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llc

Optimization of the Prestressing in the Cables of a Cable-Stayed Bridge
Optimisation de la précontrainte dans les cables d'un pont a haubans

Optimierung der Vorspannung in den Kabeln einer Schragseilbricke

DIETHELM FEDER
Dr.-Ing.
M.A.N.

Gustavsburg, GFR

1. Reasons for prestressing

It is well known that the cables of a cable-stayed bridge
have to be prestressed in order to utilize the high strength of
the cables and to reduce the bending moments in the main girder.

The degree of prestressing required depends on the struc-
tural system of the bridge, the relative stiffness of the cables
and the girder, and the ratio of live load to dead load. Finding
the most economic relation between the longitudinal stiffness of
the cables and the bending stiffness of the main girder is a
complicated optimization problem in itself.

Here, only a short description is given of how prestress in
the cables was optimized for a given structural system. The aim
was to get a uniform distribution of moments in the main girder
without overloading the cables.

2. The Degeenau cable-stayed bridge

The bridge in question carries a motorway across the Danube
in Bastern Bavaria and has two spans of unequal length, i.e.
290 m and 145 m (Fig. 1). It has one central tower and the
large opening is back-stayed by three cables to the small open-
ing and mainly to the eastern abutment. The main girder has a
two cell box-section of 14 x 4.5 m with cantilevering deck sup-
ported by struts.

The cables are composed of spiral strands arranged in three
layers in a rectangular pattern (Fig. 2), for more details about
this bridge see [1].

3, Optimality conditions

In static analysis the bridge was treated as a space frame
in linear elastic theory with the aid of a standard computer
program.
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The loading case "end displacement" of a certain cable then
delivers a complete set of influence coefficients reflecting the
effect of prestressing. Thus, from the loading cases "end dis-
placement" of all the cables one can easily obtain the coeffi-
cients for the value of any internal force or moment due to
prestressing:

Si = %; a5y X with Si = internal force or moment
aik = influence coefficient
Xk = prestressing

(end displacement of cable k)

The optimality criteria to be considered were the follow-
ing (see also Fig. 3):

a) The tensions in the cables were not to exceed the maximum
allowable values and should not become negative.

b) The moments in the main girder were not to exceed the strength
of the girder required for cantilever erection.

c) The moments at the tower base were to be kept to a minimum.

With 6 different cables, 6 positive and 5 negative limit
moments for the main girder, and two limit moments for the
tower base this gives a set of 25 inequality conditions for the
6 unknown cable end displacements.

4, Practical solution

Assuming that the system would behave inherently reason-
able, the number of inequalities was reduced to 19 by dropping
the condition that cable tensions should not become negative,

A further reduction was possible due to the fact that posi-
tive bending moments in the girder between cable points were not
critical,.

It was then tried to solve the remaining set of 13 inequal-
ities by means of a standard computer program for linear pro-
gramming. As it turned out this program failed to give a reason-
able solution because, being geared to economic problems only,
it could not handle negative values on the right hand side.
Merely changing signs all through the equations concerned did
not help.

Since there was neither time nor a specialist available to
overcome these difficulties, the number of variables and re-
strictions was further reduced by engineering Jjudgement. The
remaining set of 10 inequalities with 5 unknowns was handled as
overdetermined system of linear equations by a computer program
producing a least squares solution. This approach gave surpris-
ingly satisfactory results for all the values that were to be
optimized.

References

h] Feder, D.: Donaubriicke Deggenau, Strasse Briicke Tunnel
5 (1975)5 B. 114,17
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SUMMARY

The paper deals with an optimization that has been used in the design-of a
cable-stayed bridge. The optimality criteria are briefly discussed, difficulties
encountered are described, and the engineering approach applied for the soclution
is outlined.

RESUME

L'article traite de l'optimisation retenue pour le calcul d'un pont & hau-
bans. Les critéres d'optimisation sont discutés, les difficultées rencontrées
sont déerites, et la méthode d'ingénieur employée est présentée.

