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Anwendung der stochastischen Programmierung fur die Berechnung der
Sicherheit und fiir die Optimierung von Konstruktionen

Application of Stochastic Programming for the Computation of Safety
and for the Optimization of Structures

Application de la programmation stochastique pour le calcul de la
sécurité et pour I'optimisation des structures

0. KLINGMULLER
Dipl.-Ing.
Universitat Essen — Gesamthochschule
Essen, BRD

1.Einleitung

Die Beurteilung der Sicherlieit statisch unbestimmter Konstruktionen ist we-
gen der Mdglichkeit der Spannungsumlagerung nicht in gleicher Weise mdglich wie
bei statisch bestimmten Konstruktionen. Als wesentlicher Parameter zur Beurtei-
lung der Sicherheit gilt die Versagenswahrscheinlichkeit, das heiBt, die Wahr-
scheinlichkeit, daB eine genau definierte Grenzlast eines Tragwerks iiberschrit-
ten wird. Die deterministische Berechnung der Grenzlast erfolgt auf der Grund-
lage der Traglastsitze / 1_/. Die Anwendung des zweiten Traglastsatzes zur Be-
stimmung der Versagenswahrsche1n11chke1t statisch unbestimmter Stahlrahmen wur-
de von F.Moses / 27 gezeigt. Bei diesem Verfahren miissen alle kinematisch ver-
trdglichen VerschlebungSZustande ( kinematische Ketten,''Failure Modes') angege-
ben werden. Im vorliegenden Beitrag wird nun vorgeschlagen, die Versagenswahr-
scheinlichkeit aus der systematischen Formulierung des Traglastproblems als
mathematische Programmierungsaufgabe / 1 / mit Hilfe von Verfahren aus der sto-
chastischen Programmierung zu berechnen. Die Erweiterung der Bemessungsaufgabe,
formuliert als plastische Optimierung, auf eine Bemessung fi{ir eine zuldssige
Versagenswahrscheinlichkeit der Gesamtkonstruktion folgt dann aus dieser stocha-
stischen Traglastberechnung.

2.Traglastberechnung mit linearer stochastischer Programmierung

Eine lineare deterministische Formulierung des Traglastproblems ist durch

maximiere A
unter den Nebenbedingungen
R(ADP+bX) 2> F (1)
o) X o
A2

gegeben / 1 /. Hierbei bedeutet :

X : Traglastfaktor ;

R : (p,n)-Matrix,deren Koeffizienten sich aus der Linearisierung der nicht-
linearen Fliefbedingungen ergeben; mit p = r k, das ist : Anzahl der Glei-
chungen filir eine linearisierte FlieRbedingung (r) mal Anzahl der Kontroll-
punkte,in denen FlieBbedingungen aufgestellt wurden (k); n ist die Anzahl
der Schnittkriafte;

b : (n,m)-Matrix der Einheitsspannungszustinde des statisch bestimmten Haupt-
systems mit m als Anzahl der Gleichgewichtsbedingungen;
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P : (m)-Vektor der Knotenlasten;

bx : (n,n-m)-Matrix der Einheitsspanunngszustdnde aus den statisch Unbestimmten;
X (n-m)-Vektor der statisch Unbestimmten;

Fo (p)-Vektor der rechten Seiten der linearisierten FlieBbedingungen.

Die Anzahl der Unbekannten ist h =n - m + 1

FaBt man die Unbekannten im (h)-Vektor y und die Koeffizienten der Restrik-
tionen in der (p,h)-Matrix B zusammen, ergibt sich mit ¢'=(1,0,...,0) als
(h)-Vektor der Kostkoeffizienten die Standardformulierung einer linearen Opti-
mierungsaufgabe :

maximiere c¢'y
unter den Nebenbedingungen

By =2 FO (2)

vy, > 0
Die hierzu duale Formulierung lautet :
minimiere Fé z
unter den Nebenbedingungen 3
B'z = ¢ (33
z > 0

Von M.M.Faber [-3_7 wird der EinfluB stochastischer GroRen in der Koeffi-
zientenmatrix B oder in den Vektoren c und F, auf den Wert der Zielfunktion
untersucht.

