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Dynamic Design Criteria for Tall Buildings in Japan
Critéres dynamiques pour le calcul de batiments de grande hauteur au Japon

Dynamische Entwurfskriterien fur Hochhauser in Japan

KIYOSHI MUTO MASAYUKI NAGATA
Member, Japan Academy Senior Research Engineer
Vice-President, Kajima Corporation Muto Institute of Structural Mechanics
Tokyo, Japan Tokyo, Japan

1. Introduction

The earthquake resistant design is most important in the structural safety in
Japan. The design of low buildings under 45 meters are performed by the conven-
tional static method based on "Seismic Co-efficient" method, that is, percent G
method.

On the other hand, a unique "Dynamic Design Method" has been established for
the high-rise buildings over the height of 45 meters. The procedure of this new
method is shown in Fig.l. In this method, the dynamic response analyses are
conducted with the aid of a computer using observed records of strong earthquakes
as input waves. The strength and deformation of the structure are checked
covering the elastic and elastic-plastic ranges, and if the results on stress and
strain do not satisfy the design criteria established by the designers to control

response stresses and/or deformations, the structural design must be revised and
checked again. This procedure is the so-called "feed-back" system.

This paper presents the dynamic design criteria in this procedure and the
earthquake response values of several examples.
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Fig.l Dynamic Design Procedure of High-rise Building
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2. Dynamic Design Criteria

Fig.2 shows the earthquake resistant design criteria set up by the authors'
institute. Three degrees of earthquake intensity are assumed and against each
degree, response limitations are respectively established.

For a minor or moderate earthquake, categorized as Class I, which occurs
after and during which the behaviors of the structure can be confirmed by vib-
rations tests, the vibration must be controlled to be as small as possible to
give no disturbance or discomfort to human. In other words, a high stiffness
should be given to the structure in order to minimize the deformation. When an
expected severe earthquakes hit, the stresses on all members of the structure
must be less than the allowable values and also the secondary members should
maintain safe condition. This category level, Class II, may be considered to
correspond to the conventional code design level.

In the worst earthquake, hypothetically assumed as Class III, the structural
and secondary members may exceed the elastic limit and suffer some damage but
must not be severely damaged or collapse.

For the Tokyo region the authors usually assume the maximum acceleration of
0.2 - 0.3G as the Class II earthquake and 0.4 - 0.5G as the Class III earthquake.
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Fig.2 Dynamic Design Criteria Set Up by the Authors' Institute
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3. Earthquake Response Values

The authors have undertaken to design and analyze many tall buildings in the
way described above. In order to show the damage control, examples of maximum
earthquake response values of three buildings are listed in Table 1.

The 60-story office building is under construction in Ikebukuro Subcenter of
Tokyo and will be the tallest in Japan. (Photo 1) The earthquake resisting
system of this building consists of rigidly connected steel framings with the
special ductile reinforced concrete shear walls (slitted wall) as shown in Fig.3.
Next 1T7-story office building consists of steel moment resisting framings only,

For these two high-rise buildings, the authors have assumed the maximum ac-
celeration of 0.25G as the Class II earthquakes and 0.4G as the Class II ones in
consideration of the important factor. All of these response values shown in
Table 1 are appropriate for the design criteria.

Photo 2 shows the L4-story reinforced concrete garage building. Although the
design of this building is in the category in which only the stress check is
regulated by the conventional code, the dynamic analysis was performed especially
in order to investigate the safety against earthquakes.

In this case the design criteria for tall building are not satisfied, but
this building was designed to have sufficient ductility by placement of rebars in
special arrangement shown in Fig.l.

Table 1 clarifies that for tall buildings the important problem in designing
is the stiffness control, and consequently the tall buildings are given more than
sufficient strength. On the other hand for low buildings it is important to
control the deformability with satisfactory ductility as much as the strength.

s Damage Control (Max. Value)
Building Earthquake
(Structure) Intensity Story Defl. Ductility
th
Streng Angle Factor
60-story Office 0.25G Elastic 1/4%00 0.7
(Steel framing &
R.C. Slitted Partially
Shear Wall) 0.L0G . 1/260 1.3
Yield
. Elastic 0 0.
17-story Office 825 1/19 9
(Steel framing) Partially
0.L0G 1/110 1.4
Yield
sy Gasass 0.20G Yield 1/130 1.3
(Moment Resisting
R.C. framing) 0.40G Yield 1/60 2.6

Table 1. Examples of Damage Control
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Photo 1. Ikebukuro Subcenter Development (Right:
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Photo 2. U-Story Reinforced Concrete Garage Building
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SUMMARY

The feed-back dynamic design system has been accepted in Japan as the most
advanced of its kind for tall buildings over 45 meters. In this system dynamic
design criteria are indispensable in order to evaluate the eartihquake response
values obtained from the dynamic analysis. Without those damage evaluations and
controls, seismic design, in the true sense of the word, can never be established.

RESUME

La méthode dynamique par itérations successives est, au Japon, reconnue comme
la plus avancée pour l'étude des batiments de plus de 45 métres de hauteur. La
connaissance des critéres dynamiques pour le calcul est indispensable afin d'éva-
luer les réponses sismiques obtenues par l'analyse dynamique. Sans évaluation des
dégits et sans contrdle, une étude parasismique, aus sens propre du terme, ne
pourra jamais étre mise sur pied.

ZUSAMMENFASSUNG

Die iterative dynamische Berechnungsmethode wurde in Japan als die fortschritt-
lichste Methode bei Hochhdusern iber 45 m angenommen. In dieser Methode ist die
Kenntnis der dynamischen Kriterien filir die Berechnung unerldsslich, um die Wirkung
des Erdbebens nach der dynamischen Analyse abzuschdtzen. Ohne diese Schadenermitt-
lungen und Kontrollen ist eine seismische Berechnung und Bemessung undenkbar.
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Considérations sur la sécurité par rapport a différents types de ccmportements
Sicherheitsbetrachtungen mit Ricksicht auf verschiedene Verhaltenstypen

Considerations on Safety in Relation to Different Types of Behaviour

D. FRANGOPOL J-C. DOTREPPE
Assistant Chargé de Recherches au F.N.R.S.
Institut des Constructions Université de Liége
Bucarest, Roumanie Liege, Belgique

1. INTRODUCTION

Dans notre contribution au Rapport Préliminaire [!], nous avons examiné,
du point de vue probabiliste, deux types de comportements structuraux : le com-
portement du type "chafne" et le comportement du type ductile. Les raisonnements
ont été effectués a partir de modéles trés schématiques, qui ne permettent de cou-
vrir qu'une gamme assez restreinte de problémes. C'est le cas, par exemple, de
1'étude de la sécurité des structures isostatiques ou la ruine d'un élément amé-
ne la ruine de 1'ensemble de la structure (comportement schématisé par le modéle
série - figure 1.-), et de 1'étude de la sécurité des structures hyperstatiques
dans lesquelles se produit une adaptation plastique entre toutes les sections
critiqugs avant la rutne (comportement schématisé par le modéle paralléle ductile-
figure 2.-). :

1 N i
- O—O—O—O0—O0—O0—0—» H
Série i
U
Paralidle ductile
Figure 1 Figure 2

L'objet de cette discussionest de mettre en &vidence 1'existence d'autres
modéles permettant d'@tudier la sécurité de constructions dont le comportement
eszé?1us complexe, et de présenter un certain nombre de considérations sur ces
modéles.

