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Structures en cables et structures suspendues
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Will Metal Skins Replace Cable Suspended Roofs?

Est-ce que des baches métalliques remplaceront les toitures en
cébles suspendues?

Werden Metallhdute die kabelabgespannten Décher ersetzen?

HANNSKARL BANDEL
Dr.-Ing.
New York City, USA

1. Introduction

The characteristic of cable roof structures is the use of
primary and secondary members to carry the roof loads. The primary
members are high-strength steel cables which span large distances
stretching from abutment to abutment. The secondary members are
bridging the small distance between the cables and really enclose
the space below. Either a steel deck, concrete panels, wood plank-
ing or plastics are the materials for the secondary members.
(Figure 1).
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Fig. 1. Conventional Cable Roof Detail
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However, if the metallic area of the steel cables is spread to
form a thin metal sheet, such a skin could perform both functions
of primary and secondary members, of cables and deck., The skin
represents simultaneously an infinite number of parallel thin cables
carrying the roof load and a metal deck enclosing the space.
(Figure 2.,) The substitution of the cables by a skin allows strain-
ing the material in more than one direction, which without question
results in economy.

METAL SKIN

Fig. 2. Metal Skin Roof Detail.

2. Form Stability

It is well known that the major problem in the design of cable
roofs is the limitation of their deformation due to non-uniform
loading. The stiffness of a cable roof can be controlled by
different means, such as weight, guy wires, stiffening trusses,
double curvature, or shell action of the roof deck. These methods
can also be applied to a hanging steel skin.

However, the continuity of a metal skin allows for more elegant
methods of stabilizing a roof. An inside pressure created in the
total enclosed space would easily carry the weight of such a skin
and would expand it into a dome-like bubble. An under-pressure
would preload a hanging skin and stabilize its form, similar to
the action of additional weight. The complications of pressuriz-
ing a total building finally can be avoided by creating a steel
balloon, (Figure 3.)
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Fig. 3. Stabilization of Metal Skins by
Air Pressure,

3. Stainless Steel Balloon

The feasibility of such a stainless steel ballocon roof has been
studied in our office analytically. Model tests and weld tests with
stainless steel were performed by the International Nickel Co.,

New York. (Figure &4.)

4, Erection

The erection of steel skins must be studied very carefully.
There is no question that the fabrication of large steel ballons
must be done on the site. 1In order to avoid scaffolding it is
reasonable to assemble the structure on the ground and hoist it in
place after completion. Because of the extremely light weight,
approximately one-tenth of a conventional steel roof, the hoisting
into place does not represent any difficulty.

If a steel skin is used for a tent-like structure with a
rather complicated geometry, then plates can be welded on pre-
erected ribs, as shown in Figure 5 and Figure 6.
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Fig. 4. Model Test of Stainless Steel Balloon Roof.
International Nickel Co., New York, N.Y.

Fig. 5. Free Form Steel Skin Tent,
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METAL 2KIN
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Fig. 5. Erection Detail

5 Permanence

Membrane roofs made of plastics or similar materials have a
very serious disadvantage because of the very limited life
expectancy of such materials, It is obvious that a stainless
steel skin with its unlimited corrosion resistance eliminates
completely the more temporary character of membrane roofs
existing until now.

Summary

The further development of cable supported suspended roofs
to metal skin membranes is discussed., The characteristic of the
uniformity of such skins is used to stabilize their shapes by air
pressure. Calculations and model tests prove the feasibility of
such structures, The use of stainless steel guarantees permanence,
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An “Equivalent Stiffness’’ Method for Suspension Roof Analysis
Une méthode de “‘rigidité équivalente’ pour I'analyse de toits suspendus

Eine Methode der ""aquivalenten Steifigkeit” zur Analyse von Hangedachern

DONALD P. GREENBERG
Dr.-Ing.
Cornell University
USA

1. INTRODUCTION

A method is derived to obtain the "equivalent stiffness" of a single cable
subject to an initial uniform load. This method may be generalized to include
any type of vertical loading including triangular, partial or point loading.
The equivalent stiffness is defined as the force required to cause a relative
unit displacement of the end points of the cable. This displacement is in the
direction of the chord connecting the end points.

Once the value of the equivalent stiffness is found, an initilally para-
bolic cable in a cable network may be replaced by an imaginary straight bar-
type element of equivalent stiffness. A schematic diagram of this bar-type
element is shown in Figure 1. The area of the bar is assumed equal to that of
the cable, while its length is assumed equal to that of the chord comnecting
the end points of the cable. Thus, the bar-type element may be considered to
be composed of a fictitious material with an "equivalent modulus of elasticity"
such that the resistance provided by the cable and the bar-type element in the
chordal direction are equal. The magnitude of this equivalent modulus depends
primarily upon the sag-span ratio, the existing stress level, and the true mod-
ulus of elasticlty of the cable material. The concept of an equivalent modulus
was first investigated by Ernst(1l) with regard to the lateral stiffness pro-
vided by the main cables of suspension bridges to their supporting towers.

An idealized model of a cable roof system composed of parabolic cables can
be created from these imaginary bar-type members. The model may then be ana-
lyzed for stresses and deflections for any new loading condition. This proce-
dure may greatly simplify the analysis of certain types of cable roof systems
as well as inprove the accuracy of the predicted results when compared to pres-
ent methods of analysis.
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2. ADVANTAGES OF IDEALIZED BAR-TYPE MODELS

In present methods of analysis the cable network is generally represented
by a system of straight line cable segments connecting the nodal points (Figure
2). Stiffness equations are generated at each nodal point. The number and lo-
cation of the nodal points depend primarily upon: a) the area of the roof,

b) the spacing of the cable mesh, and ¢) the curvature of the roof surface.

Basically, these methods are

w k/TE. finite difference approaches,
Y where the continuous trajec-
| . e tories of the cables are rep-

W T 1 u resented by a series of dis-

> crete points. To solve the
stiffness equations, either
direct solution methods, such

8 as matrix inversion or
Gaussian elimination, or
iterative sol%ﬁ%on methods

OF A UNTFORMLY LOADED CABLE are utilized.

bar-type element

.\\\'
T~

‘\l
Ry
tnitial

shape

deflected
shape

Figure 1

Frequently these methods of analysis are restricted by excessive computa-
tional time and limited machine storage capacity. A large number of nodal
points are required to sufficiently represent the true roof system. This
results in a large number of simultaneous equations. For cable roof structures,
the size of the resulting stiffness matrix often may exceed the direct storage
capacity of many present day computers. In addition, even if the computer's
storage capacity is sufficlent, the machine time required to obtain a solution
is often uneconomical. Iterative solution techniques, although reducing the
storage problems and eliminating the need for matrix inversion, do not a%w§ys
converge due to the ill-conditioned aspects of the deflection equations. 2

There are two distinct advantages
to using the idealized bar-type
models to represent parabolic
cable segments. First, a smaller
nurber of nodal points 1s required
to represent the real structure,
since each cable may be replaced
by only one bar-type element.

straight line

segments y t_nodal

/// points

true cable
profile

CABLE NETWORK REPRESENTED
BY STRAIGHT LINE SEGMENTS
CONNECTING NODAL POINTS

Figure 2
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This reduces the size of the total structure stiffness matrix which in tuwrn has
two decidedly beneficial results. The amount of computational machine time is
shortened with its obvious accompanying economic advantages, and a smaller a—
mount of Information is required for input.

The second major advantage is that by using these bar-type models, each
cable is represented as a continuous element, and not a series of straight line
segments connected at discrete points. Thus, the true system is more accurate-
ly represented without an increase in the number of nodal points.

3. DERIVATION OF EQUATIONS FOR UNIFORM LOAD CASE

Assumptions

Small slopes compared to unity

Constant area per cable

Vertically applied uniform loading

Elastic material behavior

Initial profile of cable 1s parabolic

End points at equal elevation

Small changes in tension compared to the initial tension

Small displacements in the chordal direction compared to the initial
length.

sag and the arc length are expressed respectively by:

wL2
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where: sag
load per unit length

span length

horizontal component of tension

S = arc length of the cable

From differentiation, Equations (1) and (2) become:
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By substitution of Equation (3) into Equation (4),

2 2
24 £ 16 f .
—§'£§J dL - (—g'iﬁ) aH (5)

16 f
yan+ G55 ar (4)

ds = (1 +

The elastic elongation for a change in horizontal tension(3>, dH, is:

as = S A4S (6)

= area of the cable
= modulus of elasticity
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If only vertical loads are applied, the horizontal component of tensicn in
the cable does not vary with the length, and thus the value of the change in
horizontal tension, dH, is also constant. The integral of Equation (6) becomes:

- Sds ;. _dH -
=gl g =g (-1I (7
Substituting the value for the arc length from Equation (2);
2
_ dd 16 f
88 = g [L+—3—L] W

For small changes in arc length, AS + ds, and therefore Equations (5) and
(8) must be equal. Thus:

2 2 2
daH 16 2] ol £ 16 f
Rearranging Equation (9),
(1+ gﬂ~£i
i 32 (10)
dL 2
16 f
3 IH AE

Now consider the extension of a straight bar-type element of length, L,
cross-sectional area, A, and subjected to a change in tension, AH. This exten-
sion is expressed by the following:

aL =8 (11)

AR
e

where Ee = equivalent modulus of elasticity

Rearranging:
g M L
e AL " A (12)

As AL approaches zero, the ratio of AH/AL approaches the derivative dH/dL.
Thus, by substitution of Equation (10) into Equation (12), the equivalent mod-
ulus of elasticity of an imaginary bar which will exhibit the same lateral
stiffness as the true cable is obtained. Thus,

ol £°
1+ ==
B =3 . L= 312 (13)
16 2
2 1+ =
R Ly
3.2 WA =
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Equation (13) is the expression derived for the equivalent modulus. Al-

ternatively, the expression for the equivalent stiffness of an idealized bar-
type element can be written as:

E . A (1+g%ﬁ2)
k = e = L f&
© ok R Fall g
2 3
L. o By
342 H/A 5 |

where ke = equivalent stiffness of the bar-type element
4, EFFECT OF PARAMETERS

A. Sag/span ratio

The most important parameter in calculating the equivalent modulus of
elasticity is the sag/span ratio. A plot of the variation of the equivalent
modulus of elasticity versus sag/span ratios 1s shown in Figure 3. As the
sag Increases for a given span, the lateral resistance offered by the cable
decreases. As the sag/span ratio decreases, the cables become flatter, and
the equivalent modulus of elasticity approaches the real modulus. This is

easily explained mathematically since all the terms of £°/L° in Equation (13)
approach zero, and the equation reduces to:

1
IEEE - —ji?- + E
E

EQUIVALENT MODULUS OP ELASTICITY
Vvs.
25000 SAG/SPAN RATIO
>
24 f
(1 + —gzz)

|

- 20000 ] ‘ (16 2 ik lg L;
|
I

1 L
SEoawt e

Term 1 Term II
- 15000

| Term II 1s insignificant
in this region

| 10000

Equivalent Modulus of Elasticity (ksi)

“\\\\ E = 25000 ksi
o = 100 ksi
|_ 5000 \

S — e e /L
1 g 1 L 1 1 1 I

2/100 u/100 6/100 8/100 10/100 12/100 147100 16/100
Sag/Span Ratlo

Figure 3
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Two examples for calculating the equivalent modulus of elasticity are
given below:

Example A Example B
Small sag/span ratio Large sag/span ratio
E = 25000 ksi E = 25000 ksi
f/L = 1/100 f/L = 10/100
b1+ (8.0x107Y g o L+ (8.0x107°)
©  1.33x107° + 4.00x107° ©  1.43x1073 + 4.21x107°
Ee = __l;ggggg = 18,750 ksi Ee = ___J:EEL_:§.= 731 ksi
5.33x10 1.4721x10

From these two examples it can be seen that the first term in the denomin-
ator plays the dominant role for all but very small sag/span ratios.

5. EXAMPLE OF PROPOSED ATR FORCE MUSEUM¥

The advantages of the use of the bar-type element representation may best
be illustrated by the method used to determine the forces and displacements of
the proposed Air Force Museum in Dayton, Ohio.¥*¥ A photograph of the archi-
tect's model is shown in Figure 4.

MODEL, OF PROPOSED ATR FORCE MUSEUM
Figure 4

¥The project was designed by the architectural firm of Roche, Dinkeloo and
Associates of Hamden, Connecticut. Severud Associates of New York City served
as the consulting engineers.

¥¥The analysis of the stresses and deflections of the suspension roof was
the responsibility of the author. The task of obtaining the idealized model
and writing the computer program was done jointly with Associate Professors
Richard White and Peter Gergely of Cornell University.
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primary
main
cables

secondary
parabolic
cables

trapezoidal
compression
ring

551°

Section a-a

| 750° Plan

AIR FORCE MUSEUM
SUSPENSION ROOF STRUCTURE

= S

Figure 5

The roof is a suspension roof covering a large trapezoidal area. The
structural system, which consists of primary main straight cables supporting
sets of parallel secondary parabolic cables is shown in plan and section view
in Figure 5. The vertical supports are provided only at the four corners of
the trapezoid, and a concrete trapezoidal compression ring around the perimeter
absorbs the thrusts from the main cables.

The use of a standard representation technique for the parabolic cables
in the roof would be urmwieldy; this would require such a large number of nodal
points to represent the roof to sufficient accuracy that the direct core stor-
age capacity of the available computer would be exceeded.*¥¥ 1In addition, the
machine time required to solve the necessary set of simultanecus equations
would have been uneconomical.

shatea area, All secondary cables, which were

to be renoved initially of parabolic profile,

total
initfal load— QUL LAERANRRRNNNRNANY were replaced by the idealized

firel iZ:- o bar—typg elemenb‘és. The properties

of these bar-type elements were
determined by equations similar
to those previously derived, ex-
cept that they were generalized
. to include a set of three partial
vertical loads per cable.

ARY CABLE
PARTIAL LOADING DIAGRAM

Figure 6

¥¥¥The available computer was a CDC 1604.
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By specifying the lengths and magnitudes of the line loadings to be added or
removed from the initial loading (Figure 6), each secondary cable could then
be subjected to a variety of loadings. Thus, the idealized model of the roof
enabled analysis of the system for any set of asymmetric or point loading re-
quired by code. The resulting idealized model, consisting of only 74 nodal
points, is schematically shown in Figure 7. The springs shown in this figure
represent the idealized bar-type elements.

idealized
17 bar-type 18
3 T elements

1 2
AIR FORCE MUSEUM
IDEALIZED MODEL®

* Numbers represent nodal points
using cyclical numbering scheme
Only one-half of the nocdal points of the actual model are shown

Figure 7

All vertical loads were applied to the secondary cables incrementally to con-
form with the limitations of the derivation. Secondary cable reactions were
then applied to the main cable network, which included the stiffness of the
secondary cables. The d?g?rmation equations of the total suspension roof
were formed using Siev's method of analysis which guarantees a convergent
solution. This formulation assumes elastic material behavior and includes
the effects of changes in geometry due to large deformations. Using the sche-
matic representation shown in Figure 7, the nodal points were cyclically num-
bered in such a manner, that combined with the use of diagonal subscripting,
the storage requirements of the structural stiffness matrix were minimized.

A Gaussian elimination process, adapted for diagonal subscripting, was used
to solve the resulting set of simultaneous equations. A description of the
computer program is shown following. The system was successfully analyzed
for both uniform loading, and partial loading cases.
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Computer Program for Analysis of Air Force Museum
Using "Equivalent Stiffness" Method

Begin Program.

Read initial equilibrium conditions (tensions, loads, geometry), material
properties, types and increments of loading.

Compute initial lengths of primary cables.

Compute unstressed lengths of primary cables to use as a base for calcu-
lating future tensions.

Compute lengths of imaginary bar-type elements representing secondary
cables.

Compute incremental loads from the secondary cables which will be applied
to the total structure and find new secondary cable profiles and tensions.

Compute equivalent modulus of elasticity of bar-type elements.

Generate total structural stiffness matrix based on current conditions of
geometry, loads, and tensions, including the stiffness contribution of the
bar-type elements. Store as a diagonally-subscripted band matrix.

Apply load increments from (6) to the total structure.

Solve for incremental deflections in each direction at each nodal point
using the stiffness equations and a Gaussian elimination technique adapted
for diagonal-subscripting.

Compute new geometry and tensions from the linear solutions of (10).

Sum equilibrium at each Joint to determine unbalance in each directilon due
to the "linearization" of the deflection equations.

Using current geometry and tensions from (11), reload the structure using
the unbalanced residuals from (12) and return to (8).

Repeat until unbalanced loads become negligible. Solution is then con-
verged for one increment of load.

If final load condition has not yet been reached, add another load incre-
ment by returning to (6).

Repeat until final load condition has been attained.

Print final geometry, stresses, and total deflections, including secondary
cable profiles.

End Program.

g. 23 Vorbericht
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7. SUMMARY

A method 1s presented to derive the "equivalent stiffness" of a uniformly
loaded, parabolic cable which depends primarily on the sag/span ratio of the
cable. To simplify the analysis of certain suspension structures, paraboclic
cables may be replaced by imaginary bar-type elements of equivalent stiffness.
This replacement reduces the nunber of nodal points required to accurately rep-
resent these specific structures, and thus has the advantage of reducing both
the computer solution time and the input data.
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Hinweise zur praktischen Ausarbeitung von Zuschnitten fiir gleichmaschig
gespannte Seilnetze, gezeigt am Zuschnitt fiir die Netze des Olympischen
Daches in Miinchen

Remarks about the Practical Cutting of Square Strained Networks Shown
by the Cutting of the Roof for the Olympic Stadion in Munich

Considérations au sujet de la préparation des éléments constituants de
treillis réguliers et leurs applications aux toitures construites pour les Jeux
Olympiques de Munich

H. EGGER E. JASCH R. RUMMELEIN
Dr. techn. Dipl.-Ing. Dr.-Ing.
Wien, Oesterreich Rheinhausen, BRD Munchen, BRD

Arbeitsgemeinschaft Stahlbau-Dach

1. Einfiihrung

Die gespannten Seilnetzkonstruktionen unterscheiden sich von
Bauwerken herkdmmlicher Art im Ersatz der Bauwerksmasse durch
Energie, die in den Netzen in Form der Vorspannung gespeichert
ist. Diese Netze erfordern eine im Vergleich mit herkOmmlichen
Baukonstruktionen ungewohnt hohe Herstellungsgenauigkeit, weil
Jjeder Fehler in den IL&ngen einem Fehler in den Krédften gleich-
kommt und somit unmittelbar das geplante, zur weiteren Lastabtra-
gung notwendige Potential der Vorspannung verédndert.

So liegt das Hauptproblem beim Bau gespannter Seilnetzkon-
struktionen in der Ermittlung der exakten Lingen aller die Kon-
struktion bildenden Seile, d.h. in der Findung und Realisierung
des dem geplanten Vorspannzustand mit hinreichender Genauigkeit
entsprechenden Zuschnittes der Netze.

1.1. Allgemeines i{iber Zuschnitte von Netzwerken

Der Systemzuschnitt fiir ein gespanntes Netz beinhaltet die
eindeutige Festlegung seiner Systemlinien und entspricht einem
festgelegten definierten Vorspannzustand.

Der Ausfilhrungszuschnitt wird mit den Angaben des Systemzu-~
schnittes ausgearbeitet und umfasst alle fiir die Herstellung der
Seile und im weiteren der Netze notwendigen Angaben. Er beriick-
sichtigt sowohl die den Systemzuschnitt bestimmenden Vorspann-
krédfte als auch die Form und Lage aller Beschlidge und Umlenkkdr-—
per sowie die Dickenabmessungen der Seile selbst.

Die Konstruktion kann in den Systemzuschnitt zeichnerisch
eingearbeitet oder bei der Ermittlung der Seillidngen auch rech-
nerisch beriicksichtigt werden.

Das Aufzeichnen des Zuschnittes wird durch den Umstand er-
schwert, dass die sattelfdérmigen Flédchen gespannter Seilnetze
nicht abwickelbar sind. Es l&dsst sich zwar das gleichmaschige
Netz, geldst von der Einbindung in seine Randseile, eben ausbrei-




356 I1la— AUSARBEITUNG VON ZUSCHNITTEN FUR GLEICHMASCHIG GESPANNTE SEILNETZE

ten und somit fehlerfrei in einer Zeichenebene darstellen, nie
aber der Netzrand mit den Randseilen. Er kann lediglich auf hin-
reichend eng gelegte Ebenen projiziert werden, die sich aus der
Bedingung bestimmen, dass die Summe der Abstandsquadrate zum Mi-
nimum wird, oder mit Hilfe der ’wahren L&ngen’ zwischen seinen
System- oder Knotenpunkten abgewickelt werden. Das Ergebnis sind
die Zuschnittspléne, die in beiden Darstellungsarten systembe-
dingt fehlerbehaftet sind. Der Fehler kann jedoch bei entspre-
chendem Aufwand hinreichend klein gehalten werden.

1.2. Die Netze fiir das Olympische Dach in Miinchen

Das konstruktive Konzept des Olympischen Daches in Miinchen
zeigt eine Reihe von sattelfdrmigen Fl&dchen aus vorgespannten
gleichmaschigen Seilnetzen, die von Randseilen eingefasst zwi-
schen Hoch- und Tiefpunkten aufgespannt und miteinander verbun-
den sind.

Die Netzseile sind hier Zwillingsseile und die Netze sind in
die Randseile mit Endschlaufen eingebunden, die an den Zwillings-
seilen mit Spannschl&ssern angeschlossen sind. Die Raendseile be-
stehen aus Seilstrdngen gleicher Traglast, die iliberall dort, wo
die Kraft im Rand grosser ist als die Traglast eines Stranges, in
entsprechender Zahl in der Netzflidche nebeneinander liegend ein-
gebaut sind. Dabei wird die Last aus dem Netz zun&chst in das
Girlandenseil eingetragen, welches seinerseits die dahinterlie-
genden Polygonseile mitbeansprucht.

Hinsichtlich der Metho-
den der Formfindung,
der Formfestlegung und
der Ermittlung des Sy-
gtemzuschnittes sowie
auch hinsichtlich kon-
struktiver Einzelheiten
kann auf die Beitrédge
von Argyris, Linkwitz
und Schlaich in diesem
Vorbericht hingewiesen
werden.

-
]

Bild 1. Die Netze iiber der Sporthalle mit Unterspannung
1.3. Zum Inhalt der vorliegenden Arbeit

In dieser Arbeit werden die Angaben genannt, die der System-
zuschnitt zu umfassen hat (Abschn.2), werden m&gliche Methoden
zur Ausarbeitung des Ausfiihrungszuschnittes erliutert (Abschn.
3.1), wobei besonders auf die nur rechnerische Methode eingegan-
gen wird (Abschn.3.2), die mit nur einem Rechenprogramm die Er-
mittlung der Bestell&ngen direkt aus den Raumkoordinaten des Sy-
stemzuschnittes erlaubt, und wird die praktische Bearbeitung
(Abschn.3.3) vorgefilhrt; weiter werden die bei der praktischen
Durcharbeitung und Montage des Olympischen Daches hinsichtlich
der Zuschnitte gemachten Erfahrungen (Abschn.4) mitgeteilt.
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Zur Ausarbeitung des Ausfiihrungszuschnittes sind nachfol-
gend zusammengestellte Angaben aus der Geometriebestimmung, der
Festigkeitsberechnung und dem konstruktiven Entwurf notwendig.

Angaben aus Geometrie- Festigkeits- Konstruktiver
zur bestimmung berechnung Entwurs
allgemeinen Zahl der bei der Formfindung rea- |Zahl und Lage
Beurteilung lisierten Maschen von Nachspann-
Darstellungsart der Zuschnitts- stellen im
pléne Netz und még-
Grbsse der maximalen Projektions- |[licher Nach-
fehler stellweg
Art der Netzseilinterpolation und
der Randseilachsenglédttung
Bestimmung Ubersicht des Seilquerschnitt Ausbildung der
der ausgebreiteten Dehnverhalten des|Randseile, des
Netzseile Netzes Seiles Randseilan-
Begrenzung des Vorspannkréfte schlusses und
gleichmaschigen | Ablangkraft méglicher
Bereiches x) Spannstellen
Zuschnittspléne
Bestimmung Zuschnittsplidne | Seilquerschnitt Ausbildung der
der mit Stationie- Dehnverhalten des|Randseilschel-
Randseile rung der Rand- Seiles len und ihr
seilachse Verlauf der Seil-|Mindestabstand
Koordinaten von | kraft im Vor- bei sich knmapp
Punkten auf gspannzustand und |[am Rand schnei-
dieser Achse ihre Aufteilung denden Seilen
(soweit m8glich | bei mehreren Ausbildung der
der Einbindungs-| Stridngen Randseilver-
punkte) Max.Abstand der |bindungsschel-
Randseilverbin- len, sowie der
dungsschellen Umlenkkdrper
Vorspannkridfte im|{und Endveranke-—
Netz rungen
Bestimmung Koordinaten der | Seilquerschnitt Ausbildung der
der Knotenpunkte Dehnverhalten des|Knotenpunkte
Abspannseile | und der zugeord-|Seiles im Netz und
neten Abspann- Vorspannkraft der Abstiitzung
punkte Ablangkraft im Widerlager
Bestimmung Koordinaten der | Seildurchmesser |Minimaler Um-
der Knotenpunkte Grosse der im lenkradius
Unlenk- Zuschnittspléne |Knoten angreifen-|Ausmass der
kdrperkon- aller abgehenden|den Vorspann- Systempunkt-
struktionen Randseile kridfte verschiebung
im Falle 2zu
grosser Umlenk-
kdrper

x) Bereiche ungleicher Maschenweite entstehen, wenn im Zuschnitts
modell nur jedes n-te Netzseil gebaut wird, bei der Interpolation
der fehlenden Netzseile am Rand, weil diese dort vorerst noch

nicht eindeutig méglich ist.
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3. Die Ausarbeitung zum Ausfiihrungszuschnitt
3.1. Methoden

Bei der Ausarbeitung des Systemzuschnittes zum Ausfilhrungs-
zuschnitt werden die Systemlinien des Netzes durch Seile und sei-
ne Systempunkte durch Umlenkk®érper- oder Knotenkonstruktionen er-
setzt. Der Zuschnitt entspricht dann noch dem dem Systemzuschnitt
zugrundeliegenden Vorspannzustand. Erst bei der Zerlegung des
Netzes in seine Teile werden die einzelnen lL&ngenmasse der Seile
um jenes Mass verkiirzt, um die sie sich unter Vorspannung dehnen
und so dem Hersteller bekanntgegeben.

3.1.1. Die zeichnerische Methode

Der gezeichnete Systemzuschnitt (Bild 2a) wird im Detail
oder schematisch (Bild 2b) zur Konstruktionszeichnung erginzt,
sodass alle zur Herstellung notwendigen, noch fehlenden Masse aus
dieser Zeichnung direkt abgenommen werden konnen. Die Li&ngenmasse
(Markierungs— und Schnittmasse) werden dann fiir jedes Seil in die
Masskette einer Schemazeichnung, dem sogenannten Streifen, einge-
tragen und so dem Hersteller bekanntgegeben.

Fiir die Zuschnittspline empfiehlt sich wegen der erforderli-
chen Genauigkeit der Masstab 1:10. Nach der bisher gemachten Er-
fahrung ist selbst dann noch eine Zeichengenauigkeit von minde-
stens 1 mm notwendig, um die Seilldngen in den dem Bauwerk zu-
tridglichen Toleranzen bestimmen zu konnen.

Vorteile: einfache und iiberschaubare Darstellungsart, keine be-
sonderen Hilfsmittel, wie Computer, erforderlich.

Nachteile: Giite allein abh&ngig von der Gewissenhaftigkeit der
Zeichner und kaum kontrollierbar, grosser Personalauf-
wand.

Die zeichnerische Methode wurde bei der Zuschnittsbearbei-
tung fiir den Dt.Pavillon in Montreal angewendet [11,[2].

Bild 2a.
Zuschnittsplan

Bild 2b.
Zuschnittswerkplan mit
den Achsen der Randseil-
stridnge, der Randseil-
und Randseilverbindungs-
schellen sowie den zuge-
hérigen Markierungen

3.1.2. Die rechnerische Methode

Bei der rechnerischen Methode wird die an sich mathematisch
nicht definierte Randseilachse bereichsweise durch KreisbGgen
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festgelegt, wobei ihre vorgegebene Linge beibehalten wird, und
werden welter alle Schritte des Aufzeichnens analytisch vollzo-
gen. Diese Rechenschritte lassen sich in ein Rechenprogramm ein-
bauen, das in einem Rechengang den Ausdruck der Bestellisten (ge-
schriebene Streifen) nach Eingabe der Raumkoordinaten des Netzsy-
stems ermdglicht. Eventuell vorhandene Zuschnittspldne dienen
dann lediglich zur besseren Ubersicht.

Vorteile: {iibersichtlich, geringer Personalaufwand, Gilite unab-
hdngig von den Leistungsschwankungen des technischen
Personals.

Nachteile: konstruktive Vertridglichkeit des materialisierten Sy-
stemzuschnittes an den Nahtstellen nur schwer kontrol-
lierbar.

Die rechnerische Methode wurde bei der Zuschnittsbearbeitung
fiir das Olympische Dach in Miinchen entwickelt.

