reducing problem dimensionality. Fortunately, very recent research has
shown that the N dual variables corresponding to member size constraints may be

effectively eliminated by an iterative process. A brief summary of this now
follows.

Consider dual problem (4) for a single displacement constraint (with dual
variable Ag) and a füll set of N member size constraints. If we write

W. L. A.l ii -= Ä1
AE i

N

W Z W.

i-l X

N
& Z &.

i-l r

and if 6 is the maximum permissible nodal displacement, dual problem (4) is

N rr^ &-
Maximize V Z Jltl. (t^ xci * *•)' i 6 u l 1

Subject to E A. 1

i=o
A. > 0l i 0, N

(10)

Necessary conditions for a constrained maximum of V with respect to the N member
size dual variables only are that

3V
3A.

0 1 N

This leads to

w7 xo __

1
w

5 L
wT lJ

1

1 N (11)
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Substituting (11) into V of (10) gives

V -e^Tu + A0 [4-2- } (12)

If 6 < 6 this denotes that member sizes evaluated from the member size constraints
alone will satisfy the displacement constraint and hence A0 will be zero. We are
interested in the case where 6 > 6 and the displacement constraint must be active.
In this case V as given in (12) is maximized by as large a value of Aq as is
possible. However, Aq may not increase to a value such as to drive any of the
A^*, i 1 N in (11) below zero. The highest possible value of A0 is
therefore that value which first puts any A^* equal to zero, i.e.

Min (a -1 * IL !i)>
i-l nX 6 w7

6 ' (13)

This value of A0 drives one of the A^* to zero. Let the variable driven to zero be
Ajj * 0. This is now eliminated as a slack member size constraint.

A new dual problem may now be formed with X^, eliminated. This replaces
problem (10) and is

N-1 <—i 6. |N-i j—i o. i rn o i

Maximize V Z J«. iji 10 + \P + Jw^ {— A0}
i=l

N-1
Subject to Z A. ¦ 1

1=0 l
A. 3 0 i 0 N

l

(14)

Problem (14) is treated in a similar way to problem (10). Relationships similar
to (11) are established for the X^*, this time for i 1, N - 1. An expressiot
for V similar to (12) is found and a new value of A0 is determined as (13). If the
new value of Aq is greater than its previous value another of the X^* is eliminated,
another problem similar to (14) but with(N - 2)values of A^ is set up and the
process is continued in this iterative fashion until the value of Aq reduces. The

previous iteration's results for all the A's are then optimal. Relationships (5)
then give the minimum weight and optimal member sizes.

The iterative procedure described above forms into a very simple algorithm
since the relationships of the types of (11), (12) and (13) are very concise in
nature. Using this iterative dual approach the interactions of member size
constraints and a displacement constraint may be optimized very rapidly, the
dimensionality of the method being essentially unity. An advantage of the method
is that it Starts essentially with a fully-stressed design (all member size dual
variables active and A0 =0). The activity level of the displacement constraint,
Aq, is then progressively increased, knocking out member size constraints as they
become slack. In many practical design situations a first requirement is to
examine the fully-stressed design and check it against possible displacement
limitations. If the displacements are excessive the fully-stressed design needs
to be altered in some way so as to optimally satisfy displacement limitations.
This is precisely how the dual approach outlined above tackles the problem and it
is therefore well suited to implementation in practical optimum design programs.

The treatment above is limited to the combination of a single displacement
constraint and member size constraints. If multiple displacement constraints are
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present the iteration algorithm is more complex and has not yet been fully investigated.

However, it has already been shown in this paper that multiple displacement
constraints behave as a single surrogated constraint. This suggests a possible
Solution algorithm in which the multiple constraints are first solved separately
and the single Surrogate constraint formed and then the above algorithm used to
handle the interactions of the Surrogate constraint and the member size constraints.
This remains to be further investigated.

5. CONCLUSIONS

This paper has examined a dual approach to the optimum design of structures
whose elements have stiffness proportional to mass. It has shown that a study of
duality gives insight and rationale for some of the successful, non-rigorous
approaches to truss design such as the optimality criterion approach used in
OPTIM II. It would have been more satisfying to give numerical results confirming
the speed and efficiency of the-dual algorithms suggested in this paper but space
limitations preclude this. Nevertheless it can be stated that the dual approach
does provide a means of very rapidly solving optimum design problems for large
structural Systems. The reduction in dimensionality and the ease with which the
dual problems may be manipulated and solved makes the approach a very serious
competitor to the much-used, less rigorous optimality criteria methods. From a

practical structural engineering point of view it should be stressed that although
duality theory and the associated algebra may seem unnecessarily complicated and

abstract, the algorithms which may be developed from it are rigorous and are very
simple to operate, giving practically useful results very rapidly. Furthermore the
dual-based algorithms often tend to be similar to those suggested by engineering
intuition. This is very satisfying and a firmer theoretical basis for intuitive
design approaches adds considerable strength to them.

As the present author has commented in the Introductory report to the lOth
IABSE Congress3 a major advantage of a study of dual methods is that it sheds new

light on well-known problems and enables the nature of the problems to be understood
more deeply. Sometimes, as in the case here, this extra insight allows new Solution
algorithms to be developed. The ultimate usefulness of these algorithms remains to
be fully investigated in a continuing program of research,
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SUMMARY

The paper examines a new dual approach to the optimum design of trusses
with multiple displacement and member size constraints. Comparison is made

with optimality criteria approaches to the same problem. Reductions in
problem dimensionality and simple Solution algorithms arise from casting
the problem into dual space, which also gives insight into some ad hoc,
intuitive artifices often employed in the Solution of these problems.
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RESUME

Une nouvelle möthode duale est presentee pour le dimensionnement
optimal de treillis, soumis ä des contraintes de deplacements multiples
et de types de profils. Une comparaison est faite avec la methode des
criteres d'optimisation. Des reductions de la dimension des problemes
ainsi que des algorithmes simples pour leur resolution sont obtenus en
situant le probleme dans l'espace dual, ce qui permet egalement d'analyser
quelques artifices de calcul souvent utilises dans la Solution de tels
problemes.

ZUSAMMENFAS SUNG

Der Bericht behandelt eine neue Dualmethode für die Optimierung von
Fachwerken mit mehrfachen Formänderungs- und Formgebungsrestriktionen.
Die Ergebnisse werden mit der Methode der Optimalitätskriterien verglichen.
Eine Abminderung der Komplexität und einfache Lösungsalgorithmen resultieren

aus der Problemprojektion in einem Dualraum, was auch Einblick in
gewisse intuitive Verfahren gewährt, die bei der Lösung solcher Probleme
oft angewendet werden.
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1. Problemstellung

Im Konstruktiven Ingenieurbau stehen heute eine Reihe leistungsfähiger
Berechnungsverfahren zur Verfügung. Das Dimensionieren von Tragwerken erfolgt
dagegen durch den Ingenieur, wobei Können und Erfahrung eine wesentliche Rolle
spielen. Kann man eine Gewichts- oder Kostenfunktion definieren, so läßt sich
dieses Problem als Optimierungsaufgabe formulieren, die als Folge der
Bemessungskriterien i.a. nichtlinear und nichtkonvex ist. Aus der Vielzahl der
Lösungsverfahren zur Bestimmung eines lokalen Minimums [\J wird hier das Verfahren

der Optimalitätskriterien betrachtet, das eine problemorientierte Variante
der Lagrange'schen Multiplikatorenmethode darstellt.

Dem Optimierungsmodell liegt ein durch n Elemente diskretisiertes Tragwerk

zugrunde. Es wird vorausgesetzt, daß für jedes Element i die
Elementflexibilität £±*' umgekehrt proportional von einer Querschnittsvariablen
(Entwurfsvariable) <i£ > 0 abhängt und daß sich das Gewicht des Tragwerkes als
lineare Funktion (Zielfunktion) dieser Entwurfsvariablen darstellen läßt:

n n
W - X w. - 7 w. o. (1)

• i s. ..11i=I i-l
Als Nebenbedingungen werden Spannungs- und Verformungsrestriktionen berücksichtigt,

wobei o-? und 6-9 die zulässige Spannung des Elementes i bzw. die
zulässige Verformung in Richtung des Freiheitsgrades j infolge Lastfall 1

bedeutet. Zusätzlich kann eine Einschränkung der Variablen durch untere und obere
Schranken aV bzw. a? vorgegeben werden. Damit ergibt sich folgende
Optimierungsaufgabe :

n
Minimiere W - T w. a.

i-l
unter Berücksichtigung der Restriktionen

Matrizen und Spaltenvektoren werden durch Unterstreichen gekennzeichnet, ein
hochgestelltes T bedeutet die Transponierte.
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°il - 0

"ii IIA 0

6jl - >°» IIA 0

ua.
1 - a.l IIA 0

a.l - 0
a.i IIA 0

(i"l n ; 1-1 p)

(j-1 q 5 1"1 p)

(i=l n)

(i»l,...,n)

(2)

(3)

(4)

(5)

Es bedeutet q die Anzahl der Freiheitsgrade und p die Anzahl der Lastfälle.
Die Spannungen a und die Verformungen 6 sind nichtlineare Funktionen der
Entwurfsvarieblen a_ so daß die Restriktionen einen nichtkonvexen Lösungsbereich

beschreiben. Da die Problematik bei einem Lastfall bzw. mehreren
Lastfällen dieselbe ist, wird im folgenden aus Gründen der Übersichtlichkeit auf den
Belastungsindex 1 verzichtet.

2. Notwendige und hinreichende Optimalitätsbedingungen

Die Herleitung notwendiger Extremalbedingungen der nichtlinearen Optimier-
rungsaufgabe erfolgt mit der verallgemeinerten Lagrange'schen Multiplikatorenmethode

[2j. Da sämtliche Variablen ot_ nichtnegativ definiert und alle Restriktionen

als Ungleichungen gegeben sind, sind diese Bedingungen hinreichend für
ein lokales Minimum der Zielfunktion [2j. Bezeichnet man mit Gj < 0 die allgemeine

Form der Restriktionen (2) und (3), so lautet die Lagrange1sehe Funktion:

W + Z. X. G. +

j-1 j j £ "i (ai - -i> X. n. (a. - a.)ii li»l
(6)

Die Lagrange'schen Parameter A., u. und n. sind festgelegt durch:

(j-1,...,m)

(i»l n)

(i-l,...,n)

A.
J

All 0 > für G. <
J

0

"i All 0 * für a. >l
u

0
1

n.i All 0 f für a. Zl
o

a.l

(7)

(8)

(9)

Als notwendige und hinreichende Bedingung für einen stationären Wert von W

müssen die partiellen Ableitungen von J nach den Variablen tx verschwinden.
Mit 6(...)/8a, erhält man:

m

Z o.
j-i

Mit (8) und (9) folgt

m

X X. G.

j-1 J J'k

j,k " "lc +

V

(k-1,...,»)

für •< < a < <*:

(10)

(in

Für alle "passiven " Restriktionen G: <0 ist nach (7) der Lagrange'sehe
Parameter A. gleich Null, so daß in der Optimalitätsbedingung (11) nur die
"aktiven" Restriktionen G- - 0 berücksichtigt zu werden brauchen.
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3. Rekursionsformeln zur Bestimmung der optimalen Konstruktion

3.1 Aktive Verformungsrestriktionen

Einzelne Verformungsgrößen können mit Hilfe des Prinzips der virtuellen
Kräfte berechnet werden. Es gilt:

6, - £ e.. - X ßhh (j"' q,) ' (12)
J i=l J i-l

wobei e.. die virtuelle Verzerrungsenergie, S. die Schnittgrößen infolge der
Belastung, S. die Schnittgrößen infolge der virtuellen Einheitsbelastung in
Richtung der gesuchten Verformungsgröße des Elementes i und q' die Anzahl
der aktiven Verformungsrestriktionen darstellt. Als partielle Ableitung nach
den Variablen a, (k=l n) erhält man mit e, e~, /a :

Gj,k -\j'\ •

u

<'»

Bezeichnet k C NI eine "aktive" Variable a, mit dem Wert a < a, < a, und
k C N2 eine "passive" Variable mit a, - a" oder a, a° so muß für alle
aktiven Variablen k € NI das Gleichheitszeichen in der Optimalitätsbedingung
(11) erfüllt sein. Mit W - w und (13) folgt:

X X. e I cx\ w (Vk C NI) (14)
j-1 J RJ

Diese Gleichung stellt i.a. ein hochgradig nichtlineares Gleichungssystem mit
den Unbekannten A. (j=l,...,q') und afc (k=l,...,n) dar, das nur iterativ
gelöst werden kann. Ist nur eine einzige Verformungsrestriktion zu berücksichtigen,

d.h.
6° X e / a + X e (15)

J kGNl K;l kGN2 J

so läßt sich der Lagrange'sehe Parameter A. eliminieren. Die Gleichungen (14)
aufgelöst nach a (k G NI) und in (15) eingesetzt, liefert:

A- -* X V ek. w
"

)2 mit 6* - 6° - X e (16)
J 6 kGNl J k kCN2 KJ

Bei mehreren aktiven Verformungsrestriktionen is_t eine Bestimmung von A.

(j=I,...,q') aus (14) nur dann möglich, wenn e, / cC als invariant
betrachtet werden. In diesem Fall stellt (14) ein " überbestimmtes lineares
Gleichungssystem in A^ dar:

G A - E (17)

mit - " | e'-- v<- a'Z 1 (18)
2

*kj ' "k \
und E_ » { I,..., l) für alle k C NI und j-1 q' Mit Hilfe der ersten
Gauß'sehen Transformation kann eine Lösung für X gefunden werden. Es gilt:

h'4 1 GT E (19)

In Bezug auf die ursprüngliche Gleichung (17) stellt A^ die beste Lösung im
Sinne der kleinsten Quadrate dar. Mit den bekannten ^-Werten und der Annahme

invarianter Größen e. • (bei stat. best. Systemen) entkoppelt sich das
Gleichungssystem (14), so daß die aktiven Variablen a. (k C NI) bestimmt werden
können:

«k - (X *j ekj /wk)
1/2

(20)

Bei stat. unbest. Systemen sind die Größen e, komplizierte Funktionen von

£ Da sich eine Änderung von o in erster JLinie auf die Schnittgrößen des



126 IIa - OPTIMIERUNG VON TRAGWERKEN NACH DER LAGRANGE'SCHEN MULTIPLIKATORENMETHODE

A* /

Elementes k auswirkt, kann (20) iterativ angewendet werden, d.h.

„v+l £ P^ ,:r 1/2

j-1
wobei v den Iterationsschritt kennzeichnet und \".
aus (16) bzw. für q' > 2 aus (19) mit den Werten

—v

Jekj (21)

U*'
wird. Da die passiven Variablen a (k G N2) i.a. 'kj

1,...
und

nicht

für q'-l
berechnetVim voraus

bekannt sind, muß ihre Bestimmung ebenfalls iterativ erfolgen. Dabei können die
Schranken otu und

v+1

durch die Bedingungsgleichungen

v+1
k
v+1\
u

für °k<
v+1

v+1
< a. (22)

<=\
berücksichtigt werden. Alle Variablen, für die au bzw. a° maßgebend ist,
werden in der nächsten Iteration zu den passiven gezählt.

3.2 Aktive Spannungsrestriktionen

Sind ausschließlich Spannungsbeschränkungen vorgeschrieben, so kann die
Bestimmung der Variablen c^ nach der bekannten "stress-ratio"- Methode fh]
erfolgen, in der jedes Element entsprechend seiner spannungsmäßigen Auslastung
dimensioniert wird. Es gilt:

v+1 <> (23)

wobei o, die maßgebende Spannung des Elementes k im v-ten Iterationsschritt
bedeutet. Als Ergebnis erhält man eine sogenannte "voll-beanspruchte" Konstruktion,

die in jedem Element die zulässige Spannung ausnutzt, wenn nicht der durch
o. festgelegte minimale Querschnitt maßgebend ist.

Bei aktiven Verformungsrestriktionen können Spannungsbeschränkungen
berücksichtigt werden, wenn man in jeder Iteration die nach (23) berechneten a-Werte
in der Bestimmungsgleichung (22) als zusätzliche untere Schranken auffaßt.

3.3 Konvergenz des Verfahrens

Die Anwendung der Gleichungen (16), (19), (21) bis (23) verlangt nach
jeder Iteration eine vollständige Berechnung der Konstruktion. Um jeweils eine
zulässige Lösung zu erhalten, werden sämtliche Variablen a mit einem globalen
Skalierungsfaktor multipliziert, so daß keine der Restriktionen (2) und (3)
verletzt und mindestens eine identisch erfüllt wird. Danach erfolgt die Bestimmung
der aktiven Verformungsrestriktionen, wobei alle Verformungen, die im Verlauf
des Iterationsprozesses einmal ihren zulässigen Wert erreicht haben, weiterhin
zu den aktiven gezählt werden. Ergibt sich jedoch nach (19) ein negativer A-Wert
so muß die entsprechende Restriktion aufgrund der Nichtnegativitätsbedingung (7)
wieder eliminiert werden. Erst wenn alle aktiven Verformungen bekannt sind, ist
mit einer schnellen Konvergenz zu rechnen. Das Konvergenzverhalten kann durch
eine Begrenzung der Schrittweite in aufeinanderfolgenden Iterationen beeinflußt
werden. Mit

v + 1 v rs s \«H, " «i, (k"' n)

ist die optimale Konstruktion gefunden, für die das Gewicht ein (lokales) Minimum

annimmt.
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4. Die Bedeutung des Kraft- und Weggrößenverfahrens

Bisher wurde nur das Iterationsverfahren zur Lösung der Optimierungsaufgabe
betrachtet. Über die Lagrange'schen Parameter A^ bei mehreren aktiven

Restriktionen wurde im Sinne der kleinsten Quadrate verfügt. Im Vergleich mit
anderen Verfahren [kj ergibt sich hierdurch ein stabiles Konvergenzverhalten bei
nur wenigen Iterationsschritten. Die wiederholte Berechnung des Tragwerkes nach
der Finiten-Elementmethode erfordert bei den vorliegenden Problemen einen
erheblichen Rechenaufwand und verdient damit besondere Beachtung. Ohne auf die
Möglichkeiten der Ableitung von Elementmatrizen f5j einzugehen, werden hier nur
die Lösungsverfahren betrachtet. Diese Verfahren folgen direkt aus den klassischen

Minimalprinzipien elastischer Tragwerke.

Das Prinzip vom Minimum der Potentiellen Energie

Min I j £T K £ - P_T ^ [

mit der positiv definiten Gesamtsteifigkeitsmatrix K, den Lasten P_ und
den Verschiebungen 6 liefert als notwendige und hinreichende Bedingung die
Grundgleichung der Verschiebungemethode:

K£ - _P (25)

Das Prinzip vom Minimum der Komplementärenergie

(24)

f 1 T I

Min J j £ f_ £ N £ P } (26)

(27)

mit der Hyperdiagonalmatrix _f der Elementflexibilitätsmatrizen, den
verallgemeinerten Spannungen S_ und der Gleichgewichtsmatrix N_ ergibt die Grundgleichungen

der Kraftmethode;

N_ £ - P_ (Gleichgewicht)

BT
f_ £ - 0 (Verträglichkeit)

T T
]ä ist der Kern der Gleichgewichtsmatrix (N_ B_ - 0

Den geringsten Aufwand für die einmalige Berechnung eines Tragwerkes erfordert
im allgemeinen die Verschiebungsmethode: Der einfache Aufbau, die positive

Definitheit und Bandstruktur der q x q Matrix K erleichtert die Berechnung.
Bei einer mehrmaligen Berechnung des Tragwerkes mit variabler Flexibilität f_

zeigt jedoch die Kraftmethode gewisse Vorteile: Die q Gleichgewichtsgleichungen
(27) müssen nur einmalig gelöst werden, die Verträglichkeitsbedingungen lassen
sich einfacher darstellen und mit geringerem Aufwand für jede Wiederbemessung
lösen. Als Lösung erhält man die n Schnittgrößen S. zur Iteration nach (12).
Mit dem in £6j näher beschriebenen Lösungsverfahren kann zudem die Bandstruktur
der Gleichgewichtsgleichungen gewahrt werden. Ein genauer Vergleich des numerischen

Aufwandes beider Methoden führte zu dem Ergebnis, daß mit steigender Zahl
der Wiederbemessungen der Aufwand A- der Kraftmethode abnimmt. Das Verhältnis
des Aufwandes Aj. der Verschiebungsmethode zur Krafttnethode nimmt jedoch bei
wachsendem n/q ab. In den für die Praxis wichtigen Stabtragwerken ist jedoch
i.a. n/q < 2 Für ein System mit 1000 Freiheitsgraden der Verschiebung und
einem speziellen Elementtyp (s) ergibt sich die in Bild 1 dargestellte Abhängigkeit

[dj.
Umfangreiche numerische Untersuchungen [lj an den aus der Literatur bekannten

optimalen Tragwerken bestätigen in allen Fällen die Überlegenheit der
Kraftmethode.
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Anioni C Fretheitsgracie ru lOOO

Eierr.enttyp s* 20
Ansaht der Iterationen V

<1.5

v W
a 1.0

X'O'imethode
Outtvendiger

n/q

Bild 1: Vergleich der Kraft- und
Verschiebungsmethode

Lastfall Knoten (P ^1000 lbs)z
1

2

3
4

1

1-4,7-13,19-28,37
1-37

1,4-7,13-19,28-37

Tabelle 1: Belastungsangaben

5. Numerische Ergebnisse

4

com

Bild 2: Fachwerkkuppel

W llbsl

Die Zuverlässigkeit des Optimierungsverfahrens soll hier an einem
ausgewählten Beispiel gezeigt werden. Die in Bild 2 dargestellte Fachwerkkuppel, die
in den Knoten 38-61 unverschieblich gelagert ist, wird durch vier Lastfälle
beansprucht. Die genauen Belastungsangaben sind in Tabelle 1 zusammengestellt.
Als Material wird Aluminium mit einem Elastizitätsmodul von E 10^ psi und dem

spezifischen Gewicht von P 0.1 lbs/in? verwendet. Für alle Stäbe beträgt der
minimale Querschnitt 0.1 in? wobei die zulässige Spannung von + 25000 psi
nicht überschritten werden darf. Die Verschiebungen sämtlicher Freiheitsgrade in
z-Richtung werden auf +0.1 in. begrenzt. Alle Entwurfsbedingungen sind mit denen
aus ßlj identisch.

