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IIc

Optimization of the Prestressing in the Cäbles of a Cable-Stayed Bridge

Optimisation de la precontrainte dans les cäbles d'un pont ä haubans

Optimierung der Vorspannung in den Kabeln einer Schrägseilbrücke

DIETHELM FEDER
Dr.-Ing.
M.A.N.

Gustavsburg, GFR

1. Reasons for prestressing
It is well known that the cäbles of a cable-stayed. bridge

have to be prestressed in order to utilize the high strength of
the cäbles and to reduce the bending moments in the main girder.

The degree of prestressing required depends on the structural
system of the bridge, the relative stiffness of the cäbles

and the girder, and the ratio of live load to dead load. Finding
the most economic relation between the longitudinal stiffness of
the cäbles and the bending stiffness of the main girder is a
complicated optimization problem in itself.

Here, only a short description is given of how prestress in
the cäbles was optimized for a given structural system. The aim
was to get a uniform distribution of moments in the main girder
without overloading the cäbles.

2. The Deggenau cable-stayed bridge
The bridge in question carries a motorway across the Danube

in Eastern Bavaria and has two spans of unequal length, i.e.
290 m and 145 m (Fig. 1). It has one central tower and the
large opening is back-stayed by three cäbles to the small opening

and mainly to the eastern abutment. The main girder has a
two cell box-section of 14x4.5 m with cantilevering deck
supported by struts.

The cäbles are composed of spiral Strands arranged in three
layers in a rectangular pattern (Fig. 2), for more details about
this bridge see [lj.
3. Optimality conditions

In static analysis the bridge was treated as a space frame
in linear elastic theory with the aid of a Standard Computer
program.
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The loading case "end displacement" of a certain cable then
delivers a complete set of influence coefficients reflecting the
effect of prestressing. Thus, from the loading cases "end
displacement" of all the cäbles one can easily obtain the coefficients

for the value of any internal force or moment due to
prestressing:

S. JZ aish- X. with S. internal force or moment

a., influence coefficientik
X prestressing

(end displacement of cable k)
The optimality criteria to be considered were the following

(see also Fig. 3):
a) The tensions in the cäbles were not to exceed the maximum

allowable values and should not become negative.
b) The moments in the main girder were not to exceed the strength

of the girder required for cantilever erection.
c) The moments at the tower base were to be kept to a minimum.

With 6 different cäbles, 6 positive and 5 negative limit
moments for the main girder, and two limit moments for the
tower base this gives a set of 25 inequality conditions for the
6 unknown cable end displacements.

4. Practical Solution
Assuming that the system would behave inherently reasonable,

the number of inequalities was reduced to 19 by dropping
the condition that cable tensions should not become negative.

A further reduction was possible due to the fact that positive
bending moments in the girder between cable points were not

critical.
It was then tried to solve the remaining set of 13 inequalities
by means of a Standard Computer program for linear

programming. As it turned out this program failed to give a reasonable
Solution because, being geared to economic problems only,it could not handle negative values on the right hand side.

Merely changing signs all through the equations concerned did
not help.

Since there was neither time nor a specialist available to
overcome these difficulties, the number of variables and
restrictions was further reduced by engineering judgement. The
remaining set of 10 inequalities with 5 unknowns was handled as
overdetermined system of linear equations by a Computer program
producing a least Squares Solution. This approach gave surpris-
ingly satisfactory results for all the values that were to be
optimized.

References
[l] Feder, D.: Donaubrücke Deggenau, Strasse Brücke Tunnel

5 (1975), S. 114/17
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SUMMARY

The paper deals with an optimization that has been used in the design-of a

cable-stayed bridge. The optimality criteria are briefly discussed, difficulties
encountered are described, and the engineering approach applied for the Solution
is outlined.

RESUME

L'article traite de l'optimisation retenue pour le calcul d'un pont ä
haubans. Les criteres d'optimisation sont discutes, les difficultees rencontrees
sont decrites, et la methode 4'ingenieur employee est presentee.

