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Theorie, Programmentwicklung und Erfahrung an vorgespannten
Netzwerkkonstruktionen

Theory, Development of Programs and Experience on Prestressed
Network Constructions

Theorie, developpement des programmes et experiences faites sur
des constructions de reseaux de cables precontraints

J.H.ARGYRIS T. ANGELOPOULOS
Prof., Dr., Dr. h.c. Dipl.-Ing.

Institut für Statik und Dynamik der Luft-
und Raumfahrtkonstruktionen

Stuttgart, BRD

Übersicht. Es wird ein Überblick über die statische und dynamische Berechnung von
vorgespannten Netzwerkkonstruktionen gegeben .Grundlage hierfür ist die Methode der Finifen
Elemente und die Matrizenverschiebungsmethode. Ferner werden vorhandene Rechenprogramme
und deren Weiterentwicklung beschrieben .Eine Reihe von Beispielen,die zum Teil aus den
Berechnungen der olympischen Bauten in München entnommen wurden,bestätigen erneut die
Eleganz der Methode der Finiten Elemente.

Einleitung. Die rasche Entwicklung der elektronischen Rechenanlagen hat einen großen
Einfluß auf die Berechnungsmethoden der Technik und vor allem auf die der Statik und Dynamik

bewirkt. Die seit 1953 vom Senior Autor aufgestellte und ständig weiterentwickelte Theorie
der finiten (endlichen) Elemente [4/2,'SJ war in erster Linie für die hochkomplizierten
Tragwerke der Luft-und Raumfahrt gedacht. Die Methode wird heute in mehreren wissenschaftlichen
Zweigen wie z .B. im allgemeinen Maschinenbau und im Bauwesen angewandt .Nichflineares
Verhalten des Materials [6] und/oder der Geometrie (große Verschiebungen) [AJ läßt sich
sehr elegant für ein-,zwei-und dreidimensionale Kontinua formulieren.Die statische Berechnung

der vorgespannten Netzwerkkonstruktionen ist ein nichtlineares Problem bezüglich der
Verschiebungen,wobei die Dehnungen im linear-elastischen Bereich bleiben .Auch hierzu wurde

bereits 1959 vom Senior Autor [2,5J die Theorie entwickelt. Ihre Anwendung speziell auf
Netzwerke fand jedoch erst im Rahmen der Untersuchungen der Zeltdächer^?/13J für die
olympischen Spiele in München statt. Die Theorie ist ausführlich in^jM3J behandelt worden
und in diesem Vorbericht wird sie in Kurzform (Abschnitt 1) erläutert. Mit der
Matrizenverschiebungsmethode läßt sich das lineare Schwingungsproblem beliebiger Strukturen sehr einfach
ermitteln .Für Netzwerke muß zusätzlich das nichtlineare Schwingungsverhalten berücksichtigt
werden (s. Abschnitt 1).

Hierzu ist absichtlich ein extrem nichtlineares Beispiel gewählt worden,um einerseits
die eindeutige physikalische Interpretation der Nichflinearifät (Geometrische Steifigkeit) und

andererseits die Genauigkeit der numerischen Integration C8J zu demonstrieren .Wie schon
oben erwähnt wurde, läßt sich die Methode der finiten Elemente nur mit Hilfe von elektronischen

Großrechenanlagen,wie z.B. die im ISD (Institut für Statik und Dynamik der Luft-und
Raumfahrtkonstruktionen, Universität Stuttgart) installierte CDC 6600, verwirklichen. Seit
langem werden im ISD große Programmsysteme entwickelt,welche die statische [9J und
dynamische [lOJ Analyse von beliebigen Strukturen erlauben .Speziell für Netzwerkkonstruktionen
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ist ein Programmsystem entwickelt worden, welches die statische Berechnung (auch für Netze,
die zum Teil Biegeträger aufweisen) ermöglicht. Dieses Programmsystem wird im Abschnitt 2

beschrieben,sowie auch seine weitere Entwicklung (Abschnitt 3) .Auch für die statische und

dynamische Analyse von sehr hohen Masfen können die vorhandenen Programme verwendet
werden. Schließlich werden im Abschnitt 4 mehrere Beispiele angeführt,welche die Güte der
Methode der finiten Elemente und die Zuverlässigkeit der Rechenprogramme demonstrieren.
Die starke Begrenzung der Seitenzahl in diesem Vorbericht erlaubt es uns leider nicht,ausführlich

auf die Theorie einzugehen .Wir hoffen aber,dies in den Abhandlungen nachholen zu
können, insbesondere für das Schwingungsproblem.

