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Results of the Application of Stochastic Programming for the
Computation of Safety of Structures

Resultats de l'application de la programmation stochastique pour le

calcul de la securite des structures

Ergebnisse aus der Anwendung der stochastischen Programmierung
für die Berechnung der Sicherheit von Konstruktionen

0. KLINGMÜLLER
Dipl. Ing.

Gesamthochschule Essen

Essen, BRD

To the proposed application of stochastic programming for the
computation of safety I want to make some additional remarks. My

first point deals with the comparison of the well-known method of
Computing the probability of failure of structures on the basis
of Failure Modes /!/ with the proposed concept. The second remark
concerns the application of the proposed concept to the limit
load analysis by nonlinear programming.

1. On the left hand side of figure 1 we have a formulation of
the first limit load theorem as a linear programming problem. The
Solution of this primal problem gives us the maximum of the load
factor which holds the equilibrium conditions as well as the
linearized yield conditions, both combined in the matrix B. In
this special formulation the vector of primal variables y_ consists
of the load factor y.. and the redundant forces y2---YD+i ; P is the
redundancy of the structure.

On the right hand side of figure 1 we have a formulation of
Primal Problem-First Limit Load Theorem Dual Problem-Second Limit Load Theorem

maximize y,

subject to

gysEo

f;z
subject to

B', ¦ z £ 1

y,£0

vector of primal variables

y,:load factor, y2 yp., :

z =0,i=2...p+1
z =0

redundant forces

z : vector of dual variables, i.e. stnin velocities
B : matrix, combining linearized yield conditions and equilibrium conditions

F0 : vector of the right hand sides (e.g. fuDy plastic moments)

F„ z: work of the internal forces

Figure 1 : Linear Programming Problems for Limit Load Analysis



50 Ib - STOCHASTIC PROGRAMMING FOR THE COMPUTATION OF SAFETY OF STRUCTURES

the second limit load theorem as a linear programming problem. The
Solution of this dual problem gives us the minimum of the work of
the internal forces, i.e. the scalar product Fi.z- The work of the
external forces given by B^ must be not less unity. The equality
constraints Blz^ are the conditions of kinematic compatibility.
B. are columns of B. Solving this dual problem is equivalent to

finding the most critical out of all failure modes.
By the theorem of duality in linear programming we know that

the load factor, that is the value of the objective function must
be the same for both problems. Computing the probability of failure

with the proposed concept then means just to look at the
probability of failure by the most critical failure mode. Thus we
have a lower bound for the probability of failure /1/. This is
the reason why the sensitivity analysis becomes very important.

a) Failure Mode concept (Stevenson)
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Figure 2 : Yield Conditions of Beam Elements
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coefficients of Variation: 0.1

beam column Failure Mode concept proposed concept

mean MP| mean MP| load factor Pf load factor P»

200 100 1.0 0.56 0.99 0.54
320 50 1.0 0.63 0-98 0.59
450 75 1.5 2.1 • 10-' 1.46 0.9 • 10 -'

Figure 3: Comparison of Different Computation Concepts
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On the other hand in the Computing of the probability of
failure with regard of all possible failure modes the yield condition

"a" in figure 2 is used. An interaction of normal forces
and bending moments is either neglected, or the computation demands
additional iteration. The lines "b" in figure 2 are bounding the
feasible region of the proposed concept. The curves "c" belong to
the quadratic function for the interaction of normal forces and
bending moments.

For the comparison of the results which are given in figure 3

for Stevensons' test example /,/ we therefore must have in mind
different yield conditions and different computation concepts.

2. The difference between the nonlinear yield condition and
the linearized yield condition (figure 2) leads to the idea of
Computing the limit load by means of nonlinear programming.The
nonlinear programming problem for limit load analysis is given in
figure 4. An iterative method yields a Solution of this problem.
In the Solution a number of yield conditions hold the equality sign.
These nonlinear yield conditions are expanded into a Taylor series
around the Solution and around the stochastic variables jF0 The
nonlinear terms are suppressed and this results in a linear
transformation of the stochastic variables j?0into the unknowns X,X.
With such a linear transformation we can apply the described concept

to the limit load analysis by nonlinear programming.
maximize

subject to
<t>-, (X.X, i =1¦Fo,)£0

X =£0

X : load factor
X : vector of redundant forces

Foi: plastic load bearing capacities (e.g. fully plastic moments)

Oj: nonlinear yield conditions

r : numbtrr of control points

Figure 4 : Nonlinear Programming Problem for Limit Load Analysis

40 40

r)t

MR 17.4 IMpm] Np| 210.9 [Mp] in all sections
p u

coefficients of Variation : c„ 0.2 c" 0.1

system A system B

linear nonlinear linear nonlinear
load factor 1.56 1.81 1.93 2.00

Pf 5.3 -10"3 6.6 -10"5 1.9 -10"5 4.5-KT6

Figure 5 : Comparison of Linear and' Nonlinear Programming
in Limit Load Analysis.
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The results of linear and nonlinear programming in limit load
analysis are compared in figure 5 with two different loading
conditions. The differences in the probability of failure are caused
mainly by the different load factors. The greater load factors of
the nonlinear Solution are due to the larger feasible region of
the quadratic yield condition.

The design of structures for a given allowable probability of
failure requires a Solution of the above described problems in
every step of iteration, i.e. Computing the load factor and the
probability of failure for given cross sections of the elements.
For a single structure the computertime for a reliability-based
design might cost too much. But if we look at problems like
optimizing prefabricated elements for a large number of buildings
or like the optimization of a building code for given restricted
resources /2/ it is important to find structures with minimum
cost which are safe. With the proposed concept I hope to have
given a more general way of evaluating the safety of structures
with regard to their mechanical properties.
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SUMMARY

Results obtained with the proposed concept for the computation of the
probability of failure as it was described in the preliminary report are compared
to results which are given by the well-known method of Computing the probability
of failure on the basis of failure modes. A second part of the paper deals with
the application of the proposed concept to the limit load analysis by nonlinear
programming.

RESUME

Les resultats de l'application de la programmation stochastique pour le calcul

de la securite des structures - methode presentee dans le Rapport Preliminaire-
sont compares avec les resultats donnes par le calcul de la probabilite de ruine
usant la methode des chaines cinematiques La seconde partie de 1'expose montre
l'application de la methode proposee au calcul ä l'etat limite, utilisant la
programmation non-lineaire.

ZUSAMMENFASSUNG

Ergebnisse des im Vorbericht beschriebenen Verfahrens zur Berechnung der
Versagenswahrscheinlichkeit von Konstruktionen werden mit der bekannten Methode,
die Versagenswahrscheinlichkeit mit Hilfe der kinematischen Ketten zu bestimmen,
verglichen. Der zweite Teil des Beitrags behandelt die Anwendung des vorgeschlagenen

Verfahrens auf die Traglastberechnung mit nichlinearer Programmierung.
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