ZUSeAMMEMFASSUNG

Der Beitrag befasst sich mit einer Optimierung, die bei der Berechnung
einer Schrägseilbrücke benutzt wurde. Es werden kurz die Optimalitätskriterien
diskutiert, aufgetretene Schwierigkeiten werden beschrieben, und das für die
Lösung angewendete ingenieurmässige Vorgehen wird umrissen.
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Optimierung elastischer, ebener Rahmentragwerke

Optimization of Elastic Plane Frames

Optimisation des cadres plans elastiques

B. CICHOCKI
Dipl.-Ing. Dr. techn.

Institut für Stahlbeton- und Massivbau, TU Graz
Graz, Oesterreich

1 Einführung

Die Optimierung der Tragwerke wurde im Einführungsbericht
/]/ in 4 Kategorien eingeteilt. Der vorliegende Bericht
beschreibt ein Verfahren, das der 3. Kategorie angehört und gleichzeitig

die Aufgabestellung der 4. Kategorie weitgehend erfüllt.
Ebene Rahmentragwerke mit linear-elastischem Last-Verformungszusammenhang

sollen bei gegebenen Geometrie-, Lagerbedingungen
und Belastungszuständen so dimensioniert werden, daß ein Optimal

i tat skr iter ium für das gesamte Tragwerk erfüllt und die
einzelnen Elemente des diskretisierten Tragwerkes für sich optimal
gestaltet s ind.

2. Zielfunktion
Mit den Querschnittsflachen A^ als Variablen ist die

Zielfunktion für minimales Gewicht oder minimale Kosten zu
formulieren. Voraussetzung ist eine stetige und stetig differenzierbare

Funktion.
f.. =¦> min i 1 n (1)

3. Optimaler Einzelquerschnitt
Der optimale Einzelquerschnitt ist durch die Erzielung des

erforderlichen Biegewiderstandes bei minimaler Querschnitts-
fläche gekennzeichnet. Die Zusammenhänge zwischen Trägheitsmoment

I, Widerstandsmoment W, Bauhöhe h und optimaler
Querschnittsfläche sind nach Festlegung der Querschnittsform durch
Differentialrechnung zu ermitteln. Unter Verwendung üblicher
Näherungen ergibt sich beispielsweise am doppelt-symmetrischen
I-Profil, dessen Stegverhältnis X=h/t den Erfordernissen der
Stegbeulung entsprechend vorgewählt wird
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Abb.l. Bezeichnungen
am I-Querschnitt

12

W
3/ 16 3f2~
13X + l/ll

15"£ A 1/2

.-3/2 A3/2A (2)

Bei einfach-symmetrischen Profilen sind die Gurtflächen als
getrennte Variablen einzuführen.

4. Restriktionssystem

Die nicht-linearen Restriktionen für die Variablen A- sind
durch die Forderung gegeben, daß äußere Schnitt großen an keiner
Stelle des Tragwerkes die inneren Widerstände übersteigen dürfen.

N N (3)

Der Einfluß der Querkräfte bleibt unberücksichtigt.
Als Vorsorge gegen Stabilitatsversagen des Systems werden die
äußeren Schnittgrößen unter Berücksichtigung von Vorverformungen
und ungewollten Lastausmitten im Traglastzustand nach Theorie
II. Ordnung errechnet.

Bei Verwendung der verallgemeinerten Deformationsmethode
wird die globale Steifigkeitsmatrix [s] durch Summation aus den
ins globale System rotierten Stabsteifigkeitsmatrizen [l]
gewonnen

Ii r-Hi[L] [L1] [L11] (4)
Die Matrix I. Ordnung enthält die Variablen A^, die Matrix II.
Ordnung die unbekannten Stablängskräfte N. In der Iterationsrechnung

dürfen - mit Rücksicht auf die geringe Änderung der
Normalkräfte bei Variation der Steifigkeiten - die Längskräfte
des vorhergehenden Iterationsschrittes als Konstantwerte
verwendet werden.