Ausgehend von einer zulässigen Konstruktion mit querschnittsgleichen Stäben
(W.-358.85 lbs) wird die optimale Kuppel nach 15 Iterationen und einem Gewicht

von 161.63 lbs gefunden, das um 10.7%
geringer ist als in f8j Während zu
Beginn der Optimierung nur die
Verschiebung von Knoten 1 (LF 1) den
maximal erlaubten Wert von -0.1 in.
erreicht, sind von der 13. Iteration
an 41 Verforraungsrestriktionen zu
berücksichtigen, die jeweils durch
einen der 4 Lastfälle aktiviert wurden.

Spannungen waren in keiner Phase

des Iterationsprozesses maßgebend.
Bild 3 zeigt das stabile Konvergenzverhalten,

wobei insgesamt eine
Gewichtsreduktion von 55% erreicht wird.
Die Ouerschnittsflachen der optimalen
Kuppel, die symmetrisch zu den beiden
Achsen 38-50 und 44-56 ausgebildet

\\ w, 358.85

\

©\ ©
\ l

\

\ -,,3)H
^® [

1
\~~~">~. << •)

1

i

I6E

—\
6J

tO 11 12 13 lt 15

Bild 3: Iterationsverlauf
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ist, sind in Tabelle 2 zusammengestellt. Bei n/q=1.19 konnte
äußerst wirtschaftlich eingesetzt werden. Die Rechenzeit (TR
182 see.

die Kraftmethode
440) betrug nur

Stab Fläche Stab Fläche Stab Fläche Stab Fläche

k 1.0176 36 0.4831 62 0.3177 111 0.1003
5 1.1732 37 0.3051 63 0.6572 112 0.2403
9 0.9720 38 0.3514 80 0.3062 113 0.3088

10 0.8322 56 0.3207 81 0.2128 114 0.1429
21 0.2990 57 0.1904 82 0.1003 115 0.5000
22 0.3395 58 0.3378 83 0.1003 116 0.1003
23 0.5773 59 0.3431 84 0.3347 117 0.4381
24 0.4148 60 0.29 6 109 0.1003 118 0.3312
25 0.6776 61 0.5494 110 0.4961 119 0.1003

Tabelle 2: Optimale Querschnittsflächen (in?) eines Quadranten
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ZUSAMMENFASSUNG

Es wird eine spezielle Anwendung der Lagrange'schen Multiplikatorenmethode,
die als Verfahren der Optimalitätskriterien bekannt wurde,

dargestellt. Eine lineare Transformation der Lagrange-Parameter führte zu
einer schnellen und gleichmässigen Konvergenz.

SUMMARY

A special application of the Lagrangian-Multiplier-Technique, known as
the optimality-criterion-method, is presented. A simple linear transformation

of the Lagrange parameters leads to fast and uniform convergence.

RESUME

Une application speciale de la technique des multiplicateurs de Lagrange,
dite methode des criteres d'optimisation est presentee. Une transformation
linSaire entraine une convergence rapide et uniforme.

Bg. 9 vs



Leere Seite
Blank page
Page vide



IIb
Optimisation des systemes et des

dimensions pour des comportements
structuraux lineaires et non-lineaires
Optimierung der Systeme und der

Abmessungen bei linearem und
nichtlinearem Verhalten des Tragwerkes

System and Geometrical Optimization for
Linear and Non-Linear Structural Behaviour



Leere Seite
Blank page
Page vide



IIb

Über das Leistungsvermögen von Tragwerken am Beispiel von Balken,
Druckbogen und Zugbogen

Capacity Range of Structures, such as Beams, Compression Arches and
Tension Arches

Capacite de resistance de structures telles que poutres, arcs de
compression et arcs de tension

HELMUT BOMHARD
Direktor der Dyckerhoff & Widmann AG

München, BRD
1. Einführung

Balken, Druckbogen und Zugbogen sind die Grundformen aller
Tragwerke zur Bewältigung von Spannweiten. Die eine Spannweite
bestimmenden Größen und ihr Zusammenwirken, die Bandbreite technisch
möglicher Spannweiten, lassen sich denn auch an diesen Grundformen
am besten studieren. Dies um so mehr als die Gesetzmäßigkeiten
verhältnismäßig leicht analytisch faßbar sind.

Ziel des Beitrags sind Spannweitenfunktionen für alle drei
Grundformen bei allgemeinen Baustoffgesetzen und ggf. Gleichgewicht
am verformten System, wenn nötig mit nichtlinearen Geometriebeziehungen,

auf deterministischer Basis und für statische Belastung.
Die Spannweitenfunktionen bilden wichtige Grundlagen für jeden

Entwurf und jede Tragwerkentscheidung und sind Hilfen bei der
Optimierung.

2. Die Spannweitenfunktion
Die Spannweite ist Ausdruck des Leistungsvermögens. Sie ist

bei einem bestimmten Versagenszustand eine Funktion des Systems
(S), der Form (F) und der Baustoffe (M) des Tragwerks sowie der
Fremdlast (L), die getragen werden muß:

1 f (System, Form, Baustoff, Fremdlast) (1).
"Fremdlast" ist für das Tragwerk alles, was nicht Teil seiner
tragenden Form aktives Gewicht g ist, wie etwa das Gewicht von

EL

Pfetten passives Gewicht g), die quer zu einem Balken gespannt
sind und die gesamte Verkehrslast p.

Die Spannweitenfunktion (1) läßt sich unter bestimmten
Voraussetzungen als Produkt dreier Kenngrößen K schreiben:

1 %+F,.. *
KM+Fm]pT,

* KL XGr ' KL <2a>'
längs quer

nämlich dann, wenn 1. das System sich statisch bestimmt verhält,
2. das Gleichgewicht am unverformten System angeschrieben werden
kann und 3. Fremdlast g+ p und aktives Gewicht g affin sind. Es
beschreiben: "
Ks F das System und die Verteilung der Tragwerkmasse

längs in seiner Längsrichtung,
KM+F c*ie Bsustoff6 und die Verteilung der Tragwerk-

quer masse in Systemquerrichtung,
KL die Fremdlast.
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So aufgeschlüsselt sind die sehr unterschiedlichen Einflüsse, die
1 bestimmen, am leichtesten durchschaubar.

Bei Lastaffinität allein ist: 1 Kg+p,M • kt ¦'¦ar" ^L (^b).
Die Einflüsse aus System, Form und Baustoff lassen sich dann nicht
mehr trennen.

In (2) ±St: KL 1 + (gp'+p)/ga » 0<KL<1 (3).
Die Grenzspannweite 1^ ist demnach die Spannweite bei verschwindender

Fremdlast (KT =1). Sie kann nicht mehr übertroffen werden:
Das Leistungsvermögen des Tragwerks ist erschöpft.

Den Untersuchungen liegen der Einfachheit halber Spannweitenfunktionen

nach (2) zugrunde. Die so gewonnenen Aussagen bleiben
qualitativ gültig, auch wenn Fremdlast und tragendes aktives
Gewicht nicht affin sind.
3. Die Tragwerkformen
3.1 Balken

Grenzfälle von Balkensystemen sind der "einfache Balken" und
der "Kragbalken". Mit ihnen ist der gesamte Leistungsspielraum von
Balkensystemen faßbar. Der einfache Balken begrenzt das Leistungsvermögen

nach unten, der Kragbalken nach oben. Seilverspannte Balken

werden nicht betrachtet. Sie besitzen bei engen Seilabständen
hohes Leistungsvermögen und sind dann dem Kragbalken mit dem
Idealquerschnitt my 1 (s. Bild 2) vergleichbar.

Der Einfluß der Baustoffe und der Querschnittform ist bei
beiden Systemen gleich: P R mU

M+Fquer T V ^
Dabei bedeuten:
P R Rechenfestigkeit des Bezugsbaustoffs
2T= a3 Berechnungsgewicht des Balkenmaterials im ~

Beschleunigungsfeld a (Erde a 9,81 m/s
P r/'JT Reißlänge bzw. Zerdrückhöhe des Balkenmaterials

bei zugfestem bzw. druckfestem Bezugsbaustoff
mn bezogenes Bruchmoment M„/F d ßR,

als Maß der Beanspruchbarkeit des Querschnitts
(Fläche F, Höhe d, Breite b) mit dem Größtmoment

V Gesamtsicherheitsbeiwert.
Wenn für das Tragvermögen ausnahmsweise der Gebrauchszustand
maßgebend ist, muß in (4) ny,/ V durch m des Gebrauchszustands
ersetzt werden.

Die Bandbreite des
schieden:

Id 8 Ä <
~55 1 JL 1

Bf,
k- d

I

; Faktors KC|T-, ist dagegen sehr ver-
S+Flängs

< 9,9 f (5)

S+Flängs
"

co : ideal /fi\Bild 1: real KOJ

< oo : ideal /7\Bild 1: real w;
(1/4 der Werte)



Die Werte auf der linken Seite gehören zu Balken mit konstantem
Querschnitt, die auf der rechten zu - in jedem Querschnitt -
vollbeanspruchten mit konstanter Höhe und idealem Zweipunktquerschnitt
(quasi Fachwerkbalken). Im einen Fall ist die Tragwerkmasse
demnach überhaupt nicht auf den Momentenverlauf abgestimmt, im anderen

dagegen vollkommen.
^S(l/d)Ks+Flängs gp+p const. Der ideale Wert oo besagt
[4 ~ _" nicht, daß 1 auch bei realen

00 Kragbalken oo groß oder auch nur
sehr groß werden kann. Durch

US

©3J ^—c—\ d const.
vollbeansprucht, nur lu.X
\ — K h-rnncf P^-p b= const.
vollbeansprucht

©

© const2-^—r
ue

2.0 Gn/(Gn+P)1.0Bild 1

nicht affine Fremdlast und einen
im Bereich der Kragbalkenspitze
technologisch bedingten Mindest-
balkenquerschnitt sinkt das
Leistungsvermögen außerordentlich
ab: der in (6) und (7) angegebene

oo große Leistungsspielraum
schrumpft z.B. allein durch eine
konstante Fremdlast auf den in
Bild 1 schraffierten endlichen
Bereich zusammen. Der baupraktisch

nutzbare Spielraum ist
noch kleiner, vor allem wenn d

+¦ const. ist (im Bild gerastert) oder unterschiedliche Lastfälle
zu berücksichtigen sind.
3.2 Druckbogen

Die nach oben gekrümmte Bogenform ist keine Form minimaler
potentieller Energie. Ein Druckbogen hat deshalb den Drang, nach
unten durchzuschlagen, sein Tragvermögen geht spätestens mit dem
Einsetzen des Durchschlags verloren. Obwohl Durchschlagvorgänge
nur mit einer geometrisch nichtlinearen Theorie faßbar sind, genügt
für die numerische Traglastrechnung im Schlankheitsbereich, den die
technischen Baubestimmungen erlauben, die geometrisch linearisierte
Theorie. Bei den baupraktisch allein bedeutsamen Pfeilverhältnissenf/l > 0,1 kann außerdem die Achsdehnung unberücksichtigt bleiben.

Das Leistungsvermögen ist am kleinsten, wenn der Durchschlagvorgang
ohne Gleichgewichtsverzweigung abläuft. Dazu gehören

Lastkombinationen, die die jeweils kritische Ausweichform durch gleichsinnige
Störmomente begünstigen: antimetrische Momente beim 2-Ge-

lenk-Bogen, beim gelenklosen Bogen und beim steilen 3-Gelenk-Bogen,
symmetrische dagegen, wenn dieser flach ist (etwa f/l < 0,3). Die
kritische Fremdlast muß demnach zwei Anteile enthalten: einen
voraussetzungsgemäß zu g& affinen - durch KL erfaßten - und einen
anderen, - durch ft gekennzeichneten - der die Störmomente erzeugt
(P= qanti KL/ga,G bei antimetrischer Störlast qanti,P VA.G1
bei symmetrischer Störlast Q„ im Bogenscheitel).

Für den als Stützlinie für g geformten Kettenlinienbogen (F
const.) sind die Kenngrößen für System, Form und Baustoff KS+F+M*

cosfA
cos f.E: 1/4-PM

-cosfA
Pacos

i)y C0SPe

<%¦ C0STe v

nH.Ecr 1 (8)
V -rrgif VG 2

(1+-^co£rpE)

1-C0SfA/l
cos

Pr
Y C0SfE LlLE T 2mA/d

V + TI sinfE er

(9)

(10).
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Die bezogenen kritischen Schnittgrößen n N/Ff)R und m

enthalten implizit die Einflüsse aus (S), (F), (M) und (L). Bis auf
das Glied mit v~,der lotrechten Verschiebung des Scheitelgelenks
beim 3-Gelenk-Bogen, stimmen (8)(9)(10) formal mit den Ausdrücken
der Theorie 1. Ordnung überein. Ab etwa f/l > 0,3 gilt (9) auch
für den 3-Gelenk-Bogen. 1-cosP

TL
Damit kann bis etwa f/l < 0,3 gerechnet werden.

Das Leistungsvermögen ist um so kleiner, je größer die
Störmomente sind und je schlanker der Bogen ist. Es wird dann auch
mehr und mehr f/1-unabhängig. Nur bei sehr kleinen Störmomenten
werden in etwa die klassischen Extremstellen für max. 1 erreicht
(z.B. f/l 0,3 beim Kettenlinienbogen). Der Leistungsabbau kann
in allgemeiner Form nur qualitativ angeschrieben werden:

np,cr ^ np,UII < nf),UI < nU,(m 0) (12)*

Bei n.. ist wegen m 0 das Leistungsvermögen des Querschnitts
ausgenutzt, durch die Störmomente nimmt es ab auf no „y, durch den

Einfluß der Bogenverformungen auf nn tjtt-; bei "Stabilitätsversagen"
geht das Tragvermögen bereits im Innern des n-m-Interaktionsdiagramms

verloren, nn ist dann>nn ijjj. Numerische Berechnung
ohne besonderen Aufwand nach [l] möglich, dort und in [2] Beispiele

zu (12).
Großes Leistungsvermögen setzt gedrungene Bogen voraus.

Querschnitte, die dem idealen 2-Punkt-Querschnitt nahekommen, bringen
Leistungssteigerung vor allem bei großem l/d, f/l und großen
Störmomenten. Der gelenklose Bogen ist am leistungsstärksten. Ausweichen

senkrecht zur Bogenebene bedeutet zusätzlichen Leistungsabbau.
3.3 Zugbogen

Ein biegesteifer Zugbogen vermag, dem Druckbogen ähnlich, das
Leistungsvermögen des Querschnitts nicht auszunutzen:

wenn auch bei ihm die Systemverformungen (nn „jj > xin „j) lei-
stungssteigernd wirken. ' '

Ein Zugbogen muß aber nicht biegesteif sein: Die hängende Bo-
genform ermöglicht als Form minimaler potentieller Energie den
biegeweichen Bogen mit voller Querschnittausnutzung

np,cr =nU,(m= 0) (14)'
Er wird dadurch zum leistungsfähigsten System.

Baupraktisch bedeutsam ist allein der flache Kettenlinienbogen
mlt

K -Ifi fUA (15)
KM+Fquer" T V

^ _ ^
KS+* ¦ 8 j*8| (16).

bz

i t
langS Vi + I6(f/1)2
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Je nach Bogenbaustoff kann statt n„./v auch der Wert des
Gebrauchszustandes n.= rir o) maßgebend sein. Der Zirkumflex
kennzeichnet das Pfeilverhältnis des verformten Bogens

f/l *¦ f/l V1 + 3/8./ d/f)2 ' (S ~ t>)/l (17)
mit der gedehnten Bogenlänge b.

Von allen Tragwerkformen für Baukonstruktionen dürfen beim
biegeweichen Bogen als einziger die Geometriebeziehungen nicht von
vornherein linearisiert werden. Dem entspricht (17). Die lineare
Beziehung geht um so eher verloren, je flacher der Bogen ist.

Der biegeweiche Bogen ist kinematisch verschieblich, weil seine
Achse stets Seillinie der jeweiligen Belastung sein muß.

Kritisch sind antimetrische Störungen zusammen mit hoher Entlastung.
Sie können mit wachsendem f/l Anlaß großer Verformungen sein, ein
zu leichter oder ein in anderer Weise nicht ausreichend stabilisierter

Bogen kann nach oben durchschlagen. Dieses Durchschlagproblem,
das in [2] behandelt ist, beeinträchtigt das Leistungsvermögen

nicht.
4. Die Baustoffe

Die Leistungskenngrößen K enthalten den Baustoffeinfluß in
allgemeingültiger Form als Produkt

nR/r ' nu bzw- nR/-^ * mU (18)
Die Spannungsdehnungslini^n stecken dabei in n und m, ebenso die
Querschnittform und der kritische Dehnungszustand.

Das Leistungsvermögen wächst mit der Reißlänge und der
Zerdrückhöhe. Hochfeste Stähle und hochfeste Betone und Leichtbetone
kennzeichnen die Entwicklung, mit der Tendenz, auch im Betonbau zu
Werten zu kommen, die denen von Baustahl vergleichbar sind.

Für ny und m,. lassen sich von der Spannungsdehnungslinie
unabhängige obere Grenzwerte angeben:

r.|j 1
mU °'5 mU 1,°

1-F !¦¦¦1/2
Form
beliebig 1/2 F a^m QF ±

Bild 2 pD= ßz= pR pD= pR pz/pD^m
bei homogenem Material, n,, 1 ist im biegeweichen Zugbogen
realisierbar, my 0,5 und 1,0 lassen sich als die Beanspruchbarkeiten
der Querschnitte von Fachwerkbalken deuten, deren Diagonalengewicht
verschwindend klein ist. Tatsächlich brauchen alle biegebeanspruchten

baupraktischen Querschnitte gewisse Zuggurtmassen und, vor
allem im Vollwandbereich, Stegmassen, die das Leistungsvermögen
verringern. Für sie sind deshalb dl. 0,5 und 1,0 unerreichbare Grenzwerte:

0,5 für die Querschnitte des Stahlbaus, 1,0 für die des
Spannbetonbaus.

Für Betontragwerke seien noch einige weitere Angaben gemacht:
4.1 Balken

Das Leistungsvermögen der Balkenquerschnitte wird durch die
Tragfähigkeit der Biegedruckzone begrenzt (Grenzstauchung £v,T).
Voll nutzbar wird es durch eine entsprechend hohe Bewehrung der Bie-
gezugzone, wobei die Bewehrungsgrenze normalerweise aus dem Wunsch
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folgt, ein Versagen der Druckzone zu vermeiden, bevor die
Zugbewehrung fließt (Bruchvorankündigung durch £ > 3 %o).

Im übrigen wird hohes Leistungsvermögen durch geschicktes Formen

der Querschnitte erreicht. Wie groß dabei der Spielraum ist,
zeigen die Grenzformen "Rechteckquerschnitt" mit ny, ^ 0,25 und
"idealer Zweipunktquerschnitt" mit m,. 1,0 bei unbewehrter Druckzone.

Die Bandbreite der realen, baupraktischen Querschnitte ist
der in Zuggurt und Steg allein schon technologisch bedingten
Betonflächen wegen beträchtlich schmaler. Die bei großen Spannweiten
bisher gebauten Formen vollwandiger Balken besitzen etwa

0,35 < mu <0,60
0,40 < /U /Ufts/ PR <0,65

Je höher m., ist, um so weniger ist die Beanspruchbarkeit von der
6" -£ -Linie des Betons abhängig.