Da sich die beiden genannten Methoden nur in der Durchfith-
rung unterscheiden, kann jeder beliebige Schritt auch zeichne-
risch geldést und das Ergebnis als Zwischenergebnis in die weitere
Durchrechnung eingebaut werden. Ein solches Vorgehen wird immer
dann notwendig, wenn die Angaben des Systemzuschnittes nicht
vollstédndig sind oder aus konstruktiven Griinden Systempunktver-
schiebungen vorgenommen werden miissen;y auch lassen sich mit ihm
die unter 3.1.1 und 3.1.2 genannten Nachteile weitgehend vermei-
den. Velche Schritte zweckméssig zeichnerisch gemacht werden, ist
im Einzelfalle zu entscheiden.

3.2. Die rechnerische Methode

Alle im folgenden angegebenen Formeln und Hinweise gelten
fiir den allgemeinsten Fall am Zusammenschluss zweier Netzfl&chen,
deren R&nder von je einem Girlanden- und einem gemeinsamen Poly-
gonseil eingefasst sind. Der freie Rand und das einfache Randseil,
sowie das Girlandenseil mit mehreren Polygonseilen sind dann Son-
derfélle.

3.2.1. Grundlagen

Die lagemidssig weitgehend frei festlegbaren Randseilverbin-
dungsschellen RVS (vgl.Abschn.3.3.2) sind zun#chst in die vorge-
gebene Stationierung der Randseilachse einzubinden.

Mit der Annahme von Bi » und Bk 1 folgt entsprechend Bild 3a die
2 ’
Bogenlénge Bi I zwischen den RVS i und k zu:
’

Bix = Bi,r* 5,1 | (1).

Fiir den Schellenbereich i-k kann weiter festgelegt werden:

der Radius des bereichsweise fiir die Randseilachse festge-
legten Kreisbogens mit drei Punkten der Randseilachse nach

2 2 2
s 85 + 8% - 8
= 2 mit cos B = 4 5 g

o
i,k 23848 (2)
N1-cos?p 173 ’

der Schnittwinkel zwischen den beiden NetzflHchen mit einem
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| , | \ : \ Bild 3b.

\ \ \ Nl Jloiche T '
. \

[\

% BM\ 1&

! J

% .Ble = _E/P

< 3
L

Bild 3a. Bild 3c.

gegebenen Stationspunkt und je zwei gegebenen Netzflédchen-
punkten nach

P(Xl’yl’zl)’ PNI ’2("‘)) PNI ’3(---) S /M/I
PNII’4(-00), PNII,S(...)——b /M/II
cos ¢ =%I'%II —_— 9 (3)!

die Lage der einzelnen Randseilstré@nge zur Randseilachse RA,
die identisch der Kraftachse ist, mit dem nach (3) bestimm-
ten Schnittwinkel, den Vorspannkridften v in den vom Grat ab-
gehenden Netzfl&dchen und V in den Randseilstréngen sowie mit
dem konstruktiv bedingten Abstand a der Randseile unter-
einander zeichnerisch nach Bild 3b - aus dieser graphischen
Bestimmung folgen die Absténde ey 19 eII,II und €p ~ 3
?

der Stich der Girlande in den Netzfldchen I und II mit den
jeweiligen Bedingungen

2
H=X2 undH=H__-¥— nach
8 f ges VgeS
v Vv
1 ges
fo oo = . . f log £
195 Sl i ges (analog f1y 1) (4),

wobei sich der Index ’ges’ auf die Randseilgesamtachse RA
und auf die resultierende Gesamtbelastung beziehty

der Radius der Girlande in den Netzfldchen I und II mit (1),
(2) und (4) nach
2
8 L
I 1,1
T = 57 + =5 (analog rII,II) (5),

1,1
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die Bo§enlénge der Girlanden im Vorspannzustand ermittelt

aus (5) nach
n "
B, = 30 ' T Ty (analog BII) (6),

und die L&nge des Polygonseiles nach

Bp = 8 + 2ePsin% (7).

Fiir die Stationierung der RVS sowie der Ein- und Ausliufe
aus den Umlenkkdrpern folgen mit den Materialkennwerten der Rand-
seilstringe weiter die (6) und (7) entsprechenden Li#ngen im Ab-
ldngzustand zu

B
_ 1
I,0 = (analog BII,O) (8),

B AOI AUA
(_E— + 1)-(1 + Cpl)'(l + --E—)

wobei der erste Nennerterm das elastische, der zweite das plasti-
sche Verhalten des Seilstranges und der dritte einen gemessenen
Spannungsabfall infolge plastischer Verléngerung des mit den
Randseilschellen belegten Seiles berilicksichtigt, bzw.

BP
BP,O = a0p
(—ET- +1)(1 + ¢

(9),

p1)

und fiir die Festlingen in den Umlenkk®rperkonstruktionen und der
Abspannungen gilt:

Bn,I

n,1,0 = &0 (amalog By 11,0)  (20),
(“ir'+ 1)-(1 + Epl)
wobei n die Anzahl der Abspannungen und Umlenkungen angibt.

Mit (8) und (10) folgt dann die Stationierung der Achsen der
RVS auf den Girlanden der Netzfl&chen I und II

L = %E%f% B 4 i=x=1.k=x
=) " gmr— ™50 7 fow=z— B1,0,1x (20808 Irpcy)) (11D,

wobei m ... Anzahl der Gusskdrper zwischen x=2 und x=k, und die
Stationierung der fiir die Montage der RVS notwendigen Markierun-
gen am Schellenanfang mit

L; = Li-a (analog LII) (12),

wobei a die halbe Breite der RVS ist.

Die Gesamtlinge der Girlandenseile in den Netzflichen I und
I1I, sowie des Polygonseiles folgt aus (11) zu

n=m+2 %:kmax-l.k=kmax
I = %EEZ: Bn,I,O * foT e BI,O,ik (analog LII) (13).

L
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Die Stationierung der zum Setzen der Randseilschellen RS
notwendigen Markierungen auf den Girlanden der Netzfl&chen I und
IT zwischen den RVS i undffolgt nach Bild 3c aus

m=y-l,n=

L, =L -d+ (14)

m=0,n=1 bO,mn

und aus den Koordinaten der Bolzenachse auf r. und den entspre-
chenden Netzknotenpunkten errechnet sich schliesslich die ILinge
der Endschlaufen.

3.2.2. Computerbearbeitung

Da die vorhergehend angegebenen Rechenschritte beim Olympi-
schen Dach fiir 224 Randseile - insgesamt mehr als 15 km lang mit
1%3.200 Endschlaufenanschliissen und 17.600 Stationierungen - durch-
zufilhren waren und die verschiedenen Randseilausfiihrungen mit
einem allgemeinen Rechenprogramm bearbeitet werden konnten, bot
sich eine Computerbearbeitung an, bei der auch die Zuschnitts-
werkpldne von einer angeschlossenen, elektronisch gesteuerten
Zeichenmaschine aufgezeichnet wurden.

Zu den angegebenen Rechenoperationen kamen noch konstruktive
Bedingungeny so waren fiir die Absténde der Randseil- und Randseil-
verbindungsschellen Mindestmasse einzuhalten. Dies bedeutete in
manchen Fdllen ein Verziehen der Netzseile aus den Achsen des
gleichmaschigen Netzes heraus zum Rand hin. Diese zeichnerisch
zeitraubenden Korrekturen wurden im gleichen Programmdurchlauf
mit Hilfe entsprechender Kriterien erledigt.

Der Programmablauf fiir ein einfaches Randseil ldsst sich in
folgendem Flussdiagramm schematisch darstellen

Verschieben der Netz-
seilkocordinaten

Eingabedaten
(Krifte,Koordinaten)
[ Randseilberechnung |
T
chnittpunkte des Auflisten der Sta-
Randseiles mit den tionierungen und
?etzseilen Endschlaufen
1
Stationierung der Aufbereiten der Ko-
Randseilverbindungs- ordinaten zum elek- -
Egghellen tronischen Zeichnen Magnetband
e e e | I
Stationierung der | -
" Aufzeichnen des
?andsellschellen : Endsc?laufen Zuschnittwerk—
[ Mindestabstinde ~_ | ja planes
nein :
:
]

Die EDV-Organisation konnte auf ein zeitliches Minimum von
24 Stunden beschrdnkt werden. Die Eingabedaten (Krifte und Koor-
dinaten) wurden mittags abgeliefert, nachmittags gelocht, nachts
lief das Programm, am né@chsten Morgen kamen die Listen ins Kon-
struktionsbiiro und am gleichen Mittag die von einer elektronisch
gesteuerten Zeichenmaschine gefertigten Zuschnittswerkpl&ne. In
diesem zeitlichen Rhythmus konnten t&glich mehrere Randseile be-
rechnet werden.
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3.3, Die praktische Durchfiihrung

Im folgenden wird das schrittweise Vorgehen bei der Ausar-
beitung des Ausfiihrungszuschnittes fiir das Olympische Dach in
Miinchen mitgeteilt.

3.3.1. Netzseile

Festlegen der Spannschldsser zwischen Zwillingsseil und End-
schlaufe im Zuschnittsplan nach baupraktischen und gestalteri-
schen Gesichtspunkten, wobei diese nicht vor der ersten vollen
Masche und in einem konstanten Abstand vor dem letzten Knoten
liegen sollen, und Eintragen in die Netziibersicht.

Abzdhlen der gleichen Maschen und Bestimmen der ungleichen Ma-
schenweiten aus den Koordinaten des Netzsystems, wobei diese Lin-
gen um das Mass der elastischen Dehnung bei Vorspannung zu redu-
zieren sind, als Angaben fiir den Hersteller.

Die Lingen der Endschlaufen (Netzseilenden) folgen bei be-
kannter Lage der Spannschldsser aus der Zuschnittsberechnung des
Randes.

3.3.2. Randseile

Einpassen der Knoten- und Umlenkkodorper in die Zuschnittspl&dne und
Einbinden der Auslaufpunkte in die Stationierung der Randseil-
achsesy sofern notwendig Verziehen der Randseilachse.

Ermitteln der Seill&ngen in den Umlenkungen.

Austeilen der Verbindungsschellen bei n-Randseilstrangen nach
statisch vorgegebenem Maximalabstand und so, dass keine Netzseile
zu verziehen sind und dass eine annihernd gleichmissige Austei-
lung am Randseil und zwischen den anlaufenden Netzseilen gegeben
ist.

Zahlenmé&ssiges Festlegen der Abstdnde der Verbindungsschellen von
den vorhergehenden Stationierungspunkten mit (1).

Best%m?en des Schnittwinkels zwischen benachbarten Netzflichen
mit (2).

Festlegen der Lage der einzelnen Randseile im Raum und gegeniiber
der Randseilachse nach Bild 3b.

Zusammenstellen der Eingaben filir die Computerrechnung:Koordinaten
der Punkte auf der Randseilachse mit fortlaufender Nummerierung,
Lidngen in den Abspannungen und Umlenkungen, Stationierung der
Randseilverbindungsschellen, Vorspannkrédfte in den einzelnen
Randseilstréngen, Winkel zwischen den Netzfl&chen und Fl&chenvor-
spannung in den Netzen je Schellenbereich, Abstdnde der Randseile -
von der Randseilachse an Jjeder Verbindungsschelle und Koordinaten
der beiden ersten anlaufenden Knotenpunkte von jedem Netzseil,
die, wenn nicht bekannt, aus den Zuschnittsplinen mit einem Digi-
talisiergerdt abgegriffen werden kénnen, sowie Lage der Spann-—
achldsser.

Aus der Computerrechnung folgt dann die Randseilgesamtlénge,
die exakte fortlaufende Stationierung der Randseilverbindungs-
schellen und der Randseilschellen mit den zugehorigen Netzseil-
nummern, sowie die Endschlaufenldngen aufgelistet als Angaben fiir
den Hersteller.
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3.3.3. Abspannseile

Bestimmen der Lingen aus den Koordinaten der Systempunkte mit Be-
riicksichtigung ihrer baulichen Durchbildung, des Durchhanges auf
freier Strecke und der Vorspannkraft.

4, Erfahrungen bel der Anwendung in Miinchen
4.1, bei der Zuschnittsausarbeitung

Die ausschliesslich rechnerische Methode zur Ausarbeitung
des Ausfiihrungszuschnittes ist nur mit Vorbehalt zu empfehlen,
denn sie ist schwerfdllig beim Eingreifen, wenn notwendige kon-
struktive Anderungen dies erfordert.

4.2. bei der Montage

Der geplante Spannungszustand l&sst sich nicht exakt reali-
sieren. Als eine Ursache konnen die unterschiedlichen Toleranzen
im E-Modull bei den Rand- und Netzseilen angesehen werden. In den
Netzseilen sind daher fiir Korrekturen am Bau Spannschlisser sinn-
voll anzuordnen.

Mit Spannschldssern entlang des Randes, wie sie in Miinchen
die bauliche Durchbildung der Endschlaufen bedingte, kdnnen aber
allein Einfliisse aus unterschiedlichen Toleranzen und Ungenauig-
keiten an der Nahtstelle Netz-Randseil ausgeglichen werden. Es
ist daher fallweise zu iliberlegen,die Netzflidche durch Spann-
schlossreihen zu unterteilen, um mit diesen vorhandene Fehler
verkleinern zu konnen.

Literaturnachweis

H.Egger,E.Haug,F.Leonhardt: Der dt.Pavillon ...
’Der Stahlbau’ 1968, Heft 4 und 5, Wilhelm Ernst u.Sohn

E.Haug, L.Medlin,F.Otto: Protokoll iiber die Arbeiten des In-
stitutis fir leichte Flichentragwerke am dt.Pavillon (nicht im
Handel

Zusammenfagsung

Es ist moglich, aus den Raumkoordinaten des Systemzuschnit-
tes sidmtliche Seilldngen mit Beriicksichtigung der Vorspannkraft
und der konstruktiven Durchbildung des Netzes elektronisch exakt
zu berechnen. Es ist aber nicht mdglich, den geplanten Vorspann-
zustand am Bau ohne Nachstellmdglichkeiten exakt zu realisieren.
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Das Olympiadach in Miinchen
The Olympic Roof at Munich

Le Toit Olympique & Munich

JORG SCHLAICH
H. ALTMANN, R. BERGERMANN, K. GABRIEL, K. HORSTKOTTER,
K. KLEINHANSS, P. LINHART, G. MAYR, J. NOESGEN, U. OTTO, H. SCHMIDT
Ingenieurbiro Leonhardt und André, Stuttgart, BRD

l. DER ENTWURF DER TRAGENDEN KONSTRUKTION

Das Olympiadach wurde aus der bei einem Wettbewerb preisge-
krénten Idee entwickelt, die einzelnen Sportstdtten durch ein ein-
heitliches, leicht wirkendes und durchsichtiges Dach zu einer
GroRform zu vereinigen. Die Aufgabe, eine insgesamt 75 000 m2
groBe Dachfldche mdglichst frei zu gestalten und darunter stilitzen-
freie Rdume zu schaffen, lOsten die Architekten Behnisch & Partner,
Frei Otto und die Ingenieure Leonhardt und Andrd mit einer vorge-
spannten Seilnetzkonstruktion (Bilder 1 und 2).

Bild 1: Stadion(links)Zwischen- Bild 2: Svorthalle (hinten) und
bereiche und Sporthalle(rechts) Schwimmhalle, Modellfotos

(Gesamtaufnahme, vgl. Bild 1 des Einfiihrungsberichtes IIIa)
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An jeder Stelle des Daches wurden ausreichende, wenn auch
hdufig nur sehr schwache Krimmungen der Netzfldchen dadurch ge-
schaffen, daB sie an vielen Punkten durch auBenstehende oder frei
hdngende unterspannte Maste unterstiitzt und in viele einzelne,
aneinandergekoppelte Dachfldchen unterteilt wurden.

Beim Stadion wurde die Aufgabe, die Westtribiline zu iUberdachen,
durch Aneinanderreihen von 9 sattelfdrmig gekriimmten Netzflichen
geldst (Bild 1). Die einzelnen Netze sind mit Randseilen eingefaRt.
In den Beridhrungspunkten benachbarter Netze gleichen sich die
Krdfte in Ringrichtung liber gemeinsame oder gekoppelte Knoten-
punkte aus. In radialer Richtung sind die Knotenpunkte an 8 groBen
Masten aufgehdngt und zum Spielfeld hin gegen ein Randkabel ver-
spannt, das in zwei Widerlagern am Rande der Stadionschiissel ver-
ankert ist (Bilder 3 und 4). Die groBen Maste sind praktisch nur
in einer Ebene abgespannt, miissen sich also bei Querbelastung iiber
Auslenkungen stabilisieren.

Der Vorteil, den eine Einfassung von Netzen mit Randseilen
dadurch bringt, daB nur wenige Knotenpunkte zur Unterstiitzung der
Netze notwendig sind, muBte auch hier mit dem Nachteil erkauft
werden, daB sich die Netze zwischen benachbarten Knotenpunkten
glatt ziehen wollen. Vor allem an den Netzecken (Zwickel) stellen
sich praktisch ebene Fldchen ein. Wenn diese Fladchen, wie hier
entlang des Randkabels, wenia geneigt sind, miissen sie gegen die
Verformungen unter Schneelasten hoch vorgespannt werden. Die 2Zwik-
kel sind auch insofern problematisch, als ihre kurzen Netzseile
schon unter kleinen Lastverformungen der Randseile groBe Spannungs-
wechsel aufweisen.

Umstritten ist die Frage der Uberdeckung der linsenfdrmigen
Augen zwischen den Knotenpunkten benachbarter Netze. Die hier ge-
wdhlten schwach vorgespannten Augennetze heeinflussen die Geometrie
der Hauptnetze unglinstig und erschweren die Zuschnittsermittlung
erheblich, so daB Biegestdbe zwischen den Randseilen vorteilhafter
sein diirften.

Bild 3: Das Tragwerk des Daches iiber der Tribiine des Stadions
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Flir das Dach iiber der Sporthalle wurde ein im Prinzip &hnli-
ches Tragwerk wie filir das Stadion gewd&hlt. Es ist aus 5 aneinander-
gereihten Netzfldchen zusammengesetzt (Bilder 2 und 6). Auf der
den beiden Hauptmasten gegeniiberliegenden Seite der Halle treten
hier an die Stelle des Randkabels des Stadions abgespannte Maste,
die die Netze unterstiitzen,und direkt abgespannte Knotenpunkte.
Allerdings hat nur das mittlere Netz eine durchgehend sattelfdr-
mige Kriimmung, wdhrend die 2x2 Seitenfelder Wendefldchen sind,
weil je zwel ihrer gemeinsamen Knotenpunkte zu zwei Tiefpunkten
hinuntergezogen wurden, um damit einen beidseitigen seitlichen
Raumabschluf der Halle zu erreichen. Diese komplizierten Fldchen
muBten mit hoher Vorspannung erkauft werden (vgl. Abschn. 4). In
den AuBenbereichen dieses Daches wurde auf Augen verzichtet und
die benachbarten Netze in gemeinsamen Gratseilen zusammengefiihrt.

Das Dach iber der Schwimmhalle hat eine frei gestaltete Flda-
chengeometrie. Eine groBe, an ihrem Umfang vielfach direkt oder
liber Randmaste abgespannte Netzfladche, ist einmal an einem Haupt-
mast Uber zwei groBe Augseilschlaufen aufgehdngt und zweimal zu
Tiefpunkten hin abgespannt (Bilder 2 und 6). Der eine Tiefpunkt
liegt im Innern der Netzfldche, wobei die Netzkrdfte liber ein nach
unten abgespanntes Ringseil eingesammelt werden, wdéhrend der an-
dere - wie bei der Sporthalle - ein gemeinsamer Knotenpunkt mit
einer zweiten Netzfldche ist. Am Zusammenschlufl der beiden Netz-
flidchen sind zwei linsenf&rmige Augen und eine beiden Netzen ge-
meinsame Kehle ausgebildet. Die Halle &6ffnet sich an einer Seite
zum See hin. Diese Offnung ist wdhrend der Olympiade mit einer
zusdtzlichen Tribline zugebaut, die provisorisch mit einem vorge-
spannten PVC-beschichteten Polyester-Gewebe iiberdacht wird, das
teilweise am Schwimmhallendach aufgehdngt ist und allein eine
Grundfldche von 2 500 m2 {iberdacht.

Die Zwischenbereiche (Bilder 1 und 5) zwischen den Sportstdt-
ten sind mit vielfdltigen Netzfldchen liberdacht, die zwischen die
anderen Ddcher eingehdngt oder unabhd&ngig an Masten aufgehdngt
oder abgespannt sind.

Pl e < r\" B
> 74 ~ > - ( / _\.-\/ .
,o A .<\;\ -
N SR
‘\ 2z x - N P
: .I\, < 4 /'- \"\\\ :
R e /.,
S R
EROST
- t,__\;: y
= —s . :{
T A / Sl ,/ F
e | ’ ‘ Il
. ot ol
i3
Bild 4: Das Dach liber dem Bild 5: Ausschnitt aus den
Stadion von der Tribiline aus Zwischenbereichsddchern (ohne

gesehen Dachhaut)
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2. BEURTEILUNG DES OLYMPIADACHS

Die Wettbewerbsidee eines méglichst freizligig gestalteten,
alle Sportstdtten und die Zwischenbereiche erfassenden Daches, war
nur mit einer vorgespannten Seilnetzkonstruktion zu realisieren,
da nur sie unter diesen Bedingungen die vollkommene Ubereinstim-
mung zwischen Gestalt und KraftfluB, der zeitgemédBen Forderung an
die Baukunst, ermdglichte. Diese Konstruktionen sind hinsichtlich
ihrer vielfdltigen Gestaltungsformen uniibertroffen.

Durch geschickte Wahl der Verteilung der Vorspannkrdfte in
den Seilnetzen 148t sich, wie mit keinem anderen Bausystem, eine
solch vollkommene Anpassung der Dachformen an die Idee der Archi-
tekten und die Vielfdltigkeit des Geldndes und der Unterbauten er-
zielen, wie dies beim Olympiadach m8glich und notwendig war.

Auch die beim Olympiadach vom Fernsehen gestellte Forderung
nach einer lichtdurchld@ssigen Dachhaut 188t sich mit vorgespann-
ten, weitmaschigen Seilnetzen, bei denen hinsichtlich des Tragver-
haltens in der Dachfld&che keine verschattende Masse erforderlich
ist, in uniibertroffenem MaBe erfiillen.

Schwierig ist eine gliltige Beurteilung der Wirtschaftlichkeit
vorgespannter Seilnetzkonstruktionen. Die Behauptung, daf diese
"leichten Fldchentragwerke" deshalb, weil ihre oberirdisch sicht-
baren Massen gering, also leicht sind, auch unschlagbar wirtschaft-
lich sind, ist nicht zu halten.

Vorgespannte Seilnetzkonstruktionen kdnnen gegeniiber anderen
Bauweisen vorteilhaft sein, wenn groBe Spannweiten gefordert wer-
den und gleichzeitiq ausreichende Bauhthen fiir reichliche Krim-
mungen der Netzfldchen zur Verfliqung stehen, und wenn die Fl&dchen
so gewdhlt werden k&nnen, daB die Vorspannkrdfte nicht zur Begren-
zung der Verformungen unnétig erhdht werden miissen (vgl.Abschn. 4).
Ausschlaggebend ist, daB8 es gelingt, ihre Krdfte auf glinstige Weise
in einen guten Baugrund abzuleiten. Gerechtfertigt sind vorgespann-
te Seilnetzkonstruktionen in jedem Fall, wenn bel grofen freien
Spannweiten wenigstens einer ihrer beiden oben genannten Vorzlige,
ihre freie Gestaltbarkeit und ihre md&gliche Durchsichtigkeit fiir
das Bauwerk von besonderer Bedeutung ist.

ber das Olympiadach und damit {iber die Seilnetzkonstruktio-
nen iliberhaupt gab es wegen dessen hohen Baukosten viele Diskussio-
nen. Diese Kosten sind auf die auBergewthnliche Neuartigkeit der
Bauaufgabe zurlickzufiihren, die ohne jedes Vorbild in kurzer Zeit
zu bewdltigen war. Die Bereitstellung der Abmessungen jedes ein-
zelnen Bauteils (Zuschnitt) filir die Fertigung mit einer Genauig-
keit, wie sie sonst im Bauwesen nicht gefordert wird (vgl.Abschn.5),
war das zentrale Problem. Die Abhdngigkeiten zwischen diesem Zu-
schnittsproblem und allen anderen Planungs- und Bauarbeiten fiir
das Dach und die Sportstdtten forderten ein v&lliges Umdenken ge-
geniiber gewohnten Planungsabldufen und bereiteten den Terminpla-
nern gréBte Schwierigkeiten.

Berilicksichtigen sollte man auch, daf die Entwicklungskosten
fiir das Olympiadach einen Abfall technologischen Wissens beinhal-
ten, der allen kiinftigen Seilkonstruktionen zugute kommt, Im Rah-
men des Sonderforschungsbereichs an der Universitdt Stuttgart
haben wir Gelegenheit, die Versuche, die fiir das Olympiadach
durchgefiihrt wurden, weiter auszuwerten und zu verdffentlichen.
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3. ZUR FORMFINDUNG VON VORGESPANNTEN SEILNETZKONSTRUKTIONEN

Die Geometrie der Netzfl&chen im Vorspannungszustand kann
nicht, wie bei anderen Bauweisen, zeichnerisch festgelegt werden,
sondern muB erst aus physikalischen Modellen auf experimentellem
oder mathematischem Wege entwickelt werden.

Dabei beeinflussen sich die Geometrie, die GrtfRe und die Ver-
teilung der Vorspannkrdfte in jedem Bauteil, die Machart bzw. die
Maschengeometrie des Netzes, die Art der Berandung (starrer Rand
oder nachgiebige Randseile), die Ausrichtung der Netzseilscharen
zum Verlauf der Netzberandungen und die Steifigkeitsverhdltnisse
aller Bauteile wechselseitig.

Aus diesem Grunde wird es auch nie m8glich sein, fiir die Form-
findung allgemeine Regeln aufzustellen. Dies macht die Arbeit mit
vorgespannten Seilnetzkonstruktionen so schwierig und zugleich in-
teressant, weil sich hier schSpferische Phantasie entfalten kann,
die erst nach langer Betdtigung durch Erfahrung unterstiitzt wird.
Es ist nur in ganz einfachen Sonderfdllen mdglich, etwa bei einer
Sattelfldche mit starren Rdndern, eine gewlinschte Form, die man
sich mathematisch formuliert vorgegeben hat, auch tatsdchlich im
Vorspannzustand exakt zu erreichen.

Von Anfang an gilt es, zuschnittsgerecht zu entwerfen, zu
spitze Netzecken, sowie zu flach gespannte Rand- und vor allem
Grat- und Kehlseile, zu vermeiden. Ebenso wichtig ist es, sich
rechtzeitig Klarheit iliber die konstruktive Durchbildung und die
Fertigung zu verschaffen, da etwa die wirklichen Abmessungen der
Knotenpunkte, die m&glichen Fertigungsldngen der Seile oder ihre
Umlenkradien, den Entwurf spdter grundsdtzlich in Frage stellen
kénnen.

Flir den Entwurf der ersten grocben Formen haben sich beim
Olympiadach Modelle im MaBfstab 1:200 aus Polyester-Gittergewebe
fliir die Netze, Drdhten fir die Seile und St&ben fiir die Maste be-
wdhrt. Sie sind eine gute Grundlage fiir die ersten statischen Be-
rechnungen. Mit diesen Rechenergebnissen wurden die Modelle opti-
miert, bis sie als Grundlage fiir die Zuschnittsermittlung freige-
aeben werden konnten.

A
A /\ &

Bild 6: Die Schwimmhalle (links) und die Sporthalle (rechts)
ohne Dachhaut

ig. 24 Vorbericht
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4. ZUR ERFORDERLICHEN GROSSE DER VORSPANNKRAFTE
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das Tragverhalten einer vorgespannten Seilnetzkonstruktion be-
stimmt, und es deshalb unabdingbar ist, daB der planmdBige Vor-
spannzustand am Bau mit groBer Genauigkeit realisiert wird (val.
Abschn.5), ist die absolute GrSBe der Vorspannkrdfte maBgebend fir
deren Wirtschaftlichkeit. Die Gr&Be der erforderlichen Vorspann-
kridfte wird ausschlieBlich von den zuldssigen Verformungen und den
Dauerschwellfestigkeiten der einzelnen Bauteile bestimmt. Dem
steht entgegen, daB eine Erhdhung der Vorspannung zur Verminderund
von Verformungen, etwa im Vergleich zu einer VergrdBerung der
Kriimmungen im Netz, wenig wirksam und teuer ist.

Deshalb sollten einem Seilnetzdach immer méglichst groBfe Ver-
formungsmtglichkeiten eingerdumt werden. Dies gilt besonders fiir
die Dachhaut. Sie kann nur in den seltensten Fédllen, etwa bei ein-
fachen Sattelfldchen, sinnvoll mit dem Seilnetz und dessen Rand-
gliedern zusammenwirkend ausaebildet werden. Bei freier Seilnetz-
geometrie ist es stets wirtschaftlicher, eine schub- und biege-
weiche Haut den Verformungen des Seilnetzes widerstandslos folgen
zu lassen, so daB groBe Verformungswerte zugelassen werden kdnnen.