__Parmi ceux-ci, on peut citer le modéle paralléle fragile (figure 3), et le
modéle mixte (figure 4) constitué par 1'association de capacités portantes, en
partie en série et en partie en paralléle.

1

Paralléle fragile

Figure 3 Figure &
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2. COMPORTEMENT DU TYPE PARALLELE FRAGILE.

Ce type de comportement est caractéristique des constructions hyperstatiques
dont les sections ne possédent pas de capacité de déformation plastique avant la
ruine, comme par exemple les structures en béton précontraint. La rupture d'un
é]ément n'engendre pas la ruine d'ensemble de la structure, mais améne une majo-
ration des efforts dans les éléments restants et conduit, par conséquent, & une
diminution de la probabilité de survie de ces éléments.

Une des difficultés de 1'&valuation de la probabilité globale de survie
de la structure réside dans le fait qu'on doit utiliser la théorie des probabi-
1ités conditionnelles et considérer 1'ensemble des cheming conduisant & la ruine
de la structure ("failure paths").

La survie du modéle exige la survie & tous les N! chemins de ruine possi-
bles. La probab111te g1oba1e de survie du modéle paralléle fragile (voir fiqu-
re 3) s'écrit donc [%], [8] :

N!
P = P E,. 1
(+) (JD] (*)1) (1)
ol E(+)i représente 1'événement survie par rapport au i-eme chemin de
rupture
N! représente le nombre total de chemins de ruine possibles

La probabilité d'apparition du i-éme chemin de ruine, qui pourrait, par
exemple, étre constitué par la rupture des &léments dans 1'ordre 1, 2, 3,..,N,
est donnée par 1'expression suivante :

(1) (2/1) (k/1,2,.., k-1)  (N/1,2,..,N-1) (2)
P( ) ( )1 P(_ ...... P(-)i P PR P(‘)'i

(k/1,2,..,k-1)
ol P(—)i représente la probabilité (conditionnelle) de rupture du

k-éme élément dans le i-2me chemin de ruine, &tant donné que les k-1 &léments
précédents se dont déja rompus.

Les inégalités suivantes :

P(1) < pl2/1) & P(N/I’ 2, «.oy N-1) (3)

(-)i (-)i (-)i
sont évidemment respectées.
Dans le cas général, Te calcul analytique de P( +) s'avére difficile. On

se bornera ici & encadrer la probabilité globale de survie par deux nombres plus
simples & calculer [3],[6] :

L P € R

o3 £ min (P(+)1-) (4)

) 7 a1
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I1 faut noter que la probabilité donnée par la borne inférieure se trouve
du cdté de la sécurité. Elle s'obtient en supposant que les N ! chemins sont
statistiquement indépendants. Cette probabilité sera d'autant plus proche de
P(+) que la corrélation entre les chemins de ruine sera faible.

En supposant les N &léments identiques et en imposant que la probabilité
de survie du modéle P(+) soit au moins &gale & une valeur de ré&férence PE+)
acceptée a priori, on peut écrire la relation :

° N!
P, . = (P, \.
(+) = Pryd)

Une relation simple peut aussi &tre &tablie en ce qui concerne les pro-
babilitdsde ruine : |
o ° N!

P(_) =1 - P(+) =] - (] - P(_),') > N! P(_)1

3. BREVE COMPARAISON ENTRE LES MODELES SERIE, PARALLELE FRAGILE ET PARALLELE
DUCTILE.

3.1. Pour 11lustrer cette comparaison, on considére 1'exemple simple d'une pou-
tre encastrée-appuyée soumise & une charge concentrée P (figure 5.a). La pou-
tre posséde deux sections potentiellement critiques 1 et 2.

- —4

o |

FWgure 5

a) Lorsqu'on applique le concept du dimensionnement élastique, le modéle de com-
portement est, du point de vue probabiliste, un modeéle série. Dans ce cas en
effet, on considére que la structure est mise hors service quand on atteint la
sollicitation maximum admissible dans 1a section 1 ou dans la section 2.

b) On considére & présent comme &tat-limite 1'effondrement du systéme et on sup-
pose que le matériau a un comportement du type fragile (sectionsd trés fai-
ble ductilité). Dans ce cas, on peut définir deux chemins de ruine tout a
fait distincts :

- la poutre céde d'abord en 2, mais en conservant une résistance suffisante
a 1'effort tranchant. La section 2 se transforme donc en une rotule (figure
5.b.). L'effondrement du systéme se produit quand la poutre céde dans la sec-
tion d'encastrement ;

- la poutre céde d'abord en 1,qui devient une rotule 1ibre (figure 5.c.).

Le systéme se comporte alors comme une poutre biarticulée jusqu'au moment od
il céde en 2, ce qui améne son effondrement.

Dans ce cas, le comportement du systéme peut &tre représenté par un moddle
paralléle fragile.
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c) §'il s'agit d'un matériau possédant une ductilité appréciable (par exem-
ple une poutre en acier), la rupture se produit par formation du mécanis-
me de ruine de la figure 5.d.

Le modéle de comportement est alors le modéle paralléle ductile.

3.2. En ce qui concerne la relation entre la sécurité d'un &lément et la sécuri-
té d'ensemble, la figure 6 permet de comparer le coefficient n', correspondant
au modéle série, avec le coefficient n", correspondant au modéle paralléle duc-
tile. Ils ont &té définis par 1'un des auteurs [5] comme le facteur par lequel
il faut multiplier le coefficient de sécurité central d'un é&lément isolé pour
que la probabilité de surviede la structure soit 1a méme que celle de 1'élément
isolé. :
La comparaison est éta-
{ n',n"  VIS)=VIC;) =10% blie pour une probabilité
1,20 + de survie de la structure
' i®_ - ge 1-10-3 et une méme
L 1093 ——- istribution
110 * g -—’f (Togarithmo-normale) de
—— 1'action et des capacités
1,00 portantes des éléments.
On considére par ex-
090+ 0,890 n" paraliéle emple le cas d'une asso-
’ ciation de N = 10 élé-
0801 ments identiques dont la
? capacité portante est
070 . L - caractér;sée par un coef-
) 2 = ficient de variation
1 2 345 10 2 S0 V (C.) = 10 %, qui doit
supp&rter avec une sécu-
Figure 6 rite de 1 - 107>, une
action S de coefficient
de variation V(S) = 10 %. Si les 10 &léments sont disposés en série, le coeffi-
cient n' doit avoir la valeur 1.093. S'ils sont disposés en paralléle, n" doit
valoir 0.890.

Le tableau ci-dessous indique la valeur qu'il faut donner & la probabilité
de survie d'un &lément pour assurer & 1'ensemble des 10 &léments une probabilité

de survie de 1 - 10'3 dans les trois associations envisagées.

Modéle série paralleéle fragile paralléle ductile

-4 -4 -4
P4 1 - 10 1 - 53.10 1 - 120.10

8.3, Pour le modéle série qui schématise le comportement des constructions dont
la_ruine d'un &lément améne la ruine d'ensemble, nous avons montré [1], [*],
[6] que chaque &lément doit avoir une probabilité de survie égale &

N Pz+) (N = nombre d'éléments) pour que la probabilité de survie de la struc-
ture soit au moins égale a Pz+).
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Puisque pour n'importe quelle valeur de N> 2 1'ingégalité
N NI

VP < VP (5)

est vérifiée, on peut affirmer que :

Pour un méme nombre d'éléments, N, et pour une méme probabilit& de survie
o
du systéme, P(+). la sécurité d'un &1ément faisant partie d'un modéle série est
toujours inférieure d& la sécurité d'un chemin de ruine possible associé& & un
modéle paralléle fragile.