ZUSAMMENFASSUNG

Der Beitrag befasst sich mit einer Optimierung, die bei der Berechnung
einer Schragseilbrilicke benutzt wurde. Es werden kurz die Optimalitdtskriterien
diskutiert, aufgetretene Schwierigkeiten werden beschrieben, und das fir die
Ld&sung angewendete ingenieurmdssige Vorgehen wird umrissen.
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Optimierung elastischer, ebener Rahmentragwerke
Optimization of Elastic Plane Frames

Optimisation des cadres plans élastiques

B. CICHOCKI
Dipl.-Ing. Dr. techn.
Institut fUr Stahlbeton- und Massivbau, TU Graz
Graz, Qesterreich

1. Einfiihrung

Die Optimierung der Tragwerke wurde im Einfiihrungsbericht
/1/ in 4 Kategorien eingeteilt. Der vorliegende Bericht be-
schreibt ein Verfahren, das der 3. Kategorie angeh8rt und gleich-
zeitig die Aufgabestellung der 4, Kategorie weitgehend erfiillt.
Ebene Rahmentragwerke mit linear-elastischem Last-Verformungs-
zusammenhang sollen bei gegebenen Geometrie-, Lagerbedingungen
und Belastungszustinden so dimensioniert werden, daB ein Opti-
malititskriterium fiir das gesamte Tragwerk erfiillt und die ein-
zelnen Elemente des diskretisierten Tragwerkes fiir sich optimal
gestaltet sind.

2. Zielfunktion

Mit den Querschnittsfldchen A; als Variablen ist die Ziel-
funktion fiir minimales Gewicht oder minimale Kosten zu formu-
lieren., Voraussetzung ist eine stetige und stetig differenzier-
bare Funktion.

f(Ai) 2 min i=1l,....1n (1)

3. Optimaler Einzelquerschnitt

Der optimale Einzelquerschnitt ist durch die Erzielung des
erforderlichen Biegewiderstandes bei minimaler Querschnitts-
fldche gekennzeichnet. Die Zusammenhinge zwischen Trdgheits-
moment I, Widerstandsmoment W, Bauhdhe h und optimaler Quer-
schnittsfldche sind nach Festlegung der Querschnittsform durch
Differentialrechnung zu ermitteln. Unter Verwendung iiblicher
Niherungen ergibt sich beispielsweise am doppelt—symmetrischen
I-Profil, dessen Stegverhdltnis A=h/t den Erfordernissen der
Steghbeulung entsprechend vorgewdhlt wird
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Abb.1., Bezeichnungen
am I-Querschnitt

Bei einfach-symmetrischen Profilen sind die Gurtflichen als ge-
trennte Variablen einzufiihren.

4, Restriktionssystem

Die nicht-linearen Restriktionen fiir die Variablen A. sind
durch die Forderung gegeben, daB ZuRere SchnittgrdBen an teiner
Stelle des Tragwerkes die inneren Widerstidnde ilibersteigen diirfen.

Im¥| ¢ |u
In¥| ¢ |n' } (3)

Der EinfluB der Querkrifte bleibt unberilicksichtigt,
Als Vorsorge gegen Stabilitdtsversagen des Systems werden die
duBeren SchnittgrdBen unter Beriicksichtigung von Vorverformungen
und ungewollten Lastausmitten im Traglastzustand nach Theorie
IT. Ordnung errechnet.

Bei Verwendung der verallgemeinerten Deformationsmethode
wird die globale Steifigkeitsmatrix [S] durch Summation aus den
ins globale System rotierten Stabsteifigkeitsmatrizen [L] ge-

| 1] - 1Y+ [T (a3

Die Matrix I. Ordnung enthd@lt die Variablen Aj, die Matrix II.
Ordnung die unbekannten Stabldngskrdfte N, In der Iterations-
rechnung diirfen - mit Riicksicht auf die geringe Anderung der
Normalkrifte bei Variation der Steifigkeiten - die Lingskridfte
des vorhergehenden Iterationsschrittes als Konstantwerte ver-
wendet werden.

