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Examples of Computer-aided optimal Design of Structures
Exemples de calculs d’optimisation & I'aide de |'ordinateur

Beispiele des Computer-Einsatzes bei der Optimierung

RONALD A. GELLATLY DONALD M. DUPREE
Bell Aerospace Company
Division of Textron
Buffalo, N.Y., USA

Applied Structural Optimization
I. INTRODUCTION

The total process for the design of a sophisticated structure
is a multistage procedure which ranges from consideration of overall
system requirements down to the detailed design of individual com-
ponents. While all levels of the design process have some greater
or lesser degree of interaction with each other, the past state-of-
the-art in design has demanded the assumption of a relatively loose
coupling between the stages. 1Initial work in structural optimiza-
tion has tended to maintain this stratification of design philoso-
phy, although this state of affairs has occurred, possibly, more as
a consequence of the methodology used for optimization than from
any desire to perpetuate the delineations between design stages.

In recognition of this stratification, a Eossible hierarchy of
design variable classes has been postulated.( ) The partitioning
implied in this manner is not rigid but is representative of pessi-
ble or probable design capabilities compared to total design
requirements.

The hierarchy is

a) Member Sizes

b) Configuration

c) Material Properties

d) Construction or Topology

In the first class, all geometric details of the structure are fully
defined and only member sizes are to be chosen by a design process.
Although apparently a v:iry restricted class of problems, this
actually represents (i) the limit of most of the optimization
capability available to date and (ii) an extremely wide class of
structural problems. It is a fact that in many structures the
location and configuration of a great deal of the primary struc-
ture is mandated by nonstructural considerations. Likewise materi-
als and construction will frequently be dictated by environment,
design codes, cost, etc. There are many other structures for which
the above does not apply.
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By configurational variables, location but not number of prin-
cipal components is implied. Hence, the first two members of the
hierarchy may be regarded as continuous variables*, whereas the
latter two categories clearly involve discrete noncontinuous vari-
ation of parameters. Because of the difficulties encountered in
dealing with noncontinuous variables within a mathematical frame-
work, principal attention has been generally confined to the first
two classes of variables, with maximum attention on the member
sizes.

The principal approaches to the optimization of structural
systems for minimum weight in the past have been based upon the
use of a combination of mathematical programming or other rigorous
numerical search techniques and an equally rigorous structural
analysis method. There have been many variations on this theme,
but the essential combination of methods has remained the same.
For analysis, finite element methods have been the most frequent
choice, while the numerical search techniques have run the gamut
from linear programming to Monte carlo. (2,3,4) while this type of
combination of methods is valid and appropriate for certain classes
of problems, within the individual strata of the overall design
process, it has led to certain intractable situations.

The rigor and sophistication of both the analysis and search
procedures inevitably mandate numerical complexity and large
computer costs for the optimization of anything approaching a
representative large scale system. This, in turn, has cast con-
siderable doubt upon the economic value of some optimization con-
cepts. While many difficulties have been encountered using tradi-
tional methods of mathematical programming, there have been signi-
ficant developments in new approaches to structural optimization
which have overcome fome of these difficulties for selected classes
of problems.(51517r8

While mathematical programming methods are fairly rigorous
and extremely general in their range of applicability, computer
programs developed along these lines tend to be effective for the
optimization of small scale systems only. When expanded for the
optimization of realistic large scale structures, such approaches
tend to become excessively costly and also of doubtful reliability
and accuracy. The major problems seem to arise from a large in-
crease in the number of analysis iterations with increase in the
number of design variables. 1In addition, the explicit or implicit
need to calculate numerical approximations to derivatives of con-
straints with respect to all variables means that each iterative
step itself becomes lengthy.

Some new developments in mathematical programming have tended
to overcome some of the difficulties but others remain. In addi-
tion, the possibility of further new developments in both analysis
and numerical search techniques cannot be overlooked.

*It is recognized that in many branches of structural engineering,
principal members may only be selected from standard sizes and are
not strictly continuous variables. This problem is usually treated
by considering section properties as continuous variables and then
selecting the nearest standard sizes for the final designs.
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One approach to the problem which apparently avoids many of
the pitfalls of mathematical programming is through the use of
optimality criteria formulations. (3,

The basic concept behind otimality criteria is the rejection
of the generality of mathematical programming and the utilization
of the physical characteristics of the structural optimization
problem to generate an approach of somewhat limited applicability
but of the greatest computational efficiency.

In the optimality criteria approach, preconditions regarding
the optimum structural system are generated based upon a physical,
mathematical or even intuitive understanding of the problem. A
simple search procedure is then developed to find the design
satisfying these specified criteria.

A full discussion of this approach to one facet of structural
optimization is given in Section II along with examples of the
applicability.

Even with the development of optimality criteria programs and
other similar approaches, these methods still suffer in many cases
from severe limitations with regard to class and ranges of design
parameters which can be treated as variables in a search for an
optimum system.

It is this latter fact which has tended to maintain the
stratification of the design process. It has been simply not
possible or practical to mix variables of the different hierarchy
classes in any rigorous search procedure. The major handicap has
been the lack of continuity of variation of some parameters. While
the concept of fixing configuration, mode of construction and
materials at the outset of design may be acceptable for some
structures, it will certainly fall far short of a goal of overall
system optimization. Attempts have been made, with varying 3
degrees of success, to incorporate configurational variables, (2/3)
Generally, the stumbling block to the use of configurational and
other variables (apart from computational costs) has been the
requirement for continuity of variation in the parameters, due to
the need for derivatives to provide search directions in a con-
tinuum space. With configurational variables this may be margin-
ally possible provided the topology is undisturbed but to effect
continuous variation in such concepts as material properties, con-
struction mode and topology is beyond the capabilities of the vast
majority of mathematical programming techniques.

For the optimization of large scale systems where many or all
of the above parameters are initially undefined, more flexible and
more general approaches have been sought. An additional considera-
tion has been to develop an approach which would avoid the high
computational costs of the more rigorous formulations, providing
thereby an economic tool for ready use in design trade-off studies.