Bei groBen Ddchern ist es oft wirtschaftlicher, O6rtlich be-
grenzte materielle Schdden unter extremen, wdhrend der Lebensdauer
des Bauwerks mit geringer Wahrscheinlichkeit zu erwartenden Lasten,
in Kauf zu nehmen, als dagegen die Vorspannkrdfte zu erhhen. Eben-
so kann es sinnvoller sein, die Dauerschwellfestigkeit einzelner
Bauteile durch eine Uberbemessung zu erhdhen, als die Schwingbreite
durch hthere Vorspannung zu vermindern.

Regeln fiir die erforderliche Gr&Be der Vorspannung gibt es
nicht. Die ibliche Faustreagel, sie so hoch zu wdhlen, daf unter
hdufig zu erwartenden Lasten oder gar unter Voll-Lasten keine Sei-
le schlaff werden, flihrt zu unvertretbar hoher Vorspannung. Viel-
mehr, und das kann hier nur in aller Kirze angedeutet werden, ist
eine Verformungsbeschrdnkung lber Vorspannuna nur vertretbar, wenn
damit diejenigen dehnungslosen Verformungen abgebaut werden, die
untragbare Verschiebungen in der Netzfldche ausl&sen.

Bel der idealen Seilnetzfldche stimmt die Fldchengeometrie
und die GrdBe und Verteilung der duReren Lasten dergestalt lberein,
daB diese Verschieb'ngen in der Netzfldche nicht auftreten. Die
GréBe der Vorspannung spielt dann filir die Dimensionierung und damit
die Kosten keine Rolle. Diese Forderung ist fiir die Schneelasten,
kaum aber fiir die Windlasten, erfiillbar. Sie bedeutet dariilber hinaus
eine Einschrdnkung bei der Auswahl der Formen der Seilnetzfldchen.

Die Stdrke der vorgespannten Seilnetzkonstruktionen, ihre
freie Gestaltbarkeit, kann also aus wirtschaftlicher Sicht zualeich
ihre Schwdche sein, vor allem, wenn wegen einzelner ungiinstig ge-
kriimmter Bereiche eines groBen zusammenhdngenden Daches, dieses
insgesamt hoch vorgespannt werden muf. Bei der Sporthalle des
Olympiadaches mit ihren Wendefldchen in den Seitenfeldern, aber
auch bei der Schwimmhalle, war es unumgdnglich, die Verformungen
durch hohe Vorspannung zu begrenzen. Aus Erfahrung heraus gilt es,
beim Entwurf die Wirtschaftlichkeit, den Nutzwert und die Gestal-
tung optimal gegeneinander abzuwdgen. Das Gelingen hdngt wie bei
keiner anderen Bauweise von einer verstdndnisvollen Zusammenarbeit
zwischen Architekt und Ingenieur ab.
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5. ZUSCHNITTSERMITTLUNG - DAS PROBLEM DER MASSGENAUIGKEIT,
STATISCHE BERECHNUNG

Unter Zuschnittsermittlung versteht man die Festlequng der
Abmessungen und Materialkennwerte jedes einzelnen Bauteiles der
tragenden Konstruktion als Vorgabe fiir die Fertigung einschlieflich
der Fertigungsangaben, wie Vorreckkrédfte flir die Seile, Abldngspan-
nung, -temperatur usw. Dabei miissen Anforderungen an die MaBge-
nauigkeit beim Zuschnitt und bei der Fertiguna gestellt werden,
wie dies von keiner anderen Bauweise her bekannt ist. Dies ist das
zentrale Problem vorgespannter Seilnetzkonstruktionen, das beim
Olympiadach noch alle anderen Uberlegqungen iiberschattete und des-
sen Ldsung wir heute sehr viel ndher gekommen sind:

Der Vorspannzustand bestimmt die Geometrie und das Tragver-
halten der gesamten Konstruktion. Er muB deshalb mit ausreichender
Genauigkeit in jedem einzelnen Bauteil am Bau realisiert werden.
Beim Olympiadach versuchten wir, im Mittel die Sollspannungen auf
+ 15 % genau zu erreichen, wobei die Vorspannung bei den Seilen
etwa 50 % der zuldssigen Spannungen aufbraucht, die mit zweifacher
Sicherheit gegen effektiven Bruch festgelegt waren. Voraussetzung
flir die Baubarkeit einer Millionen EinzelmaBe enthaltenden Kon-
struktion ist die standardisierte Vorfertigqung. Das vorgefertigte
Dach muB, nachdem es zwischen seinen vorab hergestellten Festpunk-
ten eingehdngt ist, seinen planmdBigen Vorspannzustand annehmen.
Dazu muB es vor der Montage im spannungslosen Zustand abgewickelt,
exakt um das MaB seiner Dehnungen infolge Vorsvannung kleiner her-
gestellt werden als der Abstand zwischen den Festpunkten, abzlig-
lich deren Nachgiebigkeit unter Vorspannung. Dariliber hinaus muf
die innere Vertrdglichkeit dergestalt stimmen, daB jedes Bauteil
seinen planmdpBigen Spannungszustand annimmt, da selbst Einzelab-
weichungen zu unkontrollierbaren Umlagerungen fihren. Jedes zug-
beanspruchte Bauteil, hier also jedes Seil, muB um das MaB seiner
Dehnung verkiirzt, jedes druckbeansnruchte Bauteil, hier also jeder
Mast und Druckstab, um das MaR seiner Verkilirzung infolge Vorspan-
nung verldngert vorgefertigt werden. Dabei kommt es nicht nur auf
die Gesamtldngen von Verankerung zu Verankerung an, sondern es ist
jedes innere TeilmaB, etwa von Netzknoten zu Netzknoten, ebenso
bedeutsam. Systematische Additionsfehler sind besonders gef&hrlich.
Bei vorgespannten Seilnetzkonstruktionen sind Lédngenfehler iden-
tisch mit Dehnungsfehlern, 4.h. mit Kraftfehlern! Bei Balkentrag-
werken verursachen erst etwa 50-fache Lidngenfehler denselben Span-
nungsfehler wie bei vorgespannten Seilen.

Beispielsweise dehnt sich ein 50 m langes Seil unter einer
gebrduchlichen Vorspannung um 10 cm. Ist es um O,1 %, also 5 cm,
2u lang oder zu kurz, sind seine Spannungen und damit seine Umlenk-
krdfte auf die Seile der Querrichtung um 50 % falsch, wobei natlir-
lich durch innere, von den Krimmungsverhdltnissen abhdngige Umla-
gerungen ein Ausgleich stattfindet. Wenig gekriimmte und kurze Seile
sind dabei besonders gefdhrdet. Handelt es sich bei diesem Seil um
ein Netzseil und wird, wie beim Olympiadach, dessen L&nge aus der
Addition einzelner Maschenweiten von 750 mm ermittelt (vgl.Abschn.
6), so wird der oben angenommene 5 cm-Fehler bereits erreicht,
wenn jede Masche entweder von der Ldngenvorgabe her (Zuschnitt)
und/oder bei der Fertigung systematisch um 0,75 mm zu lang oder zu
kurz vorgegeben oder gefertigt wird. Handelt es sich gar um ein
Randseil, so wirkt sich ein Lidngenfehler als vielfacher Stichfeh-
ler aus, der sich ins Netz hinein fortpflanzt und flir die Netz-
seile einen Ldngenfehler darstellt. Absolute Genauigkeit ist natilir-
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lich nicht erreichbar. Je hSher die Anspriliche jedoch geschraubt
werden, desto weniger kostspielige Korrekturen sind spdter am Bau
zu erwarten. Spannungskorrekturen im Netz sind sehr zeitraubend,
auch wenn, wie beim Olympiadach mit Spannschldssern an jedem Netz-
seil, die konstruktiven MaBnahmen dazu vorhanden sind, da jede
Einzelkorrektur unplanmdBige Umlagerungen nach sich zieht.

Daraus wird verstdndlich, daB manuell hergestellte Zuschnitts-
modelle aus Draht, wie sie bisher iiblich waren und wie sie zundchst
auch fiir das Olympiadach im MaBstab 1:125 gebaut wurden, zu unge-
nau sein miissen. Wir haben deshalb einen rein rechnerischen Weg
fiir die Zuschnittsermittlung gesucht. Dariiber berichten J. Argyris
und K. Linkwitz mit Mitarbeitern auf diesem KongreB, ebenso wie
iiber die Zuschnittspldne, die maBstdbliche Abwicklungen der System-
linien aller Bauteile sind. In den Zuschnittswerkpldnen (vgl. den
Bericht von H. Egger) werden die Systemlinien materialisiert, d.h.
die wahren Abmessungen aller Seile, Beschldge, Knotenpunkte, Maste
etc. so aufgezeichnet, daB daraus die endgiiltigen Abmessungen aller
dieser Bauteile unter Beriicksichtigung der Material- und Tempera-
tureinfliisse fiir die wahren Spannungsverhdltnisse unter Vorspannung
abgenommen werden kdnnen.

Mit den nun vorhandenen rechnerischen Verfahren ist ein wich-
tiger Teil des Genauigkeitsproblems geldst, und die vorgespannten
Seilnetzkonstruktionen haben damit das Experimentierstadium lber-
wunden. Es bleiben dem Ingenieur bei der Zuschnittsermittlung nach
wie vor eine Vielzahl von Problemen, die im Planungsablauf unge-
wohnte und schwierige Abhdngigkeiten zur Folge haben:

Fiir die Berechnung muB eine mdglichst gute Geometrie und ein
Vorspannzustand vorgegeben werden. Dazu miissen, bevor die endgiil-
tige Geometrie und damit die wirklichen Krdfte bekannt sind, be-
reits die Abmessungen und Materialkennwerte aller Bauteile bereit-
gestellt werden, da das Rechenmodell dem endgliltigen Bauwerk geo-
metrisch und elastisch exakt entsprechen muB8. Dies erfordert eine
frilhzeitige und detaillierte Kenntnis der Seilfiihrungen, vor allem
an den Knotenpunkten, da sonst bei der endgliltigen konstruktiven
Durchbildung die in die Berechnung eingegebenen Systemlinien ver-
schoben werden miissen. Manches Detail muB verworfen werden, obwohl
es alle statischen und konstruktiven Bedingungen ideal erfiillt,
weil es nicht zuschnittsgerecht ist. Dabei miissen die Seilkennwerte
meist schon in die Berechnungen eingehen, bevor sie an Proben aus
den endgiiltigen Lieferungen bestdtigt werden kdnnen.

Ferner verlangt die Berechnung eine fortlaufende Betreuung,
eine Beurteilung und Anpassung der 2Zwischenergebnisse, da es wohl
keine Bauweise gibt, bei der es zur Berechnung einer solch intimen
Kenntnis aller statischen, konstruktiven und fertigungstechnischen
Zusammenhdnge bedarf.

Nachdem es wegen des Zuschnitts unabdingbar ist, den Vorspann-
zustand grofer Seilnetzkonstruktionen exakt zu berechnen und dies
mit der Methode der finiten Elemente elektronisch méglich ist,
wird man wenige kennzeichnende Schnee- und Windlastfdlle auch auf
diesem Wege berechnen, obwohl hierfiir wegen der hohen inneren Trag-
reserven und ohnehin groben Lastannahmen einfache Rechenverfahren
ausreichend genau sind. Je komplizierter unsere Tragwerke werden,
desto wichtiger ist es, m&glichst einfache und transparente Rechen-
verfahren fiir den Entwurf, die konstruktive Durchbildung und die
Begleitung der genauen elektronischen Berechnungen zu entwickeln
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und erst die letzte Verfeinerung dem Computer zu iiberlassen. Lei-
der reicht der Platz nicht flir eine Darstellung unserer am Olympia-
dach entwickelten Verfahren.

Nachdem es heute noch nicht m&glich und auch kein Weg sicht-
bar ist, liber die Ermittlung der Eigenfreauenzen hinaus das aero-
dynamische Verhalten solcher Tragwerke in natiirlichem Wind zu be-
rechnen, haben wir uns beim Olympiadach mit verschiedenen tasten-
den Untersuchungen, im Windkanal an starren und verschieblichen
Modellen, an einem Probedach und mit Teilberechnungen begniligen
miissen.

Sicher ist, daB solche Systeme aerodynamisch schwer anzufachen
sind, und daB sie gegeniiber Stabstahlkonstruktionen eine hohe in-
nere Dampfung haben, die, wie Versuche zeigten, durch die Acryl-
glas-Dachhaut noch erheblich verbessert wird. Bei der konstrukti-
ven Durchbildung und Bemessung wurde auf die Dauerfestigkeit aller
Bauteile besondere Aufmerksamkeit verwandt.

_ : N
Bild 7: Netzpartie mit Spann- Bild 8: Netzpartie mit Uber
schldssern, Randseilklemmen, einem aufgehdnaten Knoten-
und Randseil aus 2 gekoppel- punkt umgelenkten Randseilen

ten Einzelseilen

Bild 9: Acrylglas-Dachhaut
mit Fugenausbildung und
Pufferauflageruna auf den
Netzknoten
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6. ZUR KONSTRUKTIVEN DURCHBILDUNG

Aus Platzgriinden kdnnen hier nur die wichtigsten Merkmale der
Konstruktion hervorgehoben und muB8 auf einen Bericht {iber die
groBe Zahl der Versuche an Seilen, ihren Beschldgen und Veranke-
rungen verzichtet werden.

Das Seilnetz (Bilder 5, 7 und 8) hat viereckige Maschen mit,
unter einer konstanten und definierten Vorspannung, gleichen Kno-
tenabstidnden von 750 mm. Dieses Netz 18Rt sich mit seinen drehba-
ren Knoten im eben ausgelegten Zustand spannungslos wie ein Sche-
rengitter verschieben (Bild 10). Es ist fiir Seilnetzkonstruktionen
universell verwendbar, weil es sich jeder beliebig gekriimmten
Flidche spannungslos durch verdnderliche Winkelverschiebungen an-
passen kann. Das Verlegeschema eines solchen Netzes auf einer ge-
krimmten Fldche ist frei wdhlbar. Bei komplizierten Fldchen braucht
es zur Wahl des besten Verlegeschemas viel Geschick, da davon die
Flidchenspannungen im Vorspannzustand, das Tragverhalten und die
konstruktive Durchbildung stark abh&dngig sind.

Dieses Netz erflillt in idealer Weise die Voraussetzungen fir
die Vorfertigung und damit die Baubarkeit komplizierter Seilnetz-
konstruktionen: Im Netzinnern sind, unabhdngig von den Kriimmungen
der Fliche, alle MaBe, die Maschenweiten, gleich. Dies erleichtert
die Lidngenermittlung der Netzseile beim Zuschnitt und bei der Fer-
tigung und garantiert ein Minimum an Fehlerauellen.

Fiir das Seilnetz des Olymniadaches wurden rund 400 km Seile
bendtigt. Diese Seile sollen einerseits flir die Montage biegsam
und daher aus moglichst dlinnen Dr&hten geflochten, andererseits
wegen der Korrosionsanfdlligkeit m&glichst dickdrdhtig sein. Ge-
widhlt wurden 19-drdintige Litzen aus stark verzinkten Drdhten mit
2,3 und 3,4 mm Durchmesser mit einer Schlagldnge von 10 x Durch-
messer. Damit erhdlt das Netz, bei 2-facher Sicherheit gegen Bruch,
in den Normalbereichen eine zuldssice Tragkraft von 15 Mp/m und in
den verstdrkten Bereichen von 30 Mp/m.

Auf je zwei Netzseile werden nach dem Vorrecken unter defi-
nierter Vorspannung in einem automatisierten Vorgang Aluminium-
klemmen mit zentrischen Ld&chern in genauen Abstdnden von 750 mm
aufgepreft. Dadurch wird eine gleichbleibende Genauigkeit der
Maschenweite garantiert und der Zusammenbau des Netzes sehr ein-
fach: Nach dem Abldngen der Seile k&nnen die Klemmen beider Seil-
scharen mit nur einer Schraube zu drehbaren Netzknoten verbunden
werden, ohne daf noch MaBe zu nehmen sind (Bild 9 des Vorberichts
I1IT a).

Die Ldngenkorrektur der Netzseile ist durch Spannschl&sser
am RandseilanschluB méglich. Die Netzseile werden mit den Rand-
seilen durch Randseilklemmen verbunden (Bilder 5 und 7).

Die Randseile in verschlossener Bauart mit einem Durchmesser
von 81 mm haben eine zuldssige Tragkraft von 300 Mp bei 2-facher
Sicherheit gegen Bruch, nach Beriicksichtigung aller tragkraft-
mindernden, durch statische und dynamische Versuche nachgewiesenen
Einflilisse, wie Umlenkungen an S&dtteln (r = 80 cm), Querpressung
durch Klemmen und Endverankerungen.

Sind die Rand-, Grat- oder Kehlseilkrdfte gr&Ber als 300 Mp,
so werden mehrere Seile gekoppelt (Bild 7). Damit ergibt sich eine
wirtschaftliche Produktionsmenge gleicher Randseile und es k&nnen
die Randseilklemmen, Flihrungsnuten und Ankerkdpfe vereinheitlicht
werden.
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Mit ZuBerster Sorgfalt wurde auf eine genaue Einhaltung der
ZuschnittsmaBe bei der Fertigung geachtet und dabei alle Seile vor-
gereckt und unter definierter Vorspannung bei kontrollierter Tempe-
ratur abgeldngt und mit Markierungen fiir die Klemmen versehen.

An den Knotenpunkten werden die Randseile entweder umgelenkt
und weitergefiihrt (Bilder 7, 8 u.a.), oder verankert (Bilder 4, 10
u.a.). Die Knotenpunkte sind aus GuBstahl und miissen fast alle der
jeweiligen Geometrie folgend angefertigt werden. GuBSstahl konnte
gewdhlt werden und war gegeniiber SchweiBkonstruktionen wirtschaft-
lich, weil heute statt der teuren Holzformen leicht bearbeitbare
Schaumstoffmodelle verwendet werden kdnnen. Der schwerste Knoten-
punkt wiegt ungefdhr 27 t.

Die nicht direkt mit dem Netz verbundenen Abspann- und Auf-
hingeseile sollen eine groBe Dehnsteifigkeit haben, da von ihr die
Verformungen des Daches unter Wind und Schnee sehr stark abhdngen
kénnen. Diese Forderung erfiillen Litzenbiindel aus parallel verleg-
ten Litzen mit groBer Schlagldnge. Ihre Seilképfe sind mit der neu-
artigen HiAm-VerguBmasse vergossen (vgl. den Einfihrungsbericht
IITa), so daB sie bei einer Nennfestigkeit der Litzendrdhte von
160 kp/mm2 mit zuldssigen Spannungen von 75 kp/mmZ2 bemessen werden
konnten. Die einzelnen Litzenbiindel sind flir Krdfte bis 1 150 Mp
bemessen. Bel groBeren Krdften - das grofe Randkabel des Stadions
hat 5 000 Mp aufzunehmen - werden mehrere Blindel gekoppelt (Bild 4).

Die Maste mit bis zu 80 m Ldnge und Lasten bis 5 000 Mp sind
zylindrische Rohre mit Durchmessern bis 3,5 m und 7 cm Wanddicke.
Die Hauptmaste sind oben und unten konisch. Ihre Mastkdpfe sind
geschweifSite Scheibenkonstruktionen (Bilder 4-6). Die Maste stehen
auf allseitig beweglichen Gummitopflagern und einfachen Stahlbeton-
fundamenten. Fiir die groBen Bewegungen wdhrend der Montage sind
unter den Gummitopflagern Kugelkalottenlager angeordnet, die nach
dem Spannen einbetoniert werden.

Bild 10: Zusammenbau der Netzkonstruktlon am Boden, Schwimmhalle
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Fiir die Zugfundamente wurden entsprechend den &rtlichen Ver-
hiltnissen 3 Arten verwendet: T-fOrmige Schlitzwandfundamente, die
nach dem Prinzip eines Zelthdrings wirken, Schwergewichtsfundamen-
te, die so in Scheiben und Platten aufgeldst sind, daB bei mdg-
lichst geringen Betonmassen eine grofie Erdauflast herangezogen
wird, und Bodenankerfundamente.

Das ganze Dach ist mit einer Dachhaut aus 4 mm dicken Acryl-
glasplatten eingedeckt. Die Platten werden in serienmdfiger Gr&fBe
von ca. 2,90 x 2,90 m auf dem Seilnetz verleat. Die Befestigung
erfolgt punktfSrmig im Bereich der Seilnetzknoten. Die Fugen zwi-
schen den Platten werden mit durchgehenden, auf den Plattenridndern
aufgeklemmten Neopreneprofilen geschlossen (Bild 9). Die Ausgangs-
winkel der Seilnetzmaschen verdndern sich unter Belastung und
Temperaturidnderungen um bis zu 6°. Die Platten kdnnen diese Bewe-
gungen nicht aufnehmen. Deshalb werden zwischen Seilnetzknoten und
Dachhaut Neoprenepuffer eingebaut, die eine "schwimmende" Aufla-
gerung der Platten bewirken. Da in den Fugen auch Ldngsbewegungen
auftreten, ist das Fugenband entsprechend breit und diinn, so daB
eine Faltenbildung moglich ist.

7. ZUR MONTAGE

Die Beschaffung aller Bauteile, den Zusammenbau am Boden, die
Montage und das Spannen des Dachs ilibernahm eine Arbeitsgemeinschaft
aus 6 groBen Stahlbaufirmen.

Bei jedem Dach wurden nach Fertigstellung der Fundamente zu-
ndchst die groBen Maste montiert und die gesamte Netzkonstruktion
einschlieRlich der Randseile, Litzenblindel und kleinen Maste am
Boden zusammengebaut (Bild 10). Dann wurden alle Knotenpunkte {iber
ihre Aufhdnge- und Abspannseile in ihre richtige Lage gezogen oder
auf die sie direkt unterstiitzenden Maste aufgesetzt. Dabei sollten
alle Bewegungen mdglichst gleichmdBiac vom geometrischen Mittelpunkt
des Daches weg erfolgen. Nachdem alle Abspannseile ihre planmdfige
Lage in den Fundamenten erreicht hatten, wurden die Geometrie aller
Knotenpunkte und keunnzeichnender Netzounkte, sowie die Spannungen
in den Netzseilen, Abspannseilen und Masten, gemessen. Bei gr&fe-
ren Spannungsfehlern wurden Seilldngenkorrekturen an den Soann-
schldssern der Netzseile und an den Verankerungen der Abspannseile
vorgenommen. In der Regel wurden Smannungsfehler von + 15 % dann
hingenommen, wenn durch zusdtzliche statische Nachweise gezeigt
werden konnte, daB dies hinsichtlich der Standsicherheit tragbar
ist.

Insgesamt kann gesagt werden, daB sich die aroBe Miihe, die
auf einen genauen Zuschnitt und eine genaue Fertiguna verwendet
wurde, gelohnt hat, da nur sehr wenig Korrekturmafnahmen erforder-
lich waren, bis das Dach seinen planmdficen Zustand erreicht hatte.

ZUSAMMENFASSUNG

Fir die Olympiade in Miinchen wurde eine vielfdltig gestaltete
vorgesvannte Seilnetzkonstruktion mit einer Fl&che von 75 000 m
gebaut. Ihr Tragsystem wird erldutert und beurteilt. Es folgen
einige Hinweise zur Formfindung, erforderlichen GroBfe der Vorspann-
krdfte, zur Zuschnittsermittlung und dem damit vor allem verbunde-
nen Problem der MaBSgenauigkeit dieser Konstruktionen. Abschliefend
werden die wichtigsten konstruktiven Details und die Montage be-
schrieben.
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Ubersicht. Es wird ein Uberblick uber die statische und dynamische Berechnung von vor-
gespannten Netzwerkkonstruktionen gegeben.Grundlage hierfir ist die Methode der Finiten
Elemente und die Matrizenverschiebungsmethode. Ferner werden vorhandene Rechenprogramme
und deren Weiterentwicklung beschrieben.Eine Reihe von Beispielen,die zum Teil aus den
Berechnungen der olympischen Bauten in Miinchen entnommen wurden, bestédtigen erneut die
Eleganz der Methode der Finiten Elemente.

Einleitung. Die rasche Entwicklung der elektronischen Rechenanlagen hat einen groflen
EinfluB auf die Berechnungsmethoden der Technik und vor allem auf die der Statik und Dyna-
mik bewirkt. Die seit 1953 vom Senior Autor aufgestellte und stindig weiterentwickelte Theorie
der finiten (endlichen) Elemente [ 4,2,3] war in erster Linie fur die hochkomplizierten Trag-
werke der Luft-und Raumfahrt gedacht . Die Methode wird heute in mehreren wissenschaftlichen
Zweigen wie z .B. im allgemeinen Maschinenbau und im Bauwesen angewandt . Nichtlineares
Verhalten des Materials [6] und/oder der Geometrie (groBle Verschiebungen) [4] 4Bt sich
sehr elegant fur ein-,zwei-und dreidimensionale Kontinua formulieren.Die statische Berech-
nung der vorgespannten Netzwerkkonstruktionen ist ein nichtlineares Problem beziiglich der
Verschiebungen,wobei die Dehnungen im linear-elastischen Bereich bleiben.Auch hierzu wur-
de bereits 1959 vom Senior Autor [2,5] die Theorie entwickelt. lhre Anwendung speziell auf
Netzwerke fand jedoch erst im Rahmen der Untersuchungen der Zeltddcher |7/ 13] fur die
olympischen Spiele in Minchen statt. Die Theorie ist ausfuhrlich inl?:ﬁ] behandelt worden
und in diesem Vorbericht wird sie in Kurzform (Abschnitt 1) erldutert. Mit der Matrizenver-
schiebungsmethode |&GBt sich das lineare Schwingungsproblem beliebiger Strukturen sehr einfach
ermitteln .Fur Netzwerke muB zusdtzlich das nichtlineare Schwingungsverhalten beriicksichtigt
werden (s. Abschnitt 1).

Hierzu ist absichtlich ein extrem nichtlineares Beispiel gewdhlt worden,um einerseits
die eindeutige physikalische Interpretation der Nichtlinearitdt (Geometrische Steifigkeit) und
andererseits die Genauigkeit der numerischen Integration {8 ] zu demonstrieren.Wie schon
oben erwshnt wurde, |48t sich die Methode der finiten Elemente nur mit Hilfe von elektroni-
schen GroBrechenanlagen,wie z.B. die im ISD (Institut fur Statik und Dynamik der Luft-und
Raumfahrtkonstru ktionen, Universitat Stuttgart) installierte CDC 6600, verwirklichen. Seit
langem werden im ISD groBe Programmsysteme entwickelt,welche die statische [QJ und dyna-
mische [10] Analyse von beliebigen Strukturen erlauben.Speziell fir Netzwerkkonstruktionen
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ist ein Programmsystem entwickelt worden, welches die statische Berechnung (auch fir Netze,
die zum Teil Biegetrdager aufweisen) ermglicht. Dieses Programmsystem wird im Abschnitt 2
beschrieben,sowie auch seine weitere Entwicklung (Abschnitt 3).Auch fur die statische und
dynamische Analyse von sehr hohen Masten ksnnen die vorhandenen Programme verwendet wer-
den. SchlieBlich werden im Abschnitt 4 mehrere Beispicle angefuhrt,welche die Gite der
Methode der finiten Elemente und die Zuverldssigkeit der Rechenprogramme demonstrieren.
Die starke Begrenzung der Seitenzahl in diesem Vorbericht erlaubt es uns leider nicht,ausfihr-
lich auf die Theorie einzugehen .Wir hoffen aber,dies in den Abhandlungen nachholen zu
konnen, insbesondere fur das Schwingungsproblem.

1. Uberblick uber die Statische und Dynamische Berechnungsmethode fir vorgespannte

Netze

1.1 lterative Berechnung der Gleichgewichtslage. Die Theorie fur die statische Berech-
nung von vorgespannten Netzwerken wurde schon in[743] ausfthrlich behandelt. Wir wieder-
holen hier in Matrizenschreibweise den Vorgang fir die iterative Gleichgewichtsermittlung

(siehe auch Abfn.i?,ﬂ) 1
R,=Rii*Ra Rui=Ri-@'ah;P; 7a,=[Ketke]T Ru;

t
FA-,;‘:a Vai  Xieq4=Xi+Pn; (1)

R = Vektor der dusseren Krafte (Inkrementale Belastung)
= Zuwachs der inkrementalen Belastung

Ra
Ru = Vektor der Ungleichgewichtskrdfte der Knoten
P - (AL

N = Vektor der natirlichen Krafte . Fur das g -te Element gilt PN%"' Lo ?

Qv = Boole'sche Matrix (siehe [ 3] ) P
aN = Diagonale Hyperma‘rrixra Ngoee a/vg_ ves aNS _l mit abl%: [—C C :] und
es

C = Vektor der Richtungs-Cosinuse %——fen Elementes

Fa = Inkrementaler Verschiebungsvektor
[“E+K]= Elastische und geometrische Steifigkeit des Netzes
.PA = Inkrementaler Verschiebungsvektor der Elemente
X = Vektor der aktuellen Koordinaten der Elemente (Entsprechend PA )s

{x’l X%--:Xs} mit X%—_- {Xq Y174 Xa 72?2}

Anzahl der Elemente im Netz.