1 Überblick über die Statische und Dynamische Berechnungsmef hode für vorgespannte
Netze

1 .1 Iterative Berechnung der Gleichgewichtslage. Die Theorie für die statische Berechnung

von vorgespannten Netzwerken wurde schon in[7,13J ausführlich behandelt. Wir wiederholen

hier in Mafrizenschreibweise den Vorgang für die iterative Gleichgewichtsermittlung
(siehe auch Abbn. i2,13

K Vektor der äusseren Kräfte (Inkremenfale Belastung)

p Zuwachs der inkrementalen Belastung

Ru. Vektor der Ungleichgewichfskräfte der Knoten _ -v

D D -(£AaC\ru Vektor der natürlichen Kräfte .Für das a-fe Element gilt >Nq~~\ Lo Ja
UiV Boolesche Matrix (siehe C3"]
Crtiv Diagonale Hypermatrix) U^... U/v*...Q/Vs J mit OLhiX j^v. L. J und

C Vektor der Richfungs-Cosinuse des Q—ten Elementes °

'A Inkrementaler Verschiebungsvektor

Elastische und geometrische Steifigkeit des Netzes

y\\ Inkrementaler Verschiebungsvektor der Elemente

X Vektor der aktuellen Koordinaten der Elemente (Entsprechend y£
{X^...X^...Xs} mit X(j [^y4^Xay2^

o Anzahl der Elemente im Netz
1 .2 Das System der Bewegungsgleichungen für große Verschiebungen .Mit Hilfe des Kraff-

Weg-Diagrammes für große Verschiebungen und der Lagrange'schen Vorschrift wird das System
der Bewegungsgleichungen hergeleitet .Für die Auslenkungen,Geschwindigkeiten und Beschleunigungen

definieren wir folgende Vektoren für die Freiheitsgrade von fi Knoten

rsJU4Va.1V/4, U»VaW»}(2) r={üA^l---Üy,WY,}(3) r={üiV«M... ÜWtjW«}^)
Die Gesamtsteifigkeitsmatrix des Netzes K-i=L»\E+Ia öji/ (auch Tangentiale Steifigkeits-
matrix genannt) wird zu Beginn jedes Integrafionsschrittes aus der aktuellen Geometrie und den
natürlichen Kräften aufgebaut und bleibt innerhalb des Zeitinfervalls konstant. Die Massenmatrix

M (ausnahmsweise für Netzwerke) ist nur in ihrer Diagonale besetzt

T * LL-Lo M r™V™*V^vV-"™V"V^vvJ

N Anzahl der Stäbe die am Knoten -f anschliessen
IX Masse/Länge

[kE+^]=
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Weiterhin ist Ro der Vektor der Ungleichgewichtskräfte am Anfang jedes Zeifintervalls und

|Ta - Y"<[—Yö der inkrementale Verschiebungsvektor. Die .Anfangswerte zur Zeit t- to sind
P - "To und T—Vo • Aus dem Energiesatz und unter Berücksichtigung der Nichtlinearität

im Diagramm (Abb. 6 gilt

4 Cr/K,n -riK^rr0 - rt K, r2 - r0%re> ° CO
Nach der Lagrange'schen Vorschrift: ^p^A_gr/ +9UAf +9r%f 0 O)
mit | ,L( r Kinetische,Potentielle bzw. Dissipationsenergie wird

_ (da die Masse unabhängig vom Verschiebungsvektor ist)