4, COMPORTEMENT DU TYPE MIXTE.

Beaucoup de structures se caractérisent par un comportement mixte (ductilo-
fragile) [4C'est le cas des constructions dont les sections ne possédent qu'une
capacité limitée de déformation plastique avant la ruine. Dans certaines cir-
constances, les deux types de comportement peuvent apparaftre successivement.

Par exemple, si plusieurs &léments mixtes (acier-b&ton) d'une structure sont sou-
mis & un effort de traction, le béton épuise rapidement sa capacité de résistan-
ce en traction et se rompt (comportement fragile). L'effort est alors repris
uniquement par 1'acier dont le comportement est essentiellement ductile.

Une telle structure peut &tre schématisée par un modéle mixte présentant
des &1éments disposés 3 la fois en série et en paralléle (cfr. figure 4).
L'évaluation exacte de la probabilité de survie s'avére, dans ce cas, pratique-
ment impossible. Néanmoins, on peut &tablir des bornes d'un intervalle qui en-
cadre la valeur exacte de cette probabilité [*].

5. CONCLUSIONS.

Cette &tude compl2te notre contribution au Rapport Préliminaire [!]. On
analyse, du point de vue probabiliste, deux autres types de comportements :
paralléle fragile et mixte.

La complexité du probléme rend pratiquement impossible 1'évaluation exacte
de la sécurité,mais de tels modéles fournissent & 1'ing&nieur des indications
précieuses pour 1'évaluation de la sécurité des structures par rapport aux dif-
férents types de comportements structuraux.
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RESUME

On examine du point de vue probabiliste deux types de comportements struc-
turaux: le comportement du type paralléle fragile et le comportement du type
mixte. On présente une comparaison qualitative et quantitative entre les dif-
férents modéles.

ZUSAMMENFASSUNG

Man untersucht durch wahrscheinlichkeitstheoretische Betrachtungen zwei
Typen von strukturellem Verhalten : das parallele sprdéde und das gemischte Ver-
halten. Ein qualitativer und quantitativer Vergleich der beiden Modelle wird an-
gestellt.

SUMMARY

Two types of structural behaviour are considered from a probabilistic point
of view: the parallel brittle and the mixed types of behaviour. Qualitative and
quantitative comparisons are made between different models.
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The report |1| has served to emphasize that engineering design requires
methods and concepts of probability. The process of selecting the probability
of failure of a structure to achieve a stated objective (e.g. make minimum the
total eTpTcted cost of the structure) is known as probabilistic optimum based-
design |7].

The goal of this discussion is to show that a few useful conclusions can
be found in the safety-economy optimization process.

In order to evaluate the total expected cost of a structure Cyi, the ini-
tial cost Ci’ the cost of failure Cf and the probability of failure Pf are to
be calculated first. Optimum probabilistic design requires the minimization
of G, 2

t

C, = C; + Cp. Py (1)

The central safety factor of a structure is very nearly a linear
function of colog;, Pc 2], |3] ,|6] :
8 = a . coIog10 Pf toa, (2)

where g is the increment of central safety factor required to reduce Pf by
a factor of 10, and ey is a positive constant.

On the other hand, the initial cost Ci may be taken as a linear function
of o [2], |5], |8] :

C'i = Yl,e + ‘Yz = 81. CO]OglO pf + 829 (3)

where Y15 Yp» Bp = @y vy tyy are constants coefficients and By is the in-
crement of the initial cost required to reduce Pf by a factor of 10.

Since the cost of failure C¢ is generally independent of the initial cost,
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equating the derivative of the total cost to zero gives the optimum probability
of failure

B
Pt ’LT‘ITIFI'G (4)
and the optimum expected total cost
By B1
“ty TFL %0 Tt TR B2 )

Therefore the expression for the excess cost ACt (overdesign or underde-
sign) is the following :

pfop 1 Pf ) Pfqp

a0y =Cp - Cp =8y (Tog)y -+ 1519 P ). (6)

op f f

op
Assuming P, = 10"4, a plot of aC,/g; as a function of P is shown in
op
figure 1.
Ahhctlal
50
I I
40 under over
design <+—9p— design

30 -1 —

20

10 \\ P

f

1002 1003 100% 107° 100

Figure 1 - Excess cost.
It then follows that :

- For the same absolute value of the safety difference

D = cology, P, - colog,, PTco (7)
the underdesign is more expensive than the overdesign ;

- In the region of overdesign, the excess cost is quite insensitive to the
P. variation ;
f‘

- In the region of underdesign, the excess cost is very sensitive to the
Pf variation.

In the eventually that damage occurs,the loss C. (costs of the building,
potential loss of human lives and industrial damage gaused by the failure) can
be expressed as f times the cost Cj |5].
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The value of f gives a good indication of the magnitude of the damage that
is caused by failure.

The optimum expected total cost (5) is a linear function of log;, f 4] :

Ct = Bq- 10910 f+a (8)

op
where
81 By

2 =Bl o TR0 B2

A graph of Ct as a function of 1og10 f is given in Fiqure 2.
op

- 10910 f
L A 2 a 1 .
———t—t+— -f=C/C,
10 102 10% 10* 10° 108

Figure 2 - Sensitivity of the optimal solution.

The foregoing considerations should permit a rational combination of safety
and economy, in order to reach a satisfactory approach of an optimum solution.
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SUMMARY

Several independent attempts are made to evaluate an optimal value for the
probability of failure and for the expected total cost. The sensitivity of the
optimal solution to the magnitude of the damage that is caused by failure is
also analysed.

RESUME

Plusieurs tentatives indépendantes sont faites pour obtenir la valeur opti-
male de la probabilité de ruine et du coit total attendu. La sensitivité de la
solution optimale par rapport & l'importance du dommage causé par la ruine est
également analysée.

ZUSAMMENFASSUNG

Verschiedene unabhdngige Untersuchungen werden gemacht, um den optimalen
Wert der Versagenswahrscheinlichkeit mit bezug auf die zu erwartenden Totalkosten
festzulegen. Die Abhdngigkeit der optimalen L&sung von der durch den Bruch ver-
ursachten Schadengrdsse wird auch analysiert.



Results of the Application of Stochastic Programming for the
Computation of Safety of Structures

Résultats de I'application de la programmation stochastique pour le
calcul de la sécurité des structures

Ergebnisse aus der Anwendung der stochastischen Programmierung
fir die Berechnung der Sicherheit von Konstruktionen

O. KLINGMULLER
Dipl. Ing.
Gesamthochschule Essen
Essen, BRD

To the proposed application of stochastic programming for the
computation of safety I want to make some additional remarks. My
first point deals with the comparison of the well-known method of
computing the probability of failure of structures on the basis
of Failure Modes /1/ with the proposed concept. The second remark
concerns the application of the proposed concept to the limit
load analysis by nonlinear programming.

1. On the left hand side of figure 1 we have a formulation of
the first limit load theorem as a linear programming problem. The
solution of this primal problem gives us the maximum of the load
factor which holds the equilibrium conditions as well as the
linearized yield conditions, both combined in the matrix B. In
this special formulation the vector of primal variables y consists
of the load factor Y1 and the redundant forces yz...yp+1 ; p 1s the
redundancy of the structure.

