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An “Equivalent Stiffness’’ Method for Suspension Roof Analysis
Une méthode de “‘rigidité équivalente’ pour I'analyse de toits suspendus

Eine Methode der ""aquivalenten Steifigkeit” zur Analyse von Hangedachern

DONALD P. GREENBERG
Dr.-Ing.
Cornell University
USA

1. INTRODUCTION

A method is derived to obtain the "equivalent stiffness" of a single cable
subject to an initial uniform load. This method may be generalized to include
any type of vertical loading including triangular, partial or point loading.
The equivalent stiffness is defined as the force required to cause a relative
unit displacement of the end points of the cable. This displacement is in the
direction of the chord connecting the end points.

Once the value of the equivalent stiffness is found, an initilally para-
bolic cable in a cable network may be replaced by an imaginary straight bar-
type element of equivalent stiffness. A schematic diagram of this bar-type
element is shown in Figure 1. The area of the bar is assumed equal to that of
the cable, while its length is assumed equal to that of the chord comnecting
the end points of the cable. Thus, the bar-type element may be considered to
be composed of a fictitious material with an "equivalent modulus of elasticity"
such that the resistance provided by the cable and the bar-type element in the
chordal direction are equal. The magnitude of this equivalent modulus depends
primarily upon the sag-span ratio, the existing stress level, and the true mod-
ulus of elasticlty of the cable material. The concept of an equivalent modulus
was first investigated by Ernst(1l) with regard to the lateral stiffness pro-
vided by the main cables of suspension bridges to their supporting towers.

An idealized model of a cable roof system composed of parabolic cables can
be created from these imaginary bar-type members. The model may then be ana-
lyzed for stresses and deflections for any new loading condition. This proce-
dure may greatly simplify the analysis of certain types of cable roof systems
as well as inprove the accuracy of the predicted results when compared to pres-
ent methods of analysis.



346 Illa— AN "EQUIVALENT STIFFNESS” METHOD FOR SUSPENSION ROOF ANALYSIS

2. ADVANTAGES OF IDEALIZED BAR-TYPE MODELS

In present methods of analysis the cable network is generally represented
by a system of straight line cable segments connecting the nodal points (Figure
2). Stiffness equations are generated at each nodal point. The number and lo-
cation of the nodal points depend primarily upon: a) the area of the roof,

b) the spacing of the cable mesh, and ¢) the curvature of the roof surface.

Basically, these methods are
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Figure 1

Frequently these methods of analysis are restricted by excessive computa-
tional time and limited machine storage capacity. A large number of nodal
points are required to sufficiently represent the true roof system. This
results in a large number of simultaneous equations. For cable roof structures,
the size of the resulting stiffness matrix often may exceed the direct storage
capacity of many present day computers. In addition, even if the computer's
storage capacity is sufficlent, the machine time required to obtain a solution
is often uneconomical. Iterative solution techniques, although reducing the
storage problems and eliminating the need for matrix inversion, do not a%w§ys
converge due to the ill-conditioned aspects of the deflection equations. 2

There are two distinct advantages
to using the idealized bar-type
models to represent parabolic
cable segments. First, a smaller
nurber of nodal points 1s required
to represent the real structure,
since each cable may be replaced
by only one bar-type element.

straight line

segments y t_nodal
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CABLE NETWORK REPRESENTED
BY STRAIGHT LINE SEGMENTS
CONNECTING NODAL POINTS

Figure 2
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This reduces the size of the total structure stiffness matrix which in tuwrn has
two decidedly beneficial results. The amount of computational machine time is
shortened with its obvious accompanying economic advantages, and a smaller a—
mount of Information is required for input.

The second major advantage is that by using these bar-type models, each
cable is represented as a continuous element, and not a series of straight line
segments connected at discrete points. Thus, the true system is more accurate-
ly represented without an increase in the number of nodal points.

3. DERIVATION OF EQUATIONS FOR UNIFORM LOAD CASE

Assumptions

Small slopes compared to unity

Constant area per cable

Vertically applied uniform loading

Elastic material behavior

Initial profile of cable 1s parabolic

End points at equal elevation

Small changes in tension compared to the initial tension

Small displacements in the chordal direction compared to the initial
length.

sag and the arc length are expressed respectively by:

wL2

f=s5 (1)

%
F

=+ ) (2)
12

o~ O0WJl W

5

wn
1

L (1+

w| oo

where: sag
load per unit length

span length

horizontal component of tension

S = arc length of the cable

From differentiation, Equations (1) and (2) become:
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By substitution of Equation (3) into Equation (4),
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ds = (1 +

The elastic elongation for a change in horizontal tension(3>, dH, is:

as = S A4S (6)

= area of the cable
= modulus of elasticity
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If only vertical loads are applied, the horizontal component of tensicn in
the cable does not vary with the length, and thus the value of the change in
horizontal tension, dH, is also constant. The integral of Equation (6) becomes:

- Sds ;. _dH -
=gl g =g (-1I (7
Substituting the value for the arc length from Equation (2);
2
_ dd 16 f
88 = g [L+—3—L] W

For small changes in arc length, AS + ds, and therefore Equations (5) and
(8) must be equal. Thus:

2 2 2
daH 16 2] ol £ 16 f
Rearranging Equation (9),
(1+ gﬂ~£i
i 32 (10)
dL 2
16 f
3 IH AE

Now consider the extension of a straight bar-type element of length, L,
cross-sectional area, A, and subjected to a change in tension, AH. This exten-
sion is expressed by the following:

aL =8 (11)

AR
e

where Ee = equivalent modulus of elasticity

Rearranging:
g M L
e AL " A (12)

As AL approaches zero, the ratio of AH/AL approaches the derivative dH/dL.
Thus, by substitution of Equation (10) into Equation (12), the equivalent mod-
ulus of elasticity of an imaginary bar which will exhibit the same lateral
stiffness as the true cable is obtained. Thus,
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Equation (13) is the expression derived for the equivalent modulus. Al-

ternatively, the expression for the equivalent stiffness of an idealized bar-
type element can be written as:

E . A (1+g%ﬁ2)
k = e = L f&
© ok R Fall g
2 3
L. o By
342 H/A 5 |

where ke = equivalent stiffness of the bar-type element
4, EFFECT OF PARAMETERS

A. Sag/span ratio

The most important parameter in calculating the equivalent modulus of
elasticity is the sag/span ratio. A plot of the variation of the equivalent
modulus of elasticity versus sag/span ratios 1s shown in Figure 3. As the
sag Increases for a given span, the lateral resistance offered by the cable
decreases. As the sag/span ratio decreases, the cables become flatter, and
the equivalent modulus of elasticity approaches the real modulus. This is

easily explained mathematically since all the terms of £°/L° in Equation (13)
approach zero, and the equation reduces to:

1
IEEE - —ji?- + E
E

EQUIVALENT MODULUS OP ELASTICITY
Vvs.
25000 SAG/SPAN RATIO
>
24 f
(1 + —gzz)

|

- 20000 ] ‘ (16 2 ik lg L;
|
I

1 L
SEoawt e

Term 1 Term II
- 15000

| Term II 1s insignificant
in this region

| 10000

Equivalent Modulus of Elasticity (ksi)

“\\\\ E = 25000 ksi
o = 100 ksi
|_ 5000 \

S — e e /L
1 g 1 L 1 1 1 I

2/100 u/100 6/100 8/100 10/100 12/100 147100 16/100
Sag/Span Ratlo

Figure 3



350 Illa — AN "EQUIVALENT STIFFNESS” METHOD FOR SUSPENSION ROOF ANALYSIS

Two examples for calculating the equivalent modulus of elasticity are
given below:

Example A Example B
Small sag/span ratio Large sag/span ratio
E = 25000 ksi E = 25000 ksi
f/L = 1/100 f/L = 10/100
b1+ (8.0x107Y g o L+ (8.0x107°)
©  1.33x107° + 4.00x107° ©  1.43x1073 + 4.21x107°
Ee = __l;ggggg = 18,750 ksi Ee = ___J:EEL_:§.= 731 ksi
5.33x10 1.4721x10

From these two examples it can be seen that the first term in the denomin-
ator plays the dominant role for all but very small sag/span ratios.

5. EXAMPLE OF PROPOSED ATR FORCE MUSEUM¥

The advantages of the use of the bar-type element representation may best
be illustrated by the method used to determine the forces and displacements of
the proposed Air Force Museum in Dayton, Ohio.¥*¥ A photograph of the archi-
tect's model is shown in Figure 4.

MODEL, OF PROPOSED ATR FORCE MUSEUM
Figure 4

¥The project was designed by the architectural firm of Roche, Dinkeloo and
Associates of Hamden, Connecticut. Severud Associates of New York City served
as the consulting engineers.

¥¥The analysis of the stresses and deflections of the suspension roof was
the responsibility of the author. The task of obtaining the idealized model
and writing the computer program was done jointly with Associate Professors
Richard White and Peter Gergely of Cornell University.
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Figure 5

The roof is a suspension roof covering a large trapezoidal area. The
structural system, which consists of primary main straight cables supporting
sets of parallel secondary parabolic cables is shown in plan and section view
in Figure 5. The vertical supports are provided only at the four corners of
the trapezoid, and a concrete trapezoidal compression ring around the perimeter
absorbs the thrusts from the main cables.