Nur mit Hilfe der Vorspannung gelingt es, dem Idealquerschnitt
mit m,, =1,0 nahezukommen, denn nur durch Vorwegnehmen der
Stahldehnung werden hochfeste Stähle ausnutzbar, so daß sich große und
größte Zugkräfte in verhältnismäßig kleinen Betonquerschnitten
unterbringen lassen. Die damit erzielbare Einsparung an Querschnittfläche

wächst mit der Spannweite. Der Vorspanngrad selbst beeinflußt

i.a. nur das Verhalten im Gebrauchszustand, nicht aber das
Leistungsvermögen. Auch eine "Druckspannbewehrung" zur Zugvorspannung

der Druckzone erhöht das Leistungsvermögen nur durch den
Bewehrungsgehalt der Druckzone. Wenn die Gebrauchsfähigkeit dies
zuläßt, soll auch bei Vorspannung nicht mehr Bewehrung eingelegt werden,

als der Bruchzustand erfordert mit einem möglichst hohen
Anteil an Spannstahl.
4.2 Druckbogen

Im Druckbogen sind zweipunktnahe Querschnittformen der einfachen
Rechteckform nicht so selbstverständlich weit überlegen wie im

Balken, weil die ihnen eigene überragende Steifigkeit verlorengeht,
sobald einer der Gurte reißt. Die Tragfähigkeit fällt dann jäh ab,
auf Werte, die sich von denen des Rechteckquerschnitts meist
nurmehr unwesentlich unterscheiden. Hohlquerschnitte sind deshalb nur
dann entscheidend leistungsfähiger, wenn sie im gesamten
Beanspruchungsbereich ungerissen bleiben. Dazu bedarf es vielfach gedrungener

Bogen, vor allem bei merklichen Störmomenten und mit wachsendem
f/l. Auch eine Vorspannung kann manchmal zweckmäßig sein.

Mit dem Bewehrungsgehalt ist das Leistungsvermögen nur im
Zugbruchbereich entscheidend zu beeinflussen. Die Wirkung wächst mit
den Störmomenten und wird durch die Schlankheit beschleunigt. Doch
ist selbst bei großen Störmomenten eine bewehrungsproportionale
Leistungssteigerung nicht erreichbar. Nahezu ohne Wirkung bleibt
der Bewehrungsgehalt bei Stabilitätsversagen, zu dem sehr kleine
bis kleine Störmomente gehören. Dann kommt es vor allem auf die
(3 - £-Linie des Betons an.

Die Bandbreite der nn des Zweigelenkbogens ist in [2]
untersucht. lJ,cr

4.3 Zugbogen
Im biegeweichen Zugbogen hat der Beton, anders als in den mit

Biegung arbeitenden Systemen, keine wesentliche Tragfunktion, diese
übernehmen die Spannglieder. Der Beton bildet vor allem Raumabschluß

oder Fahrbahn, formstabilisierendes Element (Schale, Platte,
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Gewicht) und Korrosionsschutz der Bewehrung.
Wenn Spannglieder der Festigkeit ßz die Bewehrung bilden, ist

n UA /"z PZ/ PR (20)'
Der Bewehrungsgehalt/U. hat nur technologische Grenzen: Die
Spannglieder sollen des einfachen Korrosionsschutzes wegen im
Betonquerschnitt Platz finden. Das ergibt

etwa/«z < 0,15 (21).
Bei Balken und Druckbogen setzt das Tragvermögen der Biegedruckzone

dem Bewehrungsgehalt weit niedrigere technische Grenzen:
/U. (In/ Ps ocier /Ä 2

1 als oberste Schranke beim idealen
Zweipunktquerschnitt mit nu. 1 und etwa/ü < 0,65 oder// < 0,015
bei den baupraktischen Vollwandquerschnitten (19). Der biegeweiche
Zugbogen kann demnach etwa 10mal so stark bewehrt werden wie Balken

oder Druckbogen. Das, zusammen mit einem hohen Pz, begründet
sein überlegenes Leistungsvermögen.

Die nutzbare Stahlfestigkeit ft? hängt allein vom plastischen
Verformungsvermögen des Bogens ab. Sein Gleichgewicht verlangt ein
Spannungsgefälle von den Kämpfern zur Bogenmitte. Deshalb ist das
plastische Verformungsvermögen nur mit Stählen nutzbar, die einen
Verfestigungsbereich besitzen. Das ist bei allen Spannstählen mehr
oder weniger ausgeprägt der Fall. Da sich der Bogen nicht beliebig
weit in den Verfestigungsbereich hinein verformen darf, wird ft z
durch das Erreichen kritischer Spannstahldehnungen begrenzt, etwa

crit. £z < (1,0 bis 1,5) 10~2 +£z(o) (22),

mit der Spannbettdehnung £ *0' [3]. Bei Bogen bis etwa f/l<0,1
wird dadurch ß_ so groß, daß die im Gebrauchszustand zulässige
Stahlspannung zul Sz mit nA =MZ zul <o J P r (23)
das Leistungsvermögen bestimmt. - Bei Stählen mit idealelastisch-
idealplastischem bzw. sprödem Verhalten wäre ßz ßs bzw. ft _ zu
setzen.
5. Die Tragwerkmasse

Die das aktive Gewicht g bildende Tragwerkmasse ist dann am

wirksamsten eingesetzt, wenn sie
- an jeder Tragwerkstelle und
- in jeder Querschnittfaser voll ausgenutzt ist und
- selbst möglichst wenig Beanspruchung erzeugt.

Damit ist hohes Leistungsvermögen gegeben, nicht aber unbedingt
auch ein optimales Tragwerk vom Aufwand und Nutzen her gesehen.
Je weniger das Leistungsvermögen gefordert wird, um so mehr darf
und wird man von diesen Kriterien abweichen.

Das Abstimmen von Tragwerkmasse und Momentenverlauf lohnt
sich demnach am meisten beim Kragbalken, der dadurch viel
leistungsfähiger als der einfache Balken wird. Dieser reagiert darauf
viel weniger empfindlich, weshalb bei ihm der mögliche Leistungsgewinn

nur ein ziemlich grobes Abstimmen rechtfertigt (5) (6).
Begründet ist dies in der unterschiedlichen Völligkeit des Momentenbildes

beider Systeme: Der Kragbalken braucht, im Gegensatz zum
einfachen Balken, die Tragwerkmasse dort, wo sie nur mit kleinem
Hebelarm momentenwirksam ist. Ein Tragwerk aus aneinandergereihten,

richtig geformten Kragbalken ist deshalb auch leistungsfähi-
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ger als ein solches mit Einhängebalken oder aus Durchlaufbalken. Da
der einfache Balken auch "Ersatzbalken" der Bogen ist, lohnen auch
diese das Abstimmen der Tragwerkmasse auf den Beanspruchungsverlauf
nur mit einem ähnlich eng begrenzten Leistungszuwachs. Der
Zweigelenkdruckbogen nach (9) kann dadurch wenig mehr als 10 % weiter
gespannt werden. Beim biegeweichen Zugbogen scheidet diese Möglichkeit,

Leistung zu gewinnen, fast ganz aus.
Nicht ausgenutzte Tragwerkmasse kann sich sehr unterschiedlich

bemerkbar machen: solange sie die Grenzspannweite 1~ unbeeinflußt
läßt, bedeutet sie eine Leistungsreserve und wirkt wie eine erhöhte
Fremdlast, sobald durch sie aber 1„ kleiner wird, wirkt sie lei-
stungsmindernd. Das typische Beispiel für eine solche Leistungsminderung

ist der Kragbalken mit F const.
Bei jedem Tragwerk dürfen bestimmte Mindestabmessungen nicht

unterschritten werden, die untere Grenze der Tragwerkmasse ist
deshalb technologisch bedingt. Auch das sind nicht ausgenutzte
Tragwerkmassen und leistungsmäßig dementsprechend zu behandeln.

6. Die Fremdlast
Beide Anteile der Fremdlast, die nutzungsbedingte Verkehrslast

p und das konstruktionsbedingte passive Gewicht e beeinflussen das

Leistungsvermögen gleich nachteilig durch KL< 1,0. Vor allem bei
hoher Leistungsforderung muß deshalb e so klein wie möglich gehalten

werden, e ist nicht immer nur Gewicht, auch die formstabilisierende

Vorspannung in Seilwerken und Seilnetzen zählt dazu.
Flächentragwerke nutzen die Baumasse vielfältig, sie haben daher meist
ein verhältnismäßig kleines g. Stabtragwerke mit ihren eindimensionalen

Traggliedern dagegen ein großes.
Eine zur Tragwerkmasse nicht affine Fremdlast ist leistungsmäßig
über ihre beanspruchungswirksamenHebelarme zu beurteilen.

Sind sie größer als die der Tragwerkmasse, wirkt die Nichtaffinität
leistungsmindernd. Nur beim Kragbalken mit einer auf die Beanspruchung

abgestimmten Tragwerkmasse ist die Annahme einer Affinität
keine gute erste Näherung, weil bei ihm eine konstante Fremdlast
sehr leistungsmindernd ist.
7. Das Maßstabgesetz

Die Spannweitenfunktion (1) beschreibt 1 als absolute Größe;
mit T/fip multipliziert enthält sie nur mehr relative Größen:
1* Tl nR =T/nR " f (Verhältniswerte für (S), (F), (M), (L)) (1a).

Das ist das Maßstabgesetz des Leistungsvermögens. Beispiel:
-i T - r mu d 1

nR " v T i+(gp+P;/ga •

Die linke Seite sagt nun aus, wie weit die Reißlänge oder Zerdrückhöhe
des Bezugsbaustoffs als Spannweite nutzbar ist, - über tf a^

ist der Einfluß allgemeiner Schwerkraftfelder enthalten.
Wenn die Beanspruchbarkeit ausgenutzt und damit wie die

Reißlänge und Zerdrückhöhe ein Festwert ist, müssen die Maßstabsfaktoren:
X für die Spannweite, X d /-, für das Bauhöhenverhältnis und

X„ für das Lastverhältnis die Bedingung
KL
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X= Xd/l' XKT 0der X=X/Xd/l XKT (24)

erfüllen. Statt \„ interessiert X der Maßstabsfaktor für die
J-j 3.

Tragwerkmasse, der mit ihm verknüpft ist. Bei konstant bleibender
Fremdlast ist dieser

- 1 - KT < 2 < 1 \2-X
X, X =±- ^ X bei KT ^ V -^3 (25)

ga 1 - Xkl > L > X X2 - 1

\ > n t • j. •• besteht
Xg < 0:Leistungsvermögen versagt#a

p
Bei X X und\,/, 1 ist das gesamte Tragwerk affin größer

a
geworden. KL ist auf das Ausgangstragwerk bezogen.

Die Auswertung zeigt: Nur bei kleinen Spannweiten ist es
möglich, ein Tragwerk, das sich bei einer Bauaufgabe bewährt hat,
durch bloß affines Vergrößern einer größeren Aufgabe anzupassen.
Bei großen Spannweiten muß stets und vor allem auch das Bauhöhenoder

Pfeilverhältnis vergrößert werden.
Das bedeutet: Große Tragwerke müssen nicht nur massiger sein

als kleine, System, Form und Baustoffe sind schließlich nicht mehr
frei wählbar, sondern werden eine Funktion der absoluten Größe.

(25) ist für Balken ermittelt. Die damit gewonnenen Aussagen
gelten qualitativ auch für Bogen.

8. Das wirtschaftliche Leistungsvermögen
Das technische Leistungsvermögen endet mit der Grenzspannweite

lGr. Tatsächlich wird ein Tragwerk aber lange vorher
bedeutungslos, weil seine Wirtschaftlichkeit verlorengeht.

Aus (2) (3) folgt das aktive Gewicht, das bei gegebener
Fremdlast aufzuwenden ist, um eine gegebene Spannweite zu bewältigen:

1

ga 1—/1 - 1 (£p+P) > technolog. ga (26).

Die Tragwerkmasse, beschrieben durch g wächst demnach hyperbo-
lisch mit abnehmendem Verhältnis lGr/l oder je mehr das technische

Leistungsvermögen ausgeschöpft wird. Sie wird schließlich
unwirtschaftlich groß, bei lGr/l 1 unendlich groß, auch wenn die
Fremdlast noch so klein ist.

Ziel des Entwerfens muß es demnach sein, System und Baustoffe
so zu wählen, das System so zu formen und das passive Gewicht so
zu beeinflussen, daß der Abstand 1„ - 1 groß genug bleibt, um g

vernünftig klein zu halten. Wird für ein bestimmtes Tragwerk g
unwirtschaftlich groß, muß ein leistungsfähigeres mit größerer
Grenzspannweite gewählt werden. Ausreichendes Leistungsvermögen
ist dabei im gesamten Spannweitenbereich nötig.

Die Tragwerkmasse zeigt zwar, daß die wahren Leistungsgrenzen
wirtschaftlich bedingt sind, doch ist das im Leichtbau sinnvolle
Prinzip des minimalen Gewichts kein allgemein brauchbares Kriterium

für niedrige Herstellkosten oder gar für ein wirtschaftliches
Bauwerk. Dazu sind die Stoff- und Verarbeitungskosten der einzel-
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nen Baustoffe viel zu unterschiedlich. Wenn z.B. im Stahlbau
g /(e +p) < 0,5 die wirtschaftliche Grenze wäre, müßte sie im

Betonbau um ein Vielfaches höher sein. Außerdem ist der Aufwand
für die Stützkonstruktionen einzubeziehen, der vom einfachen Balken

über den Kragbalken und Druckbogen bis zum erdverankerten
Zugbogen größer und größer wird. Die Wirtschaftlichkeit eines
Bauwerks ist deshalb - wenn überhaupt - nur im Einzelfall und nur als
Ganzes zutreffend zu beurteilen.
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ZUSAMMENFASSUNG

Balken, Druckbogen und Zugbogen sind die Grundformen aller zur
Bewältigung von Spannweiten geeigneten Tragwerke. Die für sie im gesamten
Leistungsbereich massgebenden Spannweitenfunktionen werden angegeben und
die diese bestimmenden Kenngrössen untersucht und diskutiert. Nichtlineari-
täten der Baustoffe und - soweit erforderlich - auch der Geometrie werden
berücksichtigt. Der Einfluss unterschiedlicher Baustoffgesetze und der
Vorspannung wird studiert. Die Grenzen der Wirtschaftlichkeit und ihre
Kriterien werden aufgezeigt.

SUMMARY

Beams, compression arches and tension arches are the fundamentals of all
structures suitable to cope with spans. The Standard span functions for the
whole capacity ränge are specified and their characteristic values examined
and discussed. Nonlinearities of building materials and - as far as necessary

- of the geometry are considered. The effects of different laws of
building material and of prestressing are studied. Limits of economy and
their criteria are shown.

RESUME

Des poutres, des arcs de compression et des arcs de traction constituent
les formes fondamentales de toutes les structures franchissant une certaine
portee. Les fonctions de portees determinantes sont indiquees, leurs valeurs
caracteristiques sont examinees et commentees. Des non-linearites des
materiaux de construction et - si necessaire - de la geometrie sont
considerees. L'influence de differentes lois relatives aux materiaux de
construction ainsi que de la precontrainte sont etudiees. Les limites
Economiques et leurs criteres sont donnes.
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1. Introduction
The purpose of this paper is to propose a basic parameter effective to the

optimum designs of arch and Suspension bridges. Since the dynamic factors e.

g., eigenvalues and eigenvectors and the static factors e.g., influence
lines for deflection and bending moment of an arch or Suspension bridge
are subjected to this parameter only, designated by F we are able to determine

the F value which satisfies the structural optimization of the bridge,
which means that one constraint can be made for the design variables of the

bridge. For the optimum design of an arch or Suspension bridge, its geometry

and the cross sectional areas of the elements such as the arch and the

stiffening girder will be the design variables. These design variables are

usually found by mathematical and numerical search methods. Although these

search methods are applicable to a variety of problems, they require repeating
similar calculation changing the values of the design variables until the Optimum

conditions are satisfied. So, it will save much Computer cost to give the

one constraint for the design variables.
There are many analogous points between a Suspension bridge and an arch

bridge, and they may be said to be essentially of the same type of structure
from the view-point that they have girders stiffened with parabolic members

cable and arch respectively. So, both structures can be analyzed by a

common theory (2).
In general, the cross sections of the elements such as the arch and the

stiffening girder are variable. For these elements, the average values should
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be used as approximate values. The errors due to the approximation seem to be

small judging from numerical examples.

2. Theory

In this paper, the bridges are assumed to satisfy the following conditions:
(i) The stiffening girder is of uniform cross section and simply supported at

both ends.

(ii) The cross section of the arch or cable is constant and its mass is
transferred to the stiffening girder.
(iii) The flexural rigidity of the arch can be transferred approximately to the

stiffening girder.
(iv) The arch or cable configuration is given by a parabolic function.
(v) The arch or cable and stiffening girder are connected with an infinite
number of hangers whose elongations are completely neglected.

When the arch and stiffening
girder shown in Fig. 1 is forcibly
deformed by the amount given by

nnx
W l a sin-

n
(1)

where l : span, the horizontal
thrust Äff of the arch is found

from the compatibility condition:
Fig. 1

hsH

where

l6fEB y
an

¦rr-i2 l nSil n
for n 1,3,5,...

0 for n 2,h,6,...
A

aB
A

a + 1 + RfX-12 + SQ0(JL)k
3

(2)

(3)

(U)

A A : cross sectional area of arch girder From this, we see thata y
the arch resists Symmetrie deformation only and does not resist asymmetric
deformation. In other words, for asymmetric deformation the arch bridge is
reduced to a simple girder.

The amplitude of the simple girder loaded with a periodical uniform load

p sintüt in Fig. 2 is given by

kp

Ttp
n n(tss -lü'

9"-

i rnrx
2, s^~l—) (5)
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where

r wir i2 / EI
«gn (-iH V"p-

n-th natural frequency of the

girder and p : mass per unit
length of the girder.
When the arch bridge is forced

to vibrate at the amplitude

represented by Eq. (5), the thrust

UJ
AH AH

AH -f l-AH
Fig. 2

IsH caused in the arch is computed directly from Eqs. (2) and (5), i.e.,

A#
GkfEB y

9 .9 l2 72 L 2, 2 2,,
it pl n n (os -tss

gn

(6)

When the arch is isolated from the girder, retaining its deformation, a uniform

load p must be placed on the arch to let it satisfy the equilibrium condition

of force and moment, and its magnitude is determined from,(3)

_ _§£_ AH _
512g.f2B

y i" 72
M _ " P l 2, 2i Trpi n n \iss

k L 2, 2 27 Pa
rz n (w -u ö

(7)

Fig. 3

Let us superpose the arch and

girder to restore the arch bridge.
The arch bridge constructed in this
way is subjected to a uniform load
with the magnitude

P0 Pa + Pg (8)

Using the condition that the applied
force must be zero for free Vibration,
i.e.,

p + p 0 (9)

we arrive at the following frequency

equation:

1 + —27-^^72—27- °
tt pi n lü) -IlS

gn
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which can be expressible in the following nondimensional form,(l)

F(X)
67-

TT I
512,

1
j?B n n(l-nX2)

1
67-, %Z2~k

1.001U

where

X JZL i-T-f/ EI
3 gl <¦ l ' V P

(12) 0.5

The left hand side, i.e., F —

value is a non-dimensional value

to be determined from the dimensions

of the arch bridge. The

relation between F and X is
shown in Fig. 3. The m-th

natural mode <J> (x) is computed

by substituting the m-th natural

frequency tss obtained

from Eq. (ll), into Eq. (5).
That is,

(11)

m= 1Pi
1.0

F 0.00491
0.01200
0.01620
0.02350

03 20
03960

^x".N. \¦\\
0.5 ^ //.'

1.0

1.5 -

Fig. U

<j> (x) V b sin ni.x
mn t 2 2>

n(u -10
gn m

(13)

For the normalized mode $ (x) we have

• (x) - C l b sin (-S22-) (f (-V) { Ibt,m m L mn l ' m pl L mn
n

-1 (ll*)

e first normalized mode $ (a;) is shown in Fig. k for some F-values.m=l BTh

Once the m-th natural frequencies iss and the normalized modes $ (x) have
m m

been found, the dynamic and static responses are easily determined.

The static deflection w at x due to the force P. applied at x. is
s u -)

found from

$ (a:) 4>(x.)
". ¦ l "

2
'?

P0
m u

m

(15)

and the bending moment M is calculated from

M8 - EI
d2w_

(16)
dx
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Note that these responses are subjected to the non-dimensional parameter F

For example, the influence lines for deflection at l/k and 1/2 points are
shown in Figs. (5) and (6).
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The aforementioned equations

can be used for the arch

bridges shown in Fig. 7 by

changing the cross sectional
areas and flexural ridigities
of arches and stiffening girders.

For the System (e) in
Fig. 7, the flexural ridigity
J of the girder is zero and

9
the cross sectional area A

3
of the girder is infinity.
The above equations derived for
arch bridges can be applied to

Suspension bridges. For the

Suspension bridge shown in Fig.

8, the B in Eq. (U) is

c 2£
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Fig. 6
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A

B — 2
1 1 (17)

1 + 8(^-)2 + 19-2(-£-)1* + ~y~ sec3^ + -— sec3a2

where A : cross sectional area of the cable.
c

3. References

1 Hirai, I., " Analyses of Eigenvalue Problems by the Use of External Forces ",
Research Report, ST-1-68, Engineering Science, Univ. of Western Ontario,
London, Canada, Jan., 1968.

2 Yoshimura, T., Hirai, I., " Dynamic Analysis of Stiffened Arch Bridges and

Suspension Bridges ", Transactions of Japan Society of Civil Engineers, No.

115, 1965, pp. 1-11.
3 Yoshimura, T., Hirai, I., " Dynamic Analysis of Arch with Stiffening Girder",

Transactions of Japan Society of Civil Engineers, No. 101, 196!+, pp. 1-lU.