9^= Ro+Idri-Irdc» M-d |f o «d
Durch Einsetzen von (8,9,10, ll) in (7) ergibt sich M ^4 + fl 4 Ya ~ R O C"12)

wobei no zu Beginn jedes Infegrafionsschrittes bekannt sein muß.Wir geben hier die Formel
für den 2+1 Integrationsschritt an: _L r, O ./ •- N /,-a>

1 .3 Numerische Integration des Systems. Für die numerische Integration können die
Methoden verwendet werden,die auch bei den linearen Schwingungen zum Erfolg geführt
haben. Eine sehr genaue Integrationsmethode ist die der "Finite Elements in Time and Space"
L 8 J ,bei der außer den endlich kleinen Raumelementen auch endlich kleine Zeitelemente

eingeführt werden .Wir verwenden hier jedoch eine abgewandelte Methode des in [°J beschriebenen

Verfahrens und geben hiervon eine Kurzfassung .Ausführlich soll die Methode noch

ii L^J behandelt werden .Innerhalb eines Zeifintervalls ~C soll die Trägheitskraff eine
Funktion dritter Ordnung sein _/ * /
die yV sind kubische Hermitesche Interpolationspolynome der dimensionslosen Variableni =4 /t -Weiterhin ist R'= d R /d\ - T ÖlR /(& =- T £ (<ib)

durch Einsetzen von (15) in (14) und durch zweimalige Integration ergibt sich für T— 4

Die Beschleunigung läßt sich dann aus "*-i*-i~ll K ^) berechnen .Man sieht sofort,
daß man aus (1^) und (13) eine Iterationsprozedur.innerhalb jeden Zeifinfervalls.aufstellen kann,
indem man für den Start der Iteration fsi44~-Ri. ur|d jst+4 Ri + ~£ R i annimmt.

1 .4 Anwendung der Integrafionsmethode auf die freie Schwingung eines ebenen
vorgespannten Netzes. Ein ebenes,quadratisches vorgespanntes Netz mit Auflager in den vier Ecken,
also mit freien Rändern, wurde unsymmetrisch belastet (Abb. 1 und zum Schwingen frei
gelassen. Die Querschnitte im Inneren haben einen E *• A Wert (El .Mod. ¦}* Fläche) von
2000 Mp und die der Randseile 10000 Mp. Das Gravitationsfeld wurde vernachlässigt.
Bei insgesamt 49 Knoten mußte ein System von 135 Dif .Gleichungen 2fer Ordnung integriert
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werden.Die Ergebnisse (Abb. 4 der in 1 .3 erläuterten Methode wurden durch die Runge-
Kutta Integrationsmethode (4ter Ordnung) voll bestätigt. Zusätzlich wurde eine Energiekontrolle

durchgeführt,d.h. zu jeder Zeit (freie Schwingung) soll die kinetische Energie gleich
der Summe der über alle Integrationsschritte frei werdenden potentiellen Energie sein

± rthn -i t! [R.„*t «& ] C*°)
wobei die Methode der "Finite Elements in Time and Space" derjenigen der Runge-Kutta noch

überlegen ist (Abb. 2
2 .Beschreibung der vorhandenen Rechenprogramme. Im Rahmen der Untersuchung der

Netzdächer in München ist ein Programmsystem (FORTRAN IV) entwickelt worden,welches
die vollständige Berechnung solcher Strukturen ermöglicht .Das System besteht zur Zeit aus
6 Untersystemen,die im folgenden beschrieben werden.

2 .1 Vorbereitung der Anfangsdaten Die aus Modellen oder aus analytischen Funktionen
ermittelte Fläche des Netzes liegt in Form von Koordinaten in diskreten Punkten vor und
entsprechend auch der Spannungsverlauf .Die geometrischen Daten werden dann mit einer Funk-