One new approach to the determination of the minimum weight
of complex structural systems involving material, constructional
and configurational variables in addition to the more conventional
design variables has been developed and is labelled the "sieve-
search" technique. (%) In this new procedure, which sacrifices
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some degree of rigor for economy and generality of application, an
attempt has been made to consider the effects of detailed design
on the overall configuration of the total system and thus tie to-
gether hitherto uncoupled design stages.

In performance of optimization studies using the sieve-search
technique, the guiding philosophy is the generation of an optimal
arrangement of pre-optimized components. In this approach, the
detail components of a structure are optimized first using local
loading conditions and then the major configurational parameters
are varied in order to find the optimal arrangement of the locally
optimized components. The optimal design is obtained by a sequen-
tial comparison of the individual designs based on discrete values
of configurational and constructional design variables. The above
procedure is labeled a sieve-search since all nonoptimum designs
are eliminated by the sequential comparisons leaving only the
least weight design. The process can be labeled "discrete" in
contrast to the more classic approaches wherein continuous vari-
ables are treated.

The sieve-search method was developed initially for an
applied to the design of an extensive class of surface effect
ships. Section III discusses the basic philosophy behind this
approach to structural optimization using the surface effect ship
as a prime example. The extension of the procedure to other
classes of structural design problems is both possible and
economically attractive. 1Its potential use for bridge design is
also discussed in Section III.

II. OPTIMIZATION USING OPTIMALITY-CRITERIA

As discussed previously, there are a number of basically
different approaches to the problem of overall structural optimi-
zation. While some of the variations in the approcaches stem from
differences in the classes and types of systems which are being
optimized, there are also problems for which two or more methods
of solution are available.

A classic problem, of great practical interest, is the opti-
mization of a structural system whose overall geometry is fully
defined and fixed by a set of external conditions but whose member
sizes are to be selected optimally. The structure will usually be
subjected to a multiplicity of loading conditions (no one of which
is uniguely critical) and in addition to known limitations on the
strengths of individual components, stiffness of the system may be
of critical importance. Also fabricational constraints or other
codes may mandate minimum sizes for constituent members.* For
this type of problem which is encountered frequently in engineer-
ing design, the primary approaches to optimization developed dur-
ing the 1960's were based upon the use of mathematical programming

*In discussing a structure, the concept of an assemblage of indi-
vidual elements is used. This is generally consistent with the
idea of a finite element model which is usually used for the actual
structural analysis. If a continuun is considered, it, too, would

be regresented as an assemblage of discrete elements,which may be
viewed as separate variables 1n an optimizdtion process.
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formulations.(4) Because of the computational difficulties en-
countered with mathematical programming, this approach has been
largely abandoned for large scale structures and newer methods
based on the concepts of optimality criteria have been developed.

The underlying concepts behind optimality criteria methods
can best be illustrated by considering the contrasts between
optimality criteria and mathematical programming. In mathematical
programming approaches, sets of rules are established for numerical
search procedures which will determine an optimal solution in a
strictly empirical manner. The set of search rules will guarantee
a continuous and monotonic decrease in a prescribed merit function,
essentially without regard to the physical (or sometimes even
mathematical) nature of that merit function. The search will
regard constraints, if such exist, and will continue searching
until no further improvement in the merit function is possible. No
preconditions concerning the nature of the optimum are specified
beyond the criterion that it is impossible or uneconomic to deter-
mine a further design which will be an improvement on the present
design. This approach may be labelled post hoc since the optimum
is identified essentially only on an after-the-fact basis. Both
the strength and weakness of mathematical programming reside in
this concept. The strength is the generality which this independ-
ence of mathematical formulation imparts, with the resulting wide
range of applicability; the weakness is that no use is made of any
of the physical characteristics of the problem and hence frequently
an unnecessarily long and costly solution process results. The
antithesis of this situation arises in an approach which recognizes
the physical nature of the structural optimization problem per se
and sets out to take fullest advantage of the restricted class of
problem. In this approach, some conditions are established ini-
tially concerning the nature of the design which will be regarded
as optimal. These conditions, which are defined before initiation
of the redesign process, may be rigorously exact, approximate or
even intuitively assumed. The essential requirement is that their
application will lead to a relatively simple (usually iterative)
algorithm for a redesign process converging on the design which
satisfies the initially prescribed criteria. This approach is
then labelled a priori, since the characteristics of the optimal
system are specified initially.

The classic and most obvious example of an optimality criteria
approach is the time-honored fully-stressed-design. Every practi-
cal engineer is fully aware of and would probably support the basic
idea that the most efficient (optimal) design is one in which every
member is used to its fullest extent under at least one loading
condition., Prior to the advent of computers and the development
of advanced methods of structural analysis using finite elements,
generations of structural engineers have traditionally attempted
to inject some degree of optimality into designs by analyzing a
trial structure, using some appropriate quasi-classical procedure,
and adjusting member sizes to eliminate over- or under-stressing.
The more ambitious engineers might even have re-analyzed and re-
sized the structure one or more times. Probably very few practic-
ing engineers ever wondered whether anything is invalid with this
rather natural 'calibrated-eyeball' approach. Accurate analysis
of indeterminate structures presented a difficult problem prior to
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the introduction of cComputers, discouraging the repeated use of
more elaborate schemes, while approximate analyses were somewhat
insensitive to the crucial effects of rerouting internal force
distributions resulting from resizing iterations.

With the appearance of computers in the fifties, the first
attempt 2t automated optimum sizing was the computerized version
of the above procedure, initially still relying on time-honored
approximate analysis methods. The ensuing development of the
finite element methods by the early sixties made rather accurate
analyses possible for indeterminate structures of virtually any
form or shape. Instead of just two or three resizing cycles now
a much larger number of cycles became feasible, at least for
numerical experimentation by researchers, even if not in practice.