SUMMARY

This paper proposes a basic parameter effective to the optimum design
of arch and Suspension bridges. The dynamic factors (for example, eigenvalue

problem) and static factors (for example, stress and deformation)
of these bridges are subjected to this parameter only, which means that
one constraint can be made for some design variables. So, numerical
calculation will easily be done on the basis of this parameter. Several
diagrams are shown.

RESUME

Ce memoire propose un parametre fondamental qui est efficace pour le
calcul optimal de ponts suspendus et en arc. Les facteurs dynamiques
(par exemple le probleme des valeurs principales) et les facteurs statiques
(par exemple la contrainte et la deformation) de ces ponts ne dependent que
de ce parametre. Le nombre de variables peut alors etre reduit et les
calculs numeriques effectues facilement. Quelques diagrammes sont presentes.

ZUSAMMENFASSUNG

In dieser Mitteilung wird ein für die Optimierung von Bogen- und
Hängebrücken geeigneter Grundparameter vorgeschlagen, der dynamische Faktoren
(z.B. Eigenwertprobleme) und statische Faktoren (z.B. Spannung und Deformation)

dieser Brücken berücksichtigen kann. Dies bedeutet, dass die Zahl der
Entwurfsvariablen reduziert und die Berechnung vereinfacht werden kann.
Diagramme für die praktische Anwendung werden angegeben.
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1. Introduction
When a long-span Suspension bridge is planned, the selection

of its floor system as well as its suspended structure has great
influence on its safety and economy, and its erection and maintenance.

When a floor system is planned at a long-span Suspension
bridge provided with stiffening truss girders, many kinds of floor
Systems can be proposed as discussed later in this paper. At the
present study, structural features of various floor Systems are
examined and compared with one another on such condition as
fabrication, erection, maintenance, economy, etc..

Through discussions the relationship of planning of the
floor System with construction methods will be evaluated in detail
for a design example of bridge in Japan.

2. Suspended Stiffening Structures and Floor System

In the planning of a long-span
Suspension bridge two type of
suspended stiffening structures are
considered: one is a truss type structure

and another is a box girder type
one. Since the former is more
conventional than the latter in Japan,
a truss type stiffening structure
with a floor system combined with an
open grating floor, as shown in
Fig. 1.

Many kinds of construction methods

for the floor system can be
proposed as discussed later in this
paper. Now, the comparative study was
carried out on a heavy weight floor
system (closed steel grating floor)
with a light weight one (steel plate
deck) in steel amount and cost at

Open Gräting
Floor

Steel Plate
Deck

fcB EH r"T"TuT"3^I

M y

p=

Fig. 1 Cross Section of
Suspension Bridge
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their construction time, at an ülustrated Suspension bridge, which
has a length of 16 30 m consisting of a main span of 870 m and two
side spans of each 380 m, and has a width of 30 m. The result of
this comparision is given in the Table 1, which shows that the
bridge with the light weight floor system has the advantage of the
heavy weight one in steel amount and cost. Since there is an opinion

that the floor system had better be heavier judged from the
aerodynamic stability of a long-span Suspension bridge, the relative

merits for aerodynamic stability between heavy and light
weight floor Systems have to be discussed separately.

Table 1 Comparision for steel construction of
öuper-structure at Suspension bridge

Steel Works

Bridge with Closed
Steel Grating Floor

Bridge with Steel
Plate Deck

Weight
(ton)

Unit
Price

!irjr yen)

Sum of
Money

(ltfyen;
Weight
(ton)

Unit Sum of
Price Money

(IO3 yen)U0syen)
Floor System 11 420 350 3 997 11 930 400 4 772

Stiffening Structure 26 750 400 10 700 26 250 400 10 500

Cable 20 840 600 12 504 18 580 600 11 148

Tower 10 930 400 4 372 10 230 400 4 112

Anchorage 5 660 300 1 698 4 980 300 1 494

Total 75 600 33 271 61 970 32 026

3. Outline of Each Floor System

In planning of a floor system for a long-span Suspension
bridge, its laod-carrying capacity, durability, aerodynamic
stability, deformation adaptability, easy and fast erection, easy
maintenance, overall cost saving and so on, have to be examined.
Several floor Systems including new construction methods which have
been developed by authors, will be discussed as follows:
(1) Floor System with reinforced concrete slab: A conventional

reinforced concrete slab deck is considered to be generally
cheapest one among various floor decks at present day in Japan.
On the other hand, site works of forming and reinforcing at
high elevation of a bridge are not always suitable for safe and
fast erection.
Floor system with closed steel grating Floor'™: This type of
floor, as shown in Fig. 2, was
adopted in Verrazano Narrows

(2)

Joint of Slab

Concret istributing Bars

Small I-Beams

Sma 11

Con

Stringer

Stringer ^-^ Steel Plate

Fig. 2 Detail of Grating Floor System
Fig. 3 Detail of Precast Concrete

Steel Grating Floor
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(UAS), Kanmon Bridge(Japan) and so on.
(3) Floor System with precast concrete steel grating floor:

This floor is ülustrated in Fig. 3, and its slab concrete is
precast at a shop and after it is connected to steel stringer,
concrete is cast between slab and slab, and also between slab
and stringer.

(4) Floor system with prefabricated steel deck plate sandwiching
concrete: This deck proposed by authors31, consists of two
steel plates and concrete sandwiched between them. These
plates are connected with stud bolts, and stud shear connectors
are welded to both of the plates making a steel-concrete
composite deck. Photo. 1 shows shop assembly of this deck before
filling up concrete. Fig. 4

and 5 show jointing methods \ „ i?_^ \ "j^j^nffi jj^»-
of this deck.

* %
1_B 1 „ ¦'- II-z ¦ 1 \

fe
W

^^W mw W 1fj w V
Fig. 4 Jointing of Deck Plates

Photo. 1 Assembly of deck

ma tu

Fig. 5 Jointing of Deck Plate to Beam
ww

(5) Floor system for prefabricated composite girder:
This composite girder, proposed by the authors^ as shown in
Fig. 6, consists of an inverted steel T-beam without an upper
flange and a steel grating floor frame, which is directly
attached at a shop. After the prefabricated floor deck is
connected to main cross beam of stiffening trusses, the slab
concrete is cast at the site.

(6) Floor system with orthotropic steel plate deck: A typical
steel deck panel which is well known is shown in Fig. 7.

Pavement
Small I-Beams.-.'-^i^-^Concrete

Distributing
Bars

Steel Deck
PlatesS

Steel
Plate

Longitudinal
Ribs

Stringer

Fig

Haunch
Plate

Cross Ribs

Stringer
6 Detail of Prefabricated

Composite Girder
Fig. 7 Ditail of Orthotropic

Steel Plate Deck

(7) Hollow steel plate deck: This deck developed by the authors
has such a cross section as shown in Photo. 2, and the welded
steel deck consists of two face plates and core plates which
are installed diagonally as shown Photo. 2. To apply this deck
to a floor system at a Suspension bridge, it is set on main
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cross beams of trusses directly
without stringer.

4. Comparision of Floor Systems
in Terms of Weight and Cost
In order to evaluate which

floor System will be the most suitable

for a long-span Suspension
bridge, the design of each floor
System outlined above was carried Photo. 2 Hollow Steel
out under the same design require- Plate Deck

ments that each floor system has a
span length of 12 m and a width of 11 m, and carries a live load of
20 tons truck specified at the Specification for Design of Highway
Bridges, Japan Road Association, 1974. As the result of the design,
dimension and construction cost of each floor system were obtained,
and then unit weight and unit cost per square meters of a floor
area could be calculated as shown in Table 2. The value of unit
weight and unit cost show that the heaviest reinforced concrete
slab is cheapest in cost while the lightest steel plate deck and
hollow steel plate deck are high-priced. Therefore, it might be
not only very difficult, but also risky to make decision only by
these two conditions, because for a long-span Suspension bridge the
third condition expressed in terms of a kind of function or
Performance of the floor system has to be examined.

5. Function Condition and Decision Matrix
As function conditions, fabrication, erection, construction

time, wind-resistance, paving, maintenance and overall economy may
be considered for long-span Suspension bridges. Each of the function

conditions are defined as follows:
(1) Fabrication condition: the nature of fabrication works to

evaluate easiness or hardness of steel works at a shop and time
requirement for fabrication.

(2) Erection condition: the nature of erection works to evaluate
easiness or hardness of field works and safety for Operation at
the site.

(3) Construction time: the time nature of erection works to evalu¬
ate a construction period.

(4) Wind-resistance: the condition of resistance against wind de¬
pending upon the height of a floor System and some other
requirements

(5) Paving: the nature of paving works depending upon the smooth-
ness floor surface.

(6) Maintenance: the nature of maintenance works to be evaluated
by painting on steel surface of a floor System, etc..

(7) Overall economy: an effect of the weight of a floor System on
an overall construction cost of the whole bridge, because as
seen in Table 1, the weight of the floor system of a Suspension
bridge may have great influence on the overall construction
cost of the bridge.
While the weight and cost of a floor system is deterministic

and certain, these function or performance conditions are uncertain
and not deterministic. Therefore, it will be reasonable to evaluate

a degree of those conditions by "excellent", "good", "ordinary"
and "undesirable", to which marks may be given, respectively, with
4 points, 3 points, 2 points and one point for trial. Furthermore,
a so-called emphasis coefficient k, may be proposed to evaluate
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Table 2 Comparision of Floor Sy stems
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>* c u CS •H Ve He
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Unit Weight of Floor 530 460 490 380 470 220 220

System [&) in Ranking 7 4 6 3 5 1 1

Unit Cost of Floor 50 000 60 000 65 000 70 000 65 000 85 000 75 000

System [-sr] in Ranking 1 2 3 5 3 7 6

Fi 4 3 2 1 1 1 2
Fabrication 8 6 4 2 2 2 4ki= 2

Erection F2 1

3

3
9

3

9

2
6

3
9

4
12

4

12kz= 3

Construction
Time

F3 1

3

2

6
3

9

3

9

3

9

4

12
4

12kj= 3
Wind-
Resistance

Fe. 3

6
3

6
3

6
3

6
3

6
3

6
4

8kt 2

Paving F, 3 3 3 2 3 2 2

k5= 2 6 6 6 4 6 4 4

Ft 3 2 3 1 2 2
Maintenance

6 4 6 4 4 4 4k6= 2

Overrall
Economy

F7 1

3
2

6
2

6
3

9
2

6
4

12
4

12k7= 3

Total EF, 16
35

18
43

19
46

16
40

17
42

20
52

22
56Ek, F,

3
EF, / 7

in I3oint 2.29 2.57 2.71 2.29 2.43 2. 36 3.14

Mean

Va'. in 1Banking 6 4 3 6 5 2 1

EkiFi
Eki

in 1'oint 2.06 2.53 2.71 2.35 2.47 3.06 3.29

in IBanking 7 4 3 6 5 2 1

relative importance among the function condition or to emphsize
relatively a specific condition. Here, the value of k is taken
tentatively two or three, because it is very difficult to give
deterministic numbers verified by numerical Statistical data.

As shown in Table 2, each floor system depending on construction
mehtods and each function condition with its emphasis coefficient

will make a decision matrix and its outcome will express
functional nature or performance evaluated by marks. In Table 2,

Fj the i-th function condition with i=l to 7,
ki the i-th emphasis coefficient with i=l to 7.

The decision-making for function or Performance will be made by
either EFj /7 or Ek; Fj /ZK, where

EFj/7 a mean value for k| =1
Ek; Fj /Skj a weight mean value.

The final decision has to be made in the overall result for
weight, cost and function of each floor system, depending on the
importance of these three factors because there is no common objective

function among the factors for the most optimum floor system.
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6. Conclusion
The following decision-making in planning will be concluded

from Table 2 as an example:
(1) The most conventional reinforced concrete floor System is

cheaper in construction cost, but is heavier in weight and
undesirable in Performance or function.

(2) Steel plate deck or hollow steel plate deck is more expensive
in construction cost, but is lighter in weight and more desirable

in Performance or function, especially in erection and
overall economy.

(3) The emphasis coefficient has to be determined more precisely,
objectively by various field conditions at the site of bridge
erection and subjectively by designer's judgement. With well-
selected values of the emphasis coefficient, more weighted
evaluation for the nature of function or Performance could be
made.

(4) When the suitability of a floor system cannot be judged from
deterministic ranking alone based on its comparative designs,
the relative evaluation of the floor system on its Performance
or function which is generally uncertain, will be of great help
to approach to its optimum construction method.
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SUMMARY

The present study is intended to plan properly the floor system which
will be optimum for a long-span Suspension bridge with stiffening truss.
Various construction methods for the floor System are examined in
construction cost and weight by comparative designs, and also in its
Performance or function by a decision matrix.
RESUME

Le but de cette etude est de concevoir de faijon optimale le Systeme de
platelage d'un pont suspendu de longue portee, dont le tablier est une
poutre ä treillis. Plusieurs types de platelage sont considöres, du point
de vue methode de construction, coüt, poids, Performances, utilisation;
une matrice de döcision est proposee.
ZUSAMMENFAS SUNG

Zweck dieses Berichtes ist es, das Deckensystem weitgespannter
Hängebrücken mit Fachwerkaussteifung zu optimalisieren. Verschiedene
Deckensysteme werden vom Standpunkt der Ausführung, der Kosten, des Gewichts
und der Nutzung anhand einer Entscheidungsmatrix überprüft.
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!<, Introduction
The deterministic optimization of statically indeterminate

reinforced concrete or steel structures of non-linear behaviour
has been worked out in detail e.g. [l, 2, 3 ]. In contrast to this
in the field of the stochastic frame optimization a great number
of problems are left insolved.

It is well known [4] that the failure probability of statically
indeterminate structures is lower than that of statically

determinate ones. This is due to the fact that in the semiproba-
listic design used almost all over the world, the failure
probability is associated with one critical cross section /elementary
beam length/ only. In reality, the failure of a statically
indeterminate structure is not characterized with the failure of
one, but of several critical sections /elementary beam lengths/.
Obviously, the probability of the simultaneous failure of several
critical sections /elementary beam lengths/ is lower than the
failure probability of one critical section /elementary beam
length/ alone.

In this contribution the increase of the plastic collapse
load of a given probability is investigated for statically
indeterminate linear plane structures on the basis of the investigations

carried out at the Hungarian Institute for Building Science
[5, 6, 7]
2. The structural model

The model of the structures investigated is characterized
with the following conditions:

/a/ the plane structure is formed of linear bars;
/b/ only one-parametric concentrated static loads are taken

into aecount, with the restriction, that constant moment
length cannot appear;

/c/ the influence of shear and normal forces and longitudinal
deformations is neglected;

/d/ the collapse mechanism is determined by plastic hinges
due to bending only;

/e/ rigid-plastic material behaviour is assumed, i.e. the
rotations are concentrated in the plastic hinges and the
bars between the plastic hinges are rigid;/f/ the critical elementary bar lengths /hereinafter referrgd
to as critical sections/ at which, in cese of concentrated
loads, plastic hinges can be formed are the discontinuity
points of the functions or the first derivatives of the
bending moments or those of the plastic moment capacities;

/g/ all the quantities influencing collapse load are assumed
deterministic but the bending moment capacity is assumed
random variable with infinitely divisible distribution
function [8] „
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As the consequence of conditions /c/ and /d/ the stability
problem is not investigated.

Condition /b/ regarding the lack of constant bending moment
lengths means that the position of the critical sections is
deterministic. If constant bending moment lengths exist, the position

of the critical sections should be e random variable and
together with the moment capacity can be characterized with an
extremal distribution functioi3only

In accordance with condition /g/ the distribution function
among others could be the normal or gamma-type distribution.

3. Formulation and Solution of the Problem
The problem is solved by the kinematic approach of the

plastic analysis to determine the smallest load factor in case
of which a collapse mechanism can be formed. For the Solution
the so called Combinations of Mechanisms method was used in
which from a set of independent elementary mechanisms the real
collapse mechanism with thesmallest load factor is determined
from the linear combination of these elementary mechanisms.
This method which is well known for the deterministic model
[9, 1, 2] was developed for the stochastic model. A related
economic problem was independently solved in [lO]

The problem for both models can be formulated as one of
mathematical progra; .ming, where the objective function is the

!X load factor

1 9* M -» min /l/
and the constraints are the following system of linear
equations

Ö* t* Qf /2/
t*e 1 /3/

where Q is the vector of the inelastic rotations
at s critical sections;

Q=f is the matrix of the inelastic rotations of
the set of m independent. elementary mecha-
ni srns
and m s-n, where n is the degree of
statical indeterminacy;

e_ is the vector of external work, done by
loads during the formation of elementary
mechanisms;

t_ is the vector of constants of the linear
combinations forming critical collapse
mechanism.

The vector of the inelastic rotations was divided according
to [l, 2] as

9 G+- 0" A/
and the method was completed with the justification of the
uniqueness condition for /4/ in [6,7] as

0+© Q"= 0 /5/
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where the symbol 0 is the so called logical product. The
justification showed for both the deterministic and the
stochastic model that the uniqueness condition /5/ is always
fulfilled automatically for the extreme of the objective
function. Consequently, this non linear condition can be
neglected and the remaining constraints are linear.
The vector jt can be written in the form

t t' - t" /6/
»

where £ is the new variable vector which in case of
subsequent t" will always be non-negative,

tit is a constant vector.
Having /4/ and /6/ the objective function can be written

in the following form

M* • X fl/y, M" • X -*¦ mm

(2s+rn) 2s+m)
and the constraints will be replaced by the following System
of linear equations

A x
s

b

(2s+m7s+l)(2s+m) (s + 1) /8/

where M* [m+*, tf", 0*] *
X s 0

+ * 0'* t

A "i -I ~Q*~
Sf b "-ff i""

o* Q* e* i^t"
_ —

+ - are vectors of the positive and negative plasticM and M moment capacities at the critical sections and

I and-I are identity matrices of appropriate signs.
The plastic moment capacities for the deterministic model

are fixed values, but for the stochastic model they are random
variables of known distribution function. The combination of
these plastic moment capacities results in the collapse load
factor, which, consequently, will also be a random variable of
the same type of distribution function.

Any point of the distribution function of the collapse load
factor i.e. the collapse load of a given probability can be
determined as follows.

It is well known [8] that any linear combination of random
variables with infinitely divisible distribution function will be
of the same type of distribution function. The mean value, the
Standard deviation etc. of the resulting distribution can be
expressed knowing the mean values, Standard deviation etc. of
the initial distribution and the combination coefficients as:

^ (Q+)*M+ + (ö* *M-

d*(»)-M*h%K

/9/

/IO/
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where q and q~ are the variances of the respective plastic" moment capacities.
Assume according to [lll that the failure probability of a

structure will be p =8,2.10~5. Knowing the distribution function
of -a determine tha? value of S\ depending on vectors &Z and

9" for which the probability of oecurence of the smallest A
will be less than the given p If u will be the quantile p
of the standardized distribution function, then this Ok value
will be

^s - D(ä) u0 + ^ /n/
Using the previous expressions the value of Äs can be given as
function of rotation vectors as

^s uo^* Q X + M*x /12/
where Gl=\ q+, q~ is a diagonal matrix, formed of vectors

- q^and q"".
The minimum of this objective function, which in this way is
deterministic, will be the collapse load of the given probability
according to the stochastic model.

For the deterministic model the objective function is linear
and for its Solution the simplex method is appropriate. However,
for the stochastic model, the objective function is coneave as
was shown in [6] This type of problem, with linear constraint
can be solved by the cutting plane method [12] well suitable for
Computer applications [13]

4. Practical application of the method
The effectiveness of the more exaet stochastic model was chetked

on some practical examples of different parameters.
The deterministic and stochastic models can be compared by

prescribing similar failure probabilities for critical sections
using the deterministic model /p./ and for the whole structure
using the stochastic E-nodel /p_/ and determining how much the load
bearing capacity computed according to the deterministic model
will be exceeded by the one computed according to the stochastic
model.

It was proved [7] that for this condition the deterministic
load bearing capacity will be a lower bound Solution of the
stochastic load bearing capacity. In [6, 7] two simple upper bound
solutions were also given.

Simple one span, one storey frames were analysed in case of
7 loading schemes, consisting of vertical and horizontal

concentrated loads. The possible distributed loads were modelled by
a system consisting of an odd number of concentrated loads.

The distribution function of the plastic moment capacities
of the critical sections was assumed to be of normal distribution.

The span / l / to height /h/ ratio was assumed as l/h=2,4,1/2.
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The assumed ratios of the plastic moment capacities of the
girder /SI./ and the column /M, / are shown in the Table 1.

Table 1

Plastic moment

capacity type
1 2 3

v%
+ 3/2 1 3

- 1 2/3 3/2

Signs + and - indicate moments, producing tension at the inner
and outer side, respectively, of the bars. The coefficient of
Variation of the plastic moment capacities was assumed as
rs0.015, 0.05, 0.15 and 0.25. Of course for the latter and
small failure probabilities the assumed normal distribution
gives a considerable error, The convergence of the Solution
was very slow in case of high coefficients of variations, too.

Altogether 3o frames were
investigated using both the
deterministic and the stochastic
model.
The results of the calculation
for the frame shown in Fig.l
are given in Table 2.