Die Knotenverformungen {v} unter der Belastung {p} sind durch
{v} [S]"1 {P} (5)

gegeben. Die Änderung einer Verformung v^ kann im Bereich kleiner
Steifigkeitsänderungen genügend genau durch

Avk grad v, {AA}k (6)

wird

(7)

angenähert werden, wobei grad v^ aus (5) numerisch ermittelt
Hierbei kann vorteilhaft von der Näherung

[S - AS.]"1 ([I] - [S]"1 [AS.]).[S]-1

Gebrauch gemacht werden /2/, in der [i] die Einheitsmatrix und
[ASjJ die Änderung der globalen Steifigkeitsmatrix durch Änderung
des Querschnittes A£ bedeuten. Die Matrix [s] muß in jedem
Iterationsschritt nur einmal invertiert werden.

Sind {w} die aus {v} durch Zuordnung und Rotation ins lokale
Koordinatensystem gewonnen Stabendverformungen, so gilt für die
Schnittgrößen

{Mä} [L] {w} (8)

und bei Variation der Flächen A^

{Mä} [L+AL] {w+Aw} $ {M1} (9)
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Gleichung (9) an allen Stabenden und für alle Lastfälle formuliert

liefert das Restriktionssystem für die Variablen Ä£.

5. Mathematische Optimierung

Die Lösung der nicht-linearen Optimierungsaufgabe erfolgt
mittels der "Methode der approximierenden Optimierung" /3/, einer
Variante der Sequentiellen Linearen Programmierung. Zielfunktion
und Restriktionen werden in einem zulässigen Startpunkt {A0}
linearisiert und mittels Simplex-Algorithmus die Lösung des
Linearen Programmes bestimmt. Der Lösungspunkt {A}, der wegen des
Linearisierungsfehlers außerhalb des zulässigen Raumes liegt,
wird mit der Vektoraddition

U*} - i- {Ä} + i-li {A } (10)
2t 2t

rückgeführt. Die Potenz t wird beginnend mit t=0 solange um 1

erhöht, bis {A } in den zulässigen Grundbereich zu liegen kommt.
Mit den verbesserten Werten für die Querschnittsf1ächen

werden verbesserte Verformungsgradienten errechnet und ein neuerlicher

Iterationszyklus durchlaufen.
Der Berechnungsablauf ist an einem Schema tischen Flußdiagramm

erläutert. (Abb.2)
Das Konvergenzverhalten wurde an verschiedenen kleineren

Beispielen untersucht. Die Verbesserung des Wertes der
Zielfunktion nach 5 Iterationssehritten lag zumeist unter 1 %.

Literatur angaben:

IM TEMPLEMAN, A.B.: "Optimization Concepts and Techniques in
Structural Design", Einführungsbericht IVBH 10. Kongress.Tokyo 1971

121 BOMMER, C.M./ SYMONDS, D.A.: "Skeletal Structures", Crosby
Lockwood & Son, London 1968.

/3/ BURKARD, R.E./ GENSER, B.: "Zur Methode der approximierenden
Optimierung", Math. Operationsforschung und Statistik 5 (1974).

/4/ CICHOCKI, B.: "Zur Optimierung ebener Stabtragwerke",
Dissertation Technische Universität Graz, 1976.

ZUSAMMENFASSUNG

Der Bericht behandelt die Optimierung elastischer, ebener Rahmentragwerke.
Die Lösung des nicht-linearen Programmes erfolgt mit der "Methode der
approximierenden Optimierung", einer Variante der sequentiellen linearen Programmierung.

SUMMARY

The paper examines the optimization of elastic plane frames. The Solution
of the non-linear programming is obtained by the method "Methode der
approximierenden Optimierung", a kind of sequential linear programming.