This simple and intuitive concept was eventually formalized
as the fully-stressed-design (f.s.d.). To achieve f.s.d., the
most cononly used algorithm, although not the only one avail-
able (10 is the simple stress-ratio. In the stress-ratio algo-
rithm, it is assumed that the gross forces in any member of the
structure will not vary with member size and hence the member
properties may be adjusted directly in the ratio of the actual to
the allowable stress. In indeterminate structures, changing
member properties generally effects some redistribution of internal
forces, so that an iterative process is required to achieve a
f.s.d. The most important feature of the stress-ratio, and other
similar algorithms is, that, in marked contrast with direct numer-
ical search procedures, the number of re-analyses needed to reach
an apparently converged design is usually small and independent
of the size of the problem. This intuitive approach fulfilled a
need for automated sizing for strength requirements and the
strength optimization problem seemed to be under control, (11,12)
No such simple and efficient method existed at that time for stiff-
ness related problems.

In the late fifties, nonlinear programming methods were intro-
duced as the correct framework for the general structural optimiza-
tion problem.(l}]'l With the development of these more rigorous
methods, which were applicable to both strength and stiffness con-
straints, it was shown that f.s.d. is not necessarily the correct
optimal solution for indeterminate structures. On the other hand,
it was also shown that f.s.d. may indeed frequently be a correct
solution, or more importantly from an engineering viewpoint, may
be a close approximation to the correct solution. Thus with f.s.d.
a very efficient but invalid method of strength optimization is
provided. Fortunately not too many practicing engineers are
inclined to question the rigor and validity of f.s.d. and merely
welcome its advantages.

The standard f.s.d. stress-ratio redesign algorithm tends to
drive a structure towards a design with the stiffest routing of
internal force flow, which may or may not coincide with the opti-
mal force flows. This trend may not become apparent if only a few
resizing cycles are performed and because they do usually tend to
produce a succession of improved designs, they are of great wvalue
to the engineer.
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The potential sources of problems with f.s.d. are quite easy
to point out, but the extent to which they are present in any given
situation is extremely difficult to assess. The difficulties can
be demonstrated in two small example research problems, where
comparison with correct solutions, obtained by numerical search,
is possible. The two examples may be regarded as somewhat patho-
logical but even for these problems it is not entirely clear what
the true nature of the pathology is. Hence, it is not possible to
state categorically that any real system does not contain the same
disturbing influences. 1In the stress-ratio algorithm, only the
constraints (stresses) themselves are considered and no reference
is made to the factors of relevance to the merit condition, such
as density. Thus f.s.d. is completely insensitive to favoring
structural elements according to their strength to weight ratios.
Therefore, f.s.d. tends to break down in structures which contain
materials of different densities or markedly different allowable
stresses. The first example (Figure 1) is of two parallel bars
sharing a single load. One bar is of steel, the other is of alumi-
num but both have the same allowable stress. The stress-ratio
algorithm will increase the size of members with higher material
stiffness and/or lower allowable stress. In this example the alu-
minum bar will vanish and the steel bar will be retained. Clearly
this is a f.s.d. but not a minimum weight design. If both bars
are made of the same material, but with different allowables, the
algorithm will eliminate the higher strength bar, again a poor
design. It should be noted that the optimal solution for these
two problems is the other bar fully stressed. The difficulty here
lies with the stress-ratio algorithm, rather than the concept of
£f.5.d.

A secin? more elaborate example is the 1l0-bar truss shown in
Figure 2. (15 The truss has a single loading case and initially
the stress limit in all members is %25000 psi. The f.s.d. obtained
using stress-ratio weighs 1593 lb which is known to be optimal.
Successively raising the allowable stress in bar No. 10 to

+30000 psi, %50000 psi and %+70000 psi and again using a stress-
ratio,designs of 1545 1lb, 1725 1lb and 1725 1b, respectively, are
generated. The 1545 1lb design is also known to be optimal but

the last two solutions of 1725 1lb are clearly unreasonable and
considerably in error. In these two cases stress-ratio has tried
to eliminate the high strength bar, resultin? in the poor designs.
Using mathematical programming techniques(8,16), the optimal

design for the two high strength (50000 and 70000 psi) cases is
known to be 1497 1lb. Further examination of the problem reveals
the interesting fact that, in both the stress-ratio (1725 1lb) and
the optimal (1497 1b) designs, all members are either at their

full allowable strengths, or at their minimum sizes, except for

bar No. 10. 1In each case the stress in bar No. 10 is 37,5000 psi,
although both designs are radically different. Assigning an allow-
able stress of #37,500 psi to bar No. 10 and again applying stress-
ratio, results in a third fully-stressed-design, weighing 1568 1b,
which is quite different from the other two. Clearly the whole
field of f.s.d. needs further research. Some studies have been
conducted_and variations on the stress-ratio algorithm have been
proposed(l7), but with limited success.
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On the other side of the coin, large scale programs have been
developed, basically using f.s.d. and these programs have been
successfully applied to the design of real structures. Whether
or not such structures are truly optimal is somewhat academic when
it is realized that such designs obtained at moderate computer cost
are undoubtedly superior to those generated by hand.

Figure 3 presents the computer-generated plot of the finite
element idealization of a complex wing structure. The total model
had 5397 finite elements, 4104 displacement degrees of freedom and
20 separate loading conditions. Redesign studies were performed
on the inboard half of this structure starting from various ini-
tial designs. The model considered had 3275 finite elements
(design variables) and 2520 displacement degrees of freedom. Only
two loading conditions were considered critical for sizing. In all
cases only three iterations were performed showing acceptable con-
vergence. Six iterations would have been sufficient for accurate
production work. The program used for this optimization was
asop(18) and for the three iterations required 6000 seconds CPU
time on a CDC6600 computer.

The preceding discussion has dealt rather extensively with
f.s.d. because this is the classic example of an optimality cri-
terion, and it is an approach to optimization which is widely
recognized and accepted. It is, nevertheless, very limited in
its use. Its role as an optimality criterion, per se, would prob-
ably not have been recognized, if there had not been a pressing
need for the development of suitable and efficient optimization
procedures for stiffness constraints. The driving motivation for
the exploration of optimality criteria methods for stiffness con-
straints was the excessive cost of using direct numerical search
methods. What was sought was an approach as simple as stress-ratio
but for displacement constraints. Optimality criteria were investi-
gated since such concepts, by definition, contain gradient related
information as a result of their derivation. By taking full advan-
tage of the special structural properties of the problem, these
criteria should lead rapidly and efficiently to the solution.