1.2 Das System der Bewegungsgleichungen fur groBe Verschiebungen .Mit Hilfe des Kraft-
Weg-Diagrammes fiir groBe Verschiebungen und der Lagrange'schen Vorschrift wird das System
der Bewegungsgleichungen hergeleitet .Fur die Auslenkungen, Geschwindigkeiten und Beschleu-
nigungen definieren wir folgende Vektoren fur die Freiheitsgrade von " Knoten

Die Gesamtsteifigkeitsmatrix des Netzes K,1= l(E‘*'KG],l, (auch Tangentiale Steifigkeits-
matrix genannt) wird zu Beginn jedes Integrationsschrittes aus der aktuellen Geometrie und den
natUrlichen Krdften aufgebaut und bleibt innerhalb des Zeitintervalls konstant. Die Massen-
matrix M (ausnohmsweishe’: fur Netzwerke) ist nur in ihrer Diagonale besetzt

M = Ym4um’bvm3w'--mﬂumnvm'nwj

3

4 2 L
- - = — . o P
mit ”73_(ulvlw) = =1 2 1 1
Anzahl der Stdbe die am Knoten 3 anschliessen

Masse/Ldnge
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Weiterhin ist Ro der Vektor der Ungleichgewichtskrifte am Anfang jedes Zeitintervalls und
Ya = Y41~Yo der inkrementale Verschiebungsvektor. Die Anfangswerte zur Zeit t= to sind
r =Yo und T— Ta . Aus dem Energiesatz und unter Beriicksichtigung der Nichtlinearitat
im Diagramm (Abb. 6 ) gilt

LEEME, =40 MPs =72 Ro — 414 Kaa (5)

M7 A Mo+ (%) Ro ¢
Nach der T.a gctie‘s{:ﬁeIIVorschn‘:’Y? fa = ro K G - n) K rO) (6)
- Sau5T56) g e Fhio ()

mlfT u, FKmehsche Potentielle bzw . DlSSlpohonsenergle wird

4 (3F)=MPx () FE=0 (9)

(da die Masse unabhonglg vom Verschlebungsvekfor ist)

'(TE: RO+“ - M1ra ("O) und r'g_%z o ()

Durch Einsetzen von (8,9,10,11) in (7) ergibt sich M T’l + K ﬁ = - R o (42)

oder

wobei RO zu Beginn jedes Infegrahonsschrlttes bekannt sein muf3.Wir geben hier die Formel
fir den 741 Integroho*zsschnft an:

MY Vitg = -Ro ”Z[Vi (rj V3- 1)] K‘Hi(rud f) ('ﬁ’)

1.3 Numerische Integration des Sysfems Fur die numerische Integration konnen die
Methoden verwendet werden,die auch bei den linearen Schwingungen zum Erfolg gefuhrt
haben. Eine sehr genaue Integrationsmethode ist die der "Finite Elements in Time and Space"

[ 8] bei der auBler den endlich kleinen Raumelementen auch endlich kleine Zeitelemente
emgefuhrf werden .Wir verwenden hier jedoch eine abgewandelte Methode des in [§] beschrie-
benen Verfahrens und geben hiervon eine Kurzfassung  .Ausfihrlich soll die Methode nach

in [14] behandelt werden.Innerhalb eines Zeitintervalls T soll die Tragheitskraft eine
Funktion dritter Ordnung sein

’ ’
Mr=R-= CP4R1'+%R' +@; R 141 + @, Rieq (1%)
die L)aj sind kubische Hermutesche Interpolationspolynome der dimensionslosen Variablen

3=1/1 We:fgrhm-sr R'= dR/d%_TdQ/d-L“TR (15)
§=1-33423° P=2-2343° =323 @=-243" (16)

durch Einsetzen von (16) in (14) und durch zweimalige Im‘egrohon erglbf sich fur ¢=

TZ’+1:T’1"’3‘2"—CM.1(6RL+TR 4‘62‘[{4 IEZ-M) r,_ +dr (4:'1)

Yitaz f’ +7 Ti + 80 TzM 4(24R1.+5T Rz+5R1.+4’2TRz+4) Vit dr (43)

Die Beschleunigung laBt snch dann aus 'Q M—4 R (49) berechnen.Man sieht sofort,
daBl man aus (1#) und (19) eine Iterahonsprozedur innerhalb jeden Zeitintervalls aufstellen kann,
indem man fiur den Start der [teration R 44 = Ri und Ri+4 = 1+TR1, annimmt .
1.4 Anwendung der Integrationsmethode auf die freie Schwingung eines ebenen vorge-
spannten Netzes. Ein ebenes,quadratisches vorgespanntes Netz mit Auflager in den vier Ecken,
also mit freien Rdndern, wurde unsymmetrisch belastet (Abb. 4 ) und zum Schwingen frei
gelassen. Die Querschnitte im Inneren haben einen E % A Wert (El .Mod. % Fldche) von
2000 Mp und die der Randseile 10000 Mp. Das Gravitationsfeld wurde vernachlassigt .

Bei insgesamt 49 Knoten muflte ein System von 135 Dif.Gleichungen 2ter Ordnung integriert
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werden .Die Ergebnisse (Abb. 4 ) der in 1.3 erlduterten Methode wurden durch die Runge-
Kutta Integrationsmethode (4ter Ordnung) voll bestdtigt. Zusdtzlich wurde eine Energiekon-
trolle durchgefuhrt,d.h. zu jeder Zeit (freie Schwingung) soll die kinetische Energie gleich
der Summe der iber alle lntegraflonsschrrtfe frei werdenden potentiellen Energie sein

LEMA = ~3 1 [Rog+4Hsta ] GO)

wobei die Mefhode der "Finite Elemenrs in Time and Spcce derjenigen der Runge-Kutta noch
Uberlegen ist (Abb. 2 ).

2 .Beschreibung der vorhandenen Rechenprogramme . Im Rahmen der Untersuchung der
Netzdacher in Munchen ist ein Programmsystem (FORTRAN V) entwickelt worden, welches
die vollstindige Berechnung solcher Strukturen ermsglicht .Das System besteht zur Zeit aus
6 Untersystemen ,die im folgenden beschrieben werden.

2.1 Vorbereitung der Anfangsdaten. Die aus Modellen oder aus analytischen Funktionen
ermittelte Flache des Netzes liegt in Form von Koordinaten in diskreten Punkten vor und ent-
sprechend auch der Spannungsverlauf. D|e geomernschen Daten werden dann mit einer Funk-

ton  Z=f(xy) , 2= 2 Z Qg X%F (20 erfalt (Abb. 7 ),wobei

die Qc -Koeffizienten nach der Merhode der kleinsten Quadrate berechnet werden
Auf die in anolyflscher Form gegebene Fldche wird das eigentliche Netz gelegt,indem die
konstante ungedehnte Linge,der Querschnitt,der Elastizitdtsmodul und der vorgegebene Span-
nungsverlauf beriicksichtigt werden.Auch fur die Randseile (Abb. 7F ) werden Ausgleichs-
polynome berechnet, womit dann der Rand des Netzes im Raum eindeutig festliegt.

2.2 Topologie des Netzes. In diesem Berechnungsschritt wird die topologische Beschrei -
bung des Netzes vorgenommen .Hierzu gehsrt die Numerierung der Knoten und der zugehori-
gen Freiheitsgrade (je Knoten drei Freiheitsgrade,d.h. die Verschiebungen W , v , W),
sowie die Unterdriickung von Verschiebungen an den Knoten,an denen das Netz festgehalten
wird .

2.3 Iterative Gleichgewichtsemmittlung .Den Kern des gesamten Programmsystems bildet
die iterative Gleichgewichtsermittlung .Hier wird der Belastungsvektor,die Steifigkeitsmatrix
des Netzes, die Auflssung des linearen Gleichungssystems und die Ermittlung der neuen Koor-
dinaten entsprechend der inkrementalen Verschiebungen vorgenommen .Die einzelnen Schritte
werden solange wiederholt (Abb. 43 ), bis alle Restkrifte an den Knoten hinreichend klein
sind. (Abbruchkriterium hierzu etwa : 10-  Mp ). Die GrsBe des aufzulssenden linea-
ren Gleichungssystems ist praktisch unbegrenzt, jedoch abhiingig von der Konfiguration der
jeweiligen Rechenanlage .

2 .4 Untersuchung der Lastfdlle. Die Lastfdlle werden nach der gleichen Prozedur berech-
net wie die der Vorspannung (Abb. 42  ).Die Last,z.B. Schnee, wird nicht in einem
Schritt aufgebracht,sondern inkremental .Durch die Belastung und die groBen Deformationen
entstehen grole Ungleichgewichtskrifte . Ungeachtet dessen wird weiter iteriert bis die Last
voll aufgebracht ist. AnschlieBend wird bei konstanter Last iteriert,bis das Netz seine end-
gultige Gleichgewichtslage erreicht hat. Folgende Lastfdlle knnen berechnet werden :Gleich-
mafBig verteilter Schnee, 6rtlich angehdufter Schnee, Wind und Temperatur.Zuletzt soll noch
erwshnt werden, daB8 auch der Einfluss von Fabrikationsfehlern ohne weiteres in Form eines
Lastfalles berechnet werden kann.

2.5 Automatische Herstellung von Netzzeichnungen,und Uberwachen des Netzes mit
Hilfe eines Bildschirmgerites. Es genugt allein,daB die Koordinaten eines Knotens, oder die
Nummer der Knoten eines Elementes falsch angegeben sind, um in gréBeren Bereichen einen
nicht brauchbaren Spannungsverlauf zu bekommen, oder daB die Auflssung des linearen Glei-
chungssystems unméglich wird, weil die Steifigkeitsmatrix singuldr ist . Automatisch hergestell -
te Zeichnungen dienen also in erster Linie der Fehlerfindung . Hierzu werden dem Benutzer
folgende Moglichkeiten geboten: Drucken des Netz-Grundrisses auf dem Schnelldrucker der
Rechenanlage oder Zeichnen des Netzes mit Hilfe einer elektronischen Zeichenanlage
(Abbn . 3,4,5 ). Selbstverstindlich ksnnen diese Zeichnungen auch fur andere Zwecke ver-
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wendet werden .Eine weitere Moglichkeit,die nicht nur die Fehlersuche erleichtert,sondern
auch Uber weite Strecken das Uberwachen des Netzes ermasglicht,ist ein Bildschirmgerdt,z .B.
das im ISD installierte "Digigraphic CDC 1700"

2.6 Auswertung der Ergebnisse. Als letztes Ubernimmt ein Programm die Auswertung und
das Ausdrucken der Ergebnisse in tbersichtlicher Form (Abb. 41 ).Unter anderem kdnnen z.B.
die Winkeldnderungen der Seile zwischen Vorspannung und dem Lastfall Schnee asugewertet
werden .Eine Information,die sehr wichtig fur das Verlegen der Platten und der Haut des Net-
zes ist.

2.7 Formfindung von Netzwerken. Siehe Beitrag in diesem Vorbericht - Thema Illa.
J.H.Argyris und T.Angelopoulos: Ein Verfahren fir die Formfindung von beliebigen vorge-
spannten Netzwerkkonstruktionen.

3. Weitere Programmentwicklung. Im gleichen Stil,wie die in unserem Institut ent-
wickelten Systeme ASKA [4] und DYNAN [40] ,soll auch ein komfortables System fur
vorgespannte Netzwerke entstehen .Zundchst sollen neben dem Stab-und Biegeelement weite-
re Elemente im System aufgenommen werden .Also: Drei-und Viereck-Membraneelemente
(groBe Verschiebungen),die eine Dachhaut auf dem Netz auch unter Beriicksichtigung der
Anisotropie simulieren kénnen .Die vorhandenen Programme fur die Formfindung [12] und
dynamische Analyse sollen noch verfeinert und dem Hauptsystem angeschlossen werden .Die
dynamische Windlast (d.h. Druck als Funktion der Zeit) ist ein sehr komplexes Problem,das
ebenfalls an unserem Institut untersucht wird .Im Rahmen dieser Kurzfassung kann jedoch hier-
auf nicht ndher eingegangen werden.

4, Erfahrung aus statischen Berechnungen von vorgespannten Netzwerkkonstruktionen.
In den letzten zwei Jahren sind in unserem Institut mehrere Berechnungen an vorgespannten
Netzwerken durchgefihrt worden .Abgesehen von kleinen Strukturen (z.B. ein hyperbolisches
Paraboloid),die nur fur Testzwecke verwendet wurden,sind folgende Netze berechnet worden.

4.1 Sporthalle in Miinchen. Das Bauwerk weist eine sehr komplexe Geometrie auf
(Abbn.3,4),die am Institut fur Leichte Flachentragwerke , Universitdt Stuttgart,anhand von
Draht-MeBmodellen entwickelt wurde .Die eigentlichen Anfangsdaten erhielten wir aus dem
Institut fur Anwendungen der Geoddsie im Bauwesen, ebenfalls Universitat Stuttgart,welches
mit der Messung und Auswertung der Modelle beauftragt war.Bei einer Maschenweite von 3m
ergaben sich 3500 Knoten, etwa 6600 Elemente und 10500 Unbekannte Verschiebungen .Ur-
springlich dauerte ein Iterationsschritt,also: Aufbau des Belastungsvektors und der Steifigkeits-
matrix sowie Auflosung des lin.Gl .Systems, etwa 200 Min. Durch geschickte Programmierung
ist es uns gelungen,diese Rechenzeit auf ein Zehntel,also auf 20 Min. zu reduzieren.Es mul3
betont werden,daB die Berechnung der Vorspannung keinesfalls abgeschlossen ist,indem man
eine Gleichgewichtslage der Struktur ermittelt .Es muB Uberall im Netz die erwunschte Vor-
spannung herrschen.Um das zu erreichen,wird am Rand des Netzes (Abb. 8 )nachgespannt,
indem man das Element, welches zum Rand anschlieBt,automatisch aus der Berechnung entfernt
und an seine Stelle eine Kraft anbringt .Durch anschlieBende Iterationen wird die Struktur ins
Gleichgewicht gebracht und das Element wieder in die Rechnung eingefigt .Knicke,die am
Rand des Netzes wahrend der Berechnungen entstehen (Abb. 10 ) mussen korrigiert werden,
was von den Rechenprogrammen automatisch durchgefithrt wird.Das Element C-D wird in die
Lage C-B gebracht,wobei seine ungedehnte Ldnge, entsprechend der erwinschten Spannung
im Seil, neu berechnet wird.

4.2 Niedersachsenstadion in Hannover. Das Netz wird hier von einem Bogen mit einer
lichten Spannweite von ca. 240 m (Abb. 5 ) getragen.Fir diese Struktur wurde kein Modell
benstigt,da die Anfangsdaten mit Hilfe von analytischen Funktionen ermittelt wurden.Der
Bogen wird mit einem Biegeelement simuliert (Beriicksichtigung der groen Verschiebungen).
Das Netz ist mit einer Maschenweite von zuerst 6 und dann von 3m untersucht worden.Die An-
zahl der unbekannten Verschiebungen betridgt beim 3m Netz unter Symmetrieausnutzung 3200,
Der endgiltige Zuschnitt, mit einer Maschenweite von 1m, liefert ca.24000 Unbekannte.

4.3 Osttribiine des Olympiastadions in Minchen . Das Netz (Abb. 9 )ist auf dem glei-
chen Prinzip wie das Westdach des Stadions aufgebaut .Die Vorspannung und die Lastfalle sind
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mit einer Maschenweite von 3m untersucht worden.Die Anzahl der unbekannten Verschie-,
bungen betragt 1800.Der endgiltige Zuschnitt von 0.75m soll noch exakt ermittelt werden,
indem das 3m Netz linear interpoliert und anschlieend in seine Gleichgewichtslage
ausiteriert wird.
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5. Zusammenfassung. Die Methode der finiten Elemente ist ein willkommenes In-
strument fur den Ingenieur,um die statische und dynamische Analyse komplizierter Tragwerke
durchzufihren.In diemsem Beitrag wurde gezeigt,daB ein nichtlineares Problem der Statik,
das mit ca. 10500 Gleichungen beschrieben werden kann,mit Erfolg durchgefuhrt wurde.
Auch das nicht-lineare Schwingungsproblem wurde anhand eines extremen Beispieles behan-
delt .Die Berechnung von vorgespannten Netzwerken ist nahezu unméglich ohne den Einsatz
von Grofirechenanlagen,um in vertretbaren MaBen beziiglich der Sicherheit,der erforderli-
chen Genavigkeit und der Wirtschaftlichkeit bauen zu ksnnen.Trotz Vollautomatisierung der
Berechnungsmethode ist der Ingenieur in der Lage, auf die Berechnungen EinfluB zu nehmen.
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Ein Verfahren fiir die Formfindung von beliebigen, vorgespannten
Netzwerkkonstruktionen

A Method for Determining the Shape of Prestressed Network Constructions

Une méthode pour la détermination des fléches des réseaux de cdble tendus
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Institut fir Statik und Dynamik der Luft-
und Raumfahrtkonstruktionen
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Ubersicht. Aus rein statischen Uberlegungen,durch Anwendung der finiten Elemente und
der Matrizenverschiebungsmethode, wird ein Verfahren fur die Formfindung von vorgespannten
Konstruktionen beschrieben. Mit einer minimalen Anzahl von Anfangsdaten lafdt sich bei ge-
forderter Vorspannung die entsprechende Geometrie fir beliebige Netzwerke bestimmen.Lang-
wierige und kostspielige Modelle werden dadurch UberflUssig. Anhand von komplizierten Bei-
spielen wird die Allgemeinheit des Verfahrens bestdtigt .

Einleitung. Die Formfindung von vorgespannten Netzwerkkonstruktionen ist von funda-
mentaler Bedeutung fur die weitere Entwicklung und Verbreitung solcher Strukturen.Die Form
von Seilnetzen wird nicht nur nach architektonischen Gesichtspunkten gestaltet; sie hat in
erster Linie die Funktion dieser Strukturen bezuglich des Tragverhaltens zu erfillen .Die Ermitt-
lung der Form durch Modelle ist langwierig und ungenau. Kleine Mafstdbe verursachen zu
starre Simulation der Rdnder, der tragenden Maste und grofle Fehler bei der Messung der Geo-
metrie und der entsprechenden inneren Krifte. Es wird auBlerdem fir den Fall,daB die Unter-
suchung der Lastfdlle unginstig ausfdllt,z .B. sehr groBe Verschiebungen,schlaffe Seile,usw.,
sowohl aus wirtschaftlichen als auch aus terminlichen Grinden unzumutbar, neue Modelle zu
bauen oder die vorhandenen zu dndern .Es ist angebracht, numerische Methoden zu entwickeln,
die mit Hilfe von elektronischen Rechenanlagen den Vorgang der Formfindung beschleunigen
und wirtschaftlicher zu gestalten.Im Abschnitt 1 des Beitrages wird auf die Forderungen,die
an Seilnetzkonstruktionen gestellt werden, eingegangen,sowie auch auf Vernachldssigungen,
die erlaubt sind, bis die gesuchte Gleichgewichtsfigur ermittelt worden ist. Trotz aller Argu-
mente gegen Modelle wird im Abschnitt 2 ein rein theoretisches "Modell" beschrieben,das aus
einer Materie besteht,die man mit sehr groBen Kriften belasten und auch entsprechend dehnen
kann,ohne das Hooke'sche Gesetz zu verletzen. Ausgehend von einem ebenen Netz,dessen
Seile aus der obengenannten theoretischen Materie bestehen, lassen sich durch inkrementale
Versetzung bestimmter Knoten in Richtung von vorgeschriebenen Punkten im Raum und mit Hil-
fe der Statik doppeltgekrimmte Gleichgewichtsfiguren erzeugen.Der so emittelte Spannungs-
zustand ist jedoch vi&llig unbrauchbar fur das "Originalgebilde" und muf deshalb mit der ge-
forderten Vorspannung transformiert werden. Die praktische Durchfihrung des Verfahrens und
eine Reihe von Beispielen (z.B. die Formfindung des Netzdaches der Osttribine des Olympia-
Stadions in Munchen) werden in Abschnitt 3 ausfuhrlich behandelt. Eine typische Ingenieur-
aufgabe,die den Einsatz von Bildschirmgeriten fordert (s.Abschnitt 4),ist die Formfindung von
vorgespannten Netzwerken. Die permanente Mann-Maschine Kommunikation zur Bewdltigung

solcher Aufgaben ist unerl@Blich.

3g. 25 Vorbericht
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1. Forderungen an vorgespannte Netze. Die wichtigsten Forderungen an vorgespannte
Netze sind, dafB die Spann- und Tragseile (Abb.1) ausreichend vorgespannt sein miissen um
Lastfdlle wie z.B. Schnee, Wind und Temperatur aushalten zu ksnnen. Die Vorspannung darf

Abb2  A: Seil im ungespannten Zustand

Abb.1 B: Seil im gespannten Nelz

allerdings weder zu groB3 noch zu klein sein. In Abbildung 1 sieht man,daB bei einer duReren
Kraft R4 (Schnee) die Spannseile entlastet und die Tragseile belastet werden.Bei einer Be-
lastung mit Rz (Wind) verhélt sich das Tragwerk umgekehrt. Fir eine mdglichst rationelle
Fertigung sollten auBerdem die ungedehnten Ldngen Lo der Seile von Knoten zu Knoten im
Innern der Netzfldche konstant sein.Die statische Berechnung von Seilnetzen soll die Lage der
Knoten im Raum so bestimmen,daf die Langendnderung AL die geforderte Vorspannung er-
zeugt,und daf3 alle Knoten im Gleichgewicht sind .Fiir die Formfindung und fiir die ersten Unter-
suchungen der Lastfdlle ist die Forderung nach der konstanten ungedehnten Linge von geringer
Bedeutung . Ubersteigt die Anzahl der unbekannten Verschiebungen die Kapazitst der Rechen-
anlage [1] , so wird die statische Berechnung mit einer breiteren Maschenweite durchgefihrt
als die des endgiltigen Zuschnitts. Dieser wird dann durch Interpolation [1] ermittelt. Fir den
Fall,daB die ungedehnten Langen L6 nicht konstant sind, begeht man den Fehler,daf die
Maschenweiten der reduzierten Seilquerschnitte nicht entsprechen.Der EinfluB} ist jedoch
gering gegenuUber der grolen Dimensionen der Netze. Man kann also zundchst bei der Formfin-
dung und der ersten Untersuchungen der Lastfdlle auf Lo =konst. verzichten.Auf die so er-
mittelte Fldche ist es dann kein Problem,unter Beriicksichtigung der Vorspannung ein exaktes
Netz zu legen [1] , und die statische Berechnung fir die Ermittlung der endgiiltigen Geome-
trie fortzusetzen. Ein numerisches Verfahren fir die Formfindung solcher komplizierter Gleich-
gewichtsfiguren soll zuverldssig sein,schnell zu erwiinschten L@sungen fuhren und vor allem
benutzerfreundlich sein.

2. Ein Computer-orientiertes "Modell" fur die Formfindung . Die Formfindung von rédum-
lichen Fléchen,die bestimmte Randbereiche und fast singuldre Punkte erfassen und die sich
gleichzeitig im Gleichgewicht befinden sollen,bestimmt man experimentell mit der Seifenhaut-
methode oder an leicht deformierbaren Stoffen.Solche Versuche sind meistens kurzlebig, da
der Werkstoff reift. Es ist auBerdem unmoglich verschiedene Lastfdlle zu untersuchen ohne auf
Draht-MefBmodelle auszuweichen. Wenn wir versuchen,die Arbeit des Modellbauers im Compu-
ter nachzuahmen,dann brauchen wir einen leicht dehnbaren Stoff .Dieser mul3 mit sehr groflen
Zugkraften belastet werden konnen und dabei beliebig lang dehnbar sein.Fur Seile mit obigen
Eigenschaften ist das Hooke'sche Gesetz fir einen beliebig groen Bereich gultig .Im Computer
kann dies sehr einfach durch Zahlen dargestzlit werden. Ungeachtet der endgiiltig gesuchten
Form bauen wir ein ebenes Netz,welches alle diese theoretischen Voraussetzungen erfillt .Wir
konnen dann durch Versetzen bestimmter Knoten das Netz zwingen, eine natirliche Gleichge-
wichtslage, die mit Hilfe der Statik bestimmt wird, anzunehmen. Dieses statische Experiment
ist nichtlinear,da dabei groBe Verschiebungen auftreten,die Dehnungen bleiben aber durch
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Mit Hilfe eines einfachen Beispieles wiederholen

wir den oben geschilderten Vorgang,ohne auf die Methode der Finiten Elemente einzugehen,
dasie in [ 2,3]  ausfuhrlich behandelt wird.
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Abb.4 Umformen einer ebenen Fliche in eine vorgespannte
doppelt gekriimmte Membran durch Versetzen der
Auflager

Gegeben sei ein ebenes Netz ABCD (Abb .3),gesucht wird szsine Form wenn wir die Eck-
knoten A,B,C,D nach A', B',C',D' verschieben, Die Knoten A,B,C,D werden mit Auf-
lager versehen und dann inkremental versetzt bis sie die Punkte A', B!, C', D' erreichen.
Bei jeder inkrementalen Verschiebung der Knoten wird der Belastungsvektor Ru (Ungleich-

Abb. 5 Ungleichgewichtskrafte
beim Hochziehen des Knotens C

RLL = { 0o O;...,Pqu RuAyRuA?_,O...

gewichtskrifte an den Knoten,siehe Ref.1,3)
sowie die Gesamtsteifigkeitsmatrix des Netzes

[Ke + K]  fur groBe Verschiebungen aufge-
baut und das lineare Gleichungssystem

Ry = ]: Ket K] Va aufgelost .Die
daraus ermittelten inkrementalen Verschiebungen
werden zur alten Geometrie hinzuaddiert und
danach werden die Ecken des Netzes erneut ver-
setzt .Wird bei dem Start der Berechnung angenom-
men,dal sich das ebene Netz im Gleichgewicht
befindet, was nicht unbedingt der Fall sein muB3,
so wire der Vektor R, ein Nullvektor,da die
resultierende Kraft an jedem Knoten gleich Null
ist.Nachdem aber die Knoten zum ersten Mal ver-
setzt worden sind, entstehen die ersten Ungleichge-
wichtskrafte. In Abbildung 5 wird der Knoten C
nach C* verschoben, dadurch entstehen die
Ungleichgewichtskrifte

RuA = { Rqu RuAy Rqu}

Rug ""{ Rugy Rug, R“Bz}
OsRugyRugy Rugy 7"+ 000 §

Somit wird das Netz gezwungen entsprechend der Belastung eine neue Gleichgewichtslage im
Raum einzunehmen. Wahrend der einzelnen Schritte entstehen sehr grofle Ungleichgewichts-
krafte,die nicht storen,solange die Struktur stabile Lagen durchquert .Sobald die Knoten
A,B,C,D ihre Soll-Lage erreicht haben,wird weiter iteriert bis die Restki&fte einen Gleich-
gewichtszustand darstellen .Das gleiche Prinzip kann man auch anwenden, wenn bestimmte
Knoten rdum lich verschoben werden.In Abb .4 sieht man die Entstehung einer doppeltgekrimm-
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ten Flache durch Verschieben der Knoten A,B,C,D nach A',B',C',D'. Die auf diesem Wege

gewonnenen Figuren befinden sich im Gleichgewicht. Der Spannungszustand ist jedoch un-
brauchbar,da durch die Seile sehr grofle Krifte Ubertragen werden.

2.1. Transformation der aus dem "Modell" gewonnenen Werte auf das "Original .
Der Spannungsverlauf im "Modell" muB so transformiert werden, daf3 er angendhert dem der

erwunschten Vorspannung N~ entspricht .Dies ist moglich, wenn die ungedehnten Lidngen des
ebenen Netzes entsprechend PyF neu berechnet werden,

P
L AL N
D‘r o Modell - Endlage _-I Al ___ _Modet”
P ——————————————————— 7 N -
WA, — — |
N ————
| YA /A
Y VA
\\ \ // !
\ / S %
\ \ Ungedehnte Linge é I} Original
A \ im ebenen Netz (£A) / d RF————- ————————— |
\ 4
! ?. C j{ ” //
\\ 0 | / |
! Neue ungedehnte Linge (EA) 4‘,” / :
ke | /
[ L /
L, gL Gedehnte
Abb.6 Neue ungedehnte Linge entsprechend der (2 41— Seillinge
geforderten Vorspannung £, (E£A-= EA)
! Abh 7

Damit jedes Seilstick von der Anfangsebene aus seine Gleichgewichtslage im Raum einneh-
men kann (Abb.6), muB es um AL gedehnt werden. Aus den folgenden 3 Gleichungen

— - AL AL
"Modell": Pv = EA Io "Original " PN{_- = EA L

und der Bedingung ZO 1AL = Lo+ AL lassen sich die ungedehnten Langen des "Original-

netzes" so bestimmen, dafB innerhalb jedes Seilnetzes die erforderliche Zugkraft Ubertragen
wird .

[o + AL -
= Lo (E A=EA )
(4,0 7 PN)C/EA)
Durch die Anderung der Léngen o bzw. der inneren Krifte des Netzes ist die Gleichge-
wichtslage des Netzes verletzt und somit wird die iterative Gleichgewichtsermittlung erneut
vorgenommen, bis die Ungleichgewichtskridfte hinreichend klein sind. Danach haben wir eine

Gleichgewichtsfigur, deren Spannungsverteilung in der Nihe der geforderten Vorspannung

liegt. Fur die Randseile gilt die gleiche Prozedur.Auch sie nehmen eine Gleichgewichtslage
im Raum ein.