RESUME

L'article traite de l'optimisation des cadres plans elastiques. La Solution
pour la programmation non-lineaire est obtenue ä l'aide de la "Methode der
approximierenden Optimierung", une Variante de la programmation lineaire sequentielle.
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An Optimality Criterion Method for Composite Bridge Deck Design

Une methode basee sur le critere de l'optimalite pour le calcul du
tablier composite d'un pont

Eine Optimierungsmethode für die Berechnung von Verbunddecken im
Brückenbau

T.A.I. AKEJU
Lecturer, Department of Civil Engineering

University of Lagos
Lagos, Nigeria

Gellatly and Dupree (1) have discussed some of the important limitations
which arise from application of mathematical programming techniques to
structural problems. The need amongst others for the evaluation of derivatives
of objective functions and constraints in most mathematical programming methods
often leads to the expenditure of large Computer time for the Solution of
realistic size structures, whose accurate description depend on large numbers of
design variables. Whilst recognising that some new developments are directed
towards ameliorating some of these problems, there is yet no indications that
all of them have been solved.

On the other hand the broad group of methods, classed as optimality
criterion approach, employ completely different techniques from those of
mathematical programming and are thereby free from the weaknesses of the latter,
although they have their peculiar shortcomings. In this discussion an example
of the application of the method to the optimum cost design of composite bridge
deck is presented.

In developing an optimality criterion approach for this problem, it is
considered necessary to introduce the following simplifying assumptions:

1. The width of the bridge deck is fixed and the configurations
of the deck are as shown in Figure 1.

2. For the steel girders, only universal beam sections with
tabulated section properties from manufacturers are used.

3. The design of shear connectors is not considered although
it is assumed that adequate shear connectors are provided
between the slab and the beam to make it possible to use
transformed section theory.

4. Shored construction is assumed to reduce the number of
load cases to be considered.
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The characteristics of the objective function are studied (2) through the
aid of a Computer program written to design the deck to the requirements of the
British Code for Composite Construction (CP 117 1967 Part 2) and for Design of
Steel Girder Bridges (BS 153 1966 Part 3 & 4).

Amongst the characteristics studied are:

1. The Variation of deck cost with depth of slab for
different cost of concrete, y for a given girder.
A typical example Figure 2 shows that the cost of
concrete has very little influence on the cost of
the deck.

2. The Variation of deck cost with depth of slab for
different cost of steel, X. Figure 3 shows that the
cost of girder has a predominant effect on the cost
of the deck.

3. The Variation of the deck cost with depth of slab for
girders of the same serial size but of different
weights. Figure 4 for four 914mm x 305mm girders
shows that if a feasible design region exists with
the possibility of choiee of girders, the optimum
design is obtained for the girder with the lowest
value of weight per unit length.

These points dietate the mode of procedure for the optimization process.
It is considered reasonable from the relatively minor contribution of the
slab cost to choose, as a first approach, a slab depth based only on
satisfaction of strength and deflection constraints. The table of girder
section properties is ordered with respect to the weight per unit length to
create a logical direction of search. A direct search method (3) with
variable travel steps, controlled by a sensitivity device, is used to
determine the optimum girder.

One of the main points to be emphasised here is the fact that the
assumptions stated above, though restrictive, are necessary for application of
the concept of optimality criteria. Secondly the knowledge of the characteristics
of the problem is the prineipal factor responsible for the easy development of
the simple direct search scheme. Lastly the problem falls into the first class
of hierarchy discussed by Gellatly and Dupree (1) and further illustrates the
point that optimality criterion methods are very efficient at dealing with only
one or two of the hierarchy ät a time.

REFERENCES
1. GELLATLY, R.A. and DUPREE, D.M.

Examples of Computer-Aided Optimal Design of Structures.
Introductory Report lOth Congress IABSE, Tokyo, 1976

pp. 77-105.

2. ORANGUN, CO. and AKEJU, T.A.I.
A Study of Some Characteristics of Optimum Design of Composite
Bridge Deck.
To appear in Rilem Bulletin, Materials and Structures, 1977.