The actual development of a practical method for stiffness
constraints was a multistage process in which many researchers
individually contributed key concepts(19,20,21,5) It is not of
relevance here to discuss all the stages in this development pro-
gression; a fuller description may be found in Reference 22,

The essential step in the development of the currently used
approach to stiffness constraints was the formulation of a single
displacement constraint problem using a Lagrangian multiplier. In
a structural system with fixed geometry,A;, the characteristic
sizes of constituent members, are considered to be design vari-
ables. If W(Aj) is the merit function for the structure and F(Aj)
is a single displacement which is to be constrained to have a
magnitude C, then values of A; which minimize W, while satisfying
the equality constraint can be determined by use of a Lagrangian
multiplier formulation. The expression

W* = W(a;) - A | F(A;)-C (1)
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is written and differentiated with respect to A; to yield

*
w* _ 8w . , 8F _ (2)
9A,

i oA, A4

Equation (2) is then the necessary condition for the optimum
system, or the optimality criterion. For specific classes of
problems, it can be proven that this condition is also sufficient
for global or local optima.

Equation (2) can be rewritten in the more revealing form

oW/ 0A;

—§F7—§§I = A = constant, for all i (3)

Written in this form, there can be seen the valuable and
relevant information that, in an optimal structure, the change in
the measure of the behavior (displacement) for a unit change in
the measure of merit is the same for every free variable. That
is, the cost of improvement in the design is the same for every
member in the optimal system. This statement is quite general
and applies to the optimization of a structure for any type of
merit function (weight, cost, etc.) and for any type of constraint
which is characteristic of the structure as a whole. Thus, not
only displacement constraints can be considered, but also overall
buckling, dynamic response, flutter and any other phenomena which
are indicative of total structural response.

By the same token, strength constraints do not satisfy the
criterion of Equation (3), since they are, of necessity, indivi-
dual characteristics of the constituent members and not of the
structure in toto.

In order to translate Equation (3) into a working procedure
for the stiffness optimization of a structure represented by an
assemblage of finite elements, some particularization of the
general definitions used previously is necessary. It is assumed
that both merit and stiffness of the system are linear functions
of the design variables A;. These specializations are not neces-
sary; they are made only to simplify the expressions for the cost
and constraint function derivatives for a concise presentation.
Other functional relationships are possible. One additional
specification is crucial to the derivation of the final simple
numerical procedure. This requirement, which is generally satis-
fied by most analytical methods, is that both the total cost and
total stiffness be sums of individual members contributions. As
a result, the simultaneous equations implied by Equation (3) un-
couple for each value of i and can hence be solved in an extremely
expedient manner using simple recursion formulae. The not very
widely recognized importance of these key considerations, satis-
fied fortuitously by finite element analysis techniques, is that
they remove obstacles which hitherto existed to the use of classi-
cal Lagrangian multiplier formulations for structural optimization.
It is assumed in the following brief development that the complete
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behavior of the structure is analyzed using the finite element
displacement method. In accordance with the above definitions, a
merit function (weight) is written

W(A;) = Zw, = W A (4)

Similarly the stiffness behavior is written

F(Rj) = Zej = Zejs; (5)

Equations (4) & (5) merely express the linear summations discussed
previously. wy & Ei are the contributions of individual unit-
sized elements to the total weight and stiffness of the system.
For a simple bar element with A; as the cross-sectional area

Wi = Lj Pj (6)

where L; is the bar length
and P; is unit material cost (density).

For other types of elements A; & Lj must be appropriately defined,
but the general form of Eq. (%) still holds.

The stiffness of a structure under an actual loading system
(P) is computed by imposing a virtual unit load system (Q) in the
direction of displacement required, and computing the virtual work
of system. The contribution of each element is given by

Pt 0
ej = 6; Ky 4 (7)
P, :
where oy are the vectors of the nodal displacement of
h

it element due to the actual and virtual loading
systems, K; = kj A; is the stiffness matrix of the
element and k; is the unitized element stiffness

matrix.

For other types of stiffness related constraints, such as
buckling, vibrational response, etc., corresponding relationships
to Eq. (7) can be derived and used in the subsequent development
of a suitable redesign algorithm. Examples of buckling and
dynamic response constraint formulations can be found in Refer-
ences 23 and 24. Substituting the above relationships into
Egq. (2) and after some algebraic manipulations the recursion
relationship is obtained

5 Pt Q Pt 0
v+l Ay 6; ki 6 6. ki 83
1 1 1
A; = i §5A§ Ls Pj\/ o i A (8)
* . e I
¢ Li Ay j Lj Pj
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where the superscripts v , v+ 1 indicate the values of
Aj at successive iterations and C* is the prescribed value
of the stiffness.

Eg. (8) is then the redesign algorithm for a single stiffness
equality constraint. 1In order to generalize the algorithm for
multiple inequality constraints, the recursion relationship is
applied to each constraint in turn and then the dominant values
of A; are selected for each member. The redesign process is iter-
ative at each stage and a procedure for partitioning design vari-
ables into active and passive groups is used to select which
members are effectively design by which constraints. This algo-
rithm, known as the envelope method, also permits the simultaneous
consideration of strength and minimum member sizes. The envelope
method is an obvious simplifying approximation and does not
strictly satisfy the correct optimality criteria for multiple
constraints. It basically disregards the sizing given by one
constraint when satisfying another.

Thus, analogous to the case of f.s.d., a procedure has been
obtained for stiffness redesign based on an approximate criterion
which has the merit of great simplicity and good general behavior.
Experience has shown that the solutions for stiffness constrained
problems obtained using the envelope method usually compare very
favorably with more rigorous solutions obtained otherwise at much
greater computational cost. The convergence characteristics of
the envelope method are similar to those of f.s.d. with usually
rapid convergence in a very small number of iterations, apparently
independent of problem size,.