On the right hand side of figure 1 we have a formulation of

Primal Problem -First Limitload Theorem Dual Problem-Second Limitload Theorem

maximize y, minimize F;-z
subject to subject to
B-y=E By-z2
¥,z 0 B,i ;0,i=2...p+1
y : vector of primal variables

yy:load factor, y, ... y,,, : redundant forces
: vector of dual variables, i.e. strain velocities
: matrix , combining linearized yield conditions and equilibrium conditions
: vector of the right hand sides (e.g. fuly plastic moments)

gﬂ 100 IN

I

o 2: work of the internal forces

Figure 1: Linear Programming Problems for Limit Load Analysis

4SB
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the second limit load theorem as a linear programming problem. The

solution of this dual problem gives us the minimum of the work of

the internal forces, i.e. the scalar product Fiz. The work of the

external forces , given by B{z must be not less unity. The equality

constraints B!z are the conditions of kinematic compatibility.

B, are columns of B. Solving this dual problem is equivalent to
finding the most critical out of all failure modes.

By the theorem of duality in linear programming we know
the load factor, that is the value of the objective function
be the same for both problems. Computing the probability of fail-
ure with the proposed concept then means just to look at the pro-
bability of failure by the most critical failure mode. Thus we
have a lower bound for the probability of failure /1/. This is
the reason why the sensitivity analysis becomes very important.

that
must

a) Failure Mode concept (Stevenson)

N
! v ! M -
: ! Ney i My ~ 1
! 1 i M
a -2 =1
/0 (o} C - W
b b b) linearized yield condition of
M proposed concept
-1 1 _MPI M N <
' MH + Np1 =1
M _N =<4
b b MF’| NPI
MOON < g
, M Npy
: -1 E —M + N. ; 1
| : Mer N

¢) nonlinear yield condition
N 251

+ —
(Np,)

Figure 2 : Yield Conditions of Beam Elements

M
MP!

5
le—— 201t l 1] S|
coefficients of variation: 0.1

beam column | Failure Mode concept proposed concept
mean Mp|mean Mg, |load factor Pt load factor pt

200 100 1.0 0.56 0.99 0.54

320 50 10 0.63 0.98 0.59

450 75 15 2.1-10 1.4L6 09-10"*
Figure 3: Comparison of Different Computation Concepts
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On the other hand in the computing of the probability of
failure with regard of all possible failure modes the yield cond-
ition "a" in figure 2 is used. An interaction of normal forces
and bending moments is either neglected, or the computation demands
additional iteration. The lines "b" in figure 2 are bounding the
feasible region of the proposed concept. The curves "c" belong to
the quadratic function for the interaction of normal forces and

bending moments.
For the comparison of the results which are given in figure 3

for Stevensons' test example /1/ we therefore must have in mind
different yield conditions and different computation concepts.

2. The difference between the nonlinear yield condition and
the linearized yield condition (figure 2) leads to the idea of
computing the limit load by means of nonlinear programming.The non-
linear programming problem for limit load analysis is given in
figure 4. An iterative method yields a solution of this problem.

In the solution a number of yield conditions hold the equality sign.
These nonlinear yield conditions are expanded into a Taylor series
around the solution and around the stochastic variables Fo,. The
nonlinear terms are suppressed and this results in a linear
transformation of the stochastic variables Fo,into the unknowns A,X.
With such a linear transformation we can apply the described con-
cept to the limit load analysis by nonlinear programming.

maximize A
subject to
¢i(l.x.aﬂ zZ0
AZ0

i=1...r

: load factor
: vector of redundant forces
i+ plastic load bearing capacities (e.g. fully plastic moments)
: nonlinear yield conditions
: number of control points

Jn X >

- -

Figure & : Nonlinear Programming Problem for Limit Load Analysis

. |0 8 “w |8
A & B

b4 »”w v ” tJ}

# 4m + im +* -+ &m + 4m A

Mp = 174 [Mpm] , N, = 2109 [Mp] in all seciions

coefficients of variation : ct =02, cT”' = 0.1

system A system B
linear nonlinear linear nonlinear
load factor 156 1.81 193 2.00
P, 53107 [ 6610 [ 19107° | 45-10°°

Figure 5: Comparison of Linear and Nonlinear Programrning
in Limit Load Analysis.
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The results of linear and nonlinear programming in limit load
analysis are compared in figure 5 with two different loading cond-
itions. The differences in the probability of failure are caused
mainly by the different load factors. The greater load factors of
the nonlinear solution are due to the larger feasible region of
the quadratic yield condition.

The design of structures for a given allowable probability of
failure requires a solution of the above described problems in
every step of iteration, i.e. computing the load factor and the
probability of failure for given cross sections of the elements.
For a single structure the computertime for a reliability-based
design might cost too much. But if we look at problems like
optimizing prefabricated elements for a large number of buildings
or like the optimization of a building code for given restricted
resources /2/ it is important to find structures with minimum
cost which are safe. With the proposed concept I hope to have
given a more general way of evaluating the safety of structures
with regard to their mechanical properties.
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SUMMARY

Results obtained with the proposed concept for the computation of the pro-
bability of failure as it was described in the preliminary report are compared
to results which are given by the well-known method of computing the probability
of failure on the basis of failure modes. A second part of the paper deals with
the application of the proposed concept to the limit load analysis by nonlinear
programming.

RESUME

Les résultats de l'application de la programmation stochastique pour le cal-
cul de la sécurité des structures - méthode présentée dans le Rapport Préliminaire-
sont comparés avec les résultats donnés par le calcul de la probabilité de ruine
usant la méthode des chaines cinématiques . La seconde partie de l'exposé montre
l'application de la méthode proposée au calcul a 1l'état limite, utilisant la
programmation non-linéaire.

ZUSAMMENFASSUNG

Ergebnisse des im Vorbericht beschriebenen Verfahrens zur Berechnung der
Versagenswahrscheinlichkeit von Konstruktionen werden mit der bekannten Methode,
die Versagenswahrscheinlichkeit mit Hilfe der kinematischen Ketten zu bestimmen,
verglichen. Der zweite Teil des Beitrags behandelt die Anwendung des vorgeschla-
genen Verfahrens auf die Traglastberechnung mit nichlinearer Programmierung.
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Improved Design Philosophy for the Structural System of Oil Storage Tanks
Un concept pour améliorer la structure porteuse des réservoirs a essence

Uber verbesserte Entwurfsgrundlagen fur das Tragsystem von Oeltanks

FUKUZO SUTO HIDEYUKI TADA AKIRA WADA
Dr. Eng., Chief, Computer Dpt. Dr. Eng., Senior Struct. Eng. Struct. Analyst, Computer Dpt.
Nikken Sekkei Ltd./Planners/Architects/Engineers
Tokyo, Japan

1. Introduction

In December 1974, a large oil storage tank in a tank farm located in Western Japan collapsed due to cracks
developed at the corner bottom plate. The collapse caused large amount of oil to flood into the sea, thereby
giving serious damage to its biological environment. The accident urged re-examination of the safety of similar
tanks. Under such circumstances, the authors’ firm was asked to study and analyze the structural safety of large
cylindrical tanks constructed on a deep reclaimed site in Yokohama City.