L

3. Praktische Durchfuhrung des
Verfahrens und Beispiele.
Eine interessante vorgespannte Netzfldche
mit dem Verfahren zu testen, bietet der
Entwurf des Netzdaches fur die Osttribune
des Olympiastadions in Munchen [1] .Das
Dach besteht aus drei miteinander gekop-
pelten Netzen.Wir wollen nun das Generie-
ren eines der drei Netze (Abb.8) durch das
im Abschnitt 2 beschriebene Verfahren ver-
\. folgen (siehe auch FluBdiagramm Abb.9).
Die endgultigen Untersuchungen der einzel-

Abb.8 Ebenes Nelz 1
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nen Lastfdlle sollen mit einer ungedehnten

V4P 0T R i, MotaclolNmomency Yemposons Lange Lo von 3m untersucht werden. Zu-
:ﬁ::ead;:f::c:iw: erst wird ein ebenes Netz Lo =2,9m be-
{ rechnet .Als Vorspannung wird im Inneren
Berechnung der Koordinaten des Netzes eine Kraft von 1 Mp und am
des chenen Netzes Rand eine Kraft von etwa 10 Mp ange-
— a.i.m — nommen. Diese Anfangswerte der Vorspan-
mit Auflagern versehen nung spielen keine Rolle .Man schreibt des-
{ halb irgendwelche kleineren Werte vor.
Versetzen der Aufloger um 42 in Richtung Die EA-Werte werden im allgemeinen aus

>

der vorgegebenen Fixpunkte im Raum

einfachen Vorberechnungen bestimmt und
werden gleich fur das Ebenen Netz iber-
nommen .Man kann sie auch schdtzen und

‘Ungleichgewichukraﬁe des Nerzes Ry besl'm\menkq

 iracroeminioe & 7 P2 wahrend der Berechnungen fir die Formfin-
Trem dung abdndern. Fir die Osttribune sind fol -

Aufbay der Steifighsitumarix [Kg + Ag] gende EA-Werte fur die Maschenweite an-

Aufltsen des Lin.Gl.Syst. Ru.[x‘.xg,‘ gesefzt worden:

Neve Geometrie ermitteln

EA-Rand=65250 Mp,EA-Trag-Spannseile=

o e
im Roum erreicht 7

Fur die Schnittpunkte der Randseile unter-
einander im ebenen Netz wurden die Pro-

Transformieren der ungedehaten Ltnge Ly jektionen der rdumlich vorgegebenen Fix-
:;::":; erihprechend dar gerschien punkte genommen. Als nichster Schritt wird
T eine Niveauhthe gewihlt und daraus die
Trarieren bis alle Ungleichgewichms- Z-Distanzen ermittelt um welche die 13
lrtfte €€ sind Knoten inkremental versetzt werden. Weiter-

hin unterdricken wir die moglichen Ver-
schiebungen der Knoten 1 bis 13,damit kann
Abb.9 F“;"":?’:’“m tir die T’f’“f""dung das Versetzen der Knoten beginnen. Die
HEER VSRt i Atinger Endlagen in z-Richtung werden in 10 Schrit-

ten erreicht (siehe FluBdiagramm Abb.9).
Anschlieflend wird in 4 weiteren Iterationen,bei denen die Knoten festgehalten werden, die
Gleichgewichtslage des "Modells" ermittelt (Abb.10).Aus dieser "Modell" Endlage (Abb.10)
werden die ungedehnten Liéngen des "Originals" berechnet .Fiir die Trag- und Spannseile wer-
den 12 Mp Zugkraft gefordert und fir die Randseile 150 Mp . In Abbildung 10 sieht man 5
rdumliche Phasen der Formfindung . Zuerst eine Gerade, die das Ebene Netz darstellt, an-
schlieBend drei Zwischenstufen der Entwicklung und am Ende die Geometrie des "Originals",
welche kaum von der des "Modells" abweicht. Die Differenz der Koordinaten variiert zwischen
0.01 und 0.14m bei einer maximalen Lénge und Breite des Netzes von ca .68 bzw. 60m. In
der Abbildung 11 sind die Zugkrdfte "Modell", "Original " tber die Randseilelemente aufge-
tragen .Verbliffend ist dabei die Ahnlichkeit der Kurven.Die zwei Knicke der Kurven werden
durch den AnsschluB der waagerechten Seile erzeugt.Weitere Auswertungen des Verfahrens
sind die Abbildungen 12,13 .Hier sind die Zugkrifte entlang der E lemente sowie die ermit-
telte Geometrie aufgetragen.Die Kurven haben die gleiche Ahnlichkeit wie Abb.11. Sehr
interessant sind auch die sogenannten S-Kurven (Abb.14),die man auch im Tullmodell (Insti-
tut fur leichte Tragwerke Universitat Stuttgart) sehen kann.lm Durchschnitt aber ist die ge-
forderte Spannungsverteilung nicht erreicht,sondern etwa um 30% geringer .Dies ist jedochkein
Hindernis, zumal wir die Maglichkeit haben,automatisch die Spannung zu erhshen (Abb .15)
durch Nachspannen am Rand (siehe auch Ref. 1 Abschnitt 4). Die ungedehnten Lingen der
Seile im Inneren nach der Transformation betridgt etwa im Durchschnitt 3.01 bis 3.15m.
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Hochziehen eines Netzes

Abb.10

Osttribune des Olympiastadions Minchen
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B Wir wollen jedoch wiederholen, dafl es kein
____2;:::;:,,;;":“ Problem ist, aus dieser Geometrie durch Be-
Rucksichtigung der EA~Werte und der er-

:: \ mittelten Vorspannung, ein Netz mit kon-

% \-/’\a\.___.__‘»\./ stanter ungedehnter Lange zu berechnen.Das

°l Sl j» Verfahren soll trotzdem erweitert werden,in-

m{ st dem die konstante ungedehnte Linge beibe-
T3 3 0§ & 7 @ 3 0iomm halten wird. Zwei weitere Netze (Abb.16,

17), die man in der Praxis antrifft, sind mit
dem gleichen Verfahren aus einem ebenen
Netzwerk erzeugt worden. Das in Abbildung
16 dargestellte Netzdach kann man vielleicht
analytisch vorgeben. Schwierigkeiten gibt es
jedoch bei Randseilen, die das Netz in Rich-

: tung der Fundamente abspannen. Speziell soll
ABN Keafiveraut lings eines Randseites mit diesem Beispiel gezeigt werden, dall man
(Osttribiine , Minchen) .
y 5 ausgehend von einem Ebenen Netz grofle Ent-
N = R, [Mp] nach der Translormation .
i Y-t e fernungen (hier 37.5m) durch Versetzen be-
o Q"\:‘o-....,,_ A_,,A stimmter Knoten (hier wird nur der Mittel -
B = punkt des Kreises versetzt) erreichen kann.
s I
5 ':::::"-c.
N & Ay

1234 56 78 9% 1 1213141516 17 189 Bemente

Abb12 Kraftverlauf und Geomelrle Lings des Seiles A-A
{Osttribline , Miinchen )

T 8, (4p) S " B ABbY4  Grundrifl der Anfangs- und Endlage
=== B, [Mp)x10” Enciage “Model® @ beim Hochzichen
0] §
9 =00+ Bmmtsm —p. B
& e == — OO —omg

8 omro—0 it

7 3 r,_.—"‘"“"‘-

5 2

123 456 7 8 9% 1 213 KI5 167 Eemente
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[ x

AbhtS  Machspannen am Rand des Netres
Bt o SO 3R o wd ach . Hachepeanen

Abb13 Kraftverlaut und Geometrie lings des Seiles B -B
(Ostiribline , Miinchen )

Das in Abb .17 entwickelte Netz hat ebenso eine komplizierte Geometrie, insbesondere
unter dem Bogentrdger.

4. Der Einsatz von Bildschirmgerdten fur die Formfindung und Berechnung von Seilretzen.
Die komplizierte Geometrie von vorgespannten Netzen fordert eine schnelle Kommunikation
zwischen Ingenieur und Computer .Tausende von Knotenkoordinaten und entsprechende Anzahl
von Elementen mussen standig kontrolliert werden.Sehr oft missen gezielte Anderungen vorge-
nommen werden,wie z.B. Entfernen und Zuftgen von Knoten und Elementen oder Nachspannen
(Abb .15) in Bereichen mit Spannungsabfall bzw . Erhshung .Speziell bei der Formfindung mussn
flache Bereiche, die unerwiinscht sind, sofort erkannt und entsprechend behandelt werden.
Als sehr gutes Gerdt fur diese Forderungen erweist sich ein aktiver Bildschirm [4] ,wie z.B.
das im ISD der Universitdt Stuttgart installierte System Control Data 1700 mit Display Konsole,
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Abh17 Formfindung durch Hochziehen

Netziiberdachung eines elliptischen Grundrifies
mit Hilfe eines Bogentrigers

Abb% Hochziehen eines ebenen kreisférmigen Netzes

Besondere Vorteile bietet der ON-LINE Betrieb mit einer GroBirechenanlage, wie z.B. CDC
6600 .Man kann die in diesem Beitrag (siehe auch Ref.1) dargelegte Problematik fast kontinu-
ierlich verarbeiten.Uberdies hat der Ingenieur ausreichende Méglichkeiten um in die Be-
rechnungen eingreifen zu kdnnen.Wir glauben, daB Netzwerke in Zukunft nur wirtschaftlich
mit Hilfe von Bildschirmgerdten entwickelt werden konnen.

[4]
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an die Universitdat Stuttgart eingereichte Dr.Ing. Dissertation.
Zusammenfassung

Die Formfindung von vorgespannten Netzwerken l&@Bt sich nicht nur durch Modelle sondern
auch durch numerische Wege ermitteln.Mit dem in diesem Beitrag dargelegten Verfahren las-
sen sich beliebige vorgespannte Flichen erzeugen.Weiterhin ist es mdglich mit Hilfe von Bild-
schirmgerdten diese Berechnungsmethode erheblich zu beschleunigen und wirkungsvoller zu
gestalten.
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Uber eine neue Methode zur Berechnung vorgespannter Seilnetze und ihre
praktische Anwendung auf die Olympiadacher Miinchen

A New Method of Analysis of Prestressed Cable Networks and its Use on
the Roofs for the Olympic Games Facilities at Munich

Nouvelle méthode de calcul de couvertures précontraintes suspendues et
son application pratique aux voiles construits 8 Munich pour les Jeux
Olympiques

K. LINKWITZ H.-J. SCHEK
Stuttgart, BRD

Die hier knapp umrissene neue Berechnungsmethode wurde konzipiert,

in ein Programmsystem lbersetzt und in grofem Umfang praktisch an-

gewendet bei der Ermittlung des Zuschnittst) fiir die vorgespannten

Seilnetze der D&cher von Stadion und Zwischenteilen der Olympiabau-
ten Miinchen.

Bei der analytischen Berechnung faft man die durch die Knoten-
punkte des Netzes repridsentierte Fliche als Gleichgewichtsfigur
auf. In jedem Knotenpunkt, in welchem im Netzinnern vier und auf
dem Randseil drei Seilstiicke unter Zugspannungen zusammenstofen,
besteht Gleichgewicht. Die Gleichgewichtsfigur ist dann bekannt und
die Aufgabe ihrer Bestimmung dann geldst, wenn man die Koordinaten
aller Knotenpunkte und die Krdfte in allen Seilstlicken kennt.

1. Voraussetzungen und Grundlagen

Zur Berechnung geht man von der vereinfachenden Vorstellung aus,
daB alle Seilstlicke biegeschlaff sind, und ersetzt damit das Seil-
netz durch ein rdumliches Fachwerk aus in den Knotenpunkten gelen-
kig miteinander verbundenen Zugstiben. Die in den einzelnen Seil-
stlicken wirkenden Zugkridfte ergeben sich nach dem Hookeschen Gesetz
(hj ist das Produkt aus Elastizitdtsmodul und Querschnitt des j-ten
Seilstiickes) aus der Differenz vj zwischen tatsidchlichem rdumlichen
Abstand wj benachbarter Knotenpunkte i und k im Vorspannungszustand
und der jeweils etwas kiirzeren Lidnge 1j des zugehdrigen ungespann-
ten Seilstlicks nach

53 = BV(xi) 24 (71710 %4 (2i-2k)7-15) = Pwi-13) = $hvi (D

Filr den Lastfall Zuschnitt nimmt man an, daR mit Ausnahme der Ab-
spannkrifte keine HuReren Krdfte in den Knotenpunkten angreifen und
vernachlédssigt das Eigengewicht. Bei m Seilstlicken ist die Energie
des Systems

1.2 oo 1L 2n] g
uwos ’2'%1 SO =§'?T:’l vityy = zpVHL W (2)

+)Unter' dem Zuschnitt versteht man die Ermittlung aller Seillingen
und die Darstellung der Randzonen der r&umlich gekrimmten Netze
in mdglichst verzerrungsfreien Pl&nen.
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Die Matrix H bzw. L 1 ist eine Diagonalmatrix mit den Elementen hj
bzw. 1/1j und V ist eine einspaltige aus vj aufgebaute Matrix. Ent-
sprechend werden im folgenden die Matrizen X fiir die Knotenpunkte,
S fir die Seilkrifte sowie L bzw. W flir die ungedehnten bzw. ge-
dehnten Lingen gebildet.

Das System ist im Gleichgewicht, wenn die unbekannten Knoten-
punktkoordinaten so gewihlt werden, daf die Energie zum Minimum
wird. Die partiellen Ableitungen von u nach den Koordinaten X erge-
ben sofort die Gleichgewichtsbedingungen

A'S = 0 oder A'HL™(W-L) = O oder AHLTY = 0 (%)
Die Matrix A' in (3) erhilt man durch Ableiten von V nach X. Sie
enthdlt so viele Spalten wie Seilstiicke und so viele Zeilen wie un-
bekannte Koordinaten im Netz vorhanden sind; ihre Elemente entspre-
chen den Richtungscosinus fiir die rdumlichen Richtungen der Seil=-
stlicke. Zur praktischen Auswertung der Gleichgewichtsbedingungen
(3) kdnnen wir verschiedene Wege einschlagen:

2. Newton-Verfahren (A)

Faft man in (3) die ungedehnten Lingen L der Seilstiicke als fest
vorgegeben auf, so erhdlt man bei n Knotenpunkten 3n nichtlineare
Gleichungen zur Bestimmung von 3n unbekannten Knotenpunktkoordi-
naten X. Nach Einfilhrung von Niherungswerten Xo und einer Lineari-
sierung durch Differenzieren nach X, 1l4Rt sich das Newton-Verfah-
ren mit den jeweils linearen Gleichungen

(AW A + DMAX = -A'HLT (W-L)/y, ()
anwenden. Die Herleitung von (4) aus (3) ist in /3/ ausfihrlich be-
schrieben. Setzt man die Matrix D=0, so erhilt man mit der N&herung
L=W gerade das Gleichungssystem, welches man nach der Verschiebungs-
methode bei der Theorie 1. Ordnung erhalten hitte und welches in
dem hier vorliegenden Fall singuldr wird, da die Anzahl der Seil-
sticke in vorgespannten Netzen kleiner ist als die Anzahl der XKoor-
dinatenverschiebungen.

In ganz analoger Weise lieRe sich aus (3) ein (4) entsprechen-
des Gleichungssystem gewinnen, in welchem anstelle der 1j die Seil-
krdfte sj jedes Seilstlicks zur Ldsung vorgegeben werden miiRten.
SchlieRlich ist auch eine Kombination der Gleichungen in der Weise
mdéglich, daf fiir eine Anzahl von Seilstiicken - etwa im gleichma-
schigen inneren Teil des Netzes - die ungedehnten Lingen und fir
den Rest - etwa im unregelmiBigen Randbereich - die Kr&fte in den
Seilstilicken vorgeschrieben werden. Nach einer dieser Vorgabe entspre-
chenden Methode berechneten ARGYRIS/SCHARPF /1/ das Sporthallennetz.

Praktische Schwierigkeiten bei der Anwendung dieses Verfahrens
kdnnen dadurch auftreten, daf fiir alle Seilstilicke - also auch fir
die Seilstiicke unbekannter Linge im Zuschnittsbereich des Randes -
entweder die ungedehnte Linge 1 oder die Seilkraft s vorgeschrieben
und damit bekannt sein miissen. Gerade diese Werte sind jedoch unbe-
kannt und kénnen nur aus Modellmessungen, Uberschlagsrechnungen
oder Erfahrungen geschdtzt werden. Insbesondere kann es geschehen,
daB die geschitzten, vorgegebenen Kridfte nicht zu einer aus Model-
len entnommenen geometrischen Form passen. Dann konvergiert die Be-
rechnung schlecht oder ilberhaupt nicht, oder es ergeben sich groRe
Anderungen in der Form und Seilfiihrung.
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3. Verfahren der kleinsten quadratischen Abweichungen (B)

Dieses neue, im Detail in /3/ beschriebene Verfahren unterscheidet
sich von den Methoden (A) dadurch, daR bei der Herleitung der line-
arisierten Rechengleichungen aus den Gleichgewichtsbedingungen (3)
auch die Seilkrédfte im Randbereich des Zuschnitts - bzw. die unge-
dehnten Ldngen ausgewdhlter Seilstilicke - als Unbekannte in (3) und
dem daraus abgeleiteten linearisierten System belassen werden. Die
Gleichungen (3) sind dann unterbestimmt und zundchst nicht eindeu-
tig l6sbar. Wir erhalten jedoch sofort eine eindeutige L&sung, wenn
Wwir die von Krdften und Koordinaten der Gleichgewichtsfigur zu er-
fliillenden Gleichgewichtsbedingungen als Nebenbedingungen eines zu-
ndchst noch frei wdhlbaren Minimumproblems auffassen. Die unten be-
schriebenen Anwendungen legten folgenden Ansatz nahe: Setzt man
voraus, daR man fir die unbekannten Seilkrifte Schidtzwerte So und
fiir die unbekannten Koordinaten Schitzwerte Xo kennt - dies trifft
immer zu - so erhdlt man mit der zusitzlich zu erflillenden Minimum-
bedingung

(X-Xo0)'B1(X-Xo) + (S-S0)'B2(S-S0) — min (5)

von allen mdéglichen L&sungspaaren (X,S), welche (3) streng erfiil-
len, dasjenige Paar, welches sich im quadratischen Mittel von den
Schitzwerten (Xo,So0) am wenigsten unterscheidet. Je nach der Wahl
der zwei Bewertungsdiagonalmatrizen Bl und B2, erhdlt man dann eine
Gleichgewichtsfigur, welche sich entweder sehr eng an die durch Xo
eingegebene geometrische Form hidlt, oder welche den geschidtzten
Kridfteverlauf So méglichst gut anh&lt.

Insbesondere werden die geschidtzten Kridfte dann exakt einge-
halten, wenn die Elemente von B2 sehr grof im Vergleich zu denen
von Bl gewdhlt werden. Dann geht das Verfahren (B) in (A) lber.
Praktisch geht man jedoch hiufig umgekehrt vor, besonders, wenn
eine vorgegebene Form mdglichst eingehalten werden soll: Nach Ein-
fihrung kleiner B2-Elemente liefert die Aufl&sung des linearisier-
ten Systems (3) einen ersten Uberblick iiber den der Form angepal-
ten Krdfteverlauf. Nach diesem ersten Orientierungsschritt k&nnen
dann entweder die Kridfte begriindet vorgegeben und die Rechnung mit A
fortgesetzt werden, oder aber - das ist bei anfédnglichen Schritten
bequemer - das Verfahren B wird mit verbesserten Kraftschidtzungen
und erhdhten Bewertungsfaktoren B2 wiederholt.

4, Anwendung des Verfahrens B bei der statischen Berechnung der
Seilnetze des Stadions

Das nach dem Konzept B v8llig neu fiir die CDC 6600 erstellte Pro-
grammsystem wurde im Mai 1970 fertig und sollte sofort auf die Be-
rechnung des Stadions, bei dem sich widhrend der geometrischen Zu-
schnittsermittlung groBe Probleme ergeben hatten, angewendet wer-
den. Bei Beginn der Berechnungen lagen aus dem Zuschnittsmodell
geometrischer Zuschnitt, Primirkonstruktion, GufRteile und alle Fun-
damente bereits fest. Die dadurch gegebenen Zwangsbedingungen mufR-
ten von den Berechnungen, die hier vor allem zur Kontrolle und
nicht - wie im Normalfall - zur Zuschnittsermittlung dienten, mdg-
lichst eingehalten werden. Es war daher wesentlich, daf nicht durch
die Vorgabe von festen Randbereichskriften S eine bestimmte Gleich-
gewichtsfigur X nach dem Verfahren A berechnet, sondern daf umge-
kehrt zu der schon in Plinen und konstruktiven Details verwendeten
Modellgeometrie Xo eine mdglichst benachbarte Geometrie X und ein
passender Krifteverlauf S bestimmt wurden.
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Durch Anwendung des Verfahrens B konnte beli befriedigendem
Krdfteverlauf die Geometrie sehr gut eingehalten werden. Die Anpas-
sung der Felder auf die vorhandenen Fundamente gelang in allen Ab-
spannpunkten, jedoch an einigen Stellen nur durch grdfere Anderun-
gen im Randseilverlauf: Zur Abidnderung der Resultierendenrichtungen
in den Abspannpunkten muften die Krdfte in den Endstiicken der be-
troffenen Randseile mit hoher Bewertung vorgegeben werden. Die Ein-
zelfelder des Stadions wurden zusitzlich bei der Berechnung so be-
einfluBft, daR bei ihrer Zusammenfiigung zum Gesamtsystem auch in den
Ubergangspunkten Gleichgewicht herrschte.

5. Anwendung des Verfahrens B bei der statischen Verdichtung der
Zwischenteile

Die Berechnung der Felder der Zwischenteile Z1 und Z2 war Grundlage
fiir die Zuschnittsermittlung. Hier hatte man wesentlich mehr Frei-
heiten; jedoch muRten die Abspannrichtungen in s&mtlichen Fundamen-
ten eingehalten und dariiber hinaus das Teil Z2 rechnerisch lage-
und krdftemdBig an die bereits berechnete Sporthalle angepaft wer-
den. Dadurch wurde eine urspriinglich vorgesehene Zusatzabspannung
an dem entsprechenden Mast entbehrlich. Eine #hnliche Krédfteanpas-
sung war auch beim Ubergang vom Stadion zum Z1 erforderlich.

Bei der Berechnung des 3m-Netzes konnte man schon in den er-
sten Schritten durch Einfiihrung grdferer B2-Elemente einen homoge-
nen Krédfteverlauf erzielen. Ausgehend von den gemessenen Modellko-
ordinaten stellte sich meistens nach drei bis vier Iterationen ein
erstes Gleichgewicht ein. Dieses muBte jedoch im Krdfteverlauf -
vor allem zum Einfilhren der Resultierenden in die Fundamentldcher -
durch weitere Iterationen verbessert werden. Nach diesen der Sta-
dionberechnung entsprechenden Schritten wurden die zun&dchst fest-
gehaltenen Abspannpunkte der Wirklichkeit entsprechend in der Rech-
nung zur Verschiebung freigegeben. Als Ergebnis bekam man daher An-
gaben iUber die Verschiebung des Netzes im Bereich der Abspannpunkte
bei der Einwirkung von Restkriften und die Knickwinkel der Abspann-
seilrichtungen gegeniiber den Fundamentrichtungen. Nachdem bei allen
23 Abspannrichtungen des Z1 dieser Knickwinkel kleiner als 3° war,
konnte die Einpassung abgebrochen werden.

Bei allen Bauwerken - mit Ausnahme der Felder des Z1 - erfolg-
te der Ubergang von der 3m-Grobmasche des Modells zu der 75cm-Fein-
masche der Ausfilhrung geometrisch mittels Interpolation. Bei dem
geometrisch komplizierten grdferen Feld des Z1 wurde dagegen das
geometrisch entstandene "halbierte" 1,5m-Netz und bei den zweil
kleinen Feldern von Z1 sogar das "geviertelte" 75cm-Netz als N&dhe-
rungswert Xo fir eine exakte statische Berechnung nach Verfahren
(B) eingegeben. Die Kridfte So wurden aus der vorausgegangenen Be-
rechnung des 3m-Netzes geschitzt. Es zeigte sich, dak bel sorgfdl-
tig durchgefiihrter geometrischer Vorbereitung (z.B. manuelle Ein-
griffe in kritischen Randbereichen und automatische Erzwingung der
Gleichmaschigkeit) die Korrekturen aufgrund der exakten Berechnung
klein waren: Zur Berechnung des 1,5m-Netzes des unten im Aufrif
dargestellten Netzes waren nur zwei Iterationen notwendig. Dabei
wurde der Kridfteverlauf des Gleichgewichts nach der 1. Iteration
sowie einige Seilausl¥ufe fiir die Eingabe zur zweiten Iteration
korrigiert. Ebenfalls bemerkenswert war, daf sich an den Abspan-
nungsrichtungen und am Gleichgewicht der Ubergangspunkte nichts We-
sentliches &nderte, so daR eine diesbezligliche Krdftebeeinflussung
nicht erforderlich wurde.
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6. Einige Daten zu den Berechnungen

ber.Netz Knotenkoord. Seilstlicke unbek.Kridfte
Z1 groRes Feld 1,5 m 6453 4061 1044
Z1 kleines " 75 em 6069 3883 335
Z2 3m 408 252 109
mittl.Stadionf. Im 1632 1039 137
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Ausschnitt aus dem automatisch gezeichneten Aufrif des nach (B) be-
rechneten Zwischenteilnetzes

Literatur:

/1/ J.H. Argyris, D.W. Scharpf, Berechnung vorgespannter Netzwerke,
Bayr. Akad. d. Wiss., Minchen 1970

/2/ E. Haug, Berechnung von Seilfachwerken, Bericht 1/70 des Inst.
fir Leichte Flidchentragwerke, Stuttgart

/3/ K. Linkwitz, H.-J. Schek, Einige Bemerkungen zur Berechnung von
vorgespannten Seilnetzkonstruktionen, Ing. Arch. 40 (1971),
S. 145 - 158

Zusammenfassung:

Die Gleichgewichtsbedingungen flir eine vorgespannte Seilnetzkon-
struktion zur Ermittlung der Lage der Knoten und der Seilkréfte
werden als unterbestimmtes nichtlineares Gleichungssystem aufge-
faBt. Zur eindeutigen LOsung kann man entweder eine Anzahl Unbe-
kannte fest vorgeben (A) oder aber die Gleichgewichtsbedingungen
als Nebenbedingungen eines geeignet zu w&hlenden Minimumproblems
auffassen (B). Stadion- und Zwischenteilnetze wurden nach (B) so
berechnet, daB die Gleichgewichtsfiguren mdéglichst wenig vom gemes-
senen Modell abwichen.
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Die Darstellung der Randzonen vorgespannter Seilnetzkonstruktionen
in Zuschnittspldnen; praktische Erfahrungen bei den Olympischen
Déachern Miinchen

Mapping of the Cutting Patterns of the Boundary Zones of Prestressed
Cable Nets; Experiences from the Roofs of the Olympic Facilities at
Munich

La représentation sur les plans des bordures des structures en réseau de
cable; application pratique pour les toits olymiques @ Munich

K. LINKWITZ H.D. PREUSS
Stuttgart, BRD

Eine der Aufgaben des Zuschnitts ist die Ermittlung der Lingen
aller Seilstiicke zwischen je zwei Netzknoten und die Bestimmung der
Gesamtldnge jedes Netzseils und jedes Randseils durch Addition der
Seilstiicke. Da Zahlenangaben allein zur Netzfertigung und -ver-
knipfung nicht ausreichen, gehOren zum Zuschnitt auch grossmassstdbi-
ge Zuschnittsplidne, in denen die Netzrinder moglichst verzerrungs-
frei dargestellt werden. Da das Netz ein doppelt gekrimmtes, drei-
dimensionales Gebilde ist, miissen aber bei der Abbildung in die Ebene
gewisse Verzerrungen in Kauf genommen werden. Man kann nur anstreben,
diese Abbildungsfehler durch geeignete Abbildungsmethoden klein zu
halten.

Solange die Zuschnittsmasse direkt von Modellen abgenommen
wurden - Pavillon Montreal -, benutzte man Photographien des Netz-
randes, welche mit jeweils zum Netzstiick senkrechter Aufnahmeachse
aufgenommen worden waren. Nach massstdblicher Vergrosserung und fort-
laufender Montage erhielt man eine in die Zeichenebene sukzessiv
eingedrehte ebene Abbildung des Netzrandes.

Bei der Aufnahme der Randzonen mit Hilfe eines Messtisches oder
der Nahbildphotogrammetrie, schliesslich auch bei der analytischen
Berechnung von Seilnetzen erhdlt man Raumkoordinaten der Netzpunk-
te, die in die Ebene abgebildet werden miissen. Dazu wurden bei den
Dachern der Olympia-Sportstdtten Minchen zwei verschiedene Methoden
angewendet:

Verfahren "Planebene'": Eine einfachc Abbildung gewinnt man
durch orthogonale Projektion der Netzknoten in eine Ebene. Die Ab-
bildungsfehler sind dann umso kleiner, je besser sich die Abbil-
dungsebene dem abzubildenden Netzstiick anschmiegt. Tatsdchlich wur-
de die rdumliche Stellung der Abbildungsebene als "ausgleichende
Ebene" so bestimmt, dass je Randzonenstiick und damit je Plan die ge-
wogene Quadratsumme der quadratischen Punktabstinde zum Minimum
wurde.