A number of computer programs using optimalit% criteria algo-
rithms have been developed. The program OPTIM 11(8) is a large
scale program which contains eight different finite elements in
its basic library and is capable of application to a considerable
variety of large scale problems. The elements include bars, beams
and plates of various types. The program also contains a number
of special features such as provision for linking elements, plate
buckling computations and other capabilities intended to simplify
the analyst's work.

The capabilities of such optimization programs can be best
illustrated by a few example problems. These problems are gener-
ally small scale, but are intended to demonstrate the potentiali-
ties of the programs rather than to overwhelm by sheer size of
problem alone. The programs themselves are only really limited
by available computer size and the price (in terms of numbers of
analyses) which the designer is prepared to pay.

The first example (Fig. 3) is of a simple four-level tower
structure, composed of 72 primary members. The tower is subjected
to two loading conditions as indicated. For obvious reasons it is
desired to maintain the double symmetry of the structure, although
the loading itself is nonsymmetric. The automatic linking feature
is used to tie together elements where necessary. There are stiff-
ness constraints to ensure that the tower does not sway too much
under load. Figure 4 indicates that only four analyses were
required for convergence. The efficient redesign logic at each
stage requires only 10-15% of the analysis time.
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The second example is the geodesic dome of Figure 5, designed
for both strength and stiffness constraints. In this problem
involving 156 elements, the dome was subject to a uniform vertical
load and the vertical displacement of the central point was limited.
This problem was studied using various optimization programs avail-
able and full details of the results may be found in Reference 22.

Figure 6 represents the idealization of a wing carry-through
structure on a large heavy swing-wing aircraft. The loading arises
from operation with the wing in two different positions. The load-
ings on the pivot points were then principally flexural for the
wing in a forward, unswept position and torsional with the wing
fully swept back. In order to maintain the aerodynamic character-
istics of the wing, the rigidity of this structure must be very
high. Severe limits are therefore placed on the allowable dis-
placements and rotations of the pivot points. Initially a strength
only optimization was performed yielding a weight of 5035 1b in
50 iterations. This is a very slow convergence but it should be
noted that a weight of 5049 1lb (0.3% heavier) was reached by
iteration 18. The structure was then reoptimized with both
strength and displacement constraints. The least weight of
6159 1lb was reached at 50 iterations, with the same slow con-
vergence, but 6216 1lb (1% heavier) was obtained at iteration 14.

If all members of the initially obtained strength-limited
design had been directly scaled to reduce the displacements of
that design to meet the specified stiffness constraints, the
structure would have weighed 7961 1lb, over 29% heavier than the
actually optimized structure. This indicates the redistribution
of material effected by the optimization algorithm.

In this example, a bar idealization has been used for sim-
plicity, but in the actual structure, plates and shear webs would
be used. This raises an important point in structural optimiza-
tion regarding the influence of the idealization on the optimal
system. All redesign logic, for both stress and stiffness con-
straints is eventually predicated upon the detailed internal
stresses in the individual elements., Finite elements, or indeed
any other numerical analysis techniques, by their very nature
introduce a certain degree of approximation into a solution.
Finite elements are a piecewise representation of a continuum
and certain approximating assumptions are essential to their
basic derivation. The actual errors introduced into a given
analysis using finite elements is usually very small and hence
the results obtained are perfectly satisfactory for an engineer-
ing analysis. The widespread use and acceptance of finite element
methods is a testimony to their validity.

For optimization, where many analyses may be performed and
each redesign is dependent upon an erroneous analysis, the effect
of the inaccuracies may be cumulative. This does not imply that
the final system will be unsafe, but merely that the optimization
of a structure modelled by two slightly different idealizations
could result in two radically different designs. Care must be
exercised in the development of optimization programs to ensure
that only the most accurate analysis techniques are used. 1In
finite element analyses, bar elements are exact and involve no
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approximations. They are therefore frequently used for demonstra-
tion problems since they invite direct comparison of optimization
solutions obtained by other methods by eliminating idealization
errors.

The final example presented is that of the buckling of a
simple laced column (Figure 7). The column has 50 bar elements
and was optimized using a ?tiffness representation of the eigen-
value buckling problem.(23 The areas obtained for the chord
(axial) members are shown plotted in Figure 7 in comparison with
the exact solution obtained for the face sheets of a similar sand-
wich column. (25) The comparison is very encouraging.

ITII. OPTIMIZATION USING SIEVE-SEARCH

The selection of a truly optimal design to satisfy a par-
ticular set of engineering requirements is a complex process which
strictly involves the consideration of all the classes of variables
discussed in Section I. The approach presented in Section II deals
with a more limited design problem in which geometry, material and
construction are assumed to have been fully defined. A major
question indeed must be on what basis will these governing design
characteristics have been selected.

While it is true, that many psuedo-design parameters such as
materials and construction cannot be treated as continuous vari-
ables and hence cannot be incorporated into any standard mathemati-
cal programming search technique, other considerations do enter
into the picture. For the vast majority of engineering systems,
only a limited number of materials really come into consideration.
For civil engineering primary structures, titanium or boron-
reinforced plastics, for example would have little or no applic-
ability. Similarly reinforced concrete is seldom to be found in
aerospace structures. Thus although there may be a potentially
large number of possible materials and construction types, engineer-
ing practice and experience will indeed limit these to a finite
set, which may be considered discretely. 1In a similar manner,
although some aspects of the structural configuration, as defined
by the arrangement and location of the principal structural members,
are parameters to be selected by the designer, certain configura-
tional characteristics will be absolutely defined by the service
requirements of the structure. In addition, aesthetics and
engineering codes will probably place some restrictions on other
variables. The net result again is the specification of a finite
set of configurational parameters. Finally the detailed design
of individual structural components is governed by the critical
loading which they experience locally. This critical loading may
either arise from overall structural loading or may be a purely
localized loading system which has little influence on the struc-
ture as a whole. Thus the optimum design can be generated for a
given component under a specific loading system in isolation.
Extending this concept, a range of optimal members can be pre-
designed in some suitable manner for appropriate ranges of applied
loadings and sizes. This then is a so-called data bank. An
example of a data bank is a structural handbook, which specifies
appropriate code sizes of beams, columns, etc., for given applied
loadings. It is well recognized that internal loading distribu-
tions are not strongly influenced by small variations in member
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properties. Hence, except for highly pathological problems of the
type discussed in the previous section, it is assumed that only a
very limited number of redesign iterations is required for a satis-
factory degree of convergence. If the critical loading is purely
local, convergence is achieved almost immediately.