The investigation was aimed at: firstly, recommending measures to improve structural safety of tanks on the
basis of fundamental considerations on them (Fig. 1) and comprehensive evaluation of the data obtained through
the authors’ observation of 18 emptied tanks which have sunk at a considerable degree; and secondly, analyzing
static and dynamic behaviours of cylindrical oil tank constructed on deep, heterogeneous, loose soil easily subject
to consolidation settlement, and establishing certain design criteria to be used as guidelines by the municipal
authorities.

The present paper deals with comparative analyses of essential matters involved in “flexible-flexible™ struc-

tures (Fig. 2) on a basis of the test findings and design improvement proposal derived from a series of analysis.

Fig. | Comparison of Present Modelling with Real Struclure
Fig. 2 Structural System and Bottom Plate Deformation Pattern
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2. Behaviours of 18 Emptied Tanks

The tested tanks are grouped into three types, namely, 10,000 k& tanks (25 to 42 m diam. and 12 to 21 m
high); 30,000 kR tanks (48 to 55 m diam. and 15 m high); and 63,000 k£ (64 m diam. and 22 m high).

The tanks are underlain by the loose soil stratum of which volume compressibility coefficients (my) range
from 0.5 to 2 x 10-2 cm?/kg in a depth of 20 to 50 m below grade. The soil is, in a range down to 7 to 23 m,
stabilized by sand-drain method using 40 to 50 cm diam. pipes.

As compared with the levels recorded upon the completion of tanks, overall absolute settlements of tanks
were 30 to 195 cm at circumferential places of the tank and differential settlements were 10 to 80 cm between
the center and the edge. In some instances, mean residual deformation angles, overall settlements and differential
settlements were in considerable agreement with those obtained from FEM analyses of a monolithic tank-soil
model as shown in Table 1. By this, authors could have the confidence to proceed to detailed theoretical analysis.

The utmost emphasis in the checking was given to the corner at which shell and bottom plates are joined by
fillet welding. As shown with statistical curves in Fig. 3 gained from processing measured data aquired at places
of 2 m pitch along circumference of tanks, the plastic residual deformation angles of bottom plates at the corner
due to the forced bending moment arising from filled or empty state of tank on plastically deformed supporting
soil were found to be about two or three degrees on an average, though each measured value varied depending
on the construction conditions. At some points where the underlying soil was very loose, an angle of as much as

eight degrees was found.

Table 1 Tank-dimensions Measured and Theoretical values

(Theory —corner rotation angle)
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3. Theoretical Analyses of Tanks Constructed on Loose Soil

The tanks now under consideration are a kind of membrane structures subject to bending constraints at the
shell-to-bottom joint. In addition, the tanks stand on loose soil whose properties remain unclarified by a quantita-
tive analysis. Thus, it is theoretically difficult to make an accurate model that can properly represent these struc-

tures. For the purpose of present study, however, an attempt was made which could enable FEM-parametric
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studies to be applied, regarding the tank and the soil as single structural body. As an important step, equivalent

Young’s moduli of soil easily subject to consolidation settlement were determined on the basis of a presumption

that 8- curve properties of them could be regarded as a pseudo-elastic body.

By applying FEM to the semi-infinite elastic solid constituted by thick layers of loose soil with circular

pressure loaded upon the surface, displacement and pressure distribution in the soil, and particularly the range

of concentrated stresses in the soil located directly below the tank shell were obtained. Then, based on the stress-

concentrated area thus determined, elasto-plastic transitional range for the tank and soil was established in a

number of stages, and a local area at the shell-bottom junction was taken out and given parametric studies to see

the behaviours in the plastic range as a single structural body. Thus obtained are parametric chaning conditions of

bending deformation and stresses in the bot-
tom plate at the junction and in the soil as
illustrated in Table 2.

Thereafter, in order to assist in con-
siderations about detail improvements and
formulation of practical calculation method,
chaning conditions of the bending moments
and deformation of the junction were as-
certained by giving parametric changes to
tank-supporting soil spring while making
reference to soil’s subgrade reaction coeffi-
cients as found experimentally in the exist-
ing compacted soil foundation as shown in
Table 3.

Inferred from these analytical results,
three types of hysteresis loop on bending
moment to curvature corresponding to the
kind of combination of the mechanical
state of corner bottom plafe
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In order to see dynamic behaviours of the assumed tank-soil structure during earthquakes, response analyses
of liquid contained in a rigid cylinder were made using ground surface waves in which long natural components
are predominant as measured for reclaimed loose land and a few kinds of other ordinary strong waves. Fig. 5(a)
shows a typical liquid response to the Niigata Earthquake-wave in 1964 which has the characteristic of transfer to
long period of wave from usual earthquake pattern after occurrence of soil liquefaction, representing the over-
flow type due to large liquid-surface displacement with the value of 1.7 m shown by sign @.Fig. 5(b) shows
a typical response to the severe Kwanto Earthquake-wave on Sept. 1, 1923 restored by Prof. N. Nasu which has

the maximum acceleration of 390 gals in the usual strong earthquake pattern, making characteristic of occurrence

of very high pressure to shell-wall and bottom Fig. 5(a) Sloshing Response of 63000k¢ Tank (1)
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level of response to earthquake acceleration of 300 gals show that such sinking generally resembles one caused
by asymmetrical horizontal force; therefore, large sinking thus caused was considered to lead to large deformation

and in some worse cases failure or fracture of the bottom plate.

4. Improvement in Design

From the foregoing analyses, the following were considered a prime consideration in improving the struc-
tural safety of large oil tanks constructed on reclaimed land consisting of deep, loose soil in view of preventing
dreadful pollution or danger inevitably accompanying huge compensation.

(1) Compaction methods for loose silt layers should be improved to ensure more effective and economical
compaction than is now available. In design practice, the initial consolidation settlement should be stand-
ardized and compiled with at higher values than are now commonly adopted as shown in Fig. 8.

(2) As for the foundation, appropriate detail design should be adopted that will gradually change and decrease,
in a number of stages, the equivalent Young’s modulus especially for a certain depth and width of founda-
tion located directly below the shell as illustrated in Fig. 9 and 10.

(3) In combination with such foundation detail, appropriate detail design in shape and weld should be adopted
that will ensure the mechanical safety of shell-to-bottom junction against repetitive stresses and fatigue
failure as illustrated in Fig. 9 and 10.

(4) To prevent earthquake damage, appropriate countermeasures should be devised against the liquefaction

failure of the ground and the failure of parts of foundation on which the shell-bottom junction is located

as illustrated in Fig. 9 and 10.

Fig.7 Diagram of Verucal Displacement of Corner Portion
at Earthquake State

Fig. 8 Recommended Degree of Preliminary Consoldation
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SUMMARY

A large tank built on a deep and clayish soil should be a complete flexible-
flexible structural system of a pure membrane structure and a soft soil. However,
the tank designed by the current standards has unavoidable bending constraints at
its corners.The authors have investigated eighteen large tanks, and have compared
these with static and dynamic analyses of their flexible-flexible structural
system. They propose a concept for improving the design of the tank-soil structur-
al system.

RESUME

Un grand réservoir bdti sur un terrain argileux devrait étre un systéme
structural flexible composé d'une membrane et d'une terre molle. Cependant, les
réservoirs construits selon les normes courantes présentent inévitablement des
contraintes de flexion aux coins. Les auteurs ont fait des mesures sur dix-huit
grands réservoirs et ont comparé celles-ci avec les calculs statiques et dyna-
miques de leur systéme structural flexible. Ils proposent un concept pour amé-
liorer le projet du systéme structural réservoir-terre.

