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Illa

Computer Analysis and Model Experiment of Cable Structures
Analyse par ordinateur et expérience sur modeéle d'une structure de cables

Computer-Analyse und Modellversuch von Kabelstrukturen

YOSHIO NAMITA TOHRU SHINKE KUNIHIRO HIRONAKA
Dr.-Eng. M.-Eng.
Chief Research Engineer  Research Engineer Research Engineer

Structural Eng. Laboratory, Kobe Steel, Ltd.
Amagasaki, Japan

1l. Introduction

In this paper a computational method of two-dimensional cable structure
is proposed, in which emphasis is laid on the problem of determination of
structural member lengths. In construction of cable structures full know-
‘ledge about structural member forces under given loading conditions and
especially, about the determination of correct length of each member is
indispensable so that the completed structure forms strictly a shape of
required geometry. When cable structures are constructed by connecting and
tensioning many members with certain lengths ( unstrained length ), then their
final shape should agree with those prescribed beforehand. Unsuitable choice
of unstrained lengths of members makes it impossible to set up the desired
structure, that there may be found many members left unstrained even in
completed state.

From another point of view, we may say that the very problem is to know
the completed shape and stress state of the cable structures when the structural
members with certain lengths are assembled with some boundary members anchored
with initial tension.

The authors report here on the nonlinear analysis of two-dimensional
cable structure covering the above-mentioned problems, and ocn the experimental
work which was done so as to certify the pertinency of the theory.

The theory is not limited to stress and deformation analysis of structures
under given conditions ( initial member forces and geometry ), but makes it
possible not only to clarify the stress and deformation states of cable
structures but also to determine the correct unstrained lengths of members
which are needed to set up the structure with desired geometry.

Computation starts from the estimate of pretension in each member utilizing
the method of least squares, and then equilibrium state is determined by energy
method. Computation is repeated, changing the values of pretention step by
step, until the final shape of the structure is sufficiently conformed to
prescribed one.

Laboratory experiment was made on a large-sized cable truss model of
23.6m length. In this kind of experiment the influence of errors upon displace-
ment measurement should be strictly restricted to minimum, for deformation
itself is the dominant factor to determine an equilibrium state. As the
accuracy in setting-up and measurement of the model, however, is evidently
restricted to a certain limit, relative errors should be made as small as
possible by employing a large-sized model. Experimental results are shown
and compared with theoretical values.
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2. Statical Analysis

2-1. Basic Assumptions

Following assumptions are made in the analysis: (i) Stress-strain relation-
ship of the material is linear. (ii) Bending stiffness of the member is
neglected. (iii) Every loads act only at joints. The members are straight
between the joints. (iv) Joints are considered to be frictionless hinges.

2-2. Estimate of Initial Tension by the Method of Least Square

Fig. 1 shows a joint j where N members are
assembled. N member forces Pjn(n=1...N) and
two external forcesFjx ,ijact at this joint.
Equilibrium conditions at joint j are written
in the form

Zan( Xj=Xn )/Ljn= Fix

Z F;n( Y] "YnVLjn = ij

When the structure is in equilibrium, Eq. (1)
holds at all joints, i. e. Fig. 1

(1) PjZ/

Force system at a
T-P=F (2) joint

where T is an equilibrium matrix of order
(f x m) consisting of direction cosines of every members, P is a (mx1) vector
of every member forces and IF is a (fx 1) vector of external forces. m and f
mean the numbers of members and degrees of freedom respectively. We suppose
here f>m, that is, the system to be treated is a structural mechanism, which is
often the case in cable truss structures. In such cases Eq. (2) cannot be solved
uniquely and the consideration of finite deformation is needed.

Now, Eq. (2) can be written in the form

T R=F-r (3)
where To is an equilibrium matrix which satisfies the prescribed configuration
condition, IP, is an internal force vector which satisfies Eq. (2) approximately
and Ir is the vector of unbalanced forces at every joints. We now estimate the
most probable values of IP, making unbalanced force vector I minimum. The
Euclidian norm of r is

2
Irl*= (T, B-F) (T, P-IF)= BT, T, IR - 2R T, F+F'F ()
The necessary and sufficient condition to reduce llirll2 to minimum is obviously
aﬂlrub/anj= 0 , which gives the normal equations as follows,
T.T.R=TF (5)

Eq. (5) can be solved uniquely and gives the most probable values of member
forces at the required state To , which are utilized as the initial values for
finite deformation analysis which follows. It is not always easy to solve Eq.
(5) directly with sufficient accuracy, since the calculation of inverse matrix
(T’ To)! 1is contained in its procedure. We adopted Golub's method (1) with
successful results.

2-3, Finite Deformation Analysis by Energy Method

The approximate values of I[P, have thus been obtained, but the unbalanced
forces Ir still exist at the joints. In order to make these unbalanced forces
vanish finite deformation analysis is carried out utilizing the theory based
upon the principle of minimum potential energy. Buchholdt's works ((2), (3))
with regard to this problem furnish us much information.