With the above considerations as guides, an approximate
optimization procedure for large structures was developed.(9) The
guiding philosophy in this sieve-search approach is that the
optimum system is an optimal arrangement of pre-optimized
components.

Individual components are optimized initially under local
loading conditions and the potential designs stored in a data bank.
A program is then set up which cyles sequentially through all the
finite combinations of the major variables. For each configuration
so defined, or segment thereof, an optimum design is generated
using the data banks and compared with the best design available
at that point. The best design is retained and the cycling is
continued.

The efficiency of this process is then highly dependent upon
the data banks available. These banks contain properties of
optimized components generated either by classical methods of
optimization or selected from standard structural codes. An
additional, but nonetheless important facet of the preset tech-
nique is the use of simplified engineering analysis methods where-
ever possible during the iterative phases of the redesign cycles.
Herein lies the efficiency of the sieve-search technique whereby
literally hundreds of redesigns are rapidly made for selected
configurational variables from which the optimum is obtained.

As a prime example of the sieve-search technique its applica-
tion to the design of class of surface effect vehicles (SEV) is
considered initially. The extension of the procedure to other
structural systems is discussed later with particular emphasis on
bridge structures.

Figure 8 is an actual photograph of a surface effect vehicle
which is prototypical of an extensive class of high speed cargo
vessels. Although operating in a marine environment, SEV are
essentially aircraft-type structures which must be supported on
a cushion of air. The development of least weight structures is
therefore of prime importance in the design of such vehicles since
the economic viability of SEV are dependent on low structural
weight.

Before initiating the design process consideration must be
given to the classes of parameters which would realistically be
regarded as variables in performing the actual design. Thus
external envelopes would be fixed by hydrodynamic and performance
requirements - although some trade-off studies between configura-
tions and performance might be desired. Figure 9 indicates the
general form of the external craft envelope.
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Constructional materials and modes may be fixed or may be
selectable from a limited class of candidates. Environmental con-
siderations will narrow the number of available materials and for
each material only a very small number of constructional modes
is technically feasible.

The internal arrangement of longitudinal and transverse beams
and bulkheads will have been fixed in an overall sense, but the
individual spacings and sizes will be treatable as free variables.
The only possible restrictions being dictated by internal storage
requirements. This then selects the classes of potential vari-
ables - material and construction modes, configurational variables
and component sizes. In a sieve-search procedure, an attempt is
made to consider all three classes.

In the particular case of SEV existing experience has
indicated that a major portion of the structural design is gov-
erned by local hydrostatic and hydrodynamic pressure loadings. In
addition, the requirement for internal cargo containers has a pro-
found influence on the ranges of beam and bulkhead spacings which
can be reasonably used in the ship design.

With these considerations, the design for minimum weight
can be conducted on the basis of optimizing the structure for
normal pressure loading and subsequently checking the resulting
design for strength due to overall bending, shear and torsion
loads. Plating (panel) thicknesses and beam cap areas are then
increased to ensure the overall integrity of the structure. This
approach led to two main procedural items - overall ship weight
minimization and plating optimization. These led naturally to
definition of the following variables:

a) Construction module, including both material and
constructional characteristics. Figure 10 presents
sixteen combinations of materials and constructions
which were considered feasible for this type of
system.

b) Configurational Variables (Figure 9)

1) Longitudinal bulkhead spacing, lLB

2) Transverse bulkhead spacing, 1pg
c) Dimensional Variables

1) Plating - Panel Skin Thickness and Stiffener
Dimensions

A finite number of longitudinal and transverse bulkheads and
transverse frame spacings are specified and these configurational
variables are optimized for minimum weight. Optimization of the
dimensional variables results in generation of the data banks
which store pre-optimized dimensional variables of structural
components. In the present application, panels of the type shown
in Figure 11 were optimized for minimum weight on the basis of
normal pressure. A penalty function formulation with a
Rosenbrock (26) search procedure was used. Geometric programming
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methods for structural optimization(27) also appear extremely pro-
mising for use in component design where constraint and merit
functions are expressible as nonlinear polynomials. The govern-
ing equations for the strength and stability of the panels under
the action of uniaxial compression and in-plane shearing were also
derived for use in the sieve-search method. For purposes of
simplification, the panels were assumed infinitely wide and all
critical conditions were expressed in terms of panel length, normal
pressure, material characteristics and panel cross-sectional dimen-
sions. The optimizations were then performed using the panel
cross-sectional dimensions as variables. In addition to strength
and stability constraints, consideration was also given to fabri-
cational limitations for the various types of sections optimized.

Sixteen data banks consisting of eight basic geometric
configurations with four materials namely, aluminum, steel, tita-
nium, glass reinforced plastics were calculated and labeled con-
struction modules. For these, all practical "failure" modes were
derived analytically in five basic categories: material strength,
overall buckling, local buckling, deformation limits and fabrica-
tion limits. Actually deformation and fabrication limits are not
failure modes, but rather design specification modes which in many
cases determined the optimum panel design.

When performing the optimization procedure, all of these
critical conditions were expressed as inequality constraints. The
fabricational constraints were based upon:

1) Considerations of practical sections, for example, no
overlap of flanges, and

2) Data on the range of extruded sections which could be
manufactured using existing dies and presses.

The deformation constraints were based upon the specific maximum
allowable panel deflections.