3. AKEJU, T.A.I. and ORANGUN, CO.
Optimum Design of Composite Bridge Deck Using Available
Universal Beams.
To be published.
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APPENDIX 1 - NOTATION

C Cost of concrete per cubic metre.
c

C Cost of reinforcement per cubic metre.
r

C Cost of girder per 100 kilogram.
8

X C /C
g c

Vi C /C
r c

SUMMARY

An example of the application of an optimality criterion method to the
design of composite bridge deck for minimum cost is presented. Simplifying
assumptions which facilitated the application of the method are discussed. It is ar-
gued that a study of the characteristics of the problem contributed immensely to
the development of a simple direct search scheme for the optimal Solution.

RESUME

On donne un exemple de l'application d'une methode basee sur le critere de

l'optimalite pour le calcul du tablier composite d'un pont,pour des frais minima.
Puis des hypotheses simplificatrices qui ont facilite l'application de cette
methode sont considerees. II est montre qu'une etude des caracteristiques du
probleme a contribue enormement au developpement de combinaisons simples et directes
pour la recherche d'une Solution optimale.

ZUSjAMMENFASSUNG

Ein Beispiel für die Anwendung einer Optimierungsmethode zur Berechnung von
Verbunddecken mit minimalen Kosten im Brückenbau wird angegeben. Vereinfachende
Voraussetzungen werden diskutiert, welche die Anwendung der Methode erleichtern.
Das Studium der Problemscharakteristiken hat sehr viel dazu beigetragen, dass
ein einfacher und direkter Lösungsweg gefunden werden konnte.
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Über die praktische Behandlung von Optimierungsaufgaben

On the Treatment of Optimization Problems for Better Use

Le traitement pratique des problemes d'optimisation

NIKOLA S. DIMITROV
Prof. Dr.-Ing.

Institut für Tragkonstruktionen und konstruktives Entwerfen
Stuttgart, BRD

Mit Hilfe moderner Computer kann man heute ungleich komlexere Probleme
angehen, als es zu den Zeiten der mechanischen Rechenautomaten möglich war.
Diese Entwicklung ist natürlich zu begrüßen, leider hat sie auch eine Kehrseite.
Neben den großen Vorteilen des Gebrauchs von EDV-Anlagen, wie

- hohe Kapazität
- schnelle Bearbeitungszeit
- Erledigung lästiger Routinearbeit

werden auch Nachteile sichtbar.
So verführt die Rechengeschwindigkeit der Automaten dazu, ein anstehendes

Problem "simpel" zu lösen, z.B. unbekannte Funktionen durch einstellige
Treppenfunktionen anstatt mehrstelliger Verfahren, welche bei finiten Elementen eine Menge
von Unbekannten ausschalten, oder daß viele Optimierungsaufgaben durch ungezählte
Iterationen gelöst werden, ohne sich ernsthaft mit der Möglichkeit einer direkten
Lösung zu befassen.

Weiterhin wird durch die Maschinen die Suche nach einfacheren oder
effizienteren Lösungswegen gebremst. Man hat ja ein Programm, wieso soll man
nach einer neuen Methode zur Vereinfachung suchen?

So hängt dann leider nur zu oft die Arbeit des entwerfenden Ingenieurs von
der Verfügbarkeit eines Programms, bzw. einer Rechenanlage ab. Nicht jeder ist
aber in der glücklichen Lage, an ein Rechenzentrum angeschlossen zu sein. Es
sollte daher, bei positivster Wertung der bisherigen Erfolge der EDV-Anlagen,
nicht jener Grenzbereich vergessen werden, wo ein Problem nach entsprechender
Behandlung auch mit einem Tischrechner, statt einer größeren Maschine gelöst
werden könnte.

Bei solchen Forschungen kann der Ingenieur in den Entwurfsbüros am meisten
profitieren. Er wäre dann imstande, noch mehr Probleme selbständig zu lösen,
und nur noch bei wenigen Aufgaben auf große Rechenanlagen angewiesen.