The total potential energy of the cable structure is shown as

W:ZUS "FTX’ (6)
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where ¥ is the displacement vector of joints, and Us is the strain energy of
each member and is shown in the form

e
Us:ujnszjn de=(PRe+EAe/ 2L)jn (7)
o
where Pojn , @jn , (EA)jn and Ljn are initial tension, total elongation, exten-
sional rigidity and final length of member Jn respectively, further,
(Ax)*(Ay)’ -
ejn Ljn{AX cAx+ AY- Ay*—i———_}jn

where AX=Xn-Xj; 5 Ax=Xn-X; etc. (cf. Fig. 2)

The principle of minimum potential energy
leads to the equilibrium conditions at every
joints, i. e.

oW AW -
= {ax| o “ay, ]fho 9)
where
aw _ v 9Ujn 3ejn
3xj 'R dejn 9xj Fix
. Z._L_(AX « Dx) - Fix B
LJF’I

In order to find the displacement vector x
which satisfies Eq. (9), the conjugate gradient
method is used. Letting x' be the displacement
vector at the r-th step of repeated calculation,

X' at the (r+l)-th step is obtained by the Intial State ————
relation : Z:’L*NFN) Fix50
Xr+| = Xr't- Srvr (11) Equilibrium State
. . L/ PV .
where ST is a line element along the descent ;u@mﬁkxnﬁ §)-Fix=0
vector wl to minimizeW , that is, ST minimizes
' S r rr Fig. 2. Equilibrium at a
q(S )"W(’? +S'V ) (12) joint
Fletcher-Reeves method (1) is effective to
find the value of descent vector wl . Its sequence of calculation is as follows:
(i) for r=1, put o
I S Iy .. I S AW/ A e }¥=W
viz {oe (v = aw/ax; : (13)

( xo may be assumed to be zero vector. )
(ii) for r=2 ~ (f+1) calculate

"=_g"[(aN (g Y (a" (@ v (1)

where

(iii) for r=f+2 turn to (i).

2-4. Evaluation of Member Lengths

The main purpose of our analysis is to find the correct member lengths at
unstrained state. Combining the method of analysis mentioned above, we can find
the required unstrained lengths of every members. Assembling such members the
structure having desired shape can be obtained. When the completed state of the
structure is thus obtained, it is not difficult to analyse it under any addi-
tional loading condition. The flow diagram of analysis is shown in Fig. 3.
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3. Model Experiment

Fig. 4 shows the cable truss model
which is to be thought of as a model of
catwalk for long-spaaned suspension bridge
( about 1,000m long ) with scale 1:40.
Pieces of piano wire cut in calculated un-
strained lengths were assembled to form the
cable truss, which was subjected to
concentrated loads at every joints ( corres-
ponding to dead loads of prototype structure)
and finally tensioned by pulling and anchor-
ing the both ends of the lower chord member.

Table 1 shows the prescribed coordinates
and concentrated vertical loads (dead loads )
of every joints. A part of least square
solution for member forces is shown in Table
2, which is used as input data for subsequent
finite deformation analysis. By this
analysis the joint coordinates are obtained
as shown in Table 3 ( X-coordinates omitted )

The theoretical values in Table 3 (Th.)
seem to agree fairly well with the prescribed
one in Table 1. From this result the un-
strained lengths of members are determined,
which makes it possible to set up the model
in required geometry. The experimental
values (Ex.) at the completed state of the
model are also shown in Table 3. Differences
between theoretical and experimental values
are very small for the size of the model.

[INPUT: X, Y. F, *E. A,Restr. |

L Transforrnotiop Matrix: To |
[ NodalEFuaHonsT
LLeustSq.Soyﬁon:i§1
—1 Unbc1l<:1n<:edl Forces: YW|

[ Euclidean Norm: R |
es

no
[ Descent Vfctor: v |

[_S. Minimizing q(S) ]
y[=r+1
[ x = x+S-v

yes

| Pm= 0 |
[Output: x, P, e }—

| OUTPUT : Unstrained Length:Le

Fig. 3. Flow diagram of

Table 4 shows the result with regard computation
to member forces, and Fig. 5 shows deflection
l 23.570 m
E
™
o~
-
"! 17
L_ \ﬁmgr_ﬂope (0.9 mm _dia.)
P
Storm_Rope(2.0 mm dia)  E=2.05x 10 Kg/mam!
,L . 23.610m __

Fig. 4. Cable truss model

curves of cable truss due to additional concentrated load ( live load ) applied
at the mid-span. In Figs. 6 and 7 the load vs. deflection curves and load vs.

member force curves are shown respectively.
agree very well with theoretical values.