7?y *?* -7 -r

tion 2 /fX/y) ?- SIQäX/ (Zi) erfaßt (Abb. 7 ),wobei

die Qlcx -Koeffizienten nach der Methode der kleinsten Quadrate berechnet werden
Auf die in analytischer Form gegebene Fläche wird das eigentliche Netz gelegt,indem die
konstante ungedehnte Länge,der Querschnitt,der Elastizitätsmodul und der vorgegebene
Spannungsverlauf berücksichtigt werden.Auch für die Randseile (Abb. 7- werden Ausgleichspolynome

berechnet,womit dann der Rand des Netzes im Raum eindeutig festliegt.
2.2 Topologie des Netzes. In diesem Berechnungsschritt wird die topologische Beschreibung

des Netzes vorgenommen.Hierzu gehört die Numerierung der Knoten und der zugehörigen

Freiheitsgrade (je Knoten drei Freiheitsgrade,d.h die Verschiebungen OL V iV )/
sowie die Unterdrückung von Verschiebungen an den Knoten,an denen das Netz festgehalten
wird.

2.3 Iterative Gleichgewichtsermittlung .Den Kern des gesamten Programmsystems bildet
die iterative Gleichgewichtsermittlung .Hier wird der Belastungsvekfor,die Steifigkeitsmatrix
des Netzes, die Auflösung des linearen Gleichungssystems und die Ermittlung der neuen
Koordinaten entsprechend der inkrementalen Verschiebungen vorgenommen .Die einzelnen Schritte
werden solange wiederholt (Abb. 13 bis alle Restkräfte an den Knoten hinreichend klein
sind. (Abbruchkriterium hierzu etwa : l0~-> Mp Die Größe des aufzulösenden linearen

Gleichungssystems ist praktisch unbegrenzt, jedoch abhängig von der Konfiguration der
jeweiligen Rechenanlage.

2.4 Untersuchung der Lastfälle. Die Lastfälle werden nach der gleichen Prozedur berechnet

wie die der Vorspannung (Abb "J2 .Die Last,z .B. Schnee, wird nicht in einem
Schritt aufgebracht,sondern inkremental .Durch die Belastung und die großen Deformationen
entstehen große Ungleichgewichtskräfte. Ungeachtet dessen wird weiter iteriert bis die Last

voll aufgebracht ist. Anschließend wird bei konstanter Last iteriert,bis das Netz seine
endgültige Gleichgewichtslage erreicht hat. Folgende Lastfälle können berechnet werden Gleichmäßig

verteilter Schnee,örtlich angehäufter Schnee,Wind und Temperatur. Zu letzt soll noch
erwähnt werden,daß auch der Einfluss von Fabrikationsfehlern ohne weiteres in Form eines
Lastfalles berechnet werden kann.

2.5 Automatische Herstellung von Netzzeichnungen,und Überwachen des Netzes mit
Hilfe eines Bildschirmgerätes. Es genügt allein,daß die Koordinaten eines Knotens,oder die
Nummer der Knoten eines Elementes falsch angegeben sind, um in größeren Bereichen einen
nicht brauchbaren Spannungsverlauf zu bekommen,«oder daß die Auflösung des linearen
Gleichungssystems unmöglich wird,weil die Steifigkeitsmatrix singulär ist. Automatisch hergestellte

Zeichnungen dienen also in erster Linie der Fehlerfindung Hierzu werden dem Benutzer
folgende Möglichkeiten geboten: Drucken des Netz-Grundrisses auf dem Schnelldrucker der
Rechenanlage oder Zeichnen des Netzes mit Hilfe einer elektronischen Zeichenanlage
(Abbn. 3 if. r Selbstverständlich können diese Zeichnungen auch für andere Zwecke ver-
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wendet werden .Eine weitere Möglichkeit,die nicht nur die Fehlersuche erleichtert,sondern
auch über weite Strecken das Überwachen des Netzes ermöglicht,ist ein Bildschirmgerät,z .B.
das im ISD installierte "Digigraphic CDC 1700"

2.6 Auswertung der Ergebnisse. Als letztes übernimmt ein Programm die Auswertung und
das Ausdrucken der Ergebnisse in übersichtlicher Form (Abb. -ff ).Unter anderem können z.B.
die Winkeländerungen der Seile zwischen Vorspannung und dem Lastfall Schnee asugewertet
werden .Eine Information,die sehr wichtig für das Verlegen der Platten und der Haut des Netzes

ist.
2.7 Formfindung von Netzwerken. Siehe Beitrag in diesem Vorbericht - Thema lila.