7? AP AP AP AP AP QP

111LLU6P

nrn

h--l

Fig.l
Table 2

-^parameters

nuraber~"""^---^^
of example

l/h
plastic moment
capacity type \o r Pi

lo 2 1
l.lo4
l.o51

0.553
0.782

1,9.10-«=
1.6.10-3

13 4 1
l.o78
l,o26

0.663
o.887

6,1,10-3
4.1.10-4

16 1/2 1
1.116
I.06I

o.5oo
0.738

3.O.10"2
2,7.10-3

22 2 3
l.o82
l.o32

o,648
0.862

7.4.10-3
5.3.10-4

where C\ „„ and
so

7. do are the collapse load factors for the
stochastic and for the deterministic
model, respectively,
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r r, is the coefficient of Variation of the collapse load
factor for the frame,

r is the coefficient of Variation of the plastic moment
capacity at the critical sections,

p. is failure probability of the plastic moment capacity1 at the critical sections, assuming the failure
probability of the whole frame p 8,2„10-5.

The two values in each box in Table 2 correspon;. to the lower
and upper bound values after iterations consuming prefixed
Computer time.

5. Discussion of the results
/a/ Fron the results it became clear, that a substantial

difference is observed between the load bearing capacity

of the deterministic and the stochastic structural
models. This difference is given in Table 3.

Table 3

r o.ol5 o.o5 0.15

*so / ^do 2-3 % 3-12 % 22 %

/b/ The different analyses according to the deterministic and
stochastic models give not only different collapse load
factors, but in some cases different failure mechanisms
too, as is shown in Fig.2.

V 24P

+28

mi

Fig. 2

a - the frame scheme; b
the deterministic model;
to the stochastic model.

failure mechanism according to
c - failure mechanism according

/c/ The coeffici
of the frame
for the dete
ratio of r ^

/d/ There is ano
according to
the failure
at the criti
of the whole

ents of Variation of the collapse load factor
for the stochastic model are much lower than

rministic model, as can be seen in Table 2. The
/r was between o,5 and o,78.
ther way of comparison of the results obtained
the two models. This is the determination of

probabilities of the plastic moment capacities
cal sections pi at a given failure probability
frame p„ 8,2.10"5 accordin: to the stochasticP0= 8,2.
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model. These values of p. in case of examples of good convergence
were in the ränge of 10"^ - 2.10-2, which is much higher than in
case of the deterministic model, where in each critical section
p- 8 2.10"5 should be maintained.

6. Conclusions
The stochastic structural model for statically indeterminate

plane structures formed from linear bars gives considerably higher
load bearing capacity, lower coefficient of Variation, higher
failure probability in each critical section, than the deterministic

structural model. In some cases the failure mechanisms can
also be different for stochastic and deterministic models.

It is plamed to investigate distributions more realistic
than the normal one taking the elastic-plastic material behaviour
and the randomness of the critical seation position into aecount.
Examples of more complicated structural schemes are planned to
be analysed by applying computational methods of better
convergence.
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SUMMARY

The increase of the plastic collapse load of a given probability is
investigated for statically indeterminate linear plane structures,
assuming the plastic moment capacities at the critical section to be
random variables of infinitely divisible distribution. The Combinations
of Mechanisms method was developed for the stochastic structural model.
The mathematical and computational problems were solved and 30 simple
frame examples were investigated. The results showed higher plastic
collapse load, lower coefficient of Variation and higher possible
critical section failure probabilities for the stochastic model as
compared to the deterministic one.

RESUME

L'augmentation de la Charge plastique de rupture pour une probabilite
donnee est examinee pour des systemes de barres hyperstatiques en plan,
sous la condition que les capacites de moment plastique sont des variables
probables d'une distribution infiniment divisible. La "combinaison des
mecanismes" est developpee pour le cas du modele stochastique. Les problemes
mathematiques et d'ordinateur sont resolus et 30 portiques simples examines.
Les resultats ont montre pour le modele stochastique une Charge de rupture
plastique elevee, un moindre coefficient de Variation et une plus grande
probabilite de rupture possible compare au modele deterministique.

ZUSAMMENFASSUNG

Die Erhöhung der plastischen Bruchlast gegebener Wahrscheinlichkeit
wurde bei statisch unbestimmten ebenen Stabwerken unter der Bedingung
geprüft, dass die plastische Momenten-Tragfähigkeit in den kritischen
Querschnitten eine unbegrenzt dividierbare Zufallsvariante ist. Die
Methode der "Kombination der Mechanismen" wurde im Fall eines stochastischen

Konstruktionsmodells weiterentwickelt. Mathematische und
rechnungstechnische Fragen wurden gelöst und das Zahlenmaterial von 30 einfachen
Rahmen geprüft. Die Ergebnisse zeigen eine höhere plastische Bruchlast,
kleinere Variationskoeffiziente und grössere mögliche Wahrscheinlichkeit
der Zerstörung im Falle des stochastischen Modells gegenüber dem
deterministischen Modell.
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1. INTRODUCTION

The complexity and difficulty arised in the optimization procedure of a practical

structural system are caused mainly by the various characteristic and numerous

design variables and constraints involved in a structural System. The metho-
dological expansion on the treatment of such design variables and constraints has
been expected for the efficient optimum design method of the structural Systems.
This paper presents practical optimization methods intended to solve the problems
based on suboptimization of structural elements.

In the optimum design methods presented herein, suboptimization of the structural

elements are performed first for the ränge of possible loadings and design
variables, then suboptimized relationships between an intensive design variable
and design constraints, objective function etc. are introduced. Using these
relationships logical reductions in the number of design variables and constraints,
and introduction of material selection variables may be possible. Objective
function is also simplified, and geometrical and discrete variables can be treated
easily. The optimum solutions are found by sequential linear programming algorithm
and graphical approach. Examples of cost minimization problems of highway girders
and minimum weight design of trusses are presented. Using the methods direct Optimum

design diagrams for highway girders have been established.
2. OPTIMUM DESIGN USING SUBOPTIMIZATION OF STRUCTURAL ELEMENTS AND SLP METHOD

2.1 Girder Problems

Problem Formation - The cost minimization problems of constant-depth highway
welded plate girders are solved by SLP method using suboptimization of girder
elements. The design variables are assumed as cross sectional dimensions, length,
i, and steel type, M, to be used for each girder segment. Design criteria imposed
in the steel girder section are constraints on allowable stresses, plate
thicknesses for stability of the girder and minimum rigidities of vertical and
horizontal stiffeners which are taken from "Specifications for Steel Highway Bridges".
(Ref. 13) Discrete constraints on commercial availability of plate thicknesses
are also considered.

Total cost of the girder, TCOST, is assumed to consist of material cost, CM,

fabrication cost, CFFx(l+FF), and welding cost, CWM + CWFx(l+FF), which are evaluated

with reference to "Tables of Prime Costs for Steel Highway Bridges".(Ref. 14)
NM NM

TCOST ECOST; X £; C [ CM{+ CFF£x(l+FF) + CWM{ + CWF,x(l+FF) ] x fc (1)

in which FF factor of indirect fabrication cost, CWM cost for welding materials,
CWF welding cost.
Suboptimization of Girder Elements - In the girder problems, behavior variables

are determined by the arrangement of moment of inertia, I, and length, jj,
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of each girder segment and usually dimensions of a girder section are determined
by applied maximum bending moment. For this reason suboptimization of the girder
sections are performed first for various combinations of steel types, M, web

heights, WH, and bending moments, BM, by taking into aecount all of the design
variables and constraints.

The mixed-discrete nonlinear optimization
Problems of the girder sections may be solved
quite effectively by a modified branch and bound
algorithm and SLP method, where the order to
branch and bound of discrete variables is
preassigned according to their importance for the
design of girder section, and only two adjacent
discrete values to the continuous optimum Solution

are examined for their optimality. Macro
flow chart of the algorithm is shown in Fig. 1.
The results of suboptimization of girder
elements are arranged in terms of moment of inertia
and I-RBM, I-COST, I-SDIM, RBM-GW relationships
for each steel type and web height are introduced,

where RBM maximum resisting bending
moment, COST minimum cost per unit length,
SDIM optimum sectional dimensions, GW girder
weight per unit length. I-RBM and I-COST
relationships shown in Fig. 2 may be expressed as

RBM(I) a-I + b, COST(I) c-I + d (2)
The coefficients a, b, c and d are all
constants for the particular ränge of I, M and WH.

Since flange plate thicknesses are increased
discretely as applied bending moment increases,
unit price of the steel plate and size of the
fillet welding are changed also discretely and
I-COST relationships are varied discontinuously
at such points. On the contrary I-RBM relationships

are varied linearly and may be expressed
by several linear equations accurately.

Simplification of Problem and Introduction
of Material Selection Variables - I-RBM
relationships introduced by this method express the
allowable upper limit of resisting bending
moments of the girder sections to satisfy all of
the constraints. Minimum costs of the girder
sections with I, WH and M may be evaluated
directly from related I-COST relationships. Therefore

by using these relationships I of each
girder element may be considered as a new design
variable instead of all of the sectional dimensions

if web height is preassigned as a design
parameter and BM < RBM relationship comes to a
new intensive constraint in place of all of the
restrictions. This reduction in the number of
design variables and constraints to be considered simultaneously gives significant

advantages to solve complex structural optimization problems, such as
simplification of the problem formulation and evaluation of the sensitivities,
reduction of the core size and computation time, improvement of the convergency
to the optimum Solution. Furthermore the differences of values between two
material types at a value of I in the I-RBM and I-COST relationships may be
considered as the partial derivatives with respect to the design variable for
selecting optimum steel type to be used for each girder element.(Fig. 2) The
material selection variables M are introduced based on this concept, which

(yen/ern

lö HEIGHT 1700 m

- RBM

COST

äCOSI
3MP3RBM

3MP.

3MMm
3RBH
3MM

(xlOW)

Fig. 2 I-RBM, I-COST Relationships for Girders
with Heb Height 1700 nm
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consist of MP and MM. The former are provided for selection of the stronger steel
type and the latter are for the weaker. MP and MM are treated as independent
continuous variables same as I and i.

Optimization by SLP Method - The girder is analysed by the displacement
method and the behavior variables and their partial derivatives with respect to
I, i, M are evaluated by using the influence line analysis. Partial derivatives
of RBM and COST with respect to I, i, M are also evaluated from related I-RBM
and I-COST relationships. The nonlinear optimum design problem is approximated
with a linear programming problem by the first order terms of Taylor series
expansion and an improved Solution is determined by Simplex algorithm. Adaptive
move limit constraints on the changes of design variables are also added to
ensure the convergency to optimum Solution. Since the material selection variables
are assumed here as continuous variables, which are modified to the nearest
discrete steel types at every iteration of analysis. If a Solution comes closely to
the optimum Solution, all steel types are fixed as most profitable and material
selection variables are eliminated from a set of the design variables. Then the
problem is reanalysed until optimum Solution is obtained. The optimum sectional
dimensions for each girder element may be decided directly from the related
I-SDIM relationships.

Examples - The method has been applied to many cases of simple span, 2~ 3-
span continuous constant-depth highway girders and three examples are presented
in Table 1 in which the solutions are compared with the results by graphical
approach described later. In Table 1 BW bridge width, SL span length, WH

web height, Pt a concentrated live
load, uniformly distributed live

distributed dead load which
1«

load, q

differs with each girder segment, but
averaged value in the girder is shown
in the table.

Approximate convergency to the
optimum Solution including material
selection is quite well by using move
limit constraints, but computation
time and number of iteration of re-
analysis required for the optimum
Solution are increased so much as
number of design variables and
constraints increases as seen in Table 1

Comparisons of several solutions with
different initial inputs should be
made for confirmation of the global
optimum Solution.
2.2 TRUSS PROBLEMS

Table 1 Optimum Sol utions by SLP Method and Graphical Method

Seg
No,

SLP Method Graphical Method Desiqn Condition
L (cm) I lern') M" L (cm) I (cm') M" BW= 8.00 m

SL= 30.0 m1 296.7 1389224 41 293.7 1376687 41

2 701.2 1507252 58 710.0 1520473 58 HH= 200 cm

l-SP

3 1SO0.O 2113595 58 1500.0 2113532 58 P.= 17.990 t
q,= 1.259 t/m
q,= 2.310 t/m

Hin TCOST 1643675(YEN 1643622 (YEN
CPU TIME 15O-2O0(sec' 10-16 (see

Nu.of Iter 15- 20 3- 5
1 323.1 779103 50 285.0 697606 50 6H= 8.00 m

2 725.7 1430407 50 618.8 1288148 50 SL= 30.0 m

; 3 1997.0 1695642 50 1962.0 1712473 50 WH» 170 cm
^ 4 2683.0 1085665 50 2702.2,, 1136303 50 p,= 17.955 t/m
2-SP

5 3000.0 1429441 58 3000.0 1431270 58 q,= 1.257 t/m
q,= 2.300 t/mHin.TCOST 2891515 YFN 2893060 (YEN

CPU TIME 60-100 see 3~ 4 (see
No.of lter. 20-25 5- 8

1 248.8 888658 41 233.8 846592 41 BM= 8.00 m

2 559.9 1250520 50 546.5 1238921 50 BL= 90.0 m

3 1850.0 1700003 50 1805.6 1723537 50 UH= 190 cm

: 4 2486.0- 1217784 50 2501.5, 1217830 50 Span Ratio ¦
5 2812.5 2180159 50 2812.5 2128666 50 1 : 1.2 : 1

SP 6 3153.0 2180159 50 3153.5 2128666 50 p,,= 18.042 t
i 7 3841.0 1159787 50 3898.8 1112415 50 p„= 17.747 t

8 4500.0 1486529 50 4500.0 1529952 50 q,= 1.263 t/m
q„= 1.242 t/m
q,.= 2.030 t/m
q„= 2.031 t/m

Min.TCOST 4241036IYEN 4224079 YEN

CPU TIME 300-450(sec 10-15 see
No.of Iter. 25-35 8- 12

Calculated by FAC0M 230-28
'"Calculated by HITAC 8800/8700

(s) indicats intermediate support

41 SS41 (JIS) Steel
50 SM50 (JIS) Steel
58 SM58 (JIS) Steel

The truss problems are solved as
weight minimization problems and cross sectional dimensions of the member and
coordinates of the panel points are considered as design variables. The steel
is fixed as SS41 (JIS) only.

Suboptimization of member elements - In the truss problems, suboptimization
of the compression and tension members for many combinations of applied

loads and member lengths are treated first, then sectional area A - maximum
allowable stress 6" A - optimum sectional dimensions, SDIM, relationships for
various member lengths are introduced. A-6» Relationships at any member length
may closely be approximated as

c7a (a-(A-b)}/n + C or 5a d-A + e (3)
in which a, b, c, d, e and n are all constants related to the member length and
A. A- 6arelationships express the allowable upper limits of the stresses of
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members with A which are guaranteed to satisfy
all of the constraints prescribed to the member

design.
By using A-0^ relationships all design

variables and constraints imposed in the member
design can be replaced only by A and a<aA
relationships respectively, moreover the derivatives

of Or. with respect to the geometry variables

Xg can be evaluated simply as

(4)
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70
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in which Aoai represents the change in o~a at
i-th member due to the change in i-th member

length. The problem is approximated as a linear
programming problem and reanalyzed until Optimum

Solution is obtained.

Examples - An example of eleven bar truss
subjected to the moving loads P=50 ton, qt=4
ton/m, and the dead load c\ =2 ton/m is shown in
Fig. 3. The panel length is fixed as 5 m.
Sectional areas of member 1 to 6 and coordinates
of panel point 1 and 2, Y]y Y2 are assumed as
the design variables and only Oi.aA constraints
of the members are taken into aecount. The
initial Y, and Yz are assumed as 500 cm, however

they are reduced finally to 340 cm and 483
cm respectively. Furthermore, members 1, 2, 3,
4 and 6 are fully stressed, while sectional
area of member 5 is determined by the maximum slenderness ratio requirement. The
minimum total volume obtained is 25.56 x 10*cm3 and maximum live loads displacement

is 1.17 cm at panel point 5.
In the case maximum live loads displacements of the panel points are limited

to 1.0 cm, the Optimum Solution is found such that the sectional areas A t are
29.58, 45.45, 66.71, 45.13, 39.30, 62.90(cm2) respectively and Y, 428 cm, Y2
549 cm with the total volume 27.53 x104cm3. The total volume increases 7.7% more
than previous Solution and only member 3 and 6 are fully stressed.

Topological Member Arrangement - If the constraints on lower limits of
member sections are not imposed, sectional areas of unnecessary members come to
0 cm2. Then optimum topological member arrangement of truss may also be determined.

Several simple examples on this problem are shown in Ref. 2).

9 11 13

0F ITERATION

Fig. 3 11-ßar Truss, Moving Loads, tr<ira Constraints

3. GRAPHICAL OPTIMIZATION OF HIGHWAY GIRDERS BASED ON SUBOPTIMIZATION OF

GIRDER ELEMENTS

SLP method has been used successfully on a wide ränge of large and complex
structural optimization problems, however in the optimization procedures partial
derivatives of the behavior variables and objective function with respect to the
design variables should be evaluated at every iteration of reanalysis. Therefore
as depicted in the previous girder examples computation time is so much increased
as number of design variables increases and more efficient methods to solve the
large optimization problems are expected. Graphical optimization method, an
approximate approach based on suboptimization of girder elements, has been developed

for solving such problems and applied to the cost minimization girder problems.

Design Procedure by Graphical Method - In the graphical approach, a minimum
cost diagram related to the initial girder arrangement is developed first by
using maximum bending moment diagram of the girder and I-RBM, I-COST relationships.

Then improvement of I, il and M of each girder segment is performed by
investigation of the change in minimum cost at the adjoining two segments due
to a change of segment length, A£. In case of Fig. 4, the change of minimum cost
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of the girder, ATCOST l( due to a change of A£^
can be evaluated as

ATCOST ACOST.l-£l- ACOST. • A£L (5)

If ATCOSTl is positive, A£ t may proceed to -hl-.
direction. The improvement due to Ait;, may be
finished when ATCOST- converges to zero them next
improvement on £ l+,is performed. After the
improvement of all segments is accomplished, the
girder is reanalyzed with new I, t and M and the
procedure is repeated until a converged Solution
will be obtained. Three highway girder examples
are given in Table 1.

In this approach, attention is paid only to
the change of objective function in order to
improve the design variables of a girder segment,
and effects to the over all behavior variables
caused by changes of the design variables are
evaluated by reanalysis of the girder. In this
sense graphical method is more approximate
approach than SLP method, but convergency to the
global Optimum Solution by this method is quite
well as seen in Table 1. Computation times
required for optimum Solution are reduced notably
as 3-5 see. and 10 ~ 15 see. on HITAC 8800/8700
for 2 and 3-span continuous girder problems
respectively, which are 1/12 ~ 1/30 cpu. time
compared with SLP method. Larger reduction in cpu.
time is made as number of variables and
constraints increases.

h-:

Drioinal Miji. COST Diagram

Max. Bending Mneffit Diagram

LU.

e) COST,

£ COST,

Fig. 4 The Change of TCOST due to 4Li
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PS.4'r!.
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Fig. 5 WH-TCOST. StSt-J Relationships for 2-Span
Continuous Girder SL 30 m, BU 8.00 m

Optimum Web Height - To decide the optimum
web height at each span length, optimum solutions
for several web heights should be compared with
each other. Fig. 5 shows an example for 2-span
continuous girder with span length 30 m. As seen
clearly in the figure, several local minimum
solutions exist on web heights and the girder with WH=170 cm gives absolutely minimum

cost in this example. For this reason, web height should be treated as a

parametric variable in cost minimization highway girder problems.

Optimum Design Diagrams for Highway Girder Bridges - For the purpose of
direct optimum design or planning of 1~ 3-span constant-depth highway welded
plate girders, various optimum design diagrams and tables such as span length -
minimum total cost, optimum WH, I, i, M, and I - SDIM relationships for the girders

with nonuniform cross sections,and bending moment - minimum cost, optimum WH,

I, M, GW diagrams for the girders with uniform cross sections have been
established by using the graphical method, and they will be published soon.6,7'6

The optimum design diagrams mentioned above may be utilized as one of the
suboptimized structural size design programs in a general purpose system program
for highway bridges.
4. CONCLUSIONS

Practical structural optimization methods based on suboptimization of structural

elements, SLP and graphical method are presented.
An element size optimization for minimum cost is formulated as a mixed-dis-

crete nonlinear programming problem, and a modified branch and bound algorithm
with SLP can be solved the problem effectively. Cpu. time was 1.0 see. on FACOM

230-75 required for an optimum Solution of the girder section.
By using the relationships obtained from suboptimization of structural

elements, structural optimization problems may be simplified and be solved effectively.
Moreover material selection variables and graphical optimization algorithm
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have been developed on the basis of this design concepts.
SLP method may be utilized successfully on a wide ränge of large and complex

structural optimization problems and its approximate convergency to the optimum
Solution is quite well, however computation time and number of iteration of
reanalysis increases so much as design variables and constraints increases.