Every experimental results seem to
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Main Rope Storm Rope Eef'\iber ::’;‘tg)
No.of |Coordinates | Load |No.of |Coordinates|Load 3 775.4
Joint | X (mm){Y{mm)| (kg) [ Joint [X(mm)|Y(mm}]| (kg) 5 764.4
1 0 0| 0 14 | =20 %125] 0 . | 7625
2 |1930| 605 26.9| 15 | 2713 | 3374 | 4.4 0 7601
3 | 3437|1001 | 23.7] 16 | 4220] 3046 | 3.0 - 700
4L | 5001 | 1341 | 21.0| 17 | 5640 2792 | 2.6 S—1 207.4
5 | 6183 ] 1550 | 16.9| 18 | 6787 | 2625 | 2.4 : 206.9
6 | 7223|1702 | 12.8| 19 | 8021 | 2485 | 2.5 P 206.6
7 | 7868 | 1780 7.1 20 9234 | 2385| 2.2 9 204.1
8 | 8168 | 1812 9.0 21 10206 2333] 1.7 D—1 13.0
9 | 9056 | 1893 9.3 22 |10956] 2309| 1.6 4 38
10 | 9406| 1918| 86| 23 |11785]| 2300| 1.6 7 X
11 |10206| 1963 | 11.6 10 4.3
12 |10956] 1989 11.8 13 5.
13 [11785] 1999] 12.4 15 29
Table 1. Prescraibed shape and loads Table 2. Least
for cable truss model square solution
MQin RoPe Sto(m RoPe Mem_;:::ﬂ:i:'emhc Mem-‘sh::r:\l;r:::czeﬁclio Mﬁ;::r;:m,
No.of | Y-Coordinates No.o1 | Y-Coordinates ver  Ex. | Th. % | ver [ Ex.| Th. | % | ber | E€x. | Th.
Joint | Ex. Th. Diff. Joint | Ex. | Th. Ditt. [M-1] 799] 800 99.9] s-1| 200] 196|102 D=1} 15 | 1
2| 779 787 9s.0] 2| 205! 195 10§ 2| s 5
1 0 0 o| 14 | 4125 4125 O 3| w8l ee| 3 20 19¢ 108 | 3| 12| 7
Y Y Y T T O B e e e
3 [ 1000| 998| 2| 16 | 3044 | 3044 | O TR o i sy I T T e il e T
4 | 1344|1340 4| 17 | 2795 | 2791 | 4 ::, ;:: :i:’%)j_ggg ::;*:gi_ : 13_____?
5 | 1555|1550| 5| 18 | 2633| 2625| 8 i ;T{%';Zi‘“é:o g ;gf—‘;z:—:g: -
6 | 17091702 7| 19 | 2495| 2486 | 9 ol ma sl seo| || 1 | ol 0] s
7 | 1787|1782 5| 20 | 2395|2388 | 7 [ ] os3) msejeso| f L 1 mlwoy s
12| 78| 759, 97.0 | | 12 5 3
8 | 1823|1814 9| 21 | 2345]| 2337| 6  Onit %9 )
9 | 1904|1895 | 9| 22 | 2320|2314 6
10 | 1931 | 1921] 10| 23 | 2310 2305 | 5 Table 4. Member forces of
11 1975 [ 1968 7 | Ex=Experimental Value cable truss model
12 2000 | 1994 ¢ | Th=Theoretical Value
13 | 2010] 2004] ] OM=EXT

Table 3. Joint coordinates of
cable truss model

pt2 | M-l
‘E pl.é4 - /'/ B
o
£ g & /
= pl.e @
s I
5 pt9 it '{.
S
: = pUI 200
| v o > 5-
. (=] 13
ey [l PO i z‘l
: H . 3 —— Theoretcal curve
10 | | | == Theoretical curve pti3 e Experimentalvalic
20l Storm Rope e . Experimental value 5
L ' i r 0 20 30 0
—— Theoretical Curve 10 20 30 40
¢ Experimental Yalue Load applied at pt.13(kg) Load applied at pt.131kg)
Fig. 5. Deflection curves Fig. 6. Load vs. deflec- Fig. 7. Load vs.

due to load at mid-span tion curves’ member force curves
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4, Vibrational Analysis and Experiment
4-1. Method of Analysis
Equation of motion of the cable structure can be written in the form

where M and [K mean mass and stiffness matrices respectively. Stiffness
matrix KK is the superposition of every member stiffness matrices Kjn= [kix)in
(i,k=1....4). kix are obtained by Castigliano's theorem, i. e.

2
kik = 8" Ujn/ 3x; 3x (16)
where Ujn is the strain energy of member jn as given by Egs. (7) and (8).
Frequency equation is

det|M - A K| =0 (17)
of which roots give natural frequencies of the structure. Householder's
method was successfully used to give the roots of Eq. (17).

L-2, Experiment

are obtained by giving har-

Vibrational tests were Tension in Vibrational Mode
carried out on the model Storm Rope | 1st Mode ( Symmetric ) 2 nd Mode ( Antisymmetric)
structure. Natural frequen- ! ;
cies and vibrational meodes P=150kg T ! //rﬁr‘*\<L;;Ji{
|

monic excitation to the
model. Results are shown in

|
: : G | i T
Fig. 8 with sufficient agree- P=200kg
ment between theory and \\\*‘_+,r
|
\\j/

|
L
|

experiment.

—

P=250kg| =——
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Summary

A computational method of two-dimensional cable assembly is proposed, where
emphasis is laid on the problem of determination of member lengths, so that the
final shape of the structure satisfies the configuration condition prescribed
beforehand. Experimental study was made on a large-sized model of a cable truss.
The results of both statical and dynamical experiments showed good agreement with
theoretical values.
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