An einem einfachen Beispiel soll demonstriert werden, wie sich aus einem
anfänglichen Computerprogramm ein mit Tischrechnern lösbarer Algorithmus
entwickelte.
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Die Aufgabe ist es, einen Holz- Leimschichtträger als Einfeldträger so zu
bemessen, daß er unter allen möglichen Rechteckquerschnitten die kleinste Fläche hat.
Siehe Fig.l u. Fig.2

Die Zielfunktion, sowie vier der Randbedingungen sind nichtlinear. In der ersten
Bearbeitungsstufe wurde ein iteratives Programm mit Nullstellensuche nach Newton
formuliert, welches den jeweils optimalen Punkt lieferte. Diesem Programm
entspricht etwa die konventionelle zeichnerische Lösung. Siehe Fig.3

Zielfunktion:

Z: F b-h ah2 —^Minimum
Nebenbedingungen:

0; vorh X - zul X 5 0 '

0; vorhö - zul CB 5 0

0. vorh f - zulf =0 O
(zulf=l/nf)

©• Vkipp'vorhGB ' Ckipp 0 1>

(vorha=l/na)

0; vorhODi -zul GDi 2 0

©: h/b-25^0 —1> min a= 0,04

erf h^ 2|/qe-l
'

'Pl

erf h2 :: Vqe-L2' ¦P2

erf h3 Vqe^n/ •P3

erf l\ - fa?'k
'

¦?

erf h5 :- V[J ¦P5

0: 1 - h/bgQ —o maxa 1,0

Figur 1.: Zielfunktion und Nebenbedingungen
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Figur 2. : Schema der Aufgabenstellung
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Figur 3.: Konventionelle zeichnerische Lösung
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Das Beispiel ist für einen Brettschichtträger aus Nadelholz GKL I mit einer
Spannweite von 20m, einer Last von 8,125kN/m, einer freien Kipplänge von 5m
und einer zulässigen Durchbiegung von l/2oo gerechnet.

Werden keine ungewollten Ausmitten in der Berechnung berücksichtigt, sollte
man mit einer Kippsicherheit von 5,0 rechnen, anderenfalls mit der Kippsicherheit

kipp 2,5. Dies ist beim Gebrauch der Tabellen zu beachten.

Die zeichnerische Darstellung ist umständlich und wegen der Nichtlinearitäten
ungenau. Daher bestand die zweite Bearbeitungsstufe in der Einführung des
logarithmischen Maßstabes, wodurch die Funktionen im praktisch vorkommenden Bereich
linearisiert werden. So konnte ein Nomogramm entwickelt werden, welches die Suche
nach dem optimalen Querschnitt innerhalb eines gegebenen Sortiments oder nach
einer ganzzahligen Lösung sehr erleichtert.

Mit den Gleichungen aus Fig. 2 und den Faktoren aus Tab.l berechnet man für
jede Randbedingung jeweils die erforderliche Querschnittshöhe für die Verhältnisse
b/h a 0,03 und Ct 1,0 trägt diese Werte auf Logarithmenpapier auf, verbindet

zusammengehörige Punkte mit einem Lineal und hat so den Lösungsbereich.
Die Zielfunktion F verläuft parallel zur Randbedingung (0 und wächst nach oben an.
Siehe Fig. 4.

500

Figur 4.: Nomogramm

zulassiger Bereich O<o
CV <0

JV* -Vet\(6) °<?X ®e .$s> oX c? £.#'/ -<cX &es afe^100

50

0.03 0.05 0.1 0.5 1.0

Log a-

Für die Fälle, bei denen Ganzzahligkeit keine Bedingung ist und bei denen
die Randbedingungen (T) und (0 vernachlässigbar sind, kann noch ein weiterer
Bearbeitungsschritt gemacht werden. Durch Vereinfachung der Randbedingung 0)
(Fehler auf der sicheren Seite und kleiner 5%) kann die kontinuierliche Lösung
direkt angegeben werden, wenn festgestellt ist, welcher Fall maßgebend ist:
2+4 Biegespannung + Kippen, oder 3+4 Verformung + Kippen. Siehe Fig.5.
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Figur 5.: Unterscheidung praktisch vorkommender Fälle