Die Knotenverformungen {v} unter der Belastung {P} sind durch

(v} = [s]7' . (®) (5)

gegeben, Die Anderung einer Verformung vy kann im Bereich kleiner
Steifigkeitsinderungen geniligend genau durch

Avk = grad vy {AA} (6)

angenihert werden, wobei grad vy aus (5) numerisch ermittelt wird.
Hierbei kann vorteilhaft von der NZherung

[s +as, 171 = ([1] - [s]7! [as.]).[s]™" (7)

Gebrauch gemacht werden /2/, in der [I] die Einheitsmatrix und
[ASi] die Anderung der globalen Steifigkeitsmatrix durch Anderung
des Querschnittes A; bedeuten, Die Matrix [S] muR in jedem Itera-
tionsschritt nur einmal invertiert werden,

Sind {w} die aus {v} durch Zuordnung und Rotation ins lokale
Koordinatensystem gewonnen Stabendverformungen, so gilt fiir die

SchnittgrdBen
8} = [1] (W} (8)

und bei Variation der Flichen Aj

(M4} = [L+AL] {w+bw} < tuty (9)
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Gleichung (9) an allen Stabenden und fiir alle Lastfdlle formu-
liert liefert das Restriktionssystem fiir die Variablen Aj.

5., Mathematische Optimierung

Die L&sung der nicht-linearen Optimierungsaufgabe erfolgt
mittels der "Methode der approximierenden Optimierung" /3/, einer
Variante der Sequentiellen Linearen Programmierung. Zielfunktion
und Restriktionen werden in einem zuldssigen Startpunkt {A,}
linearisiert und mittels Simplex-Algorithmus die_L&sung des
Linearen Programmes bestimmt. Der L&sungspunkt {A}, der wegen des
Linearisierungsfehlers auBerhalb des zuldssigen Raumes liegt,
wird mit der Vektoraddition

E3 1 -
{A}=?.{A}+ X .{Ao} (10)

riickgefiihrt, Die Potenz t wird beginnend mit t=0 solange um |
erhéht, bis {A™} in den zulidssigen Grundbereich zu liegen kommt.

Mit den verbesserten Werten fiir die Querschnittsflidchen
werden verbesserte Verformungsgradienten errechnet und ein neuer-
licher Iterationszyklus durchlaufen.

Der Berechnungsablauf ist an einem schematischen FluRdia-
gramm erliutert. (Abb,2)

Das Konvergenzverhalten wurde an verschiedenen kleineren
Beispielen untersucht. Die Verbesserung des Wertes der Ziel-
funktion nach 5 Iterationsschritten lag zumeist unter 1 7.

Literaturangaben:

/1/ TEMPLEMAN, A.B.: "Optimization Concepts and Techniques in

Structural Design", Einfiihrungsbericht IVBH 10. Kongress,Tokyo 197!

/2/ BOMMER, C.M./ SYMONDS, D.,A.: "Skeletal Structures'", Crosby
Lockwood & Son, London 1968.

/3/ BURKARD, R.E./ GENSER, B.,: "Zur Methode der approximierenden
Optimierung", Math., Operationsforschung und Statistik 5 (1974),

/4/ CICHOCKI, B.: "Zur Optimierung ebener Stabtragwerke",
Dissertation Technische Universitdt Graz, 1976,

ZUSAMMENFASSUNG

Der Bericht behandelt die Optimierung elastischer, ebener Rahmentragwerke.
Die Ldsung des nicht-linearen Programmes erfolgt mit der "Methode der approxi-
mierenden Optimierung"”, einer Variante der sequentiellen linearen Programmierung.

SUMMARY

The paper examines the optimization of elastic plane frames. The solution
of the non-linear programming is obtained by the method "Methode der approxi-
mierenden Optimierung", a kind of sequential linear programming.

RESUME

L'article traite de l'optimisation des cadres plans élastiques. La solution

pour la programmation non-linéaire est obtenue a l'aide de la "Methode der appro-
ximierenden Optimierung", une variante de la programmation linéaire séquentielle.
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An Optimality Criterion Method for Composite Bridge Deck Design

Une méthode basée sur le critére de I'optimalité pour le calcul du
tablier composite d'un pont

Eine Optimierungsmethode fur die Berechnung von Verbunddecken im
Bruckenbau

T.A.l. AKEJU
Lecturer, Department of Civil Engineering
University of Lagos
Lagos, Nigeria

Gellatly and Dupree (1) have discussed some of the important limitations
which arise from application of mathematical programming techniques to
structural problems. The need amongst others for the evaluation of derivatives
of objective functions and constraints in most mathematical programming methods
often leads to the expenditure of large computer time for the solution of
realistic size structures, whose accurate description depend on large numbers of
design variables. Whilst recognising that some new developments are directed
towards ameliorating some of these problems, there is yet no indications that
all of them have been solved.