Praktische Versuche zeigten, dass nicht alle Punkte des Abbil-
dungsbereiches zur Bestimmung dieser Ebene mit gleichem Gewicht
herangezogen werden dirfen. Ginstige Projektionseigenschaften erga-
ben sich, wenn alle Punkte auf dem Randseil und einige ausgewidhlte
in seiner Nachbarschaft in die Berechnung der Parameter eingingen.
Um zu vermeiden, dass sich die Ebene zu stark dem Randseil anpasste,
erhielten die ausgewdhlten Netzpunkte ein "Gruppengewicht" gleicher
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Grosse wie das aller Randseilpunkte. Dadurch l8sst sich die Anpassung
der Abbildungsebene an ausgezeichnete Punkte oder Netzstlcke beein-
flussen.

Nach dieser Methode - Ubersetzt in ein Programmsystem - wurden
die Zuschnittsplédne von Sporthalle, Schwimmhalle und Stadion be-
rechnet und automatisch im Massstab 1:10 gezeichnet. Dazu mussten zu-
ndchst in ﬂbersichtsplénen 1:125 die Blattschnitte fur die einzel-
nen Abbildungsebenen so festgelegt werden, dass je Plan der Zeichen-
bereich der Zeichenmaschine eingehalten wurde, dass sich aufeinan-
derfolgende Pléne geniigend Uberdeckten und dass weiter die Abmessun-
gen jedes Planes den Kriimmungsverhdltnissen des Netzes angepasst wa-
ren.

Das Programmsystem lieferte je Plan einen Steuerstreifen fiir
die Zeichenanlage KONGSBERG KINGMATIC und ein Protokoll, welches
alle fir die Bearbeitung der Werkstattpldne notwendigen Zahlenanga-
ben enthielt. Zus&dtzlich wurden je Plan Transformationsparameter
berechnet, damit die Stahlbaufirmen bei der Weiterverarbeitung
Raumpunkte in die Planebene und - umgekehrt - Punkte aus den Zu-
schnittsplédnen in den Raum transformieren konnten.

In stark gekrimmten Netzbereichen traten - obwohl der Blatt-
schnitt durch zusdtzliche Unterteilungen dem Netz besonders ange-
passt wurde - Projektionsverkirzungen auf, die liber der Zeichenge-
nauigkeit lagen und manuell verbessert werden mussten; die fur jeden
Punkt berechneten Projektionshchen lieferten dazu wesentliche Anga-
ben.

Verfahren "Abwicklung": Nach einer analytischen Berechnung des
Netzes kennt man die Raumkoordinaten der Knotenpunkte einer Gleich-
gewichtsfigur. Im Lastfall Zuschnitt werden die Seilstlicke als ge-
wichtslos angenommen, alle dusseren Belastungen sind null. An den
Knoten des Randseils greifen dann jeweils drei Kr&dfte an, n&mlich
zwel Krafte in den im Knoten aneinanderstossenden Randseilstiicken
und eine Kraft im abgehenden Netzseil. Da im Gleichgewicht, miissen
diese drei Krafte und damit die Seilstiicke, in denen die Krafte
wirken, in einer Ebene liegen und kOnnen direkt in dieser Ebene ab-
gebildet werden. Sukzessiv aufeinanderfolgende "3-Krdfteebenen
lassen sich aneinandersetzen und bilden einen in der Nachbarschaft
jedes Randseilknotens verzerrungsfreien Plan. Dehnt man nach diesem
Prinzip den Plan in die Tiefe des Netzes aus, so erh8lt man auch in
einigem Abstand vom Randseil noch eine - innerhalb der Zeichenge-
nauigkeit - winkel-, flidchen- und streckentreue Abbildung, die als
"quasi-konform" charakterisiert werden kann. Ein Blattschnitt ist
nicht mehr notwendig; jede Randzone kann in einem Endlosplan darge-
stellt werden.

In dieser Weise wurden - wiederum nach Erstellung eines ent-
sprechenden Programmsystems - die Zuschnittspléne der Zwischenteile
und zus&dtzlich die Randzonen des Stadions nach der Berechnung der
3m—-Gleichgewichtsnetze berechnet, in Protokollen fiir die Stahlbau-
firmen ausgegeben und auf der Zeichenanlage CONTRAVES CORAGRAPH im
Massstab 1:10 gezeichnet.

Zusammenfassung: Es werden zwei Verfahren beschrieben, die bei
der Herstellung von insgesamt etwa 3800 gm Zuschnittsplédnen im Mass-
stab 1:10 fir die Olympiad&cher Minchen entwickelt und praktisch
angewendet wurden. Bei der Methode "Planebene" bildet man die Rand-
zonen in aufeinanderfolgenden ausgleichenden Ebenen ab. In der Me-
thode "Abwicklung" wird eine quasi-konforme Abbildung der Rand-
streifen in Endlosplidnen gezeichnet.
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Introduction

The cable roof above the icehockey-stadium at Tampere, Finland erect-
ed 1964 comprises a simple structural system as shown at fig. 1; after a
brief description of the roof structure proper, of the anchoring arrange-
ments and of the principles of the statical calculations, attention will be
given to practical experiences.

In Scandinavia light hanging roofs are introduced in two different
structural concepts namely either as Mr. Jawerths system (see introductory
report page 106) based on prestressed cable trusses or as cable nets where
two sets of cables of opposite curvature are established in a prestressed
state. Wind suction necessitates prestressing of these light structures
and this prestressing represents at the same time the advantage of increas-
ing the rigidity of the system and the disadvantage of adding to the load-
ing.

The Scandinavian structures usually cover rectangular areas and the
edge elements to which the cables are anchored will often be straight; in
this case the problem is to bring the large horizontal reactions from the
cables down to the foundation in an elegant way and the economical influe-
nce from the shape of the anchoring structures should be critically ana-
lysed at a very early stage of the concept. A hanging roof will almost au-
tomatically be cheap, but the surrounding anchoring system might be rather
expensive,

Fig. 1: Model photo

Ba. 26 Vorbericht
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Fig. 2: Sections through icehockey stadium

At Tampere the time left for design and erection was very scarce and
the choice of cable type, prestressing technique and anchors took into
account that the building process should proceed simultaneously with the
detailing.

The Structure

The geometrical proportions of the building are shown at fig. 2. The
length of the hall is 92,0 m and the width is 63.2 m. The shape of the
roof is a hyperbolic paraboloid with a sag for the suspension cables of
3.9 m and a rise for the prestressing cables of 8.4 m. Spacing of the
cables are 80 cm for the suspension cables and 160 cm for the prestress-
ing cables, all cables being sclid ¢ 26 wm S.H. bars with an ultimate
tensile strength of 110 kg/mm“.

The prestressing cables pass above the suspension cables and any two
crossing cables are linked together with a friction clamp (see fig. 3)
which also serves as support for the wooden rafters,

All the cables are anchored to the R-C edge structures, the suspens-
ion cables to the two vertically curved beams above the facade columns
and the presiressing cables to the doubly curved roof slabs above the
gable buildings. As indicated at fig. 4 all cables pass the edge beam
through a pipe to the anchor at the outer side; on account of the cable
movements vertically and horizontally caused by variations in prestress
and live load all the pipes end up with a "trumpet" sleeve made of poly=-
ether, reinforced with glassfibres,

The composition of the roof proper as shown at fig. 4 did permit an
execution without any scaffolding.

A central problem of the design was how to anchor the edge beams to
take up the horizontal component of the suspension cable forces; prefe-
rence was given to conventional gravitation anchors because cheap rock
boulders could be procured for production of the necessary mass concrete.



K. BERGHOLT 403

The inclined ties from the edge beams to the R-C plinth below the
mass concrete counterweight were executed in posttensioned concrete with
passive anchors in the plinth. In this manner a very rigid support for the
suspension cables was obtained.

The forces from the prestressing cables are introduced in a R-C pro-
file with great torsional stiffness. This profile is composed by the doubly
curved slab above the gable building and the two adjoining vertical walls
(see fig., 2). The profile is supported horizontally by the facade struc-
tures and by four rigid frames in the grand-stand structure.

The Statical Calculations

The live load from snow was assumed to be 150 kg/m2 in the Tampere a-
rea; four different cases of snow distribution were investigated.

For statical wind load only suction developed by wind directions pa-
rallel to the two main axes of the hall was considered. As no wind tunnel
tests were available and as the suction values for flat roofs indicated in

the codes in different countries wvary
rather much, the loading assumptions
a2 were greatly influenced by model tests

% I w4 described by Beutler in ref. (1). Fi-
nally the suction at the windward side

5\;ff; was estimated to -80 kg/m” and at §he
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J— msn as the highest in Finland registered
R o N 7/ e velocity pressure was 70 kg/m, this as-
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sumption should be quite conservative

[ - Q%*Lﬁ*“ ) when the great size of the roof sur-
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face is considered.

S0

N 4 H For this structural concept both

I I exterior and interior temperatures in-
| fluence the actual stresses in the

7 cable net; the temperature variation
?F“”“wWC““ inside the hall is estimated to 25°C

U U and the outside temperature range is
SUSPENSION CABLE ! put to 4500. Creep and shrinkage in the
posttensioned ties are evaluated as
well as the relaxation of the steel
Fig. 3: Cable link cables.

All the calculations for the cable net proper follow the method sug-
gested by F-K Schleyer in ref. (2); information about the mesh sizes se-
lected for the different loading cases and the numerical work in general is
presented by the author in ref. (3) and (4) where attention is given to the
corrections due to additional loads resulting from the first calculation
step with non-linear terms.

The necessary prestressing of the cables is found by trial and error
and the final "equivalent" pressure defined as the pressure the two nets
perfo;mzagainst each other in the pure prestressed condition is approx.
90 kg/m .

The actual factor of safety as the collapse of a cable depends on the
ultimate strength of the cable anchors and of the thread of the cable sock-
et sleeves., Preliminary calculation indicated definitely that the dimen-
sioning of the cable net would solely depend on the choice of the permiss-
ible stresses at working conditions with due regard to all extra influe-
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Fig. 4: Section through roof near the edge

nces (creep and shrinkage of ties, temperature changes, relaxation etc. ).
In.this case maximum cable stresses of a magnitude of approx. 6,000 kg per
cm“ were accepted, this being 5-10% less than are normally accepted for
the use of the same cables in posttensioned concrete; it should be pointed
out that the investigated load combinations are fairly intricate and as
well that the stress calculation from the linear theory is proved to be on
the safe side. While the above-mentioned extra influences only increase the
maximum stresses in the suspension cables approx. 15% the maximum stresses
in the prestressing cables increase approx. 60%; this fact has consider-
able importance for the dimensioning of the stabilising gable buildings,

The dynamic wind effect on a suspension structure of this type is
difficult to analyse, the evidence by Vaessen in ref. (5) gave no reason
to assume that the wind pressure at a specific point of the roof surface
should pulsate into step with the self exciting vibrations of the roof; we
found still less reason to assume that all the local wind pressures on the
great roof surface should coordinate to a pulsation into step with the
said vibrations. As the fatigue strength of the threads in the cables is
relatively low it was attempted to estimate the number of stress variat-
ions greater than the fatigue strength but of course this is a primitive
approach. It should be emphazised that the cable net technique has the ad-
vantage that a random local fatigue fracture does not lead to collapse of
the complete structure but the notice permits to take countermeasures.

Some Experiences from the Erection Work

Naturally it proved difficult to erect the formwork and to cast in
situ the geometrically complicated and large perimeter R.C. structures
with the exactitude usually expected for normal R.C. work, but no seri-
ous consequences occurred.,

A good deal of trouble came up in fixing the "trumpets", through
which the cables pass, in the right direction and level; the design asked
for a margin of - 0.5 cm as to the position in height of the two ends of
the pipe, but levelling control found deviations on the finished struc-
ture 4 or 5 time this value; fortunately enough deviations of this size
never occurred for two adjacent cables, but the deviations were rather
evenly built up over gquite long distances. As all the hanging cables had
to respect the actual levels of the trumpet centers an adjustment analy-
sis of the height of all hanging cables in the erection situation has to

be carried out.
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Each suspension cable consists of four cable parts interconnected with
socket sleeves., According to a proposal put forward by the contractor a pre-
liminary bridge was built along the central axis. The cable parts were lift-
ed by crane and while the central socket sleeves could be mounted from the
above-mentioned bridge, the other two sockets sleeves at the quarter points
were screwed in position from light movable bridges cantilevered from the
previously erected suspension cables. Temperature correction as to¢ the posi-
tion in height of each suspension cable was compulsary as the actual tempe-
rature varied approx. 10 C during the time of erection,

The prestressing cables were put up by hand from light movable bridges
on the hanging cables. As the friction clamps at each crossing of two cabl-
es had to be active before the prestressing took place, the cable net was
built to a geometrical shape worked out in such a way that the net after
prestressing would project in two sets of equidistant straight lines. In
order to facilitate this procedure all cable parts were cut with a margin
of 0,1 cm and all intersection points marked with coloured lines on both
suspension cables and prestressing cables before they were brought in posi-
tion,

An adjustable momentum wrench was applied for the tightening up to the
friction bolts in the clamp. Test was carried out to evaluate the correla-
tion between the tightening moment and the resulting friction in order to
obtain a reasonable safety against sliding of the connection,

The prestressing of the cable net was only introduced through the lon-
gitudinal prestressing cables which were tensioned two by two working simul-
taneously from the two facades towards the center line, each cable being
activated from both ends. The final stresses were built up by repeating
this procedure six times. After each stage the elongation and pump pressure
at either cable end were registered.

Strain gauges were mounted on certain cables as a further control. For
the check of whether the required prestress condition was attained every-
where in the cable net, measurement of the deflections took place at 25

Fig. 5: Interior of the finished stadium
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points for comparison with the predicted ones. Interpretation of these re-
sults indicated that the cable net had been slightly "overstressed" (5-10%)
and it was also observed that one of the sides had obtained a bit higher
stresses than the other one, but this fact was deemed of no consequence.
The total erection of cables and the prestressing lasted approx. 6 weeks.

More accurate calculation of the cable deflection near the supports is
fairly difficult as this involves extensive cowmputation; in the actual ca-
se greal care was exercised to ensure that the "trumpets" had reasonable
variations in curvature in all directions to avoid any tendency to breaks.
The distances between the cables and the "trumpets" edges were measured be-
fore and after execution of the roof cover.

Observations After Completion

The stadium has now been in use for 7 years and has proved that the
choice of this type of suspended roof-structure was suitable.

Observations during the past years indicate that no vibrations of any
kind due to the action of the wind have occurred. It can also be mentioned
that the snow uses to distribute itself with very high loads near the gable
building at the leeward sidej; this special loading has in no case caused
deflections, which exceed what has been calculated.

Visual control now has also confirmed that the shape selected for the
"trumpet" is satisfactory because the czbles keep reasonable distance from
the "trumpet" edge.

As far as the water tightness of the roof is concerned, there has been
no problems due to the fact that the total roof-surface is separated by
longitudinal and transversal expansion Jjoints, which absorb the movements
due to the above-mentioned loads.

From the spectators point of view the solution is very satisfactory
because it is possible to see the whole game area from every part of the
stadium without any obstacles.

References:

(1) J. Beutler

Beitrag zur statischen Windbelastung von Seil-

netzwerken-Ergebnisse von Windkanaluntersuch-

ungen, (Proceedings of the IASS colloquium on

hanging roofs, Paris 1962).

(2) F-K Schleyer : Uber die Berechnung von Seilnetzen (Diss. Ber-
lin 1960).

(3) K. Bergholt : Planlegning og udferelse af et forspazndt kabel-
tag (Ingenieren nr. 5, 1965).

(4) K. Bergholt : Cubierta de doble curvatura de cables preten-
sados (Informes de la construccidén 178, insti-
tuto eduardo torroja, Marzo 1966).

(5) F. Vaessen ¢ Wind-channel tests to investigate the windpres-

sure on a hyparshell roof (Proceedings of the

IASS colloquium on hanging roofs, Paris 1962).

Summary

The contribution describes the design of a 63.2 x 92 m hanging roof a-
bove the new icehockey stadium at Tampere, Finland, built during 1964. The
structural system is a rectangular prestressed cable net composed of high
tensile steel bars. After comments on the support systems and the statical
calculations the article is concluded with some remarks about the practical
problems on the site and later observations.
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1 Introduction

The objective of this work is to show that it is possible to design a
cable beam structure that compares favourably in cost, at the lower range of
long span roofing, with conventional methods of construction, The design of
the boundary structure has been considered in this context and particular
attention is paid to the method of construction in order to ensure that site
work and the erection of the cable beams is undemanding of the contractor's
skill and ability,

The experimental work gains greatly from the fact that a full scale model
is being used and it is intended to use this advantage to establish the effect
of construction errors and dimensional variation on the behaviour of the
structure,

The priorities are considered generally as follows:

(a) The boundary structure should comprise simple frame elements of
weight and dimension convenient for transportation and handling
and should have inherent stability whilst final adjustment and
alignment is being made,

(b) The cable beams should be easy to assemble and 1ift and with
simple joint details not requiring close tolerances on dimensions,

(c) The final alignment of the cable beams should be by means of the
forces in the cables and not dependent upon the accuracy of align-
ment of the boundary structure,

(d) The steel tendons and anchoring devices of the beams and the

required jacking equipment should be readily available as for
example such as used in prestressing,

2, Description of Cable Beam Structure

Each cable beam takes the form of two pairs of 0,5 in (12,8mm) Dyform
plastic covered prestressing strands in reverse catenary, held in position by
vertical 1,0 x 0,25 in (25,4 x 6,35mm) steel ties, A pair of cable beams of
75 ft (22,8m) span and 9 ft (2,74m) apart form the unit under test., The
strands are anchored into the concrete end frames with standard prestressing
grips at heights of approximately 14 ft (4,3m) and 21 ft (6,4m), The end
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frames are prestressed through slots in their vertical columns to the floor of
the laboratory, thus each pair of end frames together with a portal unit
produces a stable structure for the erection of the cable beams, The cable
beams were assembled on the ground and were easily lifted into position, Final
alignment was achieved by adjusting the tension in the cables, Fig, 1 shows
the structure before the roof cladding, troughed aluminium sheeting, was

fixed in position,

3, Experimental Work

The roof cladding for cable truss structures of the type investigated is
normally designed using either troughed steel or aluminium sheeting spannirg
between the trusses and attached either to the suspension cable (SC) or
prestressing cable (PC), depending upon the architectural requirements, Thus
purlins are not used and both the weight of the cladding as well as snow and
wind loading is applied transversely along the cables and not only at the
joints as assumed in the usual analysis of cable structures,

In carrying out the experimental work on an individual truss this was
taken into account by applying the load in the form of 50-1b sandbags at
eight load points for each loaded cable link as well as at the joints with
increasing loads of q= 50, 100 and 150 1bf (222, 445, 667N) per load point,
the maximum load corresponding to 20,28 1bf/ftZ (971 N/m2), The following
six loading tests were carried out:-

(a) increasing load on full span (LOFS) and

(b) increasing load on half span (LOHS)

both on: (i) the suspension cable
(ii) the prestressing cable and

(iii) the whole structure with cladding supported on the
suspension cables,

When testing the individual truss, the sandbags were supported from the
load points with nylon ropes, When the whole structure was tested the sandbags
were placed on top of the cladding, The positions of loading on full and half
span and a diagram of the truss are shown in Fig, 2a,

The experimental and theoretical deflections for a loading of 150 1bf
(667N) per load point are shown in Fig, 2b and 2¢, Fig., 2d shows the dif-
ferences in calculated deflections using the theories described in the next
section, The experimental and theoretical curves for the forces in the end
links of the top and bottom cable are shown in Fig, 3a and 3b,

To determine the natural frequencies and the damping of one truss, the
truss was pulled down at the centre in turn by a force of 25, 50, 100, 150 and
200 1bf (111, 222, 445, 667, 890N) which was then released,

The vibration of the truss was transmitted by a displacement transducer
to a storage oscilloscope yielding a lower natural frequency of 9,4 cycles per
second, This was repeated for the whole structure with the cladding in
position yielding a natural frequency of 3,95 cycles per second,

To gain some idea of the damping of the trusses with and without cladding
the above was repeated and the time for the vibrations to die down measured,
The results of these tests are shown in Fig, 4 and the vibration for release
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loads of 150 1bf (667N) per truss without and with cladding are shown in
Fig, 5 and Fig, 6, respectively,

4, Theorz

The analysis of cable beams with the load applied along the cables are
like the cases when the load is assumed supported at the joints based on
minimisation of the total potential energy W by an iterative process, In
the latter case, when the tension in the cables are sufficient to ensure
linear elastic behaviour of the cable links, this implies descent on an
energy surface which is quartic in the displacements, The minimising steps
are usually taken in either the Newton-Raphson, Conjugate Gradients or
Steepest Descent directions, a distance S to a point where W is a minimum
in that direction (Ref, 1, and 2,), Thus it can be proved that at the (k+1)
S, w =CS4+CS3+C82+CS + C (1)

k+1 17k 2k 3k 4 k 5
where C, to C_ are functions of the displacements at the end of the kth iterate
to powers varying from one to four,

Thus S for each iteration can be found from

W 3 2
= = + 4 = 2
S 4CIS + 3CZS 2C38 C4 0 )

When the load is applied along the cables the cable elements cannct any longer
be regarded as components with linear load/extension characteristics, When
this is taken into account together with the change in the potential of the
loading due to the sag of each cable link, it can be shown that the descent
takes place upon an energy surface which is octal in the displacements, In
Ref, 3 it is shown that equation (1) above becomes
8 7 6 5 4 3 2

w = S

it = &4 et 0251 + CBSk + C4Sk + Cssk + CSSk + C7Sk + CSSk + C9 (3)

th

when C, to C_, are functions of the displacements at the end of the k iterate
to powers varying from one to eight,

Using the method of Conjugate Gradients the above theory has been used for

the analysis of small cable beam models for which the differences between
theoretical and experimental results varied from 5% to 8% when the loading was
placed on the prestressing cables, One part of the current work is to see if
this theory also will yield similar differences when applied to a full-scale
structure,

5 Conclusions

After the stressing of the cable beams some movement took place of the
tie fastenings over the plastic sheeting, This reduced the prestress in the top
and bottom chord from 16,000 to 11,000 1bf, During the stressing no movements
of the end frames were evident,

The load tests showed that load applied to the prestressing cables results
in larger displacements and cable forces than when applied to the suspension
cables, The stiffening effect of the aluminium sheeting was as expected,
negligible,

The difference between theoretical and calculated results was greatest
for loading on half the span only, This is thought to be due to small relative
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movements of the cables at the central joints, When the load is supported

on the top cable the two theories give very nearly identical results but when
the load is supported on the bottom cable the simplified theory underestimates
both forces and deflections, The loss of prestress caused the prestressing
cables to go slack when the last load increment was applied, The load intensity
at which this occurs was accurately predicted by the analysis, The damping
effect of the aluminium sheeting can be seen in Fig, 4, It has a negative
rather than the expected positive effect, which must be due to the fact that
the sheeting acts as a spring in which energy is stored, The tests described
should be considered as a preliminary investigation which will be continued
when the tie joints have been modified, a fact which has been most usefully
made evident by the use of a full-scale model,

* % *
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Summary This paper contains the description and testing of a cable beam
structure which has been developed for prefabrication and low cost,
The experimental results have been compared with the results from
two different non-linear theories indicating for which cases the
two different theories are applicable,
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A Large Span Hanging Roof: The “PALASPORT" in Milan
Un toit suspendu de grandes dimensions: le “"PALASPORT"" a3 Milan

Ein weitgespanntes Hangedach: Der "PALASPORT" in Mailand

A. SAMUELLI FERRETTI A. ZINGALI
Istituto di Scienza delle Costruzioni
Universita di Roma, Italia

A 11.000 seat Palasport is currently being built in Milan. Fi-
gures 2,3,4 show the architectural design. The main hall, including
the field, a bicycle track of 265 m and the stands for the audien-
ce, is approximately in the shape of a reversed truncated cone.The
upper rim of the cone follows a saddle~like profile, while keeping
a perfectly circular shape in the horizontal projection; the out-
gide diameter is 140 m. Such an arrangement gives to the roof sur-
face a negative gaussian curvature throughout.

The structure of the reversed cone consists of 38 reinforced
concrete ribs supporting on the upper edge the stands, and in the
lower one the walls forming the outside face. From the above men-
tioned architectural arrangement,as far as the action of transmit-
ting to the ground the strong pull of the cable network supporting
the roof is concerned, arises quite a problem, because the rib stru
cture should be of an ex-
ceptionally large size.It
has been preferred to sup
port the beforementioned b o
ihward pull by means of a Al
self sufficient structu-
re, which could transmit
to the underlying reinfor
ced concrete structure its
dead weight and the roof's
one, that is vertical ac-
tions only.

The network was thus
anchored to the internal

edge of a peripheral beam . . .
in the shape of a ring, Fig.l - General view of the building site
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which resists the inward pull of the cables in the various design
load conditions, simply supported by the reinforced concrete ribs.
The main geometrical data of the roof are hereunder listed:

- area covered by the network : 11,500 m2
- maximum camber of the sagging cables : 10.70 m;
- maximum camber of the hogging cables : 7.84 m.

The network consists of high tensile steel cables, spaced 1.50
m each other. Such spacing was chosen in order to allow the cables
to support the roof plates consisting of cold formed light gauge
steel sheet. The steel sheet supports the insulating and waterpro-
ofing coverings.

The cables are anchored at both ends by means of toggles and
gcrews which allow a length regulation for about 500 mm, in order
to ease the operation of assembling and prestressing the network.

The ring consists of a box steel girder whose cross section is
of about 7.00x3.00 m; the skin plates are reinforced by means of
transversal frames and longitudinal stringers. The shop welded ele
ments are assembled in place and jointed by means of high tensile
bolts.

The 38 abovementioned supports are simple action ones, that
is they allow every rotation and every displacement in an horizon-
tal plane. Special devices have been designed to realize supports
which can react downwards as well as upwards.

The horizontal dinlacements of the ring as a whole are preven-

Fig.2 — Plan of the hall
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Fig.3 - Section

ted by means of limit stops provided for the supports at the oppo-
site ends of two diameters. Therefore, the thermal ring displace-
ments as well as the elastic ones due to live loads can be distri-
buted between the opposite supports, thus avoiding excessive slip-
page of the ring with respect to the supporting plates.

The study of the static behaviour of the roof structure put in
to evidence the great importance of the ring flexibility in the geo
metrical and static conditions of the network. The influence of the
ring flexibility is so important to completely cancel the schema of
the fixed-end network, even as first approximation.

It is, therefore, necessary to take into account from the very
beginning of the computational work the structure consisting of the
network and the ring as a whole; a2 method envisaging such interac-
tion as well as the non-linear behaviour of the network was special
ly perfected. The calculation procedure is briefly resumed in the
flow-chart shown in figure 6, and its details are currently being
published.

The roof shape, not far from an hypar one, was determined by im
posing, as known quantities, the coordinates of the outside ring to
getherwith the distribution of the prestressing forces in the ca-
bles.

As the design live loads can be upwards (suction caused by the
wind) as well as downwards (snow load), the ensuing moment distribu
tion in the anchoring ring beam are subjected to reversing.

The initial prestressing of the cables has been designed in or-
der to minimize the bending moments in every section, by splitting
their excursion in two almost equal parts.

\\:‘\i\ ,,,,, :

o v

Fig.4 (1°) - Main views

Pig.4 (2°) - Main views
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The ensuing stress distribution in
the sagging cables is almost constant,
and equal to the hogging ones (20 t/m);
under such forces the ring is subjected
to almost pure compression.

As a matter of fact it has to be
pointed out that the distribution of mo
ments around the strong axis (horizon- "
tal) of the ring beam, whose center li-
ne follows a space curve, is not far Fig.5 — Shape of the roof
from the one obtained by applying an e
qual system of forces to a flat ring-beam, whose centerline follows
a plane curve.

Therefore, the ring being subjected to forces almost radial in
direction and constant in value under dead load, the pressure cur-
ve is almost coincident with the center line.

Of course, the weak axis bending moment and the twisting moment
distribution depends mainly from the altimetric shape of the ring;
it has been found out, in particular, that the twisting moments ne
ver reach very important values.

As far as the choice of the orientation of the principal axes
of the cross section is concerned, the possibility of placing the
beam with its strong axis following the tangent of the network a-
long its outside edge has been examined.

A small saving in the maximum moment was thus possible, but
this solution has been cancelled for aesthetical as well as assem-
bling reasons.