Graphical optimization method is a practical and efficient design method
for the cost minimization problems of highway girders. Formation of the Computer
program is simple, and excellent convergency to the global optimum Solution and
existence of several local minima on web height have been confirmed. Design
diagrams prepared for direct cost minimum design or planning of highway girders have
been established by this method. The design diagrams may be utilized as one of
the suboptimized structural size design data in a general purpose System program
for highway bridges.
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SUMMARY - The optimum design concepts based on suboptimization of struc¬
tural elements are presented. Large scale and complex structural

cost minimization problems may be simplified, and treatments of various types
of design variables and constraints such as sizing, material selection,
geometry, continuous, discrete corne to ease by this concept SLP method and

graphical optimization method are used effectively to find the minimum cost
solutions of highway girder and truss examples.

RESUME - Les concepts de l'optimisation bas<§s sur la suboptimisation d'£l<§-
ments structuraux sont prtSsentös. Cette suboptimisation permet de

simplifier des problemes de minimisation de coüt de structures complexes de

grande dimension; eile facilite le traitement de variables de projet, de
contraintes de types varies telles que dimensionnement, selection de matSri-
aux, g<§om<Strie, continu, discret,... La möthode "SLP" et la methode
d'optimisation graphique s'emploient pour trouver efficacement des solutions
permettant de construire, au coüt minimum, des ponts et des charpentes.
ZUSAMMENFASSUNG - Das Konzept des optimierten Entwurfes aufgrund der Sub-
optimierung struktureller Elemente wird dargestellt. Durch dieses Konzept
lassen sich die Probleme der Kostenminimierung vereinfachen sowie die Behandlung

verschiedener Arten von Entwurfsvariablen und Randbedingungen, wie z.B.
Abmessungen, Materialwahl, Geometrie, stetige und unstetige Formen, überdies
erleichtern. Die SLP-Methode und die Methode graphischer Optimierung werden
verwendet, um die effektiven Minimalkosten eines Brückenträgers une eines
Fachwerks zu erhalten.



IIb

Optimierungsprobleme beim Projektieren von Stahlbetonbrücken

Optimization Problems in the Design of Concrete Bridges

Problemes d'optimisation dans les projets de ponts en beton arme

B.J. ULIZKIJ J.M. JEGORUSCHKIN
Dr. d. techn. Wissensch., Professor Kand. d. techn. Wissensch.

Z.N.I.I.S., Ministerium für Verkehrsbauwesen der UdSSR
Moskau, UdSSR

Die Aufgabe der Automatisierung des ProjektierungSEablaufs im

Stahlbetonbrückenbau kann als AufgEabe der mathematischen Programmierung

betrachtet werden. Es soll der Vektor eingeordneter Brückenparameter«¦

Satz) ermittelt werden, der dem gegebenen System von Einschränkungen

entspreche und eine Funktion des Zweckes minimisierte.

Der Optimjsierungsvorgang umfasst den Projektierungsablauf die

VariEanteneinschätzung und die Auswahl von optimialen Losungen,

Eine der wichtigsten und aufwendigsten Stufen, die den grössten

Teil der Maschinenzeit in Anspruch nimmt ist die Berechnung unter

Berücksichtigung der Raumwirkung der Konstruktion, der Einflüsse der

plastischen Verformungen, der dynamischen Einwirkungen der Belastungen.

Da bei der Auswrahl der optimalen Lösungen eine grosse Anziahl von

VEariEanten zu untersuchen und zu Eanalysieren war, waren ausführliche

aufwendige) BerechnungsverfEahren unter Anwendung von EDV auch

in der Stufe des Skizzenprojektierens schwer zu verwirklichen sind.

Man muss wenig aufwendige Berechnungsverfahren mit genügender

Genauigkeit schaffen.
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Allgemeine Verehren für vereinfachte Berechnungen, Edie auf gr obannä-

hrender Ideialisierung des Berechnungsschemas gegründet sind, führen meist

zu wesentlichen Fehlern, Wsas mit sich irrati onelle Verteilung des Materi—

Eals in der Konstruktion bringt.

Eis wird eine prinzipiell neue Auffassung der Ausiarbaitung neuer

vereifachten. BerechnungsverfEahren empfohlen, welches auf der mathematischen

Verarbeitung des gewonnenen Resultats von den in den EDV

durchgeführten strengen räumlichen Berechnungen b<asiert \_ 1 J

Gegenwärtig sind Algorithmus und Programm (SPIKA) für einen

vollen Zyklus der räumlichen Berechnung der PlattenbEalkenkonstruktionen

ausgearbeitet, die die konstruktion Einflussflächen für verschiedene

Spannungen und Verschiebungen, ihre Belastungen an den ungünstigsten Stellen,

die Ermittlung des Extremums der rechnerischen und massgebenden Werte

für Spannungen und Verschiebungen einschliessen»

Das Programm SPI KA für räumliche Berechnung von Rlattenkons-

truktionen ist mehrmals beim Projektieren von Brücken und anderen

Bauwerken verwendet.

Indem man umfangreiche bei der räumlichen Berechnung dev Brüc—

kenüberbEauten gewonnene Ergebnisse ausnutzt, kann man einfache mathe—

matiche Modelle zusammenstellen, welche auch Abhängigkeiten zwischen

Form, Anordnung, Grosse der Bauteile und verformtem — gespanntem

Zustand der Konstruktion unter ständiger, ungünstiger Verkehrslas sowie

anderen rechnerischen Belastungen widerspiegelt. Zur Herstellung solcher

mathematischen Modelle ist die Anlage der Regressionsan<alyse verwendet»

Die Verfahren der Regressionsanalyse sind auf der Aufwendung

einer grossen j<\nzahl von gespeicherten statischen Angaben begründet,

die aus Versuch, langzeitiger Beobachtung des Verhaltens der tatsäch-
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liehen Konstruktion oder aus übrigen Quellen erhalten sind. In gegebenen

FEalle ist die Information als Ergebnis mehrmals durchgeführter räumlicher

Berechnungen gespeichert.

Das mathematische Modell des räumlichen Verhaltens der Konstruktion

vom vorgegebenen Schema stellt eine Formel dar, wo die gesuchte

Extremspannung oder — Verschiebung als von den geometrischen Haupt—

Parametern der Konstruktion und von den physisch — mechanischen

Eigenschaften des Materials und der Belastung abhängige Funktion

dargestellt ist»

Die Extremspannung oder — Verschiebung in einem Bauteil der

Plattenbialkenkonstruktion einer frei gelagerter Brücke kann als Funktion

P-f(tIG,BiA,KIMIH,C„xfy)
ausgedrückt werden;

wobei;

£ - Spannweite,

C2, — Durchfahrtsprofil,

Pj. — geometrische Parameter der Träger {, - 1, 2, ..»., k

TY — geometrische Parameter von Platten,

K - Anzahl von Trägern»

M ™ physisch-mechanische Kennwerte vom Material,

Lj — Belastungsangaben.

P - Information über Anordnung des Brückenüberbaues
D

X V*- KooroVinaten des Überbauguerschnitts.

Die Formeln wie (lj lassen den Einfluss von mehreren Parametern

auf den gespannten—verformten Zustand der Konstruktion analysieren,

PrEaktisch ist es zweckmässiger für gestellte Aufgaben nur einen Teil
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von Parametern der Funktion (1) zu berücksichtigen, «die anderen werden

festgestellt.

Bei der Konstruktion der mathematischen Modelle sind für die EDV

bestimmte Programme der Regressionsanalyse verwendet. Mit diesen

ProgrEammen kann man ein polynomiales Modell gegebenen Grades Zusammen«

stellen:

wobei

P=^o + I JMi + £ jVi*J + -»<4,<r, «Ujtrv J

ß

Ki*a

- unbekannte Faktoren,
L

Y. - zuberücksichtigende Parameter,

I") - Anzahl von Parameter,

Werden wir die einfachsten Beispiele für Konstruktion der Verhältnisse

wie (l) betrachten,

1« Der frei gelagerte Überbau ohne Querscheiben von Autobahnbrücken

aus StEahlbeton mit gleichen Trägern«

Beim angegebenen Durchfahrtsprofil kann das rechnerische

Biegemoment von der Verkehrslast in Hauptträgern des Überbaues mit der Formel

M,= A, + £(Ai + A3e + A4t) (2)

ermittelt,

wobei

KA — rechnerischer Extrembiegemoment von der Verkeh—

rslast (es werden LEasten HK-80, H—30 und Träger

für Fussgängerstege unter Berücksichtigung des

Überlrastungsfaktors und des dynamischen Fiaktors be—

trEachtet),

F - Spannweite,
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|£ - Anzahl von Hauptträgern,

T — Liänge der Fussgängerauskragungen,

A.— unbekannte Kpeffizienten»

2. Der freigelagerte Flattenüberbau.

Beim angegebenen Durchfahrtsprofil können Biegemomente mit den

Formeln-

M„-(ß(+ ltl)l + ß^cE2+(B^n+B5Pt)£2,

My - (c,+c2e)e + C3 ^ce2+(c4q,n+c5i?)t
<3>

ermittelt,

wobei

l^^V IVlvy ~ rechnerische extremale Quer - und Längsbiegemomente;
eA j y

Q - - Eigengewicht,

1- — Belsastung aus FahrbEahndecke,

P -Gewicht der Fussgängerstege,

ft. P. - unbekiannte Koeffizienten,

A- R- P- "" Koeffizienten sind mittels mathematischen Be<arbeitung

der gewonnenen Ergebnisse der räumlichen Berechnung

für verschiedene Durchfahrtsprofile gewonnen. Analogisch

sind auch Abhängigkeiten zur Ermittlung von anderen

Arten der Spannungen und Verschiebungen erhalten.

Die Genauigkeit der mittels Regressionsanalyse gewonnenen Formeln

hsängt wesentlich vom Umfang der gespeicherten Information ab.Daraufhin,

sind Resultate aller nach Programm SP1KA durchgeführten räumlichen

Berechnungen im langzeittichen Speicher von EDV für nachfolgende

mathematische VerEarbeitung gesammelt.

Die Formeln wie (2,3) finden ihren Einsatz in der Anfangsstufe des

Projektierens, wenn alle Varianten untersucht werden, alle Kombinationen

und Ausmasse von KonstruktionsbEautellen vorgesehen werden und mehr*-
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malige wiederholte Berechnungen nötig sind.

Die Anwendung solcher Formeln beim optimalen Projektieren von

Brückenüberbauten lässt stark die Wirksamkeit des Suchens nach

optimalen Lösungen steigern.

X, Ulizkij BJ,, Potapkin AA» Rudenko W.I.3 Ssacharowa I.D,3

Jegoruschkin J.M. "Räumliche Brückenberechnungen (unter Anwendung

von EDV)J' M. Verkehrsverlag, 1967,

ZUSAMMENFASSUNG

Es werden einige Optimierungsprobleme beim Projektieren von
Stahlbetonbrücken mitgeteilt, die auf einer neuen Auffassung der Ermittlung
des Spannungs- und Formänderungszustandes der Brückenkonstruktion
basieren. Dabei erzielt man reduzierten Berechnungsaufwand und erhöhte
Wirksamkeit beim Suchen nach optimalen Lösungen.

SUMMARY

Some optimization problems in the design of concrete bridges are solved
with a new approach for predicting stress-strain State of bridges. This
method reduces to a considerable degree time consuming calculations and
increases the efficiency of search of optimal Solution.

RESUME

Quelques problemes d'optimisation sont resolus gräce ä une nouvelle
coneeption de l'etat contraintes-deformations des ponts. Cette methode
permet une diminution importante du temps de calcul et une augmentation
d'efficacite de l'optimisation.
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Structural Optimization through Sensitivity Coefficients

Optimisation des structures au moyen des coefficients de sensitivite

Optimierung der Tragwerke mittels Sensitivitätskoeffizienten

CS. GURUJEE
Lecturer, Civil Engineering Department

Indian Institute of Technology
Bombay, India

1. INTRODUCTION

There are basically two approaches to the Solution of a
structural optimization problem. In one approach which is followed

by Schmit £ll and by Schmit and Fox \\2~\, both kinds of variables
namely the design variables and the behaviour variables are treated

as unknowns in the programming problem. In the other approach
which is followed by Romstadt and Wang [3} and by Vanderplaats and
Moses £4l the Solution procedure consists of a series of analysis-
programming cycles. Ih each programming stage the most recent set
of behaviour variables is treated as known and the design variables
are treated as unknowns. The advantage of the first approach is
that the programming problem is to be solved only once. The size
of the programming problem depends on the number of nodes, the
number of members and the number of load conditions. Generally
for any practical case the size of the problem becomes almost un-
manageable. In the second approach though the programming problem
haß to be solved many times the size of the problem is smaller.
Hence the second approach is preferred to the first.

In the present paper the second approach is followed but the
Solution procedure consists mostly of solving a series of programming

problems. It iß observed that in the conventional approach
(e.g. that followed by Romstadt and Wang [3]) the time required
for the Solution of a problem increases rapidly with the increase
in the statical indeterminancy of the structure. In such cases
the proposed approach is more economical,

2. THEORETICAL ANALYSIS

2,1 Formulation and Solution
Formulation of the structural optimization problem as a

programming problem has been very well brought out by several authors
such as Vanderplaats and Moses ^4] or by Brown and Ang [5}. It is
therefore assumed here that a structural optimization problem can
be formulated as the following non-linear programming problem.

Minimize F(X) ]

Subject to Gj(X,Y) <_ 0 j« m

g. 12 VB
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where X is a vector of design variables and Y is a vector of
behaviour variables. The objective function can be any function
which can be expressed as a function of the design variables.
Usually weight of the structure is treated as the objective function.

The constraints can be any inequalities which have to be
satisfied by the structure such as stress limitations, size limitations

or the deflection limitations. Ih this formulation no
distinetion is made between the constraints and the restraints.

The optimization process (see fig. l) is started with an
initial set of design variables, X0. The analysis of the structure
(by stiffness matrix method) is carried out to give the associated
set of behaviour variables Y0. After this analysis is over it is
found out what is the change in each behaviour variable due to a
100 per cent change in each of the design variables. This Information

is stored in a matrix called sensitivity matrix which is
denoted by CH. A general element CHji of this matrix Stands for
the change in i^b- behaviour variable due to a unit change in j"tn
design variable. The structural optimization problem is then
formulated in terms of X0 and Y0 to yield new set of design variables

X0 (see block A). The corresponding set of behaviour variables

is now found from the matrix equation

Yx YQ+ CHX (XQ-X0) (see block B)

The next programming cycle then makes use of this vector Y^ to
yield new Solution of the design variables X]_. The process thus
continues tili the difference between the design vectors obtained
from two successive programming cycles is found to be smaller than
a predetermined vector G. It is clear that the sensitivity
coefficients calculated for the initial design will not be useful if
the structure is statically indeterminate to a high degree and the
original design has undergone a lot of change. In that case the
sensitivity coefficients are recalculated (see block C).

The optimization of the structure is thus consisting of mostly
the Solution of a series of programming problems.

2.2 Calculation of the Sensitivity Coefficients
With the initial set of design variables the stiffness matrix

of the structure is assembled in half-band form. If one design
parameter is changed by 100 per cent the new stiffness matrix is
obtained by recomputing the element stiffness matrix only for one
member and then making the appropriate changes in the overall
stiffness matrix. Knowing the original set of displacements, the
external forces and the new stiffness matrix; new displacements
are computed using Jacobi iteration [6"]. With new nodal displacements

known the new set of behaviour variables and hence the change
in each of them due to 100 per cent change in one design variable
is computed, These changes when divided by the original value of
the design variables give one column of the sensitivity matrix.
Before Computing the next column the stiffness matrix is reduced
to the original matrix.
2.3 Solution of the Programming Problem

The programming problem stated in (l) is solved by using
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exterior penalty function f_6j method which consists of solving a
sequence of unconstrained minimization problem:

Min *(X,Y,r) F(X) + r<G.>2
J

for increasing values of r which is called penalty. The
unconstrained minimization method which is found to be most efficient
is the Davidson-Fletcher-Powell liS-] method of variable metric and
the unidirectional approach that is used is the direct root method.
If the number of components in X is large the programming problem
given in (1) may not lead to convergence. Hence the vector X is
split into subvectors Xj., X£> ••• etc. where each of the subvec-
tors is of a much smaller dimensions than the original vector X [7j.
The Solution of the programming problem (1) then consists of solving

a series of smaller programming problems where only one of the
subvectors such as X]_i X£ are treated as unknowns The use of
exterior penalty function is found to be better when solving such
partitioned problems.

3. COMPUTER PROGRAMMING AND NUMERICAL WORK

A general Computer program based on the proposed method is
written separately for trusses and for frames. The program is
written in FJ0RTRAN IV language and is compatible with IBM 360,
CDC 3600, DEC 10 and EC 1030 (called Ryad in some countries)
Computer Systems. Several truss and frame problems for minimum
weight design have been solved.

4. CONCLUSIONS

A general optimization algorithm for any structural problem
has been suggested.
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SUMMARY

Structural optimization problem is generally solved as a sequence of
analysis-programming cycles. In this paper it is shown how this problem
can be treated as a series of programming problems. The relation between
the changes in the behaviour variables due to a specified change in each
of the design variables is found and stored in the form of "Sensitivity
Matrix". This matrix directly gives the Solution corresponding to a given
set of design variables. The availability of this matrix dispenses with
the frequent analysis.

RESUME

Le probleme d'optimisation des structures est resolu generalement par
une s£rie de cycles dans un programme de calcul. On montre comment ce
probleme peut etre traite par une serie de problemes de programmation.
La relation entre les changements des variables de comportement et ceux
de l'une quelconque des variables du projet est determinee et compilee
sous forme de "matrice de sensitivite". Cette matrice donne directement
la Solution correspondant ä un ensemble donne de variables du projet.
On peut donc eliminer avec cette matrice de nombreux calculs.

ZUSAMMEMFASSUNG

Das Problem der Optimierung von Strukturen wird allgemein als eine Reihe
von analytischen Programmierungszyklen gelöst. Im vorgelegten Beitrag wird
gezeigt, wie die allgemeine Methode der Optimierung als eine Reihe von
Programmierungsproblemen behandelt werden kann. Die Beziehungen zwischen den
Verhaltensvariablen und den Entwurfsvariablen werden hergestellt und als
"Sensitivitätsmatrix" gespeichert. Aus dieser Matrix ergibt sich direkt die
der gegebenen Gruppe von Entwurfsvariablen entsprechende Lösung. Die
Benützung dieser Matrix vermeidet eine Wiederholung der Berechnung.
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Earthquake-Resistant Design of the Tower and Pier System of Suspension
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1. INTRODUCTION

Economical applications of mathematical programming methods in structural
optimization are limited to specific structures as mentioned in Introductory
Report. In the case of structures with relatively simple and bulky dimensions,
the mathematical programming method could be applied efficiently even if the
structures are designed under relatively complicated design conditions. Dynamic

loading problems are not treated in Introductory Report, and loading conditions

appearing in optimal design have been mostly limited to the static ones.
Studies on aseismic design of long-span Suspension bridges were carried

out for many years in Japan, and the results of investigations were published
as the official or individual reports. According to the studies on aseismic
design of the Suspension bridges, design of the tower and the pier is very

2)
important. These parts of the bridge must be investigated as a System because
of the interaction of these parts during the earthquake. The tower and pier
system of Suspension bridges involves rigid, massive, and large pier and

relatively flexible and slender tower, so that the system has very complicated
2)interaction. The combination of the methods of mathematical programming and

dynamic structural analysis is in fact well suited to the aseismic design of
the tower and pier system of Suspension bridges.

To formulate earthquake action for aseismic design, the method of response
spectrum is employed in the design codes of the long-span Suspension bridges in
Japan. In this paper, the response spectrum method is mainly applied in the
dynamic analysis and design of the system. Another approach based on more
probabilistic concepts using power spectrum density of earthquake action and
random Vibration theory is possible using design constraints for reliability.

3)
Some approximation concepts are used to save the Computing time and to
decrease the design variables in this paper.

2. THE STRUCTURAL SYSTEM

The system to be designed is the tower and pier System of the Suspension
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bridges as shown in Fig.l, height h of
the tower and hp of the pier are determined

from the environmental attribute
öf the bridge, and width b of the pier
is determined from geometrical relation
with the bridge width. The design
variables in global sense are, therefore,
the longitudinal width bp of the pier
and the stiffness of the tower. The
combination of these two variables
induces very complicated dynamic prop-

2)erties of the System.

DYNAMIC ANALYSIS OF THE SYSTEM

B 4-
_L

7777777777777777777777

V—AM

Fig.l Structural System

Analytical Model The analytical model of the tower and pier System of the
Suspension bridge treated in this paper is shown in Fig.2. The tower is
assumed to be the lumped mass system, and the following assumptions are made:

(1) The foundation has elastic property.
(2) The reaction of the cable at the top of the tower is taken into aecount by

applying the equivalent axial thrust and using an equivalent spring for
the cable.

(3) The pier is assumed to he perfectly rigid
and to be a single-degree-of-freedom
capable of rocking motion.

Model of Earthquake Excitation Earthquake
excitation is represented by response acceleration
spectrum. In this study, the Standard spectrum
as shown in Fig.3 is used which is authorized by
Honshu-Shikoku Connection Bridge Authority of
Japan. In this figure, the longitudinal axis
refers to be response magnification factor ß, and
Standard acceleration in this design is 180 gal.