ZUSAMMENFASSUNG

Ein auf Tonboden gebauter Oeltank sollte ein flexibles Tragsystem aus einer
Membrane und einem weichen Boden darstellen. Der nach den gewdhnlichen Normen
gebaute Tank wird aber unvermeidlich Biegespannungen in den Ecken aufweisen.

Von den Verfassern wurde die Nachprifung von achtzehn Behdltern durchgefiihrt,
und mit statischen als auch dynamischen, numerischen Untersuchungen verglichen.
Verbesserte Entwurfsgrundlagen werden fir das Tragwerksystem Tank-Boden vorge-
schlagen.
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Die Ermittlung der mittragenden Breite im Stiitzenbereich von Durchlauftrigern
Determination of the Effective Width of Continuous Girders in the Column Zone

Détermination de la bande porteuse des poutres continues dans la région des appuis

W. HOYER F. KERBACH
0. Professor, Dipl.-Ing. Dr.-Ing.
Technische Universitdt Dresden
Dresden, DDR

Zur Ermittlung des Spannungszustandes von Blegetrdgern mit brei-
ten Gurtungen bedient man sich héufig einer mittragenden Breite,
um nach den iliblichen Methoden der Festigkeitslehre rechnen zu
kénnen.

Diese mittragende, ideelle Breite beriicksichtigt die Schub-
verformungen des als Scheibe zu betrachtenden Gurtes und den da-
bel auftretenden Gurtspannungsverlauf innerhaldb des untersuch-
ten Querschnittes,

Zur Bestimmung der mittragenden Breite gibt es eine Reihe
bekannter Verfahren, die alle die Darstellung der Momentenzu-
standslinie als Fourierreihe fiir die Bestimmung der Scheibenspan-
nungen im Gurt zur Grundlage haben.

Fir die Belastung eines Einfeldtrédgers durch eine konstante
Streckenlast oder eine mittige Binzellast und den daraus resul-
tierenden parabolischen bzw. dreieckigen Momentenverlauf l&#B8t
sich die mittragende Breite z. B. fiir den Ort des maximalen Mo-
mentes ermitteln und fiir die praktische Handhabung als Kurve
liiber dem Verhdltnlis Gurtbreite zu Spannweite auftragen (Bild 1).
Dabel zeigt sich, daB die Konvergenz der Fourierentwicklung beim
dreleckigen Momentenverlauf (Bild 1b) wesentlich schlechter ist
als beim parabolischen (Bild 1a).

Die Ermittlung der mittragenden Breite gestaltet sich Je-
doch fiir den Stiitzenbereich von Durchlauftrigern weitaus schwie-~
riger, weil der Momentenverlauf sehr unterschiedlich sein kann
und die Konvergenz noch schlechter ist. Im Bereich des Stiitzen-
momentes kann die Momentenfunktion allgemein durch

= 2 - % =
M(x) = Ax + Bx (0=x= Lst/2)
ausgedriickt werden, Dabel liegt der Momentenverlauf beliebig

zwischen den Randwerten B=0 (dreieckiger Verlauf) und A=0,
B=q/2 (Hohlparabel, Kragarm durch Streckenlast belastet).
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Somit wird die Darstellung der mittragenden Breite als Kurve iiber
dem Verhiltnis Gurtbreite zu Spannweite praktisch nicht mdglich.

tblicherweise wurde deshalb der negative Momentenbereich von
Durchlauftrédgern als Dreieck mit glelchem Maximalwert idealisiert
und dafiir die mittragende Breite berechmet. Als Lange LSt dieser
Momentenlinie wurde dabei der Abstand der Momentennullpunkte ver-
wendet (Bild 2).

Querschnittskenn -
Kurvenparameter grofie

§8'= ﬁ _ ticlgys
7;

st

Aus Grinden der Sicherheit elnerseits und der Wirtschaftlichkeit
andererseits ist es notwendig, ein mdglichst genaues Verfahren zu
verwenden und gleichzeitig den Momentenverlauf mdglichst exakt zu
beschreiben,

Kehren wir zum betrachteten Stiitzenbereich zurilick, so fiihrt
die Erfassung des tatsdchlichen Momentenverlaufes gegeniiber dem
dreieckigen zu einer kleineren mittragenden Breite. Demnach ist
aus Griinden der Sicherheit die iibliche Idealisierung nicht zu em-

pfehlen,

Die Vergleichsrechnung eines StraBSenbriickenhaupttrigers iiber
drei Felder mit je 22,5 m Spannweite hat ergeben, daB sich bei
Beriicksichtigung einer dreieckigen Momentenlinie die mittragende
Breite iiber einer Innenstiitze gegeniiber dem genauen Wert um 22%
zu groB ergibt! Bei unendlich breiten Gurten wdre der Wert sogar
um 33% groRer!

Am Wissenschaftsgeblet Metallbau der Technischen Universi-
tadt Dresden wurden in Vorbereitung der Uberarbeitung unserer
Stahlbriickenbauvorschriften Untersuchungen angestellt, um ein
einfaches, rasch handhabbares Verfahren zur exakteren Bestimmung
der mittragenden Breite 2zu erhalten,

Als mégliche Ldsung wird nun vorgeschlagen, die ILinge des
Stiitzmomentenbereiches Lst mittels eines Korrekturfaktors ac der-

art zu verkiirzen, daB eine dreieckige Momentenlinie der L&nge
Ly =X o Lst die genaue mittragende Breite liefert.

Ausgehend von der Charakteristik des Momentenverlaufes
d=2 Lo/Lst und einer Querschnittskennzahl des den Gurt unter-

stiitzenden Steges 4 (Bild 2) 148t sich der Faktor o angeben,

Piir J = o erhélt man einen geradlinigen Stiitzenmomentenverlauf
(also ein Dreieck), damit wird & = 1,0, Fir d' = 1 ergibt sich

die Momentenlinle eines durch eine Streckenlast beanspruchten
Kragarmes und & wird zu einem Minimum, In Bild 3 sind die o« -Wer-
te fiir alle denkbaren Stiitzenmomentenverlzufe aufgetragen. Da-
bel liegt ¢ zwischen 0,58 und 1,0. Die gezeigte RKurventafel gilt
exakt nur fiir elnen unendlich breiten Gurt.
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Wendet man die Korrekturwerte auf die praktisch vorkommen-
den endlich breiten Gurte an, so erhidlt man mittragende Breiten,
die kleiner sind als die tatsdchlichen exakten Werte. Das Ver-
fahren liefert also dann auf der sicheren Seite liegende Néhe-
rungswerte, deren Abweichung vom Sollwert geringer ist als bei
der Dreiecﬁmethode.

oF Fir das oben zltierte Beispiel betrigt die Abweichung rund
10%.

Es laufen weitere Arbeiten, in deren Ergebnis exakte Werte
fir andere Randbedingungen der Gurte erhalten werden sollen.

Uber die Kenntnis des Korrekturfaktors & 188t sich nun sehr
rasch die exakte mittragende Breite bei Benutzung der Werte fiir
oine dreieckige Momentenlinie ermitteln,

Die gezeigte Vorgehensweise gestattet damit eine genauere
Erfassung der Tragsicherheit im Stiitzenbereich, ohne daB der Pro-
jektierungsaufwand spilirbar erhsht wird,

ZUSAMMENFASSUNG

Zur Bestimmung der mittragenden Breite im Stldtzenbereich von Durchlauf-
trigern geht man meist von einer dreieckfdrmigen Idealisierung der Momentenlinie
aus. Dadurch werden auf der unsicheren Seite liegende Ergebnisse erhalten. Der
‘Beitrag zeigt eine Mdglichkeit, Uber eine korrigierte La&nge dieser dreieckigen
Momentenlinie genauere und sicherere Werte ohne einen splirbaren Berechnungsmehr-
aufwand zu erhalten.