The most singular consequence of the aforementioned interaction
between ring-beam and
network can be obser-
ved in the behaviour
of the cables under

(In‘-linl :ublelimcliom@

Eil;nri.m eqllclions of e icinn] the ac t ion Of an lml_
[initiol joints coorsinotes: {ay ] form live load such
as the snow. In a fi-
— xed ends network the
[Gom cetween the ring and e £nas of the coules:‘r.):a]
1 effect of such a load
[lmenrlzed !qu!'lb!lur}tquu'lnm of the |e|-h—k-——‘ i s Well knOWn . the
[lineorized co-npu!ibiliiy equations (ing-:abm t ens lOI’l ln the Sag el
Solution of the previous equations and glng Cables lncre ases
Jetermination of the changes: {HY,12} " i g
while the tension in
[Nonlinea- equilibrium equations of the ioi;] the hogglng cables dg
creases. In our case
LMH“T\L‘G( compatibility equations rl‘ng-coble:l t}:le Sho rt enlng o f the
1 ERRCYE diameter between the
Gops between the ri he cobles: . .
(Bopt berween s e ] points of support of
. Yo, Convergence \"® anges of the coordingte: ractions: i
(o) e e T e the longest sagging

cables is followed,in
the ring-beam, by an
Fig.6 — Flow chart elongation of the sa-
me order of magnitude
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of the perpendicu

lar diameter, cor — ,\ ”
responding to the .. e dapnm e e _ . / .
longest hogging ca e — e o 1
bles. Those displa “ “ o | -
cements are large

enough to increa- u q e o
se the tension in

the hogging cables A i .

also. Thus the 1i
ve load is suppor
ted, so to speak,
by means of a ra-
ther large increa
se in the curvatu
re of the sagging
cables. As a con- )
sequence, the de- Al : e o I
flections of the o .
network due to 1i

ve loads are ra-

ther large, as Fig.7 -
compared to the ve

ry small ones that can be observed in a fixed-end network; in the
latter case, on the other hand, the variations of the network ten-
sions are much larger, and, consequently, so are the moments in the
outer ring.

In order to check the results of the calculations, a model in
the scale of 1 : 100 was built and subjected to tests at the Istitu
to di Scienza delle Costruzioni, of the engineering faculty of Rome.
The tests are conducted by A.Gallo Curcio and F.Piccarreta of the a

camco peamaente 40 Ko .y Tforementioned Institute.
e b The ring-beam of the

7 T ' model was made of cast a-
' luminium, the cables of
— 1% high tensile steel bands,
spaced 10 cm and provided
with turnbuckles. The sup
ports are made by means
of aluminum bars provided
with spherical hinges at
both ends, and linked to
a very rigid steel frame.
The bars are provided with
dynamometrical devices in
order to evaluate the rea
ctions over the supports.

RO
"
W .

4 permanente +meve
_”rllhlﬁl'

I n E

permanante 4 neve

Tractions of the cables

[ m Alm-' .lm
Fig.8 - Moments and normal forces A second model, in the

in the ring for the snow load Scale of 1:200, is curren
tly being tested for eva

g. 27 Vorbericht
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CARICO PERMANMENTE 40 Wﬂ’

VENTO 60 .+ o 24,1 cm

p30.4 em

= wind (=0,06 l,‘m2J

e .. snow 10,1001, m2)

“fF IH'O:ZV h S
Fig.9 - Mbménts and normal forces in the Fig.10 - Displacements
ring for the wind suction of the ring

Fig.ll - The Model before being placed on its supports

luation of wind actions, to the faculty of Aerospace Engineering of
Milan, (director prof. G.Rotondi).

The building of the Palasport has been committed by the Italian
Olympics Committee to the "Societd Italiana per Condotte d'Acqua',
which was awarded the contract following a national call for bid.

The design has been developed by the Studies and Design Divi-
sion of the "Societd Italiana per Condotte d'Acqua", with the par-
ticipation of the following consulting engineers and architects:
Architecture : arch. G.e T.Valle;Soc.Italiana Grandi Padiglioni
Calculation of the structure: Societd Italiana per Condotte d'Acqua
Calculation of the network and ring-beam: ing. A.Samuelli Ferretti

and A.Zingali

SUMMARY

The hanging network roof structure of large span,for the new
Palasport in Milan,is described. Design as well as computational
criteria are given,with some details about the effect of the inte-
raction between network and peripheral ring.



Illa

Das dynamische Verhalten eines vorgespannten Kabelnetzes
The Dynamic Behaviour of a Prestressed Cable-Net Structure

Le comportement dynamique d’un filet de cdbles précontraint

JENS JACOB JENSEN
The Technical University of Norway

1. EINLEITUNG

Die heutigen Berechnungsverfahren der Seil- und Membrantrag-
werke ermdéglichen eine theoretische Berechnung dieser Systeme in
statischer und dynamischer Beziehung (1), (2), (3). Fiir eine dynam-
ische Untersuchung aber,sind die Dampfungseigenschaften von Bedeut-
ung. Bisher liegen wenige Angaben uber die Dampfungseigenschaften
ausgefihrter Seil- und Membrantragwerke vor. Versuche in grossem
Masstab koénnen Auskunft Uber die Dampfungseigenschaften, die Ein-
wirkung der umgebenden Luft sowie das dynamischen Verhalten unter
Windlast geben. Im folgenden soll Uber den Bau eines vorgespannten
Kabelnetzes fur die Durchfihrung von dynamischen Versuchen in gros-
sem Masstab, und die erzielten Ergebnisse berichtet werden.

2. VERSUCHSOBJEKT

Die erbaute Dachkonstruktion ist ein vorgespanntes Kabelnetz,
bestehend aus gegenseitig gekrummten Stahlseilen. Das Tragwerk
iberspannt eine Fliche von etwa 170 m? und ist durch vier Stiitzen
gestlitzt. Das Netz weist eine Maschenweite von 1,50 m auf und ist
an Randseilen, die iber den Stitzen und im Boden verankert sind be-
festigt. Als Dachhaut wurde ein Polyestergewebe mit beidseitiger
PVC-Beschichtung gewahlt. Die Dachfolie ist uber das Kabelnetz
gespannt und an den Netzknoten befestigt.

Fliir die Netz und Randseile wurden verzinkte Spiraldrahtseile
mit einer Zugfestigkeit von 145 kp/mm®? verwendet. Die Netzseile be-
stehen aus zwei parallelen Spiralseilen von je ¢ 9,0 mm (F=50 mm?),
wahrend die Randseile bestehen aus drei parallelen Spiralseilen von

BT = , DR~
Bild 1. Versuchsobjekt
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Bild 2. Abmessungen des Versuchsobjektes

je ¢ 21,0 mm (F=260 mm?). Die inneren Knotenpunkte verbinden die sich
kreuzenden Netzseile durch Klemmwirkung, und die Netzseile sind an
den Randseilen gelenkig angeschlossen.

Die Seilverankerungen der Netz und Randseile sollen weil es
sich um eine Neuentwicklung handelt, kurz etwas naher beschrieben
werden. Sie vermittelt die Verbindung zwischen Seil und einem An-
schluss-stiick und dient zum Anschluss der Netzseile an den Knoten-
punkten der Randseile, und zum Anschluss der Randseile an den Boden-
verankerungen. Es handelt sich um ein patentiertes Kompressions-
system, wobeili das Anschluss-stlick durch Explosive an das Kabelende
aufgepresst wird. Bei Detonation der Explosive wird das Anschluss-
stick einem Aussendruck der ein Mehrfaches der Fliessgrenze des
Materials des Anschluss-stiickes betragt ausgesetzt. Man erhalt so-
mit eine Verformung des Anschluss-stilickes und des Seilquerschnittes,
und erzielt die Verbindung zwichen Seil und Anschluss-stuck (Bild Uu).

Zur Festlegung der Hauptabmessungen der Netz- und Randseile
sowie der Hauptabmessungen der Stiitzen und Bodenverankerungen wurden
die Schnittkrafte des Kabelnetzes mittels einfacher Seilstatik er-
mittelt. Flr eine genauere Untersuchung des Tragwerkes wurden elek-
tronische Berechnungen nach dem in (1) aufgestellten Verfahren durch-
gefuhrt. Es wurde mit zwei Berechnungsmodellen gerechnet, ein gros-
ses Modell und ein einfaches Modell. Das grosse Modell enthalt 208
Elemente und 117 Knotenpunkte und kommt dem vorhandenen Kabelnetz
sehr nahe. Das kleine Modell ist im Bild 5 wiedergegeben und ent-
halt 48 Elemente und 25 Knotenpunkte.

e

Bild 3. Randknotenpkt. Bild 4. Seilverankerung
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3. VERSUCHS- UND MESSEINRICHTUNGEN

Die Durchfithrung einer experimentellen Untersuchung des Kabel-
netzes, speziell im Rahmen eines Feldversuches,erforderte besondere
Einrichtungen. Vor allem wurden die Versuche auf das dynamische
Verhalten des Kabelnetzes konzentriert, womit die verschiedenen
Eigenfrequenzen, Schwingungsformen und Da&mpfungseigenschaften sowie
die Einwirkung des Luftdruckes und das Verhalten bei Wind unter-
sucht werden sollte. Statische Versuche wurden vor und nach der
dynamischen Untersuchung,vorwiegend um die Geometrie und den Spann-
ungszustand des Kabelnetzes zu uberpriufen durchgefithrt. Das Ver-
suchsprogramm sah freie und erzwungene Schwingungen des Kabelnetzes
vor, und zwar mit und ohne Dachhaut. Durch Luftdruckmessungen
wahrend des Schwingungsvorganges sollten Fragen in bezug auf die
aerodynamische Dampfung und das Verhalten der umgebenen Luft geklart
werden. Die allgemeine Versuchseinrichtung ist im Bild 6 dargestellt.

4. VERSUCHSERGEBNISSE
Freie Schwingungen

Das Kabelnetz wurde entweder von Hand, oder durch Loslassen
eines aufgehangten Gewichtes im Kabelnetz in Schwingungen versetzt.
Dabei konnten die tieferen Eigenschwingungsformen mit den zugehorigen
Eigenfrequenzen und Dampfungseigenschaften bestimmt werden. Die Ver-

'suche wurden mit und ohne Dachhaut und mit variabler Masse durchge-

fihrt. Die Stufen der Massenverteilung werden wie folgt bezeichnet:
- m=1: Masse entsprechend eine volle Belastung von etwa 10 kp/m2
(23.0 kp in jedem inneren Knotenpunkt),zusdtzlich Eigengewicht.
- m=}: Masse entsprechend einer Belastung von 23,0 kp in jedem
zwelten inneren Knotenpunkt, zusatzlich Eigengewicht.
- m=0: Masse entsprechend Belastung infolge Eigengewicht.
Die gemessenen Eigenfrequenzen der ersten Schwingungsform (Bild
7) sind zusammen mit berechneten Werten als Funktion der Masse im
Bild 8 dargestellt. Die rechnerischen Werte der Eigenfrequenzen
sind am einfachen Berechnungsmodell (Bild 5) ermittelt. Eine wich-

tige Erkenntnis dieser Versuchsergebnisse ist die unterschiedliche
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Bild 9. Dampfung als Funktion der Masse

Massen- und Frequenzabhangigkeit des Kabelnetzes mit und ohne Dach-
haut. Erstens liegen die Frequenzen des Kabelnetzes ohne Dachhaut
hdher,zweitens nehmen die Frequenzen mit abnehmender Masse starker
zu als beim Kabelnetz mit Dachhaut. Die theoretisch oder rechnerisch,
ermittelten Eigenfrequenzen folgen im Ganzen den Frequenz-Masse-
Verlauf des Kabelnetzes ohne Dachhaut. D.h. die rechnerischen Vor-
aussetzungen stimmen gut mit den Verhdltnissen des Kabelnetzes uber-
ein, im Gegensatz zu den Verhaltnissen beim Kabelnetz mit Membran-
haut. Aus dem Bild 8 sieht man,dass das Kabelnetz mit Dachhaut fur
verschiedene Massen mit der gleichen Frequenz schwingt. Es ist an-
zunehmen, dass das Kabelnetz mit Dachhaut die Schwingung mit einer
Zusatzmasse ausfuhrt (die viel grdsser als die Masse der Dachhaut

sein muss), und dass diese Masse von der mitschwingenden Luft her-
stammen muss.
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Die Dampfungsmasse der ersten Schwingungsform sind als Funk-
tion der Masse im Bild 9 dargestellt. Als Mass der Dampfung wird
das logarithmische Dekrement verwendet: 6=ln(Ai/A.+1) wobwi A. und
A. zwei aufeinander folgende Schwingungsamplltuéen darstellen.
Man erkennt die unterschiedlichen Dampfungsmasse der Versuche mit
und ohne Dachhaut. Weiter erkennt man eine gewisse Abhangigkeit
zwischen Masse und Ddmpfung bei Kabelnetz mit Membranhaut; fur das
Kabelnetz ohne Dachhaut, aber nicht. Fir das Kabelnetz mit Dach-
haut nehmen die Dampfungsmasse mit abnehmender Masse zu. Die Struk-
dampfung des Kabelnetzes konnte somit in dieser Weise getrennt
werden. Sie betragt etwa §=1-2%. Die restliche Dampfung setzt sich
aus die Strukturddmpfung des Dachhautes und die aerodynamische Dampf-
ung zusammen. Es darf angenommen werden, dass die aerodynamische
Dampfung von der Masse abhangig ist. Um diese Annahme zu uUberprifen
wurde der Einfluss der Luft durch Luftdruckmessungen untersucht.

Durch Schwingungen eines Tragwerkes in freier Luft wird die umgeb-
ende Luft in Bewegung gesetzt. Es entsteht somit eine Druckvariation des umngeb-
enden Luftmediums, die die Schwingung eines leichten Tragwerkes beeinflussen
kann. Gleichzeitige Messungen des Luftdruckes und der Verschiebungen
des Tragwerkes haben gezeigt,dass der Extremalwert des Druckes beim
grossten Ausschlag erreicht wurde (Bild 10). Es handelt sich somit
um einen Beschleunigungsdruck im Gegensatz zu einem Geschwindigkeits-
druck. Im letzgenannten Fall ware eine Phasenverschiebung von etwa
m/2 zwischen Druck und Verschiebung zu erwarten. Das Entstehen und
die Berechnung des Luftdruckes kann auf die Theorie der mitschwing-
enden Luftmasse zuriuckgefuhrt werden. Die Folgen einer mitschwing-
enden Luftmasse sind normalerweise eine Herabsetzung der Resonanz-
frequenzen, was auch deutlich bei den Versuchen der freien Schwing-
ungen gezeigt wurde. Weiter kann die aerodynamische Dampfung in-
folge des Entstehens der Luftdriicke erklart werden.

Uberschlagig kann die gesamte mitschwingende Masse der Luft als

| 3
m' = CmpLa

bestimmt werden, wobei p=0,125 kp sek/m? die Densitdt der Luft, und
2a die Abmessungen (Seitenlange) des Tragwerkes darstellen. Die
Konstante C_ hdngt von der Form des Tragwerkes ab und konnte fir
das untersuchte Tragwerk auf C=2,5-7,5 angesetzt werden.

Die aerodynamische Dampfung konnte als

C_.poF

:_Lz__:%c _E:_F__
2Zmwer, o) FTotm
gefunden werden (u). Dabei bedeutet p, den Beschleunigungsdruck

der Luft bei der Schwingungsamplitude r,, und dem Kreisfrequenz w.
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Bild 10. Verschiebung und Luft- Bild 11. Gemessene Luftdricke
' druck in Kn.pkt. 12 Kn.pkt. 12
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m/F bedeutet die mittlere Masse des schwingenden Tragwerkes pro
Flacheneinheit, und m"/F die entsprechende mittlere Masse pro
Flacheneinheit der mitscgagngenden Luft. Die Konstante C_ wurde
bei den ausgefihrten Versuchen als Cp=0,03-0,07 gefunden.p Wichtig
ist, dass die aerodynamische Dampfung umgekehrt proportional der
Masse ist, und dass die Bedeutung der aerodynamischen Dampfung bei
Schwingungen mit grossen Lasten (z.B. Schneelast) abnimmt. Die im
Bild 9 erzielten Dampfungsverhdltnisse lassen sich wie folgt erklaren:
Die Gesamtddmpfung des Tragwerkes besteht aus der Strukturdampf-
ung des Kabelnetzes, der Strukturdampfung der Membranhaut und der aero-
dynamischen Dampfung. Bild 12 zigt die Trennung der Dampfungseigenschaften.

Erzwungene Schwingungen

Durch einen Vibrator konnte das Tragwerk in erzwungenen
Schwingungen versetzt werden. Dabei sollten die verschiedenen
Resonanzstellen und die zugehdrigen Schwingungsformen aufgenommen
werden. Bei stetiger Anderung der Erregerfrequenz des Vibrators
konnten die Resonanzstellen des Kabelnetzes entdeckt werden. Als
Beispiel sollen die experimentell gefundenen Resonanzstellen des
Kabelnetzes ohne Dachhaut fir den Fall m=1 d.h. Voll-last aufge-
schrieben werden (4):

1;855 13905 2,00, 2,40, 2,56, 2,80, 2,85, 3;16; 35283 3;40; 3;70 Hz.
Die theoretisch ermittelten Eigenfrequenzen stimmen gut mit den

experimentell gefundenen Werten des Kabelnetzes ohne Dachhaut uberein.
Man erkennt,dass die Eigenfrequenzen des Kabelnetzes sehr nahe liegen.

Ein beschrankter Zahl der Resonanzstellen des Kabelnetzes mit
Dachhaut konnte ebenfalls gefunden werden.

Die Aufnahmen von Response-diagrammen wurde unter Konstant-
halten der Erregerkraft (3,0 kp Doppelamplitude) in den Knotenpunkten
14 bzw. 20 durchgefihrt. Dabei wurde der Unterschied der zwei
Systemen, Kabelnetz ohne Dachhaut, und Kabelnetz mit Dachhaut, sehr
deutlich. Als Beispiel sind die Frequenz-Amplituden-diagramme der
Resonanzstelle des ersten Schwingungsformes im Bild 13 dargestellt.
Erstens ist die Verschiebung der Resonanzstelle, zweitens der Unter-
schied den Ausschlage deutlich. Man erkennt sofort der Einfluss
der Dampfung.

Beobachtungen beim Wind

Der natirliche Wind ist der massgebliche Schwingungserreger
eines Seil- oder Membrantragwerkes. Durch Wirbelbildungen, Wind-
stosse oder durch Flattern, kénnen die Tragwerke dynamisch bean-
sprucht werden. Beobachtungen des vorhandenen Tragwerkes haben
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Auskunft iiber die Haufigkeit und die Entfaltungsdauer von Windbden
gegeben. Die Bewegung der WindbOen quer zur vorhandene Dachfldche
wurde registriert, und auf Grund der Beobachtungen darf bei Berechn-
ungen mit einem "Wandern" der Windbden gerechnet werden. Bild 1.
zeigt das Fortschreiten einer Windbde quer zum vorhandenen Bauwerk.
Die mitschwingende Luftmasse ist auch unter Windlast bei leichten
Tragwerken in Rechnung zu stellen

5. ZUSAMMENFASSUNG

Durch experimentelle Untersuchungen in grossem Masstab wurde
das dynamische Verhalten eines vorgespannten Kabelnetzes untersucht.
Insbesondere haben die Versuche eine bessere Kenntnis der Dampf-
ungseigenschaften, der Einwirkung der umgebenden Luft, sowie des
Verhaltens des Tragwerkes unter Windlast gegeben.
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Professor of Building Construction Professor of Structural Mechanics
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Chalmers University of Technology
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The structure

In May 1971 the arena '"Scandinavium' in Gothenburg, Sweden, was com-
pleted. With space for 14000 spectators it is the largest covered arena in
northern Europe and has already been utilized for various activities as ice-
hockey, concerts and opera performances.

The roof consists of a prestressed cable net carrying corrugated steel
plates with thermal and water insulation. Its weight is 60kg/m2. All cables
are anchored in a space-curved reinforced concrete ring whose projection on
a horizontal plane is almost circular with a diameter of 108 m. The ring is
carried by 40 slender columns of circular sections and four stiff ones each
formed by two walls connected by beams. The surface of the roof, Fig 1,
deviates but little from a hyperbolic paraboloid. y

Fig 1. View of the arena and dimensions of the roof

From the center point of the roof the main cables rise 10 m to the top
and the perpendicular cables fall 4 m to the valley of the ring. The distances
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between the cables are nearly constant and equal to 4 m in both directions.

Preliminary calculations

Preliminar dimensions of the ring and the cables were estimated by ana-
lysis of a shear-free membrane model. The stiffness of the ring was taken as
the stiffness of a plane ring with the same dimensions as the real one suppor-
ted horisontally at the four stiff columns. The deflection of the roof was app-
roximated by polynomials and the membrane stresses were approximated by
sectionally constant values in each direction. The unknowns were determined
from equations expressing vertical equilibrium and compatibility between
membrane and ring. Section forces and moments in the ring due to snow and
wind loads calculated from the membrane forces were modified with respect
to the inclination of the ring. Comparison with the more accurate analysis
presented below showed a difference of at most 1090 in bending moments in
the ring. Accurate values of the twisting moments could not be obtained by
the approximate method.

Finite element method, general

The more accurate analysis was performed by applying a mixed finite
element method. The structure was then divided into two substructures, the
network of cables and the ring beam on columns. In studying the effect of
vertical live load on the roof and arbitrary live load on the ring the substruc-
tures were analysed by the stiffness method and connected by the flexibility
method.

The symmetry of the roof was utilized by making the calculations for
only a quarter of the roof. Since the analysis was non-linear superposition
was possible only in combination with iteration.

Form load condition

The analysis for live load was made for deflections and forces measured
from a reference position defined by vertical positions z and the corresponding
vertical dead load PO on the cable joints. In matrix form the vertical equili-
brium of the cable joints can be expressed as

(1) -XHoz = PO/HG + boundary terms
where HG is a reference force and
(2 HGXno = Hga 0%y + ATHGOX A

Here Xx and Xy are second-order difference operators, see ASPLUND, and
H(_;,ag, HGBO the horizontal components of the dead load cable forces in the x-
and y-cables i and k. The first term on the right hand side of eq (2) yields the
contribution from the x-cables and the second from the y-cables. The matrix
A is an ortho-normal renumbering matrix. The minus sign on the left hand
side of eq (1) annihilates minus signs in the diagonals of Xx and Xy, thus
making the set of equations positive definite.

With the chosen form of the roof the forces HG aO and HGB were con-
stant giving a nearly moment-free concrete ring under dead load
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Live load

For dead load PO plus live load P vertical equilibrium of the cable joints
requires

(3) -X(H0 + H) (z+p) = (P0+ P)/Hg + boundary terms
where
(4) HGX(Ho+ H) = HgaXx + ATHG Xy A

The difference between eq (3) and eq (1) can be written

(5) —X(H0+H)p + ZH/HG = P/HG

where H is a column matrix with Hg(a - @) followed by Hg(8 - 80) and Z is a
rectangular matrix built up by the second-order difference operators multi-
plied by the vertical distances between the anchors and the cable joints.

The second order difference operator X is built up by quotients
A(z +p)/A(x+u). Here the changes A u in horizontal movement u can be neg-
lected or be considered approximately e. g. as indicated by ASPLUND.,

The other set of equations needed expresses compatibility between the
cable net and the ring. This set should be expressed by the same unknowns as
eq (5). Combined with eq (5) the two sets of equations can be written

(6) [-X(m0+1) - HG Z 1e] = [P]
-Zg (L/EA+BTeB) | |H] f_hoj

The minus sign in the second line is typical for the mixed formulation. The
matrix Zy is equal to Z in a linear theory. A more accurate formulation is
here needed. A second and satisfactory approximation of Zp is obtained if z
is replaced by (z +p/2).

In (L/EA + BT eB) the first term gives the elastic elongations of the
cables. The effective length of a cable can here be approximated with good
accuracy as

(7) Leff = Ly + (3/2) zT(-X) Z

where LY is the horizontal distance between the anchors.

The second term BT eB is the flexibility of the ring on columns loaded by
cable forces. The matrix e is the flexibility matrix of the ring on columns
loaded by general forces and moments. For the calculation of this matrix the
ring was divided into elements, the straight parts between the columns. The
matrix e can be obtained by first or second order theory from a standard finite
element system program.

The column matrix hg on the right hand side is zero in general. It can,
however, be used for the complementary solution to a particular solution.

Load on the ring and temperature changes in the ring were included in this way.

Iteration

The set of equations (6) was solved by iteration starting with a guess on
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H, solving for p, establishing 7T solving for H and so on. Even with a poor
guess on H the convergence in a }1)1 practical cases was rapid (3 to 4 iterations
were sufficient). On an IBM 360/65 the central processing time for one ite-
ration with 105 unknowns was about one minute.

Pretensioning stages

After the main cables had been hanged out, four cables in the other di-
rection located symmetrically around the valley were laid out and tensioned.
Repeatedly four and four cables were laid out and tensioned until all cables
were on place. After that the roof plates were laid out. In the analysis this
procedure was followed backwards from the reference state by eliminating the
dead load and the forces in some cables. In eq (6) this means that P was set
equal to -P0 and that some elements in H were set equal to zero. The calcu-
lations were checked against measurements of the vertical position of the line
from valley to valley and the horizontal movement of the valley. Maximum
discrepencies between calculated and measured values of the vertical position
at full pretensioning amounted to 7 cm. The horizontal movement of the valley
of the ring during pretensioning was calculated and measured to 7.5cm. The
corner strains of the ring were also measured during pretensioning, Compa-
rison with theoretical values gave maximum discrepencies of 1 MN/m2 in
corner stresses of 10 MN/m2 at full pretensioning.

Behaviour under live load

With a concrete ring of 3.0+ 1.2 m?2 in section area all cables were ten-
sioned by uniform snow load because the valleys of the ring moved outwards
considerably. How the flexibility of the ring affects the forces in the cables
is illustrated in Table 1.

(S)Eli‘f;egss A B Table 1. Cables forces in kN/m due to snow
load calculated for rings of stiffness K, 3K
K 105 51 and 10K where K is the actual stiffness.
3K 99 28 A Cables anchored at the top
10K 92 | 32 B Cables anchored at the valley

The chosen flexibility of the ring gave a favourable distribution of cable
forces. This became relatively uniform both for downward snow load and up-
ward wind load, thus giving ring moments of moderate magmtude The up-
ward wind load was after wind-tunnel tests taken to -400 N/m The snow
load was 750 N/m?2 according to Swedish norms. The maximum vertical
movement of the net due to snow load was calculated to 68 cm.

Natural vibrations

The roof was also analysed with regard to natural modes of vibration.
Only small vibrations superposed on deflections under dead load and dead
load plus uniform snow were considered. For vibration calculations a pure
stiffness formulation is suitable. With variables

(8) p =pgsinwt, h=hysinwt
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where h is the horizontal component of the cable movement in the cable direc-
tion at the ring, the homogeneous equations become

9) [(-X(g+H0)HG+ z(L/EA)- 12T - Mpw?) 7(L/EA)~1 —Il—pa-l = 0]
(L/EA)-12T (L/EA)-L+BTeB) 1M w?) | [ny] [0]

For small vibrations zT is equal to 77T and X§H+HO) is constant so eq (9) is
linear. In the diagonal matrix Mp the mass of the roof and load on it lumped
to the cable joints is arrayed. In My the mass of the ring and the columns
increased by some contributions from the roof is lumped to the cable anchors.
For vibration modes antisymmetric in both directions hy is zero so eq
(9) can for this case be simplified. Symmetrical modes, however, induce
bending of the ring and for such cases the acceleration of the ring should be
considered. Results from some calculations are given in Table 2.

Mode A B Table 2. Period times in sec. for lowest

. antisymmetric and symmetric modes of
Antisym., 0.96 | 1.45 vibrations superposed on deflections due to
Sym. 0.85 | 1.27 dead load (A) and dead load + snow (B)

Reference:

S.0O. Asplund: Structural Mechanics, Ch N and S, Prentice-Hall, Englewood
Cliffs, 1966.

Summary

The roof structure of the arena '"Scandinavium' in Gothenburg consists
of a prestressed cable net anchored in a space-curved ring beam. It was ana-
lysed by a non-linear mixed finite element method with the cable joint deflec-
tions from a reference position and the live load cable forces as variables.

The comparatively high flexibility of the ring caused a favourable distri-
bution of cable forces due to snow and wind. Still the system was sufficiently
stiff for ensuring acceptable dynamic properties.
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Ph.D., Professor and Department Head M.A.Sc., Commonwealth Scholar
Department of Civil Engineering, University of Windsor
Windsor, Ontario, Canada

1. INTRODUCTION

In recent years several studies [1] have been published on cable roofs. Siev
and Eidelman [2] developed a procedure for determining the initial shape of a
cable roof. They also described [3] an approximate method of analysis of pre-
stressed roofs, neglecting the horizontal displacements of the joints; Siev [4]
presented a general linear method of analysis accounting for horizontal displace-
ments and introducing a correction for nonlinearity by means of an iterative pro-
cedure. These analyses were in general for orthogonal nets where the angle
between the two sets of cables was assumed to be a right angle.

Thornton and Birnstiel [5] derived nonlinear equations for a three-dimension-
al suspension structure; an influence coefficient method was used by Krishna and
Sparkes [6] for the solution of the nonlinear equations with the principle of
superposition assumed in a limited way to analyze pretensioned cable systems con-
sisting of two cables of reverse curvature, pretensioned together by means of a
set of vertical hangers; Buchholdt [7] employed a theory based on the minimiza-
tion of the total potential energy and presented a solution by the method of
steepest descent. Bathish [8] utilized the membrane theory to analyze cable
roofs. Siev [9] analyzed an orthogonal roof bounded by main cables and compared
his results with experimental findings.