J.H.Argyris und T.Angelopoulos: Ein Verfahren für die Formfindung von beliebigen
vorgespannten Netzwerkkonstruktionen.

3. Weitere Programmentwicklung. Im gleichen Stil,wie die in unserem Institut
entwickelte iT3ysTelnijr4Ä3K^Ä-T^T~ü^id~D7^AN t<0] ,soll auch ein komfortables System für

vorgespannte Netzwerke entstehen .Zunächst sollen neben dem Stab-und Biegeelement weitere
Elemente im System aufgenommen werden .Also: Drei-und Viereck-Membraneelemente

(große Verschiebungen),die eine Dachhaut auf dem Netz auch unter Berücksichtigung der

Anisotropie simulieren können.Die vorhandenen Programme für die Formfindung [42] und

dynamische Analyse sollen noch verfeinert und dem Hauptsystem angeschlossen werden.Die
dynamische Windlasf (d.h. Druck als Funktion der Zeit) ist ein sehr komplexes Problem,das
ebenfalls an unserem Institut untersucht wird.Im Rahmen dieser Kurzfassung kann jedoch hierauf

nicht näher eingegangen werden.
4. Erfahrung aus statischen Berechnungen von vorgespannten Netzwerkkonstruktionen.

In den letzten zwei Jahren sind in unserem Institut mehrere Berechnungen an vorgespannten
Netzwerken durchgeführt worden .Abgesehen von kleinen Strukturen (z.B. ein hyperbolisches
Paraboloid),die nur für Testzwecke verwendet wurden,sind folgende Netze berechnet worden.

4.1 Sporthalle in München. Das Bauwerk weist eine sehr komplexe Geometrie auf
(Abbn.3iV ),die am Institut für Leichte Flächentragwerke,Universität Stuttgart,anhand von
Draht-Meßmodellen entwickelt wurde.Die eigentlichen Anfangsdaten erhielten wir aus dem

Institut für Anwendungen der Geodäsie im Bauwesen,ebenfalls Universität Stuttgart,welches
mit der Messung und Auswertung der Modelle beauftragt war.Bei einer Maschenweite von 3m

ergaben sich 3500 Knoten,etwa 6600 Elemente und 10500 Unbekannte Verschiebungen .Ur¬

sprünglich dauerte ein Iterationsschritt,also: Aufbau des Belastungsvektors und der Steifigkeitsmatrix

sowie Auflösung des lin .Gl .Systems,etwa 200 Min. Durch geschickte Programmierung
ist es uns gelungen,diese Rechenzeit auf ein Zehntel,also auf 20 Min zu reduzieren .Es muß

betont werden,daß die Berechnung der Vorspannung keinesfalls abgeschlossen ist,indem man
eine Gleichgewichtslage der Struktur ermittelt .Es muß überall im Netz die erwünschte

Vorspannung herrschen.Um das zu erreichen,wird am Rand des Netzes (Abb. 8 )nachgespannt,
indem man das Element,welches zum Rand anschließt «automatisch aus der Berechnung entfernt
und an seine Stelle eine Kraft anbringt .Durch anschließende Iterationen wird die Struktur ins

Gleichgewicht gebracht und das Element wieder in die Rechnung eingefügt .Knicke,die am
Rand des Netzes während der Berechnungen entstehen (Abb. 10 müssen korrigiert werden,
was von den Rechenprogrammen automatisch durchgeführt wird.Das Element C-D wird in die
Lage C-B gebracht,wobei seine ungedehnte Länge,entsprechend der erwünschten Spannung
im Seil, neu berechnet wird

4.2 Niedersachsenstadion in Hannover. Das Netz wird hier von einem Bogen mit einer
lichten Spannweite von ca 240 m (Abb. 5 getragen.Für diese Struktur wurde kein Modell
benötigt,da die Anfangsdaten mit Hilfe von analyti.schen Funktionen ermittelt wurden.Der
Bogen wird mit einem Biegeelement simuliert (Berücksichtigung der großen Verschiebungen).
Das Netz ist mit einer Maschenweite von zuerst 6 und dann von 3m untersucht worden.Die
Anzahl der unbekannten Verschiebungen beträgt beim 3m Netz unter Symmetrieausnufzung 3200.
Der endgültige Zuschnitt,mit einer Maschenweite von Im, liefert ca .24000 Unbekannte.