Bei den hier betrachteten Traglastproblemen enth#dlt die erste Spalte von
B mit den Knotenlasten P stochastische Variable; die librigen Elemente von B
sind aus den Systemabmessungen abgeleitet und werden wegen ihres kleinen Streu-
bereichs als fest vorgegeben betrachtet. Der Vektor F enthdlt mit den Festig-
keiten der Werkstoffe (z.B.der Fliesspannung & ) ebenfalls stochastische
GrdBen. In Abhingigkeit dieser stochastischen Gr&Ben ergibt sich eine Vertei-
lungsfunktion F(J) ) fiir den Lastfaktor A . Die Versagenswahrscheinlichkeit
ist dann gegeben durch

Pf=W(A.g1) = FQ) . (4)

Eine vereinfachte Mdglichkeit der Berechnung der Versagenswahrscheinlich-
keit ergibt sich, wenn man fiir proportionale Belastung, das heift, die Verhdlt-
nisse der Knotenlasten zueinander bleiben konstant, bei der stochastischen
Lsung von Problem (2) oder (3) nur die Verteilung der Elemente von Fo berilick-
sichtigt. In einem zweiten Rechengang kann dann die Verteilung der Last
mit der Verteilung des Lastfaktors verkniipft werden. Berechnet man die Versa-
genswahrscheinlichkeit n#herungsweise mit der Methode der zweiten Momente / 4 /,
so geniigt es, den Erwartungswert und die Varianz des Lastfaktors zu bestimmen.

Setzt man filir die Elemente von F, deren Erwartungswerte ein, so ergibt
sich, wie bei der deterministischen Berechnung vorausgesetzt wird, der Erwar-
tungswert von A .Nach / 3 / 148t sich bei einer Losung von Problem ( 2 ) die
Varianz des Lastfaktors aus

2 1

o, = 8 CF s 5 (5)
oder bei einer L8sung von Problem ( 3 ) aus
GU% = z' Cpz (6)
errechnen. Hierbei bedeutet
Cg : Kovarianzmatrix der Elemente von F, ,
s : Vektor der Simplexkoeffizienten; sie werden bei einer Ldsung
nach der Simplexmethode bendtigt >
z : LBsungsvektor von Problem ( 3 ).

Der Streubereich der stochastischen Variablen F, darf allerdings nur so



0. KLINGMULLER 67

groB sein, daB weder die Zuldssigkeit noch die Optimalit&dt der Ldsung verlo-
rengeht. Der maximal zul#&ssige Streubereich ergibt sich aus einer Semsitivi-
titsanalyse / 5_/.

3. Berechnung der Versagenswahrscheinlichkeit nach der Methode der Momente

Sind der Mittelwert P und die Streuung G der Last gegeben, so kann
mit der Methode der zweiten Momente [/ &4 / Erwa?tungswert und Varianz des Last-
faktors zur Berechnung der Versagenswahrscheinlichkeit verwendet werden.

Die Sicherheitszone ist gegeben durch

zZ= (A-1) P , (7))
ihre Varianz durch 2 2 2
Gi = By ¥ (SP . (8)
Die Versagenswahrscheinlichkeit ist dann
=9 (- Z)
Pe =) (9)

P ist die normierte GauB'sche Verteilungsfunktion.

4. Plastische Optimierung fiir eine zul#ssige Versagenswahrscheinlichkeit

Die deterministische Formulierung des plastischen Bemessungsproblems ist
i i . . 2 i = .
Min {i=1 ¥ 14 ﬁj (X,4,)% 0,4, > 0} 3 i=} t;, (10)

Die Querschnittsflichen A, und die Eigenspannungszustdnde X sind
die Variablen des Problems; e fst die Anzahl der Elemente. Gesucht ist also
das minimale Gewicht des Gesamttragwerks bei Einhaltung der FlieRbedingungen @
fiir einen fest vorgegetenen Traglastfaktor A, Die Schnittkrédfte wurden
bei (17) durch die statisch Unbestimmten und den konstanten Anteil AbeP
ausgedriickt.

Um den stochastischen Parametern in Problem (17), Belastung und Festig-
keit, Rechnung zu tragen, muB man bei der plastischen Optimierung noch die
Versagenswahrscheinlichkeit berlicksichtigen. Das Problem lautet dann:

e
Min { > ¢l.A
[i=1 !

ist die zul#ssige Versagenswahrscheinlichkeit.

Pf zul
Der Traglastfaktor A geh®rt bei diesem Problem zu den Variablen.
Berechnet man die Versagenswahrscheinlichkeit nach der Methode der
zweiten Momente, so kann die Wahrscheinlichkeitsrestriktion nach einem
Vorschlag van Bracken und Mc Cormick / 6_/ in ein deterministisches Aquivalent
umgeformt werden.

Z
pf—\P(_G'Z)zpfzul ( 12)
Mit der inversen GauB'schen Verteilungsfunktion 87-1 gilt dann:
g L)t 20 (13)
\P f zul G& 4

oder

\?_1(pf 2u1? Oz ¥ 220 . {9
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Bei vorgegebener zuldssiger Versagenswahrscheinlichkeit ist \j’_1(pf zul)
eine Konstante mit gleicher Dimension wie die Sicherheitszone Z. Zur Be-
stimmung der Varianz des Lastfaktors A nimmt man n#herungsweise eine
lineare Funktion in den stochastischen Variablen an. Fiir das Testbeispiel, bei
dem nur die Varianz der Fliesspannung 6% beriicksichtigt wurde, wurde

>\'0pt =k GF (15)
gesetzt. Somit gilt filir die Streuung

Die Streuung der Sicherheitszone ist dann durch ( 8 )gegeben.