Hierzu berechnet man nach Gl.la und Gl. 2a die für den jeweiligen Fall
erforderliche Querschnittshöhe h. Der Fall mit dem größeren Wert für h ist maßgebend
und optimal. Die zugehörige Querschnittsbreite errechnet sich dann nach Gl.lb bzw.
Gl.2b

Die Faktoren H und B sind in Tabelle 2 zusammengestellt. Setzt man die
Spannweite in m und die Last in kN/m ein, ergeben sich die Querschnittsabmessungen
in cm.

So ist aus einem Programm für einen Kleincomputer ein einfacher Algorithmus
für die Praxis geworden.

Europ.
Nadel -
holz

GKL
Pi P2 P3 P

NW=2.5 vk,pp 5,0

P5

a

Kantholz
I
II
in

2.887
16.667

3.864
12.436

1.118
2.686

2.304
31.956

2.739
38.002

0.025
0.833

1.0

0,03
4.217

13.572
4.750

15.286

Leim-
quer -
schnitt

i
ii

2.500
14.434

3.770
12.132

1.092
2.623

2.276
31.577

2.707
37.552

0.025
0.833

1.0

0,03
4.085

13.148

Tabelle 1: Faktoren zum Nomogramm
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nQ 1 2 3 u 5 6 7 8 9 10

+
CN

1—1

4.913
2.219

5.644
1.682

6.121
1.430

6.483
1.275

6.779
1.166

7.031
1.084

7.251
1.019

7.447
0.966

7.625
0.922

7.787
0.883

H

B

I-H
1—1

5.678
2.115

6.523
1.603

7.074
1.363

7.493
1.215

7.835
1.111

8.126
1.033

8.380
0.971

8.607
0.920

8.812
0.878

8.999
0.842

H

B

+
CO

oO
Csl

5.056
2.198

5.514
1.695

5.800
1.456

6.013
1.307

6.183
1.202

6.325
1.123

6.448
1.060

6.557
1.008

6.654
0.964

6.742
0.927

H

B

oO
cn

5.886
2.089

6.419
1.611

6.753
1.384

7.000
1.242

7.198
1.143

7.364
1.067

7.507
1.007

7.634
0.958

7.747
0.917

7.850
0.881

H

B

Tabelle 2a: Faktoren H und B für eine Kippsicherheit von 5,0

na 1 2 3 u 5 6 7 8 9 10

+
CM

t—i
5.644
1.682

6.483
1.275

7.031
1.084

7.447
0.966

7.787
0.883

8.076
0.821

8.329
0.772

8.555
0.732

8.759
0.698

8.945
0.670

H

B

I-H
?—1

6.523
1.603

7.493
1.215

8.126
1.033

8.607
0.920

9.000
0.842

9.334
0.783

9.626
0.736

9.887
0.698

10.122
0.665

10.338
0.638

H

B

+
CO

oo(NI

5.514
1.695

6.013
1.307

6.325
1.122

6.557
1.008

6.742
0.927

6.898
0.866

7.032
0.817

7.150
0.777

7.256
0.744

7.353
0.715

H

B

oo
CO

6.419
1.611

7.000
1.242

7.364
1.067

7.634
0.958

7.850
0.881

8.031
0.823

8.187
0.777

8.325
0.739

8.448
0.707

8.560
0.679

H

B

Tabelle 2b: Faktoren H und B für eine Kippsicherheit von 2,5

ZUSAMMENFASSUNG

An einem einfachen Beispiel wird demonstriert, wie aus einem Computerprogramm

ein mit Tischrechnern lösbarer Algorithmus entwickelt werken kann.

SUMMARY

It is shown, how from an initial Computer program a simple algorithm for
table-top calculators can be developed.

RESUME

On montre ä l'aide d'un exemple simple, la facon dont un algorithme soluble
par calculateur de poche a pu etre developpe ä partir d'un programme d'ordinateur.
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