The use of a standard representation technique for the parabolic cables
in the roof would be urmwieldy; this would require such a large number of nodal
points to represent the roof to sufficient accuracy that the direct core stor-
age capacity of the available computer would be exceeded.*¥¥ 1In addition, the
machine time required to solve the necessary set of simultanecus equations
would have been uneconomical.

shatea area, All secondary cables, which were

to be renoved initially of parabolic profile,

total
initfal load— QUL LAERANRRRNNNRNANY were replaced by the idealized

firel iZ:- o bar—typg elemenb‘és. The properties

of these bar-type elements were
determined by equations similar
to those previously derived, ex-
cept that they were generalized
. to include a set of three partial
vertical loads per cable.

ARY CABLE
PARTIAL LOADING DIAGRAM

Figure 6

¥¥¥The available computer was a CDC 1604.
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By specifying the lengths and magnitudes of the line loadings to be added or
removed from the initial loading (Figure 6), each secondary cable could then
be subjected to a variety of loadings. Thus, the idealized model of the roof
enabled analysis of the system for any set of asymmetric or point loading re-
quired by code. The resulting idealized model, consisting of only 74 nodal
points, is schematically shown in Figure 7. The springs shown in this figure
represent the idealized bar-type elements.

idealized
17 bar-type 18
3 T elements

1 2
AIR FORCE MUSEUM
IDEALIZED MODEL®

* Numbers represent nodal points
using cyclical numbering scheme
Only one-half of the nocdal points of the actual model are shown

Figure 7

All vertical loads were applied to the secondary cables incrementally to con-
form with the limitations of the derivation. Secondary cable reactions were
then applied to the main cable network, which included the stiffness of the
secondary cables. The d?g?rmation equations of the total suspension roof
were formed using Siev's method of analysis which guarantees a convergent
solution. This formulation assumes elastic material behavior and includes
the effects of changes in geometry due to large deformations. Using the sche-
matic representation shown in Figure 7, the nodal points were cyclically num-
bered in such a manner, that combined with the use of diagonal subscripting,
the storage requirements of the structural stiffness matrix were minimized.

A Gaussian elimination process, adapted for diagonal subscripting, was used
to solve the resulting set of simultaneous equations. A description of the
computer program is shown following. The system was successfully analyzed
for both uniform loading, and partial loading cases.
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Computer Program for Analysis of Air Force Museum
Using "Equivalent Stiffness" Method

Begin Program.

Read initial equilibrium conditions (tensions, loads, geometry), material
properties, types and increments of loading.

Compute initial lengths of primary cables.

Compute unstressed lengths of primary cables to use as a base for calcu-
lating future tensions.

Compute lengths of imaginary bar-type elements representing secondary
cables.

Compute incremental loads from the secondary cables which will be applied
to the total structure and find new secondary cable profiles and tensions.

Compute equivalent modulus of elasticity of bar-type elements.

Generate total structural stiffness matrix based on current conditions of
geometry, loads, and tensions, including the stiffness contribution of the
bar-type elements. Store as a diagonally-subscripted band matrix.

Apply load increments from (6) to the total structure.

Solve for incremental deflections in each direction at each nodal point
using the stiffness equations and a Gaussian elimination technique adapted
for diagonal-subscripting.

Compute new geometry and tensions from the linear solutions of (10).

Sum equilibrium at each Joint to determine unbalance in each directilon due
to the "linearization" of the deflection equations.

Using current geometry and tensions from (11), reload the structure using
the unbalanced residuals from (12) and return to (8).

Repeat until unbalanced loads become negligible. Solution is then con-
verged for one increment of load.

If final load condition has not yet been reached, add another load incre-
ment by returning to (6).

Repeat until final load condition has been attained.

Print final geometry, stresses, and total deflections, including secondary
cable profiles.

End Program.

g. 23 Vorbericht



354 Illa—AN "EQUIVALENT STIFFNESS"” METHOD FOR SUSPENSION ROOF ANALYSIS

6. BIBLIOGRAPHY

1. Ermst, H. R., "Der E-Modul von Seilen unter Berucksichtigung des
Durchanges", Der Bauingenieur, Berlin, West Germany, Vol. 40, 1965.

2. Greenberg, D. P., "Inelastic Analysis of Suspension Roof Structures",
Journal of the Structural Division, ASCE, May, 1970.

3. Norris, C. and Wilbur, J., "Elementary Structural Analysis'", McGraw
Hill.

4, Salvadori, M., and Baron, M., "Numerical Methods in Engineering",
Prentice Hall.

5. Siev, A., "A General Analysis of Prestressed Nets", Publications, Inter-
national Assoclation for Bridge and Structural Engineering, Zurich,
Switzerland, 1963.

7. SUMMARY

A method 1s presented to derive the "equivalent stiffness" of a uniformly
loaded, parabolic cable which depends primarily on the sag/span ratio of the
cable. To simplify the analysis of certain suspension structures, paraboclic
cables may be replaced by imaginary bar-type elements of equivalent stiffness.
This replacement reduces the nunber of nodal points required to accurately rep-
resent these specific structures, and thus has the advantage of reducing both
the computer solution time and the input data.
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