The data banks are entered during the sieve-search process
using the current spacing, L, and panel pressure, p, as shown by
the dashed line on Figure 11l. The resultant minimum weight, w,
and cross-sectional geometry is stored for subsequent weight
calculations.

A flow chart for the sieve-search program proper is shown
in Figure 12. For application of the method, the vehicle was
broken down into the four segments shown in Figure 9. These
segments were defined in the present case by variations in the
pressure loadings acting on the hull. Other forms of segmentation
could have been selected to suit any arbitrary conditions. Within
each segment certain configurational parameters were kept constant,
although varying from segment to segment. The location of the
longitudinal bulkheads was common to all segments. Each segment
was further broken down into smaller zones such as deck, sidehull,
etc. Each zone is then designed separately and combined to form
the design of a segment.



g3 €

Aluminum Steol Titanium GRP
Polyester, Epoxy,
Fiberglass Fiberglass
Alloys 5086 6061 HY.130 ALMAR-362 6AI-2Cb-1Ta- 1Mo BAI-4V Reinforced Reinforced
Sheet Sheet
H-111 Extrusion Sheet Q Q Plate Plate
Temper or H-34 Sheet T6 { Plate & Plate & Plate Annealed { Rolled - Annealed { Rolled -
Condition H-117 Plate Extrusion T Extrusion T Extrusion Forms Forms Mechanical - Mechanical -
Extrusion Extrusion Hand Lay-up Hand Lay-up
Type of % % % % %
Construction
Siringers and Plate Stringers and Plate Plate and Extrusion | Plate and E xtrusion Plate and Extrusion Multiple Frames Box Core Box Core
Integrat Extrusion Integral E xtrusion Welded Welded Welded Plate and Rolled
Forms
Welded Assv. Riveted Assy. Weided Assy. Welded Assy. Welded Assy. Welded Assy. Bonded Assy. Bonded Assy.
Module 1(a) 1{b) 4(a) 4(b) 4(c) 5(b) 8(a) 8(v)
/-_ e ——
ok i3 e
Construction = =
Formed Stringers Extruded Web-Core Formed Stringers Multiple Frames Formed Stringers Sheet and Rolled Stringers - Frames Stringers - Frames

and Frame - Sheet and Frame - Sheet Plate and Rolled and Frame - Sheet Forms and Skin and Skin
Forms
Welded Assy Riveled Assy. Welded Assy. Welded Assy. Welded Assy. Resistance Weided Assy | Bonded Assy Bonded Assy
Module 2(al 3 2(b) 5(a) 2ic) 6 7(a) 7(b)

Figure 10.Construction Modules

W 1]

L\ [P1P2P3PaPsPg P7 Pa P9

Ly |

L2 |

Ly !

Bl —

Ls ;

6= — — =y~

[ ad —

Ls —

Le —
OPTIMIZATION PARAMETERS: p, L
OPTIMIZATION VARIABLES: w, b, ty, 1y

by, byy. by
OPTIMIZATION CONSTRAINTS:  STRESSES

DEFLECTION AND
FABRICATIONAL

Figure 11,SEV Data Bank

= A1LlV1139 V'Y

334dNA ‘WA

L6



98 llc — APPLIED STRUCTURAL OPTIMIZATION

The cyclic nature of the design process is apparent from the —
flow chart (Figure 12). It can be seen to be essentially a series
of iterative looping operations which indeed permit the sequential
consideration of all feasible possibilities.

The design process begins by selection of the appropriate
SEV gross weight and construction module. The next choice is of
the longitudinal bulkhead spacing from a list of allowable spacings.
In SEV's cargo container size provides a lower bound on bulkhead
spacing. For the specific longitudinal bulkhead spacing, allowable
ranges of transverse bulkhead spacings are defined for each seg-
ment. In each segment the geometry is fully defined. Using the
known local pressure loadings, the data banks are accessed for
appropriate loads and geometry for each zone. The weight of a
segment is computed and compared with that obtained for other
transverse bulkhead spacings. This is repeated for each segment
yielding the minimum weight design for the specified longitudinal
bulkhead spacing. The entire looping is then carried out again
for the next longitudinal bulkhead spacing and repeated to obtain
the minimum weight craft.

Final checks on strength are performed using engineering
analyses and where necessary incremental material is provided.
For the ship system costing data is also computed.

The program then automatically cycles to the next construc-
tion module and SEV configuration, and repeats the entire process.

The above program was used extensively in the design of a
range of SEV's varying from 500 to 10,000 tons gross weight.

Out of a total possible number of 232 ship designs, 173 were
obtained. Designs for the remaining 59 configurations were not
obtained due to the non-existence of minimum weight data for
certain pressure/length combinations in the data banks. The
availability of such data is directly dependent on the constraints
placed on panel deflection, stress, and geometry in the process of
generating the data banks. The constraints will yield, at times,
nonfeasible panel designs and these appear as blanks in the data
banks. If some of the constraints used in the component design
are considered to be artificially severe, they may be modified.
Using these less stringent criteria, additional ships designs
would have been obtained.

Computational time was as low as 20 cpu seconds per ship
design on an IBM 360/65 computer. The resulting output gave a
very full description of the proposed structure including all
scantlings, frame spacings and cost data.

As a second example of the use of the sieve-search procedure
in a structural design process, its potential application to a
bridge design problem is briefly considered.

For the purposes of a design study, a complete bridge
structure may be broken down into the three major subdivisions,
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(1) Deck

(ii) Primary structure spanning between piers and
supporting the deck

(iii) Substructure

The use of a sieve-search procedure for the optimal design of the
deck and primary structure is outlined in a flow chart (Figure 13).

The essential characteristics of multiple levels of itera-
tions with detailed design performed through the use of data banks
is retained from the previous example, although the actual opera-
tions performed at each iterative stage may be totally different.
For the bridge example the use of multiple data banks is deemed
necessary.