Dynamic Response Analysis The equation of
motion for this multi-degrees-of-freedom-system
can be written as:

[M]{y}+[C]{y}+[K]{y}=-[M]{z}

where [M] is a mass matrix, [c] is a damping
matrix, [K] is a stiffness matrix, {y} is a
displacement vector, {z} is an earthquake acceleration

vector. With the aid of modal matrix [$] and the generalized displacement
vector {q}, where {y}=[*]{q}, then the equation of motion rewritten in the
following form assuming proportional damping.

//
Fig.2 Analytical Model

[l]{q}+r(2h.Wlk]{q}+r(Ui)\]{q}=-{P}
where us. refers to natural frequency, and h. is damping constant of i-th mode.

,(J>The maximum displacement of point j, y can be evaluated by root mean

Square method:
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yfj'-lKF.^1,. )2
Jmax y iri tl max

where F. refers to the participa-1 (1)tion factor of i-th mode, <)>.

refers to the relative displacement
of point j in i-th mode. q_. is" " TL max
obtained from response spectrum
given in Fig.3:

a ¦• i 2
a. =ß.z iss.l max l

where z

l max

is the maximum earth-
max

quake acceleration.

k. DESIGN MODEL

ß

2.0'

1.0t

0.5

0.1

Upper Structures

Substructures
Caisson(h=0.1)

Concrete Pile(h=0.05
Steel Pile(h=0.02)

_i b—I ¦ I

0.1 0.5 1 5 10"
natural period T (see)

Fig.3 Earthquake Excitation Model

Approximation Concepts of the Tower To save euleulation time and to improve
reliability of Solution, two design variables of the system are selected: One

is the moment of inertia of the tower, the other is the longitudinal width of
the pier. Other variables of the system are defined by approximation con-

cepts.
Let I, A and Z refer to the moment of inertia, the

cross sectional area and the section modulus respectively,
the empirical relation such as following may hold:

A=1.21*I°-33

Z=0.55*I°-T5

The moment of inertia of the tower can be varied along
the height in two ways: One is linearly varied; the
other is stepwise varied into two portions. These
design models are shown in Fig.l*.

ü

Fig.!* Design ModelFoundation Model The modulus of elasticity of the
foundation is denoted by E. In the result of the past

2)
studies, complicated dynamic phenomena due to the foundation condition, width
of the pier, and the rigidity of the tower were observed. In the cases where
two of the natural frequencies are very close, the coupled Vibration of the
tower and pier occurs, and the structural Systems of such cases should be

lt 2
avoided. In this study, the modulus of elasticity ranges from 10*10 ton/m to

k 2
150*10 ton/m taking into aecount wide variety of foundation conditions.

Damping Constant The damping constant is assumed to be 0.1 for the mode
where the Vibration of the pier is predominant, and to be 0.02 for the Vibration

of the tower. For the coupling modes 0.05 for both modes is assumed.

5. OPTIMIZATION

Objective Function
tive function:

The generalized cost, W, is selected to be the objee-

w=wT+k*wp
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where W represents the weight of the tower and W_, of the pier, and k refers
to the ratio of unit cost of the pier to that of the tower.

^r^
w

Constraints The following constraints are considered:
(1) Stress of the tower shaft does not exceed the given allowable stress

defined against earthquakes
(2) Displacement of the pier top does not exceed the given allowable value.
(3) Tower shaft is safe against buckling.
(lt) Pier is safe against overturning.
(5) Other geometrie conditions.

Optimization Technique Objective function

and constraints obtained in this way
become non-linear and undifferential type,
so SUMI by Powell's direct search method
without differential is employed as
optimization technique.

6. NUMERICAL EXAMPLE AND INVESTIGATIONS

77777777.

Fig.5

Pw=297l+3 ton

K =1*5650 ton/m
c

h=l81t.O m

hp=52.0 m

bx=50, 0 m

777

Tower and Pier System

0.05 m

system
When

As a numerical example, the tower and
pier system shown in Fig.5 is considered,
and the results of the computation are
shown in Table 1,2. These computation
were performed using the design model with
stepwise varied cross section. In making
Table 1, the following data was used:

cost ratio 0.2
maximum acceleration 180 gal
allowable value of pier top displacement

2
allowable stress of steel 37700 ton/m

From Table 1, the following investigations may be made:
When elastic modulus of foundation, E, is small, the design of the
is determined only by the displacement constraint at the pier top.
the value of E is large, it tend to be determined by overturning of the
pier and buckling of the tower, and the pier width tends to decrease. It
shows that the pier width is closely related with E.
The generalized cost is greatly affected by the modulus of elasticity of
the foundation. Thus, the investigation of the foundation is very
important.
When E is large, the effect of earthquake response tend to decrease, and
stiffness of the tower becomes uniform along the height of the tower.
From this, when E is large enough, it is not necessary to increase the
cross section of the lower part of the tower.

The design is controlled severely by the constraint of the displacement of the
pier top in the ränge of small E. When this constraint is relieved to 0.065 m,
the results are shown in Table 2. From these Tables, the following remarks
may be made:
(l) In the ränge of small E, when the constraint of the pier top displacement

is relieved slightly, the generalized cost decrease considerably. This
result shows that the allowable value of the displacement of the pier top
has a significant effect.
In the ränge of large E, the result is not so affected by the constraint
on displacement.

(1)

(2)

(3)

(2)

7. CONCLUSION
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Table 1

E
lt 2

(10 ton/m
I (mS b2(m) W Constraints

Pier Tower
Upper Lower (1) (2) Top (3) Base (lt)

10 11.22 62.26 38.97 521U6 X
20 16.52 65.97 2lt.l*5 36077 X

30 5.81 2 U.90 19.91 27865 X

50 lt.78 21.80 lit. 37 20896 X X X

70 lt. 75 lt. 77 lit. 35 20509 X X

150 lt.75 lt. 77 lit. 35 20509 X X

(l): Displacement of the pier top
(3): Stress of the tower shaft

(2): Overturning
(lt) : Buckling

Table 2

E
lt 2

(10 ton/m

1 Uk) b2(m) W
Constraints

Pier Tower
Upper Lower (1) (2) Top (3) Base (lt)

10 8.15 32.71 28.76 39081 X
20 13.65 2lt.lt3 18.56 27053 X

30 lt. 75 8.1tl 1U.5U 2081t2 X X

50 lt.77 U.78 lit. 35 20511 X X

70 lt. 77 lt.78 lit. 35 20511 X X

150 lt. 75 lt.77 lit. 35 20508 X X

(l): Displacement of the pier top
(3): Stress of the tower shaft

(2): Overturning
(U): Buckling

The optimal design of the tower and pier System on the elastic foundation
subjected to earthquake excitation is studied by using response spectrum and
modal analysis. Investigation in this study shows that necessity or importance
of displacement condition of the pier top must be discussed more precisely from
the point of safety of the structure in the ränge of small E, and that necessity

of earthquake-resistant design must be discussed more precisely from the
dynamic response of the structure in the ränge of large E.

PROBABILISTIC APPROACH

Probabilistic approach using power
spectrum density for earthquake and
based on random Vibration theory can be
formulated as follows.

Earthquake load is represented by
power spectrum density function shown

in Fig.6. As earthquake is assumed to
have zero mean and to be stationary
probabilistic process variances of the
displacement and of the velocity can be
evaluated based on the random Vibration
theory.

Failure probability can be com-

SF(u)*10"

2.0

1.5

1.0

0.5 -

5 10 15 20 25 30

Fig.6 Power Spectrum Density
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puted through dynamic reliability theory using displacement and velocity
variances. Thus, it is possible to formulate optimization by probabilistic
approach using failure probability as constraints.
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SUMMARY

Effective application of the structural optimization method is limited
to some specific types of structures in civil engineering structures. In
the case of structures with relatively simple and bulky dimensions, the
mathematical programming method could be applied efficiently. In this
paper, the authors carried out the optimal design of the tower and pier
system of Suspension bridges on the elastic foundation subjected to
earthquake ground motion using response spectrum and dynamic analysis.
RESUME

Une application pratique de la mSthode d'optimisation structurale est
limitee ä certaines structures du genie civil. Dans le cas de structures
relativement simples et de grandes dimensions, la methode de programmation
mathematique peut etre appliquee efficacement. Dans cet article les
auteurs ont fait le calcul d'optimisation du Systeme de pylone et pile
des ponts suspendus sur fondation elastique subissant le tremblement de

terre, ä l'aide d'une analyse dynamique.

ZUSAMMENFASSUNG

Die Anwendung der Tragwerks-Optimierung ist auf einige spezielle
Strukturarten im Bauingenieurwesen begrenzt. Bei Strukturen mit einfachen
und massigen Abmessungen lässt sich das mathematische Programmierungsverfahren

erfolgreich verwenden. In diesem Aufsatz wird eine Optimierung des
Pylonsystems auf elastischem Untergrund unter Erdbebenlast entwickelt.
Hierbei werden Verhaltensspektren und dynamische Analysen angewendet.
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1. INTRODUCTION
The optimum design for I-section girders has been investigated considerably,

and most of the investigations aim at a minimum-weight-design or a design including
only the cost of shop welding in the fabrication cost. Considering all of the

fabrication costs, however, the optimum values of design variables will vary
remarkably. Therefore, a total cost optimum design, in which an objective function

considers material cost as well as fabrication cost including costs of
full-scale-drawing, machining, shop welding, shop assembly and shop painting,
has to be done. Since such variables as plate thickness, surface area and weight
of members, material grade, etc., are included in fabrication costs, the optimum
value of the objective function may not be exactly computed, if some of variables
are omitted. Therefore, the design variables to be used in this investigation
include almost all dimensions of a cross section.

At the present study, a computer-aided, optimum design for single simply
supported girders is carried out by SLP method (Sequence of Linear Programming
method)Pi^ If their upper and lower lateral bracings and sway bracing are
designed and their dimensions are determined, it is posible to do an automated
design by the use of an automated drawing machine.

2. OPTIMUM DESIGN FOR I-SECTION GIRDERS

Material S, cover plate thickness Tc, cover plate width Bc, flange plate
thickness Tf, flange plate width Bf, web plate thickness Tw, web plate height \\,,
and segment length of a girder section C^ are selected as design variables.
Concerning S, steel of 41kg/mm2' in tensile strength is expressed with 4, SOkg/mm2,

is expressed with 5 and 58kg/mm2 with 6, and an intermediate value is set on a
continuous function.

The constraints contain limit of stress, limit of deflection, limit of plate
width to thickness, as specified at the Specifications, limit of flange width to
web height, namely Bf/Bw=l/3~l/6, and upper and lower limits of the values of
design variables, which are also used as move limits.

When an allowable tensile stress and an allowable compressive stress of a
material are given by aat and aac, respectively, and a ratio of height to thickness

of web plate is given by y, aat, aac and y are expressed as a function of S

as follows:
aat=aat(s)> aac=aac(s) C1)
Y=Y(S) "••¦ (2)
Then, an objective function Z is expressed with

z-Jfrt-Vyüül* XZfy-stlH+fäHii-sriH, (3)

where Vj: volume of the j-th element, p: unit weight of steel material, C:
coefficient for unit cost of steel material, CM: unit cost of steel material,
SMH: unit cost for one man hour work, Hjj:work man hour of the i-th manufacturing
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(4)

Operation of the j-th element as a function of design variables, Hj.^: work man
hour of the k-th manufacturing Operation of the 1-th element as a fixed value.
When, C is considered as a function of T, S and B, and C/, Cz and C5 indicate the
case of the function of T, C, the case of the function of S, C and the case of
the function of B, C, respectively, the following expressions are obtained:

C/ (T)=0.0348T2-0.0845T+1.2091
"

")

Ca(S)=0.27S-0.08
C3 (B)=1.0 for B-c200(cm)
C3 (B) 1.0+(B-200)/(0.3 CM)x0.01 forBS200(cm) J

where T: plate thickness, B: plate width. H^- can be considered as a function of
S, T, W and Ar, where W: weight, Ar: surface area. HA is the coefficient of work
man hours depending on S, and the following equation may be obtained:

Hij-HijXHACS),
' '

(S)
where

HA(S)=0.04S2-0.29S+1.52. (6)
The coefficients of Eqs. (4) and (6) are obtained on the basis of actual examples
at a bridge fabricating shop in Japan. In the case of welded joints, the work man
hours of butt welded Joint, Hj^, and fillet welded Joint, Hjj, become a function
of total welded length, but their calculation is to be made with a ratio, n, of
equivalent welded length to 6mm fillet. Assumed as a function of T, Hij and h4
are calculated by the following equations, that is, in the case of butt welds,

Hi^Hjj (L, L/=L/ xti, (T), n/(T) 1.2T2+3.8T+1.3 (7)a
and in rillet welds,

HJj=H(j(La), L2 Li xri2(T), n2(T)=0.0476T +0.19S2T+0.7572 " (7)b
where L/, n, : in the case of butt welds, total equivalent welded length and ratio
of equivalent welded length, respectively; L2,
r)2: in the case of fillet welds, the same as h/
t\,. H.ji for marking and painting may be considered

a function of Ar.
The procedure of this optimum design is

shown by a block flow chart as in Fig.l, in
which X shows the variables to be computed by
the simplex method and X* shows their initial
values.

At this study, single main girders without
lateral bracings and sway bracing are treated,
because omitting of the bracings does not affect
the optimum value of total cost.

3. EXAMPLE OF OPTIMUM DESIGN

3.1 The conditions of design are given as
follows:
1) type: I-shaped and deck-type welded railway
plate girder, 2) live load: KS18 specified at
the Railway Bridge Specifications in Japan, 3)
span length: 5 kinds of span length, 16 19m,
22.3m, 25.5m and 30m, 4)specifications: the
Japanese Specifications for Design of Steel
Railway Bridges?'

It is assumed that a girder can be provided
with three kinds of Variation of sections as

seen in Fig.2 with NA=2, 3 and 4, in which NA

means the number of different girder sections.
The upper cover and flange plates are symmetrical

with the lower plates.
aat> aac anc' y are respectively given at

the Specification as:
oat=(0.12SS2-0.792S+2.168}xl300
oac= SOS +50.SS+199-(0.2S -1.3S+2.5) x (i/Bf)

ISTARTl

I^EAD^DATAI

[FIND BENMNG MOMENTS!

IDETERMINE INITIAL VALUESl

fCOMPUTE BENÜInG MOMENTS

AND STRF.SSFS

COMPUTE VALUE 0F
OBJECTIVE FUNCTION

SeCOMPUTE DIFFERENTIALS
OF CONSTRAINTS AND
OB.TF.CTTVF FUNCTION

IMAKE SIMPLEX TABLEÄTÜ

¥0PTIMIZE BY SIMPLEX'
METHOD

.convergence
;hecj
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NO
-Hx+j?l

[WRITE RESULTI

IST0P1

Fig.l. Flow chart of optimum
design of girders
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Table 1. Comparison of optimum values for span length of 2230cm

SMH

(OD yen)

NA Si S2 S3 Tc
(cm)

Tfi
(cm)

Tf2
(cm)

Tf3
(cm)

TP 1(cm)
Bc
(cm)

Bfi
(cm)

Bf2
(cm)

Bf3
(cm)

Bw
(cm)

SLEGi
(cm)

SLEG2
(cm)

SLEG 3

(cm)
SLEG.,
(cm)

0.0 2 4.0 2.00 1.86 1.19 48.1 44.7 183.8 740.2 1115.0

1.6 2 4.0 1.83 2.09 1.15 43.9 50.2 178.5 672.5 1115.0

3.2 2 4.0 1.62 2.33 1.11 38.9 56.0 172.4 589.2 1115.0

0.0 3 4.0 4.0 1.95 2.00 1.40 1.15 46.8 48.0 29.6 177.8 712.6 1027.2 87.8

1.6 3 4.0 4.0 1.80 2.29 1.40 1.07 43.2 54.9 27.8 166.5 644.1 1027.2 87.8

3.2 3 4.0 4.0 1.65 2.35 1.40 1.09 39.7 56.4 28.2 169.3 597.6 1027.2 87.8

0.0 4 4.0 4.0 4.0 1.58 2.29 1.86 1.40 1.14 38.0 54.9 44.7 29.5 177.2 583.0 766.3 150.0 199.1

1.6 4 4.0 4.0 4.0 1.45 2.41 1.83 1.40 1.12 34.9 57.9 44.0 29.0 173.7 533.3 788.9 157,8 188„3

3.2 4 4.0 4.0 4.0 1.30 2.68 1.82 1.40 1.11 31.2 57.3 43.6 28.6 171.8 472.7 800.4 132.3 182.3

SMH

QOOO/äi)

NA «1

(cm)
&2

(cm)
Z

(BOOyerj

Wäght

(ton)
ß °ai

JCgfcnf)

Ol
(Kgfcnf)

Ca 2

(Kgfcnf) (Kgfcnf)
das

(Kgfcm2)
03

(Kgfcnf)
Oat

(Kgfcnf) (Kgfcnf)
a SLEGi

0.5L
SLEG 2

0.5L
SLEG 3

0.5L

0.0 2 2.21 1.85 288.3 4.92 1.01 1155 1155 1166 1166 12.1 0.664

1.6 2 2.30 1.93 555.6 4.91 0.97 1170 1170 1174 1174 12.5 0.603

3.2 2 2.40 2.01 804.9 4.95 0.93 1184 1184 1179 1179 12.9 0.528

0.0 3 2.30 1.92 284.1 4.83 0.96 1165 1165 1171 1171 1122 517 12.5 0.639 0.921

1.6 3 2.48 2.08 571.5 4.83 0.88 1182 1182 1178 1178 1111 607 13.4 0.578 0.921

3.2 3 2.45 2.05 841.0 4.83 0.90 1185 1185 1179 1179 1114 583 13.2 0.536 0.921

0.0 4 2.34 1.96 270.1 4.58 0.96 1182 1182 1178 1178 1166 1166 1122 1122 12.6 0.523 0.687 0.134

1.6 4 2.40 2.01 578.2 4.57 0.94 1188 1188 1180 1180 1165 1165 1119 1119 12.8 0.478 0.708 0.124

3.2 4 2.42 2.03 873.7 4.58 0.92 1186 1186 1180 1180 1165 1165 1117 1117 13.0 0.424 0.718 0.119
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Fig.2, Notations for deck plate girder

Y=2.5S -47.5S+305""(2)a
where J> represents a distance
between fixed points of a

flange plate. If a is assumed
to be a value of a span
length divided by a web

height, the initial values
of By,, Bc, Tc, Bf and Tf
are calculated under the
assumption of a, but the
initial values of S and
locations of Joint are given
as constant values independently

of oc. Now, the
calculation of the initial values
by a Computer, makes it
possible to do an automated
design.
3.2 Results of Calculation

As an example of the
results of calculation, the
case of span length of 22.3m
are summarized in Table 1, in which SLEG: values shown in Fig.l, 6,:deflections
due to live load and dead load at the span center, 62: deflections due to live
load at the span center, Z: values of objective function, ß: coefficients to be

given later.
3.3 Discussion

As the result, the followings are discussed:
(1) The materials were considered as the design variables too, but the calculation

shows that the case of S=4, namely SS41 steel will give optimum values.
(2) In the case of material cost only, the value of an objective function becomes
the cheaper, with an increase of the number of different sections. On the other
hand, in the case of material cost and fabrication cost, the value of the
objective function becomes the higher and the girder weight becomes the lighter,
with an increase of the number of different sections.
(3) Conventionally a web height Bw used to be expressed in terms of the following
relation:

*WSw ™
where ß: coefficient, M: bending moment. The values of ß,calculated by the Optimum

values, are shown in Table 2. They do not change greatly as to span lengths,
but generally become the larger the longer the span length is.