On the other hand the broad group of methods, classed as optimality
criterion approach, employ completely different techniques from those of
mathematical programming and are thereby free from the weaknesses of the latter,
although they have their peculiar shortcomings. In this discussion an example
of the application of the method to the optimum cost design of composite bridge
deck is presented.

In developing an optimality criterion approach for this problem, it is
considered necessary to introduce the following simplifying assumptions:

1. The width of the bridge deck is fixed and the configurations
of the deck are as shown in Figure 1,

2. For the steel girders, only universal beam sections with
tabulated section properties from manufacturers are used.

3. The design of shear connectors is not considered although
it is assumed that adequate shear connectors are provided
between the slab and the beam to make it possible to use
transformed section theory.

4, Shored construction is assumed to reduce the number of
load cases to be considered.
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The characteristics of the objective function are studied (2) through the
aid of a computer program written to design the deck to the requirements of the
British Code for Composite Construction (CP 117 1967 Part 2) and for Design of
Steel Girder Bridges (BS 153 1966 Part 3 & 4).

Amongst the characteristics studied are:

1. The variation of deck cost with depth of slab for
different cost of concrete, y for a given girder.
A typical example Figure 2 shows that the cost of
concrete has very little influence on the cost of
the deck.

2. The variation of deck cost with depth of slab for
different cost of steel, A. Figure 3 shows that the
cost of girder has a predominant effect on the cost
of the deck.

3. The variation of the deck cost with depth of slab for
girders of the same serial size but of different
weights. Figure 4 for four 914mm x 305mm girders
shows that if a feasible design region exists with
the possibility of choice of girders, the optimum
design is obtained for the girder with the lowest
value of weight per unit length.

These points dictate the mode of procedure for the optimization process.
It is considered reasonable from the relatively minor contribution of the
slab cost to choose, as a first approach, a slab depth based only on
satisfaction of strength and deflection constraints. The table of girder
section properties is ordered with respect to the weight per unit length to
create a logical direction of search. A direct search method (3) with
variable travel steps, controlled by a sensitivity device, is used to
determine the optimum girder,.

One of the main points to be emphasised here is the fact that the
assumptions stated above, though restrictive, are necessary for application of
the concept of optimality criteria. Secondly the knowledge of the characteristics
of the problem is the principal factor responsible for the easy development of
the simple direct search scheme., Lastly the problem falls into the first class
of hierarchy discussed by Gellatly and Dupree (1) and further illustrates the
point that optimality criterion methods are very efficient at dealing with only
one or two of the hierarchy at a time.

REFERENCES

1. GELLATLY, R.A. and DUPREE, D.M.
Examples of Computer—-Aided Optimal Design of Structures,
Introductory Report 10th Congress IABSE, Tokyo, 1976
pp. 77-105.

2. ORANGUN, C.0. and AKEJU, T.A.I.
A Study of Some Characteristics of Optimum Design of Composite
Bridge Deck.
To appear in Rilem Bulletin, Materials and Structures, 1977.

3. AKEJU, T.A.I. and ORANGUN, C.O.
Optimum Design of Composite Bridge Deck Using Available
Universal Beams.
To be published.
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APPENDIX 1 - NOTATION
CC Cost of concrete per cubic metre.
Cr Cost of reinforcement per cubic metre,
Cg Cost of girder per 100 kilogram.
A= Cg/CC
= Cr/Cc

SUMMARY

An example of the application of an optimality criterion method to the de-
sign of composite bridge deck for minimum cost is presented. Simplifying assum-
ptions which facilitated the application of the method are discussed. It is ar-
gued that a study of the characteristics of the problem contributed immensely to
the development of a simple direct search scheme for the optimal solution.