The data banks for a bridge structure may contain a variety
of different construction modules such as deck panels, plate or
tubular girders, precast concrete beams, steel wide-flange beams
with cover plates, cable arrangements or steel towers and concrete
columns. All such potential bridge structural components may be
pre-optimized on any suitable merit basis for suitable ranges of
critical loadings and span lengths. The optimized data is then
stored in banks readily accessible at the appropriate stage of
the sieve-search program.

In selecting the bridge configuration a number of choices
may exist and each may be programmed according to its intrinsic
shape. Table I from Reference 28 indicates that for various spans
alternate configurations may be possible, but engineering judgment
and/or environmental conditions as well as other factors may
narrow the choice of feasible designs.

For the deck construction, the most commonly used construc-
tions are in-situ concrete, precast concrete and steel. Also
experiencing growing popularity is the so-called orthotropic steel
deck consisting of deck plate stiffened by parallel stringers.
Some typical cross-sections may be found in Reference 28. 1In
order to choose an appropriate deck, the following prime factors
must be considered,

1. Strength, longitudinal and transverse
2. Dead weight
3. Cost

An efficient design includes the deck as part of the primary struc-
ture for load transferal and the true economic evaluation of the
above three items may be successfully achieved when and only when
the total bridge design is considered. For example, an ortho-
tropic steel deck if viewed only as a slab will not compete in

cost with reinforced concrete but the steel deck may be competi-
tive if its axial force capacity and reduced dead load effects

are considered through the complete superstructure and sub-
structure designs.

The comparisons of all typical deck sections in context with
the complete bridge structure are ideally suited for an automatic
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sieve-search procedure. Data banks for each of the candidate deck
cross-sections may be established. These files can be as sophis-
ticated as desired wherein a range of span lengths together with

a range of critical loads may be applied to each typical section.
Figure 11 illustrates this and associated with each minimum weight
(live + deal load), Wi, is a unit cost factor and optimal cross
section geometries. The minimum weight and/or cost is evaluated
under such constraints as deflection, strength, buckling, torsion,
web crippling, etc. The definition here may be either working-
load or ultimate. Fabricational limitations, code specifications
and cost penalty factors may be included as well.

In the sieve-search, a predetermined table of acceptable
longitudinal beam spacings may be specified, along with appropriate
transverse spacings. The program will cycle through all the
defined grids in its search for the optimum design. The configura-
tion is also controlled by combination of fixed and variable
lengths between abutments and piers. Each of the variable spans
would be designated as a semi-independent segment for which a
detailed design would be performed. For each segment, deck module
and beam arrangement, the appropriate specialized data banks would
be accessed to generate the local design which would then be
compared with the previously stored optimal design. All segmental
data is then assembled for the evaluation of the total design for
a given longitudinal beam spacing. Specialized input, labeled
"as-built" factors are provided to account for nonstructural items
such as expansion joints, catwalks, railings, wearing surfaces,
protective coatings, etc. After all potential longitudinal beam
spacings have been considered, an interim optimal design is obtained.
For this configuration, the superstructure is designed, again using
appropriate specialized data banks. At this point a complete deck
and superstructure have been designed and final check analyses
should be performed. Some incremental adjustments on component
sizing may be necessary. Consideration may even be given to the
use of some suitable form of optimality-criteria optimization to
refine a design, if this is felt to be appropriate.

Finally, the program would generate complete cost data for
the selected design, including maintenance. The program is then
repeated for other deck modules and configurations until the final
design is rendered.

The preceding discussion has not been based upon an existing
program but has been intended to indicate the possible extension
of the sieve-search procedure to a civil engineering structure.

Iv. CONCLUDING REMARKS

Two distinctly different approaches to the optimal design of
structures have been presented. 1In both cases, the greatest
possible emphasis has been placed on the practical aspects of
the design problem in an attempt to produce a workable tool for
the designer.

The optimality criteria approach is gaining acceptance by
designers because of its fortuitous combination of simplicity and
effectiveness. Computer programs based thereon are being used
simply because no other method exists at this time that can cope
with the very large number of variables encountered in finite
element representations of real structures.
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The use of the sieve-search procedure is a direct contrast
in approach. The results obtained from the SEV design studies for
an extremely modest expenditure of computer time, have indicated
that this method is also an efficient cost-effective approach to
automated optimal design. The ideal solution would possibly
appear to be a combination of the two approaches, whereby the
sieve-search defines configuration and noncontinuous variables
and the optimality criteria method is used for refinement of the
design. The extension of the procedures to other classes of
design offers a considerable potential for overall system
optimization.
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SUMMARY

Examples are presented of two approaches to the optimal design of complex
structural systems. The first approach, based upon the use of optimality crite-
ria is capable of optimizing finite element representations of large scale,
complex structures with prescribed geometry. Both strength and stiffness con-
straints are considered. The second procedure is labeled sieve-search and is
used for the overall optimization of structures. The method permits the full
variation of construction method, materials and configuration as well as com-
ponent sizing.

RESUME

Des exemples de calcul d'optimisation pour des systémes de structures
complexes sont présentées selon deux approches. La premiere, basée sur le cri-
tere d'optimisation, permet de résoudre des ensembles de grande dimension d'élé-
ments finis, ou des structures complexes & géométrie donnée. Les contraintes de
résistance et de raideur sont prises en considération. La seconde méthode, dite
"sieve-search" (tamiser-chercher), sert & l'optimisation globale des structures.
La méthode permet une compleéte variation de la méthode de construction, des ma-
tériaux, de la forme et des dimensions.

ZUSAMMENF ASSUNG

Beispiele des Computer-Einsatzes bei der Optimierung von komplizierten Trag-
werken sind nach zwei Methoden aufgeteilt. Die erste Methode wird das Optimierungs-
kriterium benitzen, und erlaubt die Optimierung von komplexen Tragwerken mit einer
bestimmten Geometrie, durch machtigen Darstellungen finiten Elementen. Die zweite
Methode, die"sieve-search" (sieben-suchen) heisst, wird fiir die globale Optimierung
von Tragwerken benitzt. Sie erlaubt eine totale Bearbeitung der Baumethode, der Ma-
terialien, der Form und der Abmessungen,
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