Table 2. Values of coefficient ß

SMH V^ 1600Cm 1900Cm 2230Cm 2550Cm 3000Cm

0.0
2

3

4

0.96
0.93
0.92

0.97
0.94
0.94

1.01
0.96
0.96

1.02
0.99
0.98

1.00
1.00
1.03

1.6
2

3

4

0.92
0.89
0.89

0.94
0.88
0.93

0.97
0.88
0.94

0.97
0.91
0.93

1.01
1.01
1.04

3.2
2

3

4

0.92
0.89
0.87

0.93
0.90
0.89

0.93
0.90
0.92

0.95
0.90
0.94

1.02
1.03
1.05

(4) The values of SLEG/0.5L are shown in Table 3, where L: span length. In the
table, SLEG/ is the shorter, the higher SMH is, while flange plate lengths do not
change greatly.
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Table 3. Values of SLEG/0.5L

SMH NA liLEG^ 1600Cm 1900Cm 2230™ 2550Cm 3000Cm

2 SLEGi 0.651 0.661 0.664 0.671 0.681

0.0
3

3
SLEGi
SLEG2

0.625
0.921

0.631
0.921

0.639
0.921

0.645
0.921

0.658
0.921

4

4

4

SLEGi
SLEG2
SLEG3

0.492
0.668
0.140

0.505
0.679
0.140

0.523
0.687
0.134

0.539
0.696
0.131

0.558
0.698
0.117

2 SLEGi 0.554 0.582 0.603 0.619 0.641

1.6
3

3
SLEGi
SLEG 2

0.537
0.921

0.565
0.921

0.578
0.921

0.594
0.921

0.611
0.921

4

4

4

SLEGi
SLEG2
SLEG,

0.447
0.700
0.115

0.455
0.698
0.124

0.478
0.708
0.124

0.492
0.715
0.128

0.489
0.693
0.118

2 SLEG] 0.492 0.489 0.528 0.558 0.588

3.2
3

3
SLEGi
SLEG2

0.485
0.921

0.506
0.921

0.534
0.921

0.548
0.921

0.556
0.921

4

4
4

SLEGj
SLEG2
SLEG3

0.356
0.694
0.148

0.373
0.717
0.138

0.424
0.717
0.120

0.440
0.707
0.131

0.396
0.673
0.143

(5) Except for the value of as in NA=3, the other maximum working stresses reach
up to the füll allowable stresses. 03 does not become fully-stressed, because the
flange plate at this position is determined by its minimum thickness 1.4cm and by
its width calculated at BfSBw/6.
(6) Tc and Bc are the smaller, the higher the fabrication cost is. On the other
hand, Tf| and Bf| are the larger, the higher the fabrication cost is. There is no
remarkable difference due to the difference of fabrication cost at the dimension
of flange section at the other positions.
(7) The leg length at fillet welds is the smaller and the fabrication cost is the
cheaper, the wider the flange plate is and the thinner the flange plate is.
(8) At the present example of design, the optimum dimensions of section for
5-kinds of the span length are calculated, but they can be calculated for the
other span lengths by the following procedure. Bw is calculated from Eq. (8) by
assuming a and Tw, and using M and ß. Then, the position of Joint is obtained
from Table 3, and except Tf2 and Bf2 in NA=3, the dimension of girder section at
the span center and all of the positions of Joint can be found by the fully
stressed design. However, in NA=3, Tf2=1.4cm and Bf2=Bw/6 or Bf2S24cm are applied.
(9) As seen in the value of ß, for the case of material cost only the optimum
girder height varies, but for variable unit fabrication costs it does not greatly
vary.

4. CONCLUSION

It is indicated that it is possible to carry out the optimum design considering
material cost and total shop fabrication cost by means of a program for

Computer design which is presented at the present study, and it will be possible
to extend this program to the computation for a girder with different upper flange
section from lower flange section, a composite girder and a continuous girder;
and a part of this program has been completed already.

At the present program, transportation and erection costs depending on site
conditions are omitted, but in the future, in the case of a specific or individual

bridge, it would be necessary to investigate on an overall cost optimum
design containing the transportation and erection costs.

3g. 13 VB
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SUMMARY

A program of optimum design considering material cost and total shop
fabrication cost for the most foundc^mental I-section girders of steel
bridges is presented with design examples. The influence of 16 design
variables on the total cost is discussed, to improve the computer-aided
automated optimum design.

RESUME

Un programme de dimensionnement optimal tenant compte du coüt des
matieres et des coüts de fabrication est applique aux plus elementaires
sections en I des poutres de pont metallique. Des exemples sont donnes.
L'influence de 16 variables de dimensionnement sur les coüts totaux est
etudie afin d!Eam£liorer le dimensionnement optimal ä l'ordinateur.

ZUSAMMENFASSUNG

Es wird ein Programm für die Optimierung von I-Stahlträgern mit
Rücksicht auf Material- und Herstellungskosten präsentiert und dessen Anwendung
an Beispielen dargelegt. Der Einfluss von 16 Entwurfsvari'ablen auf die
Totalkosten wird untersucht, um die computerunterstützte Entwurfsoptimierung
zu verbessern.
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Optimierung von Eisenbahnfachwerkbrücken

Optimization of railway truss girder bridges

Optimisation de ponts ferroviaires en treillis

ANTONIN SCHINDLER
Professor, Ing., DrSc

Technische Universität Praha
Praha, CSSR

Bei den praktischen Optimierungsaufgaben kann man
grundsätzlich drei verschiedene Verfahren anwenden £l]

Bei dem ersten Verfahren werden einige zweckmässig
ausgewählte Varianten durchgearbeitet und die Ergebnisse miteinander
verglichen. Ein erfahrener Entwurfsingenieur gewinnt auf-diese
Weise mit erträglichem Arbeitsaufwand eine ausreichende Übersicht.

Bei dem zweiten Verfahren versucht man, die Beziehungen
zwischen der vorgegebenen Belastung und Geometrie der Konstruktion
einerseits und Konstruktionsabmessungen oder Kosten andererseits
mathematisch zu erfassen. Eine ausführliche Beschreibung der dazu
anwendbaren mathematischen Methoden ist im Einführungsbericht
dargelegt [2j. Jedoch weist dieser mathematischer Weg zwei grundsätzliche

Nachteile auf. Durch die unumgängliche Vereinfachung und
Idealisierung zu komplizierter mathematischer Beziehungen werden die
Ergebnisse in meist unübersehbarer Weise unscharf und gelegentlich
sogar fehlerhaft. Ferner ist der praktische Entwurf einer Konstruktion

durch die vorgegebene Dispositionsforderungen, das Walzpro-
gramm, die Standartsbestimmungen, verschiedene Konstruktionsrichtlinien

und übliche Durchführung der Details usw. weitgehend eingeengt.
Die Möglichkeit der Anwendung der allgemeinen mathematischen

Methoden [2j die meist nur durch Einsatz moderner Computer denkbar

ist, ist bei praktischen Beispielen oft nicht gegeben.
Daher wurde in letzter Zeit ein drittes Optimierungsver -

fahren entwickelt [l] dass die Kapazität moderner Computer in
anderer Weise ausnützt und die Vorteile der beiden beschriebenen
Methoden vereinigt. Man stellt dabei ein Programm auf, das den
Entwurfs- und Bemessungsprozess des untersuchten Konstruktionstypes

nachbildet. Dabei ist es nicht schwierig, z.B. die richtigen
Werte der Knickzahl, die Abstufung des gültigen Walzprogramm.es,ver¬
schiedene Richtlinien und Normbestimmungen, übliche Konstruktionsdetails

usw. zu berücksichtigen. Durch Variieren der Eingangsparameter
stellt man ziemlich leicht den Bereich von optimalen Lösungen
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fest, die dem angestrebten Minimum der Untersuchten Zielfunktion
(Materialverbrauch oder Kosten oder Arbeitsaufwand) nahe liegen.
2._Praktische_Anwendung_des_neuen_Verfahrens_bei_Stahlbrücken

Das neue Verfahren wurde zuerst zur Optimierung der
Verbundträger angewandt. Hier hängt der Stahlverbrauch praktisch nur
von der Höhe des Trägers und von der Schlankheit seines Steges ab.
Daher konnte mmn hier unter Verbrauch von wenigen Minuten der
Computerzeit die optimalen Querschnitte von Eisenbahn- oder Strassenbrücken,

für Verbundträger oder auch Verbundkastenträger feststellen.

Bei Fachwerkbrücken war die Anwendung des neuen Optimierungsverfahrens
durch die grössere Zahl der Eingangsparameter umständlicher.

Es wurden die üblichen Trägerform nach Abb.l, drei Fahrbahntypen
(offene Fahrbahn, direkt befahrene mit den Hauptträgern mit¬

wirkende Blechfahrbahn und
durchgehendes Schotterbett
auf einer mitwirkender
Blechfahrbahn), mit geschlossenem
oder offenem Bruckenquer -
schnitt, Ein- und Zweigleisbrücken

und wirtschaftliche
Kombination der Stahlsorten
St 37 und St 52 bis zur Spannweite

von L 100 m untersucht. Es hat sich dabei eindeutig ge -
zeigt, dass die optimale Trägerform mit dem minimalen Stahlver -
brauch, evtl. minimalen Baukosten der tragenden Konstruktion vor
allem von der Spannweite L von der Felderzahl N von der
Trägerhöhe H und von der Höhe v der idealisierten Stabquer -
schnitte (Abb.2) abhängt; während der Einfluss der evtl. be -schränkten Konstruktionshöhe des Fahrbahnrostes und der Grösse des
Konstruktionbeiwertes vernachlässigbar klein erscheint.
¦41

*l\/\/\/V
N.a-L

Abb.l

4-r

Gurten

I

geschlo-
u ssene

Diagonalen

Abb.2

offene
Diagonalen

Pfosten

Das Programm wurde so aufgestellt, dass nach der Angabe von
L>#, N und Eigengewicht der Fahrbahn zuerst die geometrische Form
für eine ziemlich niedrige Trägerhöhe H berechnet wurde, dann
wurden die Längs- und Querträger berechnet und dimensioniert. Nach
der Ermittlung von Stabkräften wurden einzelne Stab<#uerschnitte
mit ziemlich kleinem Wert von v dimensioniert. Das aesultierende
Gesamtgewicht wurde mit dem anfänglichen aus empirischer Formel
eingesetzten Wert verglichen; wenn der Unterschied grosser als der
vorgegebene Wert war, wurde die ganze Dimensionierung mit korri- /gierten Werten wiederholt. Zuletzt wurde die Durchbiegung kontrolliert

und die Anstrichsfläche festgestellt.

wert
Im weiteren Schritt vergräserte das Computer des Ausgangsf-

v um Av, wodurch die Senkung der Zielfunktion Z d.h.
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des Stahlverbrauches oder der Kosten erzielt wurde. Man wieder -
holte dann die Vergrösserung von v einigemal, bis das Minimum
von Z erreicht wurde. Dadurch wurde das Optimum für bestimmte
Höhe H festgestellt.

Nachher vergrösserte das Computer den Ausgangswert H um
AH wodurch wieder die Senkung des Wertes Z erreicht wurde;
diese Iteration wurde so lange wiederholt, bis der Endwert von Z

grösser war als sein Wert bei dem ersten Iterationschritt (Abb.3).

N

ifOg

*«•*• ¦ + •*¦*¦ f + -i

L-tODm

'ti-e

+ + - - •+-* + 1 .+ + +
L'Sc

+
/V-<S

'm

iOO ¦

4
L- ko tn

' ¦* + •+ 4 ¦-t + * ^

400

+ +
¦ + + + -*¦->¦ + L-5C

N-6
m

12 46 46 ¦Trägerhohe H (m)

Abb.3

Der Abb. 3 kann man entnehmen, dass die Streung der Werte
Z in der Umgebung vom Minimum sehr flach ist und somit die Grösse

von Z auf kleine Variationen der Trägerhöhe H nicht
empfindlich ist. Deshalb ist es angebracht, nicht von einer optimalen

Höhe zu sprechen, sondern von dem Bereich B von optimalen
Höhen, dessen Breite durch die Differenz Z festgelegt wird
(Abb.4). Zum Beispiel für die Differenz von AZ 0,02 Z wur¬

den die unteren und oberen
Grenzen des Bereiches von
optimalen Höhen wie folgt
festgestellt :

N
-<a

ß Abb.4
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Querschnitt
der

Brücke

Spannweite

L

(m)

Feldteilung

N

(-)

i

i offene
Fahrbahn

1

H

direkt «durchgehendes
befahrene [jSchotterbett
Fahrbahn H

I Grenze des Bereiches
der optimalen Hohe H/L

untere
obere

untere jj untere
obere ij

ii

obere

offen 50 8 1/8,5 1/6,0 1/9,1 1/6,3 jj V9,3 1/5,8

geschlossen 50 8 1/7,1 1/4,9 | 1/7,4 V4,9 jj 1/7,5
1

1/4,8

Was die optimale Kombination des üblichen Stahles St 37
mit Stählen höherer Festigkeit betrifft, ist deren Einsatz nur bei
jenen Stäben wirtschaftlich, bei welchen die Stahlverbrauchser -
sparnis höher als der zuständige Preisunterschied der fertigen
Konstruktion ist. Somit ist es wirtschaftlich, bei Spannweiten von
4-0 bis 100 m, bei offenen Fahrbahnen beide Gurtungen, bei einer
Blechfahrbahn die obere Gurtung und die Längsträger aus St_ 52
zu entwerfen, sowie auch die "schweren" Diagonalen in der Nähe von
Stützen der Brücken mit grösseren Spannweiten.

Es wurde gezeigt und am Beispiel einer Eisenbahnbrücke
demonstriert, dass bei den Konstruktionen, deren Kosten nur von wenigen
Eingangsparametern abhängen, während viele andere Parameter der
Konstruktion mit der Spannweite, mit dem_Konstruktionstyp und
-zweck zusammenhängen und nicht viel veränderlich erscheinen,
vorteilhaft ist, das Berechnungs- und Bemessungsprozess des
Entwurfingenieurs in einem Computerprogramm nachzuahmen und. den Bereich
der optimalen Lösungen durch Variieren der Eingangsparameter
festzustellen.

Literatur:
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Bauplanung-Bautechnik, 22 (1968), H.8,S. 395-398
j_2j Templeman, A., B.: Optimization Concepts and. Techniques in
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in Tokyo 1976, Zürich 1975, PP. 41-60
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ZUSAMMENFASSUNG

Es werden drei Optimierungsverfahren definiert und die Anwendung des
dritten Verfahrens am Beispiel der Eisenbahnfachwerkbrücken erläutert.

SUMMARY

Three ways of optimization are presented. An application is demonstrated
on railway truss girder bridges.

RESUME

On döfinit trois proc£d£s d'optimisation. L'usage du troisieme procede1
est dömontre' pour des ponts ferroviaires en treillis.
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1. Optimum design and automated design
Automated design has been studied as a part of automation and

labor saving problems by those who are engaged mainly in the practical
design work, while the optimum design has been researched and

developed by researchers who study mainly the mathematical decision
method in connection with this design work. However, it is unrea-
sonable to say that design by the automated design system does not
have to be optimum design. If optimum design should be used for
a practical application, its concept and method should be used for
the automated design system and, therefore, we believe that they
should be combined.

Under the present conditions, where the method of optimum
design is not employed extensively in practical fields, whether the
results of study are adopted or not is decided by designers and, in
many cases, the designers modify the results before they utilize
them. The practical design work is undisciplined and, in most of
cases, constraints and objective function are never represented by
well arranged formulas and thus contain many factors which depend
upon the man's intuition and, therefore, the CAD system is
conveniently used for ensuring a smooth execution of design work. At
the present time, the practical method by which we can most probably

ensure constant and high quality design is the CAD system
which is processed in such a way that the method of optimum design
is used for deciding algorism of automated design, allowing the
system to supply designers with the data necessary for them to make
judgements and, according to such data, the system proeeeds on the
basis of the man-machine relationship.

Whether a designer can accomplish high quality design by using
such a system or not depends on (1) whether the ability of the
designer who utilizes this system is proper or not or (2) whether the
System can conveniently and quickly supply the required data in an
easily usable form and if the System can fully carry out "trial
and error" in a short time.
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Combination of the above methods is indispensable for the
improvement of quality of design and the mathematical decision method
is also an indispensable factors.

Even if data of the best quality, when viewed from the stand-
point of optimum design, is not supplied from the system, it is
expected that the designers may be able to accomplish a design of
a considerably high quality, if he can use the system conveniently,
which means utilizing both mathematical decision method and the
judgement of the designers. Under these conditions, the writers of
this report have developed the CAD system for bridge design and
used it for practical applications. The following describes the
design system of a girder bridge.
2. Design system of girder bridge
2.1 Outline ROAD

Coodinate
Calculation

GRID
Structural
Analysis

IGAC
Detail
Design

Fig. 1

Most ordinary bridges are of the girder
bridge type and, therefore, it is necessary to
prepare a system which can be used conveniently and
withstand the changes, additions and deletions of
shape data, designing conditions, manufacturing
conditions, ete.

The overall system consists of four
Subsystems as shown in Fig.l which are consistently
controlled through the data base. Emphasis has
been placed on partial optimizing and data that can
be used conveniently and utilized easily by
designers.
2.2 ROAD Sub System DRAW

This is a universal type System of coordinate Drawing
calculation. When the form of road, pier layout, '

main girder and cross beam arrangement are defined,
this ROAD Sub System calculates the^J required values
of coordinates. Consequently, the table of values,
plan, longitudinal section and cross section are
supplied as an output. For the following Systems,
various figures are filed in phase with each value being taken into
consideration.
2 3 GRID Sub System

This system is a structural analysis system which employs
a displacement method. When the input of the displacement method
is fed independently, the coordinates, stiffness, loads, etc. are
mostly fed as input data as far as the GRID is concerned, which
is rather complicated for the designers. As for the matters
concerning the coodinates, especially, since the results of the above
ROAD Sub System are handed from the file, the input load is greatly
alleviated.

When girder height is fed into this system as an input, a
preliminary analysis is made for a simplified model structure by the
stress-method as a preparatory calculation. An assumed stiffness
and steel weight are set automatically and, thereafter, the number
of input joints is about 200, thus requiring about 20 cards.
2.4 IGAC Sub System

Detailed design is conducted for the main girder section,spli-
stiffeners, shear connectors, sway bracings and lateral brac-
As for the coordinates and sectional force, the results of the

ces,
ings
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Design
Condition

Preliminary
Design

STEP

Modify
with CRT

No
Judgement

Yes

STEP

Calculation
Sheet

previous system can be used and, there- STEP 1

fore, the designers feed the assembling
method of sway bracing and lateral bracing
as an input. It is also possible to make
various kinds of special designations.
Usually, when 10-20 cards are fed as an
input, the optimizing process is carried
out in the system, one set is decided upon
and the design calculation sheet and
sectional Variation diagrams are produced
as an output and filed. However, the
designer's personal taste, interchangeabil-
ity of parts, etc. should also be taken
into consideration when the decision is
made and, therefore, there arises a demand
that some modification should be made
after studying the Outputs. Meanwhile,
questions and modifications can be made by
using CRT(IBM 2250)

This system consists of the following
three steps;
Step 1; Temporary decision concerning the

main girder, cross beam and
lateral bracing, preparation of
data to be studied(Substitute
plan included) and filing into Fig. 2

Step 2.
Question and modification by using CRT device.
into Step 3.
Preparing a design calculation sheet. Filing into DRAW

Sub-System.
Step 2 is provided with the CRT pictures of sections, splices,

stiffeners, shear connecters, cross beams and lateral bracings. In
one particular section, for example;
a. What kind of section can be made if the material at a certain

location is changed?
b. What will be the best section if this location is moved 30cm?
c. What will be the thickness of plate when the upper flange

width is changed to 50cm?

Various questions such as are listed above are given and if
the answers from the system are accepted, the files are renewed
accordingly and, thus, the design is modified continuously. Then,
the final results are filed for the DRAW Sub System of design
drawing.

The final stiffness is filed and the GRID can be reopened by
using the file.

Step 2;

Step 3;

Filing

Fig.3 An example of the
CRT pictures

K"'rmi
?»-

fc
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2.5 DRAW Sub System
This is a system which is used for deciding the details of

structures and for making drawings. The results of design
calculation are insufficient when they are used as the data for making
drawings and, therefore, the mode of structure should be decided
in detail. In many cases, however, the details of structure are
different depending on each customer. Because of these reasons,
the details of structure most often used to meet the Standards and
design requirements of customers are stored in the system, thus
expanding the ränge of applications. The input designates the
items which change the Standard of the systm As for the
coordinates, the file is used as a reference and, therefore, the
designated item is usually represented by about 10 cards. The
Outputs are; main girder, cross beam, lateral bracing, detailed
design drawing, diagram and the list of steel materials, welding
lengths, painting area, etc.

For making the drawings, COM(Computer Output MicrofUrning) of
CALCOMP CO. is used. Unlike the plotter or the drafter in which
a pen moves mechanically, this COM is so designed that the locus
of an electronic beam is traced on film. One drawing is completed
in about five seconds and the operating cost is also very low.
3. Postscript

With this System, the fundamental design(deciding girder
arrangement, girder height, etc.) is made after füll"traial and
error" by means of the ROAD and GRID and, then, the detailed
design made by IGAC system is corrected by means of CRT and
drawings are made by DRAW. The fundamental design and detailed
design are separated, but when the optimum property of design is
taken into consideration, we do not believe that there will be
much trouble in the actual application if the fundamental values
are properly selected.

When this system is used, one designer can complete within one
week about 50 drawings, material lists and design calculation
sheets for a bridge constructed with five main girders and three
span-continuous I girders. Only girder bridges, are described in
this report.
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Fig.5 A drawing of main girder by COM
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Fig.6 A drawing of lateral bracings by COM
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SUMMARY

A "Total Computer System for Bridges" has been developed, which is
aimed at combining the optimum design and the judgement of designers.
This system has already been used for actual applications and has
produced good results. This report introduces design of a girder
bridge in the overall system.

RESUME

Un Systeme global pour le projet de ponts au moyen de l'ordinateur
a ete developpö. Ce Systeme combine le calcul optimal et le jugement
de l'ingenieur. II est dejä utilise en pratique et donne des resultats
excellents. Cet article presente la partie du projet de pont en poutres
dans le Systeme global.

ZUSAMMENFASSUNG

Ein totales Computersystem für einen optimierten Brückenentwurf wird
entwickelt. Das System verbindet die Absichten des Entwurfes mit einer
optimalen Problemlösung; in praktischer Anwendung hat das System bereits
gute Resultate geliefert. Am Entwurf von Brückenträgern stellt der
vorliegende Beitrag einen Teil des gesamten Computersystems vor.
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