SUMMARY

For determining the effective width of continuous girders in the column
zone, mostly one starts from a triangular idealization of the moment curve. The
values obtained are consequently on the uncertain side. This contribution shows
one way for obtaining more precise and safe values by means of a corrected length
of this triangular moment curve without any increase in the calculation.

RESUME

Pour déterminer la bande porteuse de poutres continues dans la région des
appuis, on part le plus souvent d'une idéalisation triangulaire de la ligne des
moments. On obtient ainsi des résultats se trouvant du c8té incertain. L'article
montre une possibilité d'arriver a4 des valeurs plus précises et plus sires en
partant d'une longueur corrigée de cette ligne des moments "triangulaire" sans
une augmentation sensible des calculs.
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Model Contribution to the Design and Safety Control of Large Structures

Contribution des modeles physiques au projet et au controle de la sécurité
des grandes structures

Beitrag des Modellversuchs an den Entwurf und die Sicherheitskontrolle
von grossen Bauwerken

GUIDO OBERTI
Prof. Ing., President ISMES
Istituto Sperimentale Modelli e Strutture
Bergamo, ltaly

1. SAFETY ANALYSIS (ON A MODEL) AND OPTIMIZATION

The model study can be conducted as:

I) a modern method of stress analysis;
II) a tool evaluating the critical, or ultimate load.

In case I) the model, usually associated with an electronic processing de
vice, operates as a clever stress calculating machine, and the results obtained
can be compared with those provided by using computers of great capacity.

In case II) the ultimate carrying capacity of the structure can be evaluated
and the investigation can also concern various types of loads. In this case, the
study is completed by determining the ''minimum' overall factor of safety of
the structure,

2. ELASTIC MODELS

Widely used in stress analysis, they can be subdivided in two groups:

- the first group concerns models of plane structures; the importance of these
methods has decreased owing to the ever greater useof the ''finite element
method"'.

- The second group generally deals with three-dimensional structures,

In statical tests, electrical deflectometers and extensometers, usually ap
plied to the surface of the model in various directions, measure displacements
and strains respectively (fig. 1). The model material may differ from the pro
totype material, providing it obeys Hooke' s law and its Poisson' s ratio differs
slightly.

The model operates as an ''analogical computer', and the final results ob
tained, easily collected by means of a computer, can be compared with the theo
retical ones,
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In dynamic tests electromagnetic excitersare applied and piezoelectric ac
celerometers are used as measuring instruments. The strains are still furnish
ed by strain gauges connected to regular amplifying and recording electrical e-

quipment.
Auxiliary masses are conveniently distributed throughout the model to com

ply with dynamic similitude (fig. 2).

3. STRUCTURAL MODELS

These serve for testingbeyond the elastic range and are usually made of the
same materials as the prototype. This is possible for steel and reinforced or
prestressed concrete structures when suitable scale (1:5 - 1:20) models are us
ed (fig. 3). But for large structures, such as dams, reasons of economy make
it necessary to adopt small scale models (1:50 - 1:150), and then model mate-
rials whose mechanical properties are ''reduced" with respect to those of con
crete, in accordance with similitude.

For these models, ISMES has long been using microconcrete simulating
the properties of concrete up to failure, and adopting the technique of "wet''mo-
dels (with waterproof coating) that are pratically without internal stresses.

The tests are conducted in two successive stages, In the first stage, ''at
working load', the model strains are investigated, under loadings corresponding
to the actual working loads.

The second stage concerns ''ultimate load tests', and it is made by gra
dually increasing the applied loads. The ratio between the maximum load actual
ly supported before the collapse and the normal working one is assumed as the
overall ''factor of safety'' of the structure with respect to that ''type'' of load.

Special mention should be made of earthquake simulationin dynamic tests.
ISMES has long had the necessary equipment, which also fully meets all the re
quirements (fig. 4).

4, GEOMECHANICAL MODELS

These are a speciality of ISMESand investigate structures resting on found
ation whose equilibrum or settlement conditions may affectthe safety of the struc
tures themselves (large bridges, dams, power or highway tunnels, etc).

5. ON STRUCTURAL SAFETY IN THE DESIGN STAGE

Models are of great importance during the design of large structures, espe
cially if they are structurally complicated and highly hyperstatic.

Of the many cases studied at ISMES, mention is made for:

- the tests carried out on elastic models of large viaducts such as, for in-
stance, the Polcevera and Maracaibo bridge type; or of tall buildings,such
as the reinforced concrete building in Montreal, Canada (fig, 5);

- the analysis, by means of structural models carried to failure, of new
types of structures. Of the unusual cases mention will be made of the mo
dels of prestressed concrete vessels for nuclear reactors and of those of
St. Mary' s Cathedral in San Francisco. California (fig. 6);




SB

GUIDO OBERTI 65

the geomechanical models used to analyze several concrete dams modeled
with their foundation, e.g. the Kurobe IV dam (in .Japan)andtoinvestigate
the stability of power or highway tunnels,

s ON THE SAFETY FACTOR OF EXISTING STRUCTURES

Models can be of great value when the stability and safety degree of exist
ing structures are to be checked. Particularly when large structures are to be
verified, especially when actual statical or dynamic (seismic) conditions were
not entirely foreseen in the design stage.

Among the models which yelded highly significant results for evaluating
the safety factors brief mention will be made of:

- the failure tests on 1:4 scale models (fig.7) to investigate the safety of
the main columns carrying the '"'Duomo'', i.e. the Cathedral in Milan.
The two different materials used (Candoglia marble and Serizzo granite)
and the geometry of the individual blocks were identical with those of the
prototype.
The stress conditions in the masonery dome bearing the main spire of the
Cathedral were also examined on a large 1:15 scale elastic model (fig. 8).

- Sub-horizontal microcracks were found on the upstream of a large Italian
arch-gravity dam. The influence of these cracks on the safety was inves
tigated on a large structural model in which the microcraks had faithfu11§
been reproduced.

- The effect of the foundation rock anysotropy horizontally stratified on a
gravity dam in Spain was studied on geomechanical models (fig. 9).

REFERENCES: For more details on testing and results, please ask for Tech
nical Bulletins of ISMES - P. O. Box 208, 24100 Bergamo (Italy).

SUMMARY

The present-day contribution of physical models to the design and safety
control of large structures are presented; such investigations are systemati-
cally carried out at the author's laboratories.

RESUME

La contribution actuelle des modéles physiques au projet et au contrdle de
la sécurité des grandes structures est présentée; de telles recherches sont ef-
fectuées de fagon systématique aux laboratoires de l'auteur.