RESUME

On donne un exemple de l'application d'une méthode basée sur le critére de
l'optimalité pour le calcul du tablier composite d'un pont,pour des frais minima.
Puis des hypothéses simplificatrices qui ont facilité l'application de cette
méthode sont considérées. Il est montré qu'une étude des caractéristiques du pro-
bléme a contribué énormément au développement de combinaisons simples et directes
pour la recherche d'une solution optimale.

ZUSAMMENFASSUNG

Ein Beispiel flr die Anwendung einer Optimierungsmethode zur Berechnung von
Verbunddecken mit minimalen Kosten im Briickenbau wird angegeben. Vereinfachende
Voraussetzungen werden diskutiert, welche die Anwendung der Methode erleichtern.
Das Studium der Problemscharakteristiken hat sehr viel dazu beigetragen, dass
ein einfacher und direkter L&sungsweg gefunden werden konnte.
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Uber die praktische Behandlung von Optimierungsaufgaben
On the Treatment of Optimization Problems for Better Use

Le traitement pratique des problémes d’optimisation

NIKOLA S. DIMITROV
Prof. Dr.-Ing.
Institut fur Tragkonstruktionen und konstruktives Entwerfen
Stuttgart, BRD

Mit Hilfe moderner Computer kann man heute ungleich komlexere Probleme
angehen, als es zu den Zeiten der mechanischen Rechenautomaten mdoglich war.
Diese Entwicklung ist natiirlich zu begriifen, leider hat sie auch eine Kehrseite.
Neben den grofien Vorteilen des Gebrauchs von EDV-Anlagen, wie

- hohe Kapazitit

- schnelle Bearbeitungszeit

- Erledigung ldstiger Routinearbeit
werden auch Nachteile sichtbar,

So verfiihrt die Rechengeschwindigkeit der Automaten dazu, ein anstehendes
Problem "simpel" zu lésen, z.B. unbekannte Funktionen durch einstellige Treppen-
funktionen anstatt mehrstelliger Verfahren, welche bei finiten Elementen eine Menge
von Unbekannten ausschalten, oder daB viele Optimierungsaufgaben durch ungezidhlte
Iterationen gelost werden, ohne sich ernsthaft mit der Moglichkeit einer direkten
ILosung zu befassen,

Weiterhin wird durch die Maschinen die Suche nach einfacheren oder effizi-
enteren Losungswegen gebremst. Man hat ja ein Programm, wieso soll man
nach einer neuen Methode zur Vereinfachung suchen?

So hidngt dann leider nur zu oft die Arbeit des entwerfenden Ingenieurs von
der Verfiigharkeit eines Programms, bzw. einer Rechenanlage ab. Nicht jeder ist
aber in der gliicklichen Lage, an ein Rechenzentrum angeschlossen zu sein. Es
sollte daher, bei positivster Wertung der bisherigen Erfolge der EDV-Anlagen,
nicht jener Grenzbereich vergessen werden, wo ein Problem nach entsprechender
Behandlung auch mit einem Tischrechner, statt einer groferen Maschine geldst
werden konnte.

Bei solchen Forschungen kann der Ingenieur in den Entwurfsbiiros am meisten
profitieren. Er wire dann imstande, noch mehr Probleme selbstindig zu lésen,
und nur noch bei wenigen Aufgaben auf groBe Rechenanlagen angewiesen.

An einem einfachen Beispiel soll demonstriert werden, wie sich aus einem
anfinglichen Computerprogramm ein mit Tischrechnern lssbarer Algorithmus
entwickelte.
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Die Aufgabe ist es, einen Holz- Leimschichttriger als Einfeldiriger so zu be-
messen, daB er unter allen moglichen Rechteckquerschnitten die kleinste Fliche hat.
Siehe Fig.1 u. Fig.2. ,

Die Zielfunktion, sowie vier der Randbedingungen sind nichtlinear. In der ersten
Bearbeitungsstufe wurde ein iteratives Programm mit Nullstellensuche nach Newton
formuliert, welches den jeweils optimalen Punkt lieferte. Diesem Programm ent-
spricht etwa die konventionelle zeichnerische Ldsung. Siehe Fig.3 .