4.3 Osttribüne des Olympiastadions in München Das Netz (Abb. 9 )ist auf dem gleichen

Prinzip wie das Westdach des Stadions aufgebaut .Die Vorspannung und die Lastfälle sind
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mit einer Maschenweite von 3m untersucht worden.Die Anzahl der unbekannten Verschie-,
bungen beträgt 1800.Der endgültige Zuschnitt von 0.75m soll noch exakt ermittelt werden,
indem das 3m Netz linear interpoliert und anschließend in seine Gleichgewichtslage
ausiteriert wird
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5. Zusammenfassung. Die Methode der finiten Elemente ist ein willkommenes

Instrument für den Ingenieur,um die statische und dynamische Analyse komplizierter Tragwerke
durchzuführen .In diemsem Beitrag wurde gezeigt,daß ein nichflineares Problem der Statik,
das mit ca. 10500 Gleichungen beschrieben werden kann,mit Erfolg durchgeführt wurde.
Auch das nicht-lineare Schwingungsproblem wurde anhand eines extremen Beispieles
behandelt.Die Berechnung von vorgespannten Netzwerken ist nahezu unmöglich ohne den Einsatz
von Großrechenanlagen,um in vertretbaren Maßen bezüglich der Sicherheit,der erforderlichen

Genauigkeit und der Wirtschaftlichkeit bauen zu können.Trotz Vollautomatisierung der
Berechnungsmethode ist der Ingenieur in der Lage, auf die Berechnungen Einfluß zu nehmen.
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Abb.1 Weg -Zeit Diagramm der Knoten A,B in 2-Richtung
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•<Vbbi2 Nichllinearer Oszillator ohne Dämpfung
nach der Methode .Fmile Elements in Time'

[München)Abb. 3 Sporthalle

Abb.4 Räumliche Ansicht eines Netzteiles der Sporthalle

Abb.5 Niedersachsenstadion (Hannover)
3 m Netz symmetrisch 3350 Unbekannte
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Abb 6 Kraft-Weg Diagramm
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Abb 8 Nachspannen am Rand des Netzes
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Abb.7 Analytisch« Beschreibung des Netzes

Abb.9 Osttribüne (Olympiastadion München)
3m Netz symmetrisch 3350 Unbekannte

-Vbb-10 Korrektur von Knicken am Rand

INPUT: Ergebnis« aus dem Lastfall Eigengewicht

< I100% der Last erreicht

iNein

I Belastung um einen Schritt erhöhen

V *—
Ungleichgewichtskrdfte berechnen

X
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I Aufbau Und Auf löaung de« G leichungasyslemi I
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¦¦¦¦I I Beitimmung der neuen Geometrie

Abhll Netzwerke
Endergebnisse de' Betethnungen

INPUT: Anfancpdaien aus Modal! oder Numerischen Methoden

: Koordinaten der Knoten
Queuehnille und Moleriolkonstonten der Seile

Glatten der Koordinaten, Neti ouf die vorgegebene Flache legen

entsprechend der erwünschten Vorspannung

' fl &*rechnuf>g At" Ung leichtwichtskrtlfle on den Knoten I

""v. Jo
Alle Ungleichgewichtskräfte * E f J>—-»

Aufbau und Auflösung det Gleichungssyttems I

Rasiiimmur-9 der neuen Geometrie

< Erwünschte Vorspannung vorhanden

Nachspannen im Netz

Abb.12 Flufldiagramm für die Untersuchung
der Lastfälle

Abb.13 Flußdiagramm für die Untersuchung
der Vorspannung
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