ZUSAMMENFASSUNG

Der heutige Beitrag des Modellversuchs an den Entwurf und an die Sicher-
heitskontrolle von grdsseren Tragwerken wird dargestellt. Solche Untersuchungen
werden systematisch in der Versuchsanstalt des Autors durchgefihrt.
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FiG. 1 1:50 scale elastic modelof the 130 m dia. cir FIG. 2 1:100 scale elastic model of the curved high-
cular reinforced concrete shell roof of Norfolk Cultur way viaduct across the Laoriver (Calabria, Italy). Max-
al Center (Virginia, USA). Statical tests. imum height of viaduct piers 80m. Dynamic tests.
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FIG. 3  1:20 scale structural model of the prestress FIG. 4 1:40 sc?le elastic resinmodel of Pa‘jq“‘? Centr-
ed concrete vessel of the THTR nuclear reactor. al Skyscraper, Caracas. Dynamic tests takinginto ac
count the foundation soil-structure interaction.
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FIG. 5 1:52 scale celluloid elastic modelof the 145 m

FI1G. 6
high reinforced concrete building of Place Victoria in

1:15 scale structural model of the new Cathe-
Montreal, Canada. Dynamic (seismic) tests.

dralinSan Francisco, California, USA, designedby P. L.
Nervi, Themodelis readyfor tests to failure.
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FIG. 7 1:4,7 scale structural model of the main co FIG. 8 1:15 scale elastic model of the masonry dame
lumns carrying the masonry dome of the Cathedralin Mi
lan, The modelis readyfor the axial compression test.

and columns bearing the main spire of the Cathedral in
Milan.
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FIG. 9 1:60 scale geomechanical models of a gravity dam in Spain resting on a stratified
orthotropic foundation, The tests investigated the effects of the artifices devised to raise
the stability of the dam against sliding.

| R

FIG. 10 1:33 scale modelof road and railway guyed bridge over the Rio Parani, Argenti-
na, (complex steel structure). Statical and dynamic tests (running through of a train).



Application of Precast Reinforced Concrete and Steel for Long Span Highway Bridges.
Economical Considerations.

Application du béton précontraint et de I'acier aux ponts routiers de grande portée.
Considérations économiques.

Spannbeton- und Stahlanwendung fur die Autobahnbricken grisseren Spannweite.
Wirtschaftliche Aspekte.

E. DUBROVA I. GRAMOLIN
Director of the Research Institute of Automatized Assistant of Deputy Chairman
Systems for Planning and Control in Construction Gosstroi of the USSR
Gosstroi of the Ukr.SSR Moscow, USSR
Kiev, USSR

Generally two materials - steel and prestressed precast re-
inforced concrete are used for long span highway bridges. Experien-
ce obtained in the USSR and other countries during construction
and design of these bridges allows to determine an effective area
of application for superstrustures of difterent forms using as the
main index - the cost per sq.meter of deck area. This envisages
that the index takes- into account:

- unit cost of bridge construction work accounting requirements
in temporary auxiliary assembly facilities;

- unit cost of main constructions of superstructures of different
systeius;

- unit cost of main construction of piers corresponding to the
chosen system of superstructures.

Thus, the index takes into account all factors such as: cost
of material and the fabrication of superstructure and piers and
cost of bridge erection.

It is interesting to note that technological ractors have
considerable impact on final cost of the bridge.

1his research indicates that depending on the chosen erection
method the cost of auxiliary assewmbly structures and facilities
(piers, ialsework, trestles, pontoons, eic.) approximates from
70 to 20 per cent of the cost of superstructures. Consequently
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the wrong choice of assembly method can lead to the cost of su-
perstructures erection being equal to the cost of main construc-

tion.
i’
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Fig. 1 Relation of assembly equipment and total cost to span of the bridge

Figure 1 shows graphs of dependence of assembling facilities
relative cost upon the cost of main constructions of superstruc-
tures of bridges with different spans. Most of the large bridges
in the USSR are being erected this way due to the evident techno-
logical and economic advantages of cantilever assembly method.
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The analysis of the main constructions cost included a re-
view of the most promising superstructures:

I. Reinforced concrete bridges: ccntinuous, rigid-frame canti-
lever, arch cantilever (Fig.2), arch, cable stayed (Iig.3),
rigid-frame suspension (Fig.4).

II. Steel bridges: continuous girder, arch, cable stayed, sus-

Tpension.
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The consumption of steel
and reinforced concrete per
1 sq.m of superstructures of
varicus systems is shown in
Fig.5 and Fig.6. The curves
are drawn in accerdance with
the ninimal consumption reached
in practice of designing and
construction. Then the speci-
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the bridge piers of various sys-
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AS a result of this analysis a graph was made for the unit
cost per sg.m of various steel and reinforced concrete bridges.
It includes the costs of construction of superstructures and piers
and auxiliary assembly structures and facilities (Fig.8).
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Fig. 8 Relation berween cost of 1 m? the bridge and span

It's seen from the graph that at present, under the exisling
real prices one can speak about the rational apilication of rein-
forced concrete bridges of certain most effective systems with
spans up to 230 m. These are the following:

- continucus superstructures with box girders erected by the
cantilever method with spans frcm 50 to 100 m made of pre-
stressed concrete;

— arch cantilever structures erected by the cantilever method
with spens from 8C {to 150 m made of prestressed concrete;

- cable stayed superstructures with the reinforced concrete
rigid girder erected by the cantilever method with spans
up to 140-150 m.

Then comes the area of the application of various steel brid-
ges-cable steyed and suspension ones.

haturally the local conditions of construction can conside-
rably influence the definition of the rational application of
the above systems. Thus, the availability of works located close
to the surface cor the construction of single-span bridges over
deep canycns will require an additional study of the possibility
to use thrust systems, since the volume of materials to be used
fcr piers under these specific conditions is charply reduced.
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For example, when bridges are erected under conditions of city de-
velopment where the construction of high access is not expedient,
the structures of continuous girder or cable stayed bridges of
small structural height are preferable.

The proposed method for the evaluation of the economic effec-
tiveness of systems does not exclude real local conditions which
are quite different from those mentioned in the present article,
but on the contrary, it takes them into due consideration. For the
overwhelming majority of bridge superstructure erected under the
conditions of plain rivers with soft soils it is reasonable to con-
tinue persistent work at the modification and development of the
most perspective reinforced concrete systems using them for spans
up to 250 m.

SUMMARY The article presents method of choosing the area of ra-

tional application of bridges with reinforced concrete
and steel span structures of various systems. It cunsiders both the
cost of main bridge structures (superstructures, piers, etc.) and
the cost of assembly works, accounting necessary tempcral slructu-
res (falseworks, pontoons, etc.). Cost index per sqg.meter of deck
area is used as effectiveness criterion.

RESUME L'article présente la méthode de la détermination 4'ap-

plicaticn rationnelle des ponts en béton armé et en
acier des systemes différents. On y tient compte du cout des const-
ructions principales du pont lelles que la superstructure et les
piles aussi bien que du colt des travaux de montage y compris les
ouvrages proviscires (piles provisoires, coffrage, pcntons, etc.)
Comme le critere d'efficacité on utilise 1l'index du colt d'un
metre carré du tablier du pont.

ZUSAMMENFASSUNG Im Beitrag wird die iMethode der Bestimmung der

rationellen inwendung der Brucken mit Stahlbe-
ton-und Ttahl-Spannweitenbauten Jder verschiedenen Systemen beschrie-
ben. Dabei wurden sowohl die Kosten der fuhrenden Bruckenkonstruk-
tionen (Bruckenspannungen, Stutzen) als auch die Kosten der kon-
tagearbeiten unter Beachtung der notwendigen Behelfsbauten ( Bau-
gerust, Bruckenschiff u.a.) beriucksichtigt. Als Kriterium der
Effektivitat wird hier die Vertkennziffer eines Guadratmeters der
Bruckenflache benltzt.
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