Zielfunktion:

Z: F=bh = ah? —=Minimum !
Nebenbedingungen:
: vorh T- zulT 20 — erfh1=2]/qe_'l.‘ ' P1

3
@1 vohG —zul Gg =0 —> ert h, = VQE'lz PZ
"]/ 3
@1 vorh f- zuf =0 — efhy= qel* Ny i %
(zuif=l/nf)

]
&~
o)

®

"W
|-
(o]
~U

@Z Vkipp-vorhO'B - Gkipp =0 —O& erf hl. =
(vorha=l/ng)

): vorhOpy, -2ul Gy, S0 —F> erthg = qe-l-—l—r : PS
@: hib-25=0 —— min @ = 0,04
@I | 1 - h/lb=sQ —> maxa = 1,0

Figur 1.: Zielfunktion und Nebenbedingungen
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Das Beispiel ist fiir einen Brettschichttriger aus Nadelholz GKL I mit einer
Spannweite von 20m, einer Iast von 8,125kN/m, einer freien Kipplinge von 5m
und einer zulissigen Durchbiegung von 1/200 gerechnet.

Werden keine ungewollten Ausmitten in der Berechnung beriicksichtigt, sollte
man mit einer Kippsicherheit von 5,0 rechnen, anderenfalls mit der Kippsicherheit
Vkipp = 2,5. Dies ist beim Gebrauch der Tabellen zu beachten,

Die zeichnerische Darstellung ist umstéindlich und wegen der Nichtlinearititen
ungenau, Daher bestand die zweite Bearbeitungsstufe in der Einfithrung des loga-
rithmischen MaBstabes, wodurch die Funktionen im praktisch vorkommenden Bereich
linearisiert werden. So konnte ein Nomogramm entwickelt werden, welches die Suche
nach dem optimalen Querschnitt innerhalb eines gegebenen Sortiments oder nach
einer ganzzahligen 1L&sung sehr erleichtert.

Mit den Gleichungen aus Fig.2 und den Faktoren aus Tab.l berechnet man fiir
jede Randbedingung jeweils die erforderliche Querschnittshthe fiir die Verhidltnisse
b/h=a =0,03 und d = 1,0 , trigt diese Werte auf Logarithmenpapier auf, verbin-
det zusammengehorige Punkte mit einem Lineal und hat so den L&sungsbereich.

Die Zielfunktion F verliuft parallel zur Randbedingung @ und wichst nach oben an.
Siehe Fig.4. .
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Figur 4.: Nomogramm
Loga —m=

Fiir die Fille, bei denen Ganzzahligkeit keine Bedingung ist und bei denen
die Randbedingungen @ und @ vernachlidssigbar sind, kann noch ein weiterer
Bearbeitungsschritt gemacht werden. Durch Vereinfachung der Randbedingung @
(Fehler auf der sicheren Seite und kleiner 5%) kann die kontinuierliche Ldsung
direkt angegeben werden, wenn festgestellt ist, welcher Fall mafBgebend ist:
2+4 Biegespannung + Kippen, oder 3+4 Verformung + Kippen. Siehe Fig.5. .
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Fall 2+4 Fall 3+4
NG ‘\‘_\‘w\
SN @ - ~ ©
; \\\ - @ s ‘\)
™. o L < @ N T
N ' o . l\
; \4\,' ~ N
Log o — = L0g 0 — =
h=H Yiqel? (3 Glia h=H g ¥ Gl2a
b=B Y qe LI Gl 1b b=8B Yqel® '  GL2b

Figur 5.: Unterscheidung praktisch vorkommender Fille

Hierzu berechnet man nach Gl.la und Gl.2a die fiir den jeweiligen Fall erfor-
derliche Querschnittshéhe h., Der Fall mit dem groBeren Wert fiir h ist mafBgebend
und optimal. Die zugehorige Querschnittsbreite errechnet sich dann nach Gl.1b bzw,
Gl.2b .

Die Faktoren H und B sind in Tabelle 2 zusammengestellt, Setzt man die
Spannweite in m und die Last in kN/m ein, ergeben sich die Querschnittsabmessungen
in em,

So ist aus einem Programm fiir einen Kleincomputer ein einfacher Algorithmus
fiir die Praxis geworden.