5. Testbeispiele

Das beschriebene Verfahren zur Berechnung von Versagenswahrscheinlichkei-
ten wurde an zwei Konstruktionen getestet.

5.1. Fachwerk
Die FlieBbedingung fiir Fachwerkstdbe lautet:

F »F
o]

-F » F
o

Somit ergibt sich fir die Matrix R

I

I
R =
-1
ist die (n,n)-Einheitsmatrix .

Systemabmessungen und Belastung sind in Bild 1 dargestellt.

G.

i 1001 AP Querschnittswerte :
'__1 5 A, = 0.6462 /" en® 7
3 A, = 0.7996 [~ e 7 .
100 . Ay = A, =A; = A =01 [/ em "/
§ Belastung : P = 1000 / kp /
L 5 J Variationskoeffizient der Last: Vp= 0.1

Bild 1 : System und Belastung des Fachwerks

Die Querschnittswerte sind mit dem Optimierungsverfahren von W.Lipp und
Thierauf / 7_/ ermittelt worden. Als zuldssige Spannungen wurden hierbei

eingesetzt : ] _ - kp 5
Druck : G . = 1400 /[—b 7

: = -_kp 5
Zug i G, = 1600 / EEE-;/

Die vollplastischen SchnittgrdBen F, fiir die Traglastberechnung wurden mit

einem Mittelwert der Fliesspannung Gy berechnet.

Fo = A; Gp, im Beispiel F, = Aj ‘2700 .

Die Berechnung der Versagenswahrscheinlichkeit erfolgte somit fiir einen

Traglastfaktor A = 1.5267 . Fir unterschiedliche Variationskoeffizienten
der Fliesspannung Vg ist das Ergebnis in Tabelle 1 zusammengestellt.
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Vo Ga Pg
0.1 0.057 2.37__107°
0.2 0.114 2.57 107"
Tabelle 1 : Streuung des Lastfaktors und Versagenswahrscheinlichkeit

des Fachwerks

5.2.Rahmen
Fir die Traglastberechnung und die plastische Optimierung des in Bild 2
dargestellten Rahmens wurde das in / 1_/ beschriebene Verfahren verwendet.

__Jr5‘7\p {2P §5:AP 2g 1.5 Ag 1.7
0.5AP ) 3 Element | MPL | NPL MPL | NPL
1 4 1 0.59] 7.12 [0.66] 8.1
5.0 2 2.34 [28.40 | 2.65[32.19
+— 4.0——4.0 3 2.24 [27.21 | 2.54 [30.84
4 1.48 [18.00 | 1.68 |20.40
e

MPL [' Mp m_7 : vollplastisches Moment
NPL Z_ Mp _7 ¢ vollplastische Normalkraft

Mittelwert der Last : P =1.0 [—Mp_7
Variationskoeffizient der Last : vp = 0.1
Bild 2 : System und Belastung des Rahmens

Die Querschnittswerte (vollplastische Schnittgrdfen MPL und NPL ) wurden

fiir eine Fliesspannung von Mp -
Gp =
F 24000 /—5- 7

mit Hilfe der Traglastbemessung ermittelt ( Plastic Design).Die Berechnung der
Versagenswahrscheinlichkeit ergab filir einen Mittelwert der Fliesspannung

G = 27000 1125:7

die in Tabelle 2 zusammengestellten Werte.

A= 1.6875 A= 1.9125
Mei Ga, Pf Ga Pf
0.05 0.045 1.71 1070 0.05 0.0
0.1 0.089 1.45 107/ 0.10 6.2 107"
B2 0.178 3.89 10 ° 0.201 2.4 107°

Tabelle 2 : Streuung des Lastfaktors und Versagenswahrscheinlichkeit
des Rahmens
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KongreRbeitrag zum Thema II in diesem Heft
ZUSAMMENFASSUNG

Es wird ein Verfahren zur ndherungsweisen Berechnung der Versagens-
wahrscheinlichkeit statisch unbestimmter Konstruktionen mit Hilfe der
stochastischen Programmierung angegeben. Aus dieser Berechnungsmethode
folgt dann die Formulierung der Traglastbemessung (plastische
Optimierung) fir zuldssige Versagenswahrscheinlichkeiten.

SUMMARY

A method for the approximate computation of the probability of failure
of statically indeterminate structures is proposed. It represents a direct
application of stochastic programming to the limit analysis problem. This
solution then leads to a formulation of the plastic design problem for
allowable probabilities of failure.

RESUME

On propose dans ce travail une méthode pour estimer la probabilité de
ruine des structures hyperstatiques. La méthode est une application
directe de programmation stochastique & l'analyse des charges limitées.
Cette solution donne une formulation pour le probléme du dimensionnement
plastique avec une probabilité de ruine admissible.
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