Europ. -
Naam- || | R | P R Ps
holz &) Vieg™2 -5 | Viipp =5.0 o=
I 3.864
12.436
Kant - 11 2.887 | 4.217 | 1.118 | 2.304| 2.739|0.025| 1,0
holz 16.667 | 13.572 | 2.686 | 31.956 | 38.002 | 0.833 (0,03
4,750
I1I 15.286
‘ I 2.500 | 3.770|1.092| 2.276 | 2.707 | 0.025| 1.0
Leim - 14.434 | 12.132 | 2.623 | 81.577 | 37.552 | 0.833 (0,03
uer -
oehnitt |IT 1 e

Tabelle 1: Faktoren zum Nomogramm
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Ng =| 1 2 |3 |4 | 516789 |10
4,913 | 5.644 | 6.121 | 6.483 | 6.779 | 7.031 | 7.251 | 7.447 | 7.625 | 7.787 | H
~t || 2.219|1.682 | 1.430 [1.275|1.166 | 1.084 | 1.019| 0.966 | 0.922 [ 0.883 | B
4
o 5.678 | 6.523 | 7.074 | 7.493 | 7.835| 8.126 | 8.380 | 8.607 | 8.812 | 8,999 | H
—| 2.115|1.603 | 1.363 | 1.215 | 1.111| 1.033 | 0.971| 0.920| 0.878 | 0.842 | B
O] 5.056 | 5.514 | 5.800 [ 6.013 | 6.183 | 6.325 | 6.448 | 6.557 | 6.654 | 6.742 | H
~ 53 2,198 | 1,695 | 1.456 | 1.307 | 1.202 | 1.123|1.060| 1.008 | 0.964 | 0,927 (B
+
™M|S| 5.886 | 6.419| 6.753 | 7.000 | 7,198 | 7.364 | 7.507 | 7.634 | 7.747 | 7.850 R
E% 2.089|1.611| 1.384 | 1.242 | 1,143 | 1.067| 1.007| 0.958| 0.917 (0.881|B
Tabelle 2a: Faktoren H und B fiir eine Kippsicherheit von 5,0
Ng = 1 2|13 |4 516171819110
5.644 | 6.483 | 7.031 | 7.447 |7.787 | 8.076 | 8.329 | 8.555 | 8.759 | 8.945| H
~3¥|(""| 1.682 |1.275|1.084 | 0.966 | 0.883 | 0.821 | 0.772 | 0.732 | 0.698 | 0.670 | B
+
|, 6.523 | 7.493 | 8.126 | 8.607 | 9.000 | 9.334 | 9.626 | 9.887 10.122 10.338| H
—| 1,603 |1.215(1.033(0.920 {0.842 [ 0.783 | 0.736 | 0.698 | 0.665 | 0.638 | B
O] 5.514 |6.013 | 6.325 | 6.557 |6.742 | 6.898 | 7.032 | 7.150 | 7.256 | 7.353 | H
~ Sa 1.695 | 1.307 | 1.122| 1.008 [ 0.927 | 0.866 | 0.817 | 0.777 | 0.744 | 0.715| B
+
M|©| 6.419 | 7.000 | 7.364 | 7.634 | 7.850 | 8.031 | 8.187 | 8.325 | 8.448 | 8.560| H
g% 1.611 (1.242|1.067 | 0.958 [ 0.881 | 0.823 | 0.777 | 0.739 | 0.707 | 0.679| B

Tabelle 2b: Faktoren H und B fiir eine Kippsicherheit von 2,5

ZUSAMMENFASSUNG

An einem einfachen Beispiel wird demonstriert, wie aus einem Computerpro-
gramm ein mit Tischrechnern l&sbarer Algorithmus entwickelt werken kann.

SUMMARY

It is shown, how from an initial computer program a simple algorithm for
table-top calculators can be developed.

RESUME

On montre 4 1l'aide d'un exemple simple, la facon dont un algorithme soluble
par calculateur de poche a pu étre développé & partir d'un programme d'ordinateur.
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