In this study, nonlinear displacement equations are derived for general non-
orthogonal cable networks. The solution is substantiated by experimental results

from tests conducted on models of cable roofs.

2, THEORETICAL STUDY

The displacement equations for a general nonorthogonal cable net were de-
rived with the following assumptions: ' The cables are weightless and the applied
load acts at the joint between cables; the cables are straight between joints
and have constant cross-sectional area; the joints are perfectly smooth; and, the
cables do not carry any compressive or bending loads.

The Newton-Raphson method was suitably adapted to provide a convenient numer-
ical solution of these equations. The behaviour of nonorthogonal hyperbolic

Bg. 28 Vorbericht
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paraboloid nets under various modes of loading and temperature changes were stud-
jed. The effects of changes in nonorthogonality of the cables, initial pretension
and the slope of the roof were also examined. In addition to taking into account
the geometric nonlinearity, material nonlinearity was also considered by assuming
an appropriate theoretical model for the stress-strain curve of the cable and
hence the ultimate load capacities of the roofs were determined; the stress-
strain curve of the cable was assumed to be a second-degree parabola between the

proportional limit and the uitimate strength.

Numerical and experimental studies were
carried out on two types of roofs: (i) a com-
mon saddle-shaped hyperbolic parabeoloid roof
consisting of two nonorthogonal sets of
cables; this is referred to as the 'single
roof' herein; (ii) a compound shape consist-
ing of two hyperbolic paraboloids connected
together; this is referred to herein as the
'‘double roof'. The single and the double roofs
are shown in Fig. 1 (a) and (b) respectively.
The double roof may also be extended to form
a continuous multi roof with a series of hyper-
bolic paraboloids as shown in Fig. 1 (c). The
two roofs used in the numerical analysis were
120 ft. x 240 ft. in plan with a difference
in heights of 12 ft. between adjacent corners.
The single roof had a total of 61 joints while
the double roof had only 28 joints.

When a uniform load was applied on these
roofs, the deflections were found to be more
nonlinear than the tension changes with devia-
tions of about 40% and 15% respectively from
the corresponding linear solutions. For con-
centrated loads, the tension changes behaved (€)  CoNmwous MLTIROOF
more nonlinearly than the deflections with cor- Flg. |
responding deviations of 25 - 30% and 10% re-
spectively. The nonlinear solution was underestimated in some cases and overesti-
mated in others by the linear solution. This behaviour was found to be related to
the slope of the roof. The effect of changing the nonorthogonality of the cables
on the deflections and tension changes was also examined. The deflections were
found to increase as the nonorthogonality of the cables increased but the tension
changes were practically unaffected by any change in nonorthogonality. When the
cable pretensions were increased, the deflections and tension changes decreased as
expected. The nonlinearity was also reduced at the same time since the stiffness
of the roof increased. The final cable tensions increased with the pretension but
at higher loads this increase became smaller. Thus it is advantageous to use a
high pretension to avoid large deflections without appreciably increasing the
final cable tensions.

It was revealed that it is beneficial to use a higher pretension in the pre-
stressing cables than in the load carrying cables. It is possible to find an
optimum ratio of pretensions at which the maximum cable tension produced is least
and the variation in cable tensions is a minimum.

When the behaviour of roofs with different heights was examined, it was found
that the deflections decreased with increase in the roof-height. The tension incre-
ment was found to be a maximum at a particular roof height which was defined as
the critical roof-height. Based on this definition of critical height, roofs can
be classified as flat and steep roofs. Steep roofs tend to weaken under increased
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load with the linear solution underestimating the actual values; while flat roofs
tehd to increase in strength under load with the linear solution overestimating
the true solution. The ultimate load capacity of cable roofs are also affected

by the slope of the roof. The ultimate capacity is highest for flat roofs and
loWwest for steep roofs with an intermediate wvalue at the critical height.

3., EXPERIMENTAL STUDY

Experimental investigations were carried out on test models, to verify the
validity of the theoretical solution. A nonorthogonal single roof model and an
orthogonal double roof model having dimensions of 36 in. x 72 in. in plan and a
height of 9 in., were tested. Both models consisted of five 3/64 inch diameter
stainless steel wire ropes of 7 x 7 construction in each direction. Tension
measurements were made with precalibrated load cells connected at the ends of the
wire ropes. Deflections were measured by displacement transducers. Tests were
carried out with various values of initial pretension, the horizontal component
of which was kept constant in all the cables in both directions. The models were
subjected to equal loads at all the joints and in different tests, concentrated
loads at specific joints.
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The deflection at the centre of the single roof model under a uniformly ap-
plied load is shown in Fig. 2. Each theoretical line is for a specific value of
H, the horizontal component of the initial tension, and the corresponding experi-
mental points are shown. The measured deflections are generally lower than the
theoretical values, with a maximum difference of 12%.

The maximum tension increment produced by the uniform load on the single roof
model has been plotted against applied load in Fig. 3. The experimental values
are within 4% of the theoretical values. The discontinuity in the line at
H = 20 1bs, is due to the fact that some prestressing cables became slack as the
load is increased beyond 3 1lb/joint. The theory takes such discontinuity into
account and the experimental results substantiate this.
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Fig. 4 shows the maximum tension incre-
ment produced by a concentrated load applied
in addition to a uniform load of 1 1lb/joint.
Here the nonlinearity is clearly demonstrated.
The experimental values are within 5% of the
theoretical values in almost all cases.

Similar tests were carried out on the
double roof model. Curves of maximum deflec-
tion versus load for the double roof model
under a uniform load are presented in Fig. 5.
It can be observed that the nonlinearity is
more marked here than that in the single roof
model. The experimental deflections are again
within 10% of the theoretical results in most
cases with a maximum difference of 13%. The
corresponding tension increments under uniform
load is shown in Fig. 6. The experimental
values are quite close to the theoretical
values with a maximum difference of 4%. Fig.7
shows the maximum tension increment vs. load
when a concentrated load is applied on the
double roof model in addition to a uniform
load of 1 lb/joint. The agreement between the
experimental and theoretical values is within
5%.
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The linear and nonlinear theoretical solutions for the tension change in a
prestressing cable of the single roof model and the corresponding experimental

values are presented in Fig. 8.

The experimental values are within 5% of the non-

linear solution while the linear solution overestimates it by as much as 90%.

4.

CONCLUDING REMARKS

The equations and the method of solution developed in this study could be
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used to predict the nonlinear behaviour of hyperbolic paraboloid cable roofs with
any degree of nonorthogonality. This is established by the good agreement between
theory and experiment.

In a practical design, the choice of roof slope should not be based purely on
aesthetic considerations. Careful attention should be given to strength and per-
formance since the curvature considerably influences the behaviour of the roof.
Noting the fact that the factor of safety against failure, based on a working load
corresponding to the proportional limit, is excessively high for all slopes, it
would seem advantageous to use a steep slope with an increased working load and
smaller deflections in exchange for a reduced ultimate capacity.
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SUMMARY

General equations describing the nonlinear behaviour of nonorthogonal cable
networks, and their solution, are developed. The influence of initial cable
tension, degree of cable nonorthogonality, and slope on deflection and load-

' carrying capacity of cable roofs are studied. The discrepancies in the linear
solution of such structures are examined. The theoretical solution is verified
by test results.
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1l. Introduction

In this paper a computational method of two-dimensional cable structure
is proposed, in which emphasis is laid on the problem of determination of
structural member lengths. In construction of cable structures full know-
‘ledge about structural member forces under given loading conditions and
especially, about the determination of correct length of each member is
indispensable so that the completed structure forms strictly a shape of
required geometry. When cable structures are constructed by connecting and
tensioning many members with certain lengths ( unstrained length ), then their
final shape should agree with those prescribed beforehand. Unsuitable choice
of unstrained lengths of members makes it impossible to set up the desired
structure, that there may be found many members left unstrained even in
completed state.

From another point of view, we may say that the very problem is to know
the completed shape and stress state of the cable structures when the structural
members with certain lengths are assembled with some boundary members anchored
with initial tension.

The authors report here on the nonlinear analysis of two-dimensional
cable structure covering the above-mentioned problems, and ocn the experimental
work which was done so as to certify the pertinency of the theory.

The theory is not limited to stress and deformation analysis of structures
under given conditions ( initial member forces and geometry ), but makes it
possible not only to clarify the stress and deformation states of cable
structures but also to determine the correct unstrained lengths of members
which are needed to set up the structure with desired geometry.

Computation starts from the estimate of pretension in each member utilizing
the method of least squares, and then equilibrium state is determined by energy
method. Computation is repeated, changing the values of pretention step by
step, until the final shape of the structure is sufficiently conformed to
prescribed one.

Laboratory experiment was made on a large-sized cable truss model of
23.6m length. In this kind of experiment the influence of errors upon displace-
ment measurement should be strictly restricted to minimum, for deformation
itself is the dominant factor to determine an equilibrium state. As the
accuracy in setting-up and measurement of the model, however, is evidently
restricted to a certain limit, relative errors should be made as small as
possible by employing a large-sized model. Experimental results are shown
and compared with theoretical values.
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2. Statical Analysis

2-1. Basic Assumptions

Following assumptions are made in the analysis: (i) Stress-strain relation-
ship of the material is linear. (ii) Bending stiffness of the member is
neglected. (iii) Every loads act only at joints. The members are straight
between the joints. (iv) Joints are considered to be frictionless hinges.

2-2. Estimate of Initial Tension by the Method of Least Square

Fig. 1 shows a joint j where N members are
assembled. N member forces Pjn(n=1...N) and
two external forcesFjx ,ijact at this joint.
Equilibrium conditions at joint j are written
in the form

Zan( Xj=Xn )/Ljn= Fix

Z F;n( Y] "YnVLjn = ij

When the structure is in equilibrium, Eq. (1)
holds at all joints, i. e. Fig. 1

(1) PjZ/

Force system at a
T-P=F (2) joint

where T is an equilibrium matrix of order
(f x m) consisting of direction cosines of every members, P is a (mx1) vector
of every member forces and IF is a (fx 1) vector of external forces. m and f
mean the numbers of members and degrees of freedom respectively. We suppose
here f>m, that is, the system to be treated is a structural mechanism, which is
often the case in cable truss structures. In such cases Eq. (2) cannot be solved
uniquely and the consideration of finite deformation is needed.

Now, Eq. (2) can be written in the form

T R=F-r (3)
where To is an equilibrium matrix which satisfies the prescribed configuration
condition, IP, is an internal force vector which satisfies Eq. (2) approximately
and Ir is the vector of unbalanced forces at every joints. We now estimate the
most probable values of IP, making unbalanced force vector I minimum. The
Euclidian norm of r is

2
Irl*= (T, B-F) (T, P-IF)= BT, T, IR - 2R T, F+F'F ()
The necessary and sufficient condition to reduce llirll2 to minimum is obviously
aﬂlrub/anj= 0 , which gives the normal equations as follows,
T.T.R=TF (5)

Eq. (5) can be solved uniquely and gives the most probable values of member
forces at the required state To , which are utilized as the initial values for
finite deformation analysis which follows. It is not always easy to solve Eq.
(5) directly with sufficient accuracy, since the calculation of inverse matrix
(T’ To)! 1is contained in its procedure. We adopted Golub's method (1) with
successful results.

2-3, Finite Deformation Analysis by Energy Method

The approximate values of I[P, have thus been obtained, but the unbalanced
forces Ir still exist at the joints. In order to make these unbalanced forces
vanish finite deformation analysis is carried out utilizing the theory based
upon the principle of minimum potential energy. Buchholdt's works ((2), (3))
with regard to this problem furnish us much information.

The total potential energy of the cable structure is shown as

W:ZUS "FTX’ (6)
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where ¥ is the displacement vector of joints, and Us is the strain energy of
each member and is shown in the form

e
Us:ujnszjn de=(PRe+EAe/ 2L)jn (7)
o
where Pojn , @jn , (EA)jn and Ljn are initial tension, total elongation, exten-
sional rigidity and final length of member Jn respectively, further,
(Ax)*(Ay)’ -
ejn Ljn{AX cAx+ AY- Ay*—i———_}jn

where AX=Xn-Xj; 5 Ax=Xn-X; etc. (cf. Fig. 2)

The principle of minimum potential energy
leads to the equilibrium conditions at every
joints, i. e.

oW AW -
= {ax| o “ay, ]fho 9)
where
aw _ v 9Ujn 3ejn
3xj 'R dejn 9xj Fix
. Z._L_(AX « Dx) - Fix B
LJF’I

In order to find the displacement vector x
which satisfies Eq. (9), the conjugate gradient
method is used. Letting x' be the displacement
vector at the r-th step of repeated calculation,

X' at the (r+l)-th step is obtained by the Intial State ————
relation : Z:’L*NFN) Fix50
Xr+| = Xr't- Srvr (11) Equilibrium State
. . L/ PV .
where ST is a line element along the descent ;u@mﬁkxnﬁ §)-Fix=0
vector wl to minimizeW , that is, ST minimizes
' S r rr Fig. 2. Equilibrium at a
q(S )"W(’? +S'V ) (12) joint
Fletcher-Reeves method (1) is effective to
find the value of descent vector wl . Its sequence of calculation is as follows:
(i) for r=1, put o
I S Iy .. I S AW/ A e }¥=W
viz {oe (v = aw/ax; : (13)

( xo may be assumed to be zero vector. )
(ii) for r=2 ~ (f+1) calculate

"=_g"[(aN (g Y (a" (@ v (1)

where

(iii) for r=f+2 turn to (i).

2-4. Evaluation of Member Lengths

The main purpose of our analysis is to find the correct member lengths at
unstrained state. Combining the method of analysis mentioned above, we can find
the required unstrained lengths of every members. Assembling such members the
structure having desired shape can be obtained. When the completed state of the
structure is thus obtained, it is not difficult to analyse it under any addi-
tional loading condition. The flow diagram of analysis is shown in Fig. 3.



442 I1la— COMPUTER ANALYSIS AND MODEL EXPERIMENT OF CABLE STRUCTURES

3. Model Experiment

Fig. 4 shows the cable truss model
which is to be thought of as a model of
catwalk for long-spaaned suspension bridge
( about 1,000m long ) with scale 1:40.
Pieces of piano wire cut in calculated un-
strained lengths were assembled to form the
cable truss, which was subjected to
concentrated loads at every joints ( corres-
ponding to dead loads of prototype structure)
and finally tensioned by pulling and anchor-
ing the both ends of the lower chord member.

Table 1 shows the prescribed coordinates
and concentrated vertical loads (dead loads )
of every joints. A part of least square
solution for member forces is shown in Table
2, which is used as input data for subsequent
finite deformation analysis. By this
analysis the joint coordinates are obtained
as shown in Table 3 ( X-coordinates omitted )

The theoretical values in Table 3 (Th.)
seem to agree fairly well with the prescribed
one in Table 1. From this result the un-
strained lengths of members are determined,
which makes it possible to set up the model
in required geometry. The experimental
values (Ex.) at the completed state of the
model are also shown in Table 3. Differences
between theoretical and experimental values
are very small for the size of the model.

[INPUT: X, Y. F, *E. A,Restr. |

L Transforrnotiop Matrix: To |
[ NodalEFuaHonsT
LLeustSq.Soyﬁon:i§1
—1 Unbc1l<:1n<:edl Forces: YW|

[ Euclidean Norm: R |
es

no
[ Descent Vfctor: v |

[_S. Minimizing q(S) ]
y[=r+1
[ x = x+S-v

yes

| Pm= 0 |
[Output: x, P, e }—

| OUTPUT : Unstrained Length:Le

Fig. 3. Flow diagram of

Table 4 shows the result with regard computation
to member forces, and Fig. 5 shows deflection
l 23.570 m
E
™
o~
-
"! 17
L_ \ﬁmgr_ﬂope (0.9 mm _dia.)
P
Storm_Rope(2.0 mm dia)  E=2.05x 10 Kg/mam!
,L . 23.610m __

Fig. 4. Cable truss model

curves of cable truss due to additional concentrated load ( live load ) applied
at the mid-span. In Figs. 6 and 7 the load vs. deflection curves and load vs.

member force curves are shown respectively.
agree very well with theoretical values.

Every experimental results seem to
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Main Rope Storm Rope Eef'\iber ::’;‘tg)
No.of |Coordinates | Load |No.of |Coordinates|Load 3 775.4
Joint | X (mm){Y{mm)| (kg) [ Joint [X(mm)|Y(mm}]| (kg) 5 764.4
1 0 0| 0 14 | =20 %125] 0 . | 7625
2 |1930| 605 26.9| 15 | 2713 | 3374 | 4.4 0 7601
3 | 3437|1001 | 23.7] 16 | 4220] 3046 | 3.0 - 700
4L | 5001 | 1341 | 21.0| 17 | 5640 2792 | 2.6 S—1 207.4
5 | 6183 ] 1550 | 16.9| 18 | 6787 | 2625 | 2.4 : 206.9
6 | 7223|1702 | 12.8| 19 | 8021 | 2485 | 2.5 P 206.6
7 | 7868 | 1780 7.1 20 9234 | 2385| 2.2 9 204.1
8 | 8168 | 1812 9.0 21 10206 2333] 1.7 D—1 13.0
9 | 9056 | 1893 9.3 22 |10956] 2309| 1.6 4 38
10 | 9406| 1918| 86| 23 |11785]| 2300| 1.6 7 X
11 |10206| 1963 | 11.6 10 4.3
12 |10956] 1989 11.8 13 5.
13 [11785] 1999] 12.4 15 29
Table 1. Prescraibed shape and loads Table 2. Least
for cable truss model square solution
MQin RoPe Sto(m RoPe Mem_;:::ﬂ:i:'emhc Mem-‘sh::r:\l;r:::czeﬁclio Mﬁ;::r;:m,
No.of | Y-Coordinates No.o1 | Y-Coordinates ver  Ex. | Th. % | ver [ Ex.| Th. | % | ber | E€x. | Th.
Joint | Ex. Th. Diff. Joint | Ex. | Th. Ditt. [M-1] 799] 800 99.9] s-1| 200] 196|102 D=1} 15 | 1
2| 779 787 9s.0] 2| 205! 195 10§ 2| s 5
1 0 0 o| 14 | 4125 4125 O 3| w8l ee| 3 20 19¢ 108 | 3| 12| 7
Y Y Y T T O B e e e
3 [ 1000| 998| 2| 16 | 3044 | 3044 | O TR o i sy I T T e il e T
4 | 1344|1340 4| 17 | 2795 | 2791 | 4 ::, ;:: :i:’%)j_ggg ::;*:gi_ : 13_____?
5 | 1555|1550| 5| 18 | 2633| 2625| 8 i ;T{%';Zi‘“é:o g ;gf—‘;z:—:g: -
6 | 17091702 7| 19 | 2495| 2486 | 9 ol ma sl seo| || 1 | ol 0] s
7 | 1787|1782 5| 20 | 2395|2388 | 7 [ ] os3) msejeso| f L 1 mlwoy s
12| 78| 759, 97.0 | | 12 5 3
8 | 1823|1814 9| 21 | 2345]| 2337| 6  Onit %9 )
9 | 1904|1895 | 9| 22 | 2320|2314 6
10 | 1931 | 1921] 10| 23 | 2310 2305 | 5 Table 4. Member forces of
11 1975 [ 1968 7 | Ex=Experimental Value cable truss model
12 2000 | 1994 ¢ | Th=Theoretical Value
13 | 2010] 2004] ] OM=EXT

Table 3. Joint coordinates of
cable truss model

pt2 | M-l
‘E pl.é4 - /'/ B
o
£ g & /
= pl.e @
s I
5 pt9 it '{.
S
: = pUI 200
| v o > 5-
. (=] 13
ey [l PO i z‘l
: H . 3 —— Theoretcal curve
10 | | | == Theoretical curve pti3 e Experimentalvalic
20l Storm Rope e . Experimental value 5
L ' i r 0 20 30 0
—— Theoretical Curve 10 20 30 40
¢ Experimental Yalue Load applied at pt.13(kg) Load applied at pt.131kg)
Fig. 5. Deflection curves Fig. 6. Load vs. deflec- Fig. 7. Load vs.

due to load at mid-span tion curves’ member force curves
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4, Vibrational Analysis and Experiment
4-1. Method of Analysis
Equation of motion of the cable structure can be written in the form

where M and [K mean mass and stiffness matrices respectively. Stiffness
matrix KK is the superposition of every member stiffness matrices Kjn= [kix)in
(i,k=1....4). kix are obtained by Castigliano's theorem, i. e.

2
kik = 8" Ujn/ 3x; 3x (16)
where Ujn is the strain energy of member jn as given by Egs. (7) and (8).
Frequency equation is

det|M - A K| =0 (17)
of which roots give natural frequencies of the structure. Householder's
method was successfully used to give the roots of Eq. (17).

L-2, Experiment

are obtained by giving har-

Vibrational tests were Tension in Vibrational Mode
carried out on the model Storm Rope | 1st Mode ( Symmetric ) 2 nd Mode ( Antisymmetric)
structure. Natural frequen- ! ;
cies and vibrational meodes P=150kg T ! //rﬁr‘*\<L;;Ji{
|

monic excitation to the
model. Results are shown in

|
: : G | i T
Fig. 8 with sufficient agree- P=200kg
ment between theory and \\\*‘_+,r
|
\\j/

|
L
|

experiment.

—

P=250kg| =——
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Summary

A computational method of two-dimensional cable assembly is proposed, where
emphasis is laid on the problem of determination of member lengths, so that the
final shape of the structure satisfies the configuration condition prescribed
beforehand. Experimental study was made on a large-sized model of a cable truss.
The results of both statical and dynamical experiments showed good agreement with
theoretical values.
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1. Introduction

The application of membrane theory for the static response of cable roof
systems has been demonstrated by Shore and Bathish (1) and Schleyer (2). This
paper considers an analogous membrane technique to study the free vibration of a
certain class of cable systems. The major objective of this study is to present a
simplified and accurate technique for predicting the natural frequencies of flatcable
networks by utilizing an appropriate analogous membrane to mathematically model
the discrete or cable system,

2. Assumptions and Limitations

The following assumptions are made: (1) the cables and the membrane obey
Hooke's Law, (2) the cables and membrane have only extensional stiffness, (3)
linear strain-displacement relationships only will be considered, (4) Poisson's
effect in the membrane is neglected, (5) the cable and membrane tension every-
where is always greater than zero, (6) the mass of the cable system 1is concentrated
at the nodes, (7) damping is negligible.

The following limitations apply to this study: (1) the cable system zt t = 0 is
flat and an orthogonal network with the cable intersections connected; (2) the
boundary planform is rectangular; (3) only linear, free vibrations normal to the
network are considered.

3. Governing Equations of Motion

A, Membrane:
The equations of motion for a flat, prestressed, homogeneous membrane of

thickness, h, are (3)

Ehu_, + F(t) = ohl (1)
Eh Upp * Fy(t) = phV ; ; (2)
Eh [uxxWx + Vol + (uy +uy) wo + (vy + vy) wyy]

+F(t) = phw (3)
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where all symbols are defined in Section 7. Since the major interest is the free
transverse vibrations of the system, then for the assumptions and limitations noted
in Section 2, it is permissible to neglect in-plane displacements and inertia terms.
Thus, equations (1),(2), and (3) reduce to the following single equation of free
vibration:

ug W F VS Wy = %"A; (4)
The following displacement function will be chosen to describe the free vibration

of a rectangular membrane (see Figure 1):

°° X
wix,y,t) = £ 8 A A() stn BT sin B (5)

Note that the displacement function satisfies the boundary conditions at the edges
of a rectangular membrane, that is,

w(o,y,t) = w(a,y,t) = w(x,o,t) = wx,b,t) =0 (6)
The initial conditions are taken as
w(x,y,0) = wix,y), wix,y,0) = 0 (7)

Substituting equation (5) into equation (4)
leads to the well known equation of simple
harmonic motion

.. 2 _
f(t) + wmnf(t) =0 (8)

where w represents the frequency of free
vibration in the mn-th mode written explicit-

Y,
Cable Directions Yy @S

LZ,W

wzmn [U( D42 v(ﬁ) 1 (9)
___,..’__7/___/___ where U = Ehu 0 and V = Ehvo the initial

membrane tensions per unit Yength
B. Discrete Cable Network

For a prestressed cable network, the
Figure 1 equations of motion of a typical joint based
on the assumptions of Section 2 are (3)

E _ € 5-5;
quF_Q_EL+Tjr§f_§L+ Ty o +T15'E—L+F(t)‘m§ (10)
Xq%, X=X, Ys7Y; Vi~V
Ng-N Np=N ng-N Ng-N i
T4 +T Y o+ TS 4T, MY +F () =mn (11)
ja Xq™%y Jr X=Xy Is y =7, Y 7Yy ey, Yi~Yy s
qugq y + Tj Cr gJ + Tjsgs gj + Tj St CJ +F€ (t) = (12)
R ey Ys7Yy ™y

If the same assumptions and limitations are imposed on the cable network as for
the membrane, then the equations of free vibration reduce to one per node. There-
fore, if there are N nodes in the network the governing equations of free transverse
vibrations are (See Figure 2)

T, °q7 +TC’ vy T gsgj+TC€_mg (13)
Fl lagmw | F R 1S 7o, jy—_lts j
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If the network is flat, qu = Tjr =X, Tjs = T;; =Y; for equally spaced cables in the
x-direction (xq—-xj) = (%~ xj) =d,; for equaily spaced cables in the y-direction,
(xg- xj) = (x,~-x,) = dy- Now equation (8) can be written in the following simpli-
fied matrix form

EMmILE} + (K1 {g} = o (14)
where B -
(M =[my 0 (] = %Jr%) (_gx)___
2.
‘my (-c-fxx) ((% +%) - (15)

I I
1 I
| ! I

If simple harmonic vibration of the cable
network is assumed, the k-th mode response
is ij=Z. sin (Q]é: + a). Placing this func-
tion into €quation (14) leads to the charac-
teristic value problem of determining the
eigenvalues or frequencies 0.2, and the
corresponding eigenvectors or mode shapes
{Ck} of the following matrix

[EMJ'l[K] - 02 [1]] =0 (16)
4, Membrane Analogy

kA

Equation (9) represents the frequency
equation of free vibration of a flat rectangu-
lar membrane of thickness h, uniform mass
distribution, and initial pretensions U and V;
equation (16) represents the matrix whose eigenvalues are the frequencies of free
vibration of a flat cable network with cable spacings of dy and d,, and initial cable
tensions X and Y, and concentrated masses at the network nodes. Thus, for this
study the discrete cable network is completely defined once the appropriate nodal
masses are determined. Although it.is recongized that the nodal mass can be fre-
quently dependent, it is assumed that they are determined on the basis of tributary
lengths or areas of cables and/or network coverings (with extensional stiffness
only).

To determine the membrane parameters to replace the discrete network, the
following equivalences are made:

Figure 2

aC=aM=a;bC=bM=b (17)
DC‘_“pM: P (}.8)
- o= Bx
pe (A, a +Ayb) = ppabh; h = = * ﬁya_ (19)
U=%;v=1% (20)
5. Example

To demonstrate the usefulness of an analogous membrane to predict the fre-
quencies of free vibration of discrete cable networks, consider a 120" x 240"
rectangular cable system. The data pertaining to the cable system, as well as
the analogous membrane parameters, are shown in Fig. 3. Note that the parameters
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relating to the membrane do not change and equation (9) is used to predict as many
frequencies as is desired. The total cable areas and weight, and total preten-
sions in the x and y directions remain constant but the span to cable spacing ratio,
R, is varied as the number of cables is varied. Thus, the magnitude of each nodal
mass, each cable area, and each cable tension vary with R. For each R value, the
appropriate PMI and [K] matrix is calculated and the eigenvalues, Q, obtained on
the basis of equation (16) using an IBM 360/65 computer. Table 1 summarizes the
results of these calculations for R = 3,4,5,6, that is, two, three, four and five
cables in both the x and y directions.

Z

AUl Cables, P = 075(10) lb-see/ie® ~  -goundary

[T 7 7 7 L et
f Z / / / / / / 0-= 120 ins,b = 240 s,
[T T T 777 e
7(/ // // // // // // S
L7 7T 77 L B

=~

b= 240~ ¥ Total Tension i o.U.
X- DIRECTION: Cables = 150,000 lbs
Total Tension in oll Y = 2,500 s
Cables = 300,000 lbs ,
X = 5,000 lbs Ay = doir
A= 2.0 i Figure 3

From the results shown in Table 1, errors in the form (v - Q)/w as a function of R
are plotted in Fig. 4. Note that the extrapolations in this figure used a least
square polynomial approximation.

40.0 Since the percentage error
for a particular span to spacing
ratio increases for higher modes
or natural frequencies, and the
\ —I\E/ﬁrﬁgola}ed cable networks used in practice
are expected to have span to
- A spacing ratios of more than 10,
x \49"' 2 a plot of percentage error against
\3 s d the frequency numbers in ascend-
% o ing order for a span to spacing
10.0 = ratio of 10 is shown in Fig. 5.

\ \ Since the errors in the

meq | e ] natural frequencies, using a

6.8 —4in=1 — = | membrane obtained by uniformly
2.0 4.0 60 g_'o ’ .10.0 R 12.0 4.0 distributing the mass of the

Spon to Spacing Ratio - cables over the area of the net-

Figure 4 work, are known, it is now

A Gomputed. Values.
30.0

e
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TABLE 1
Frequency | Mode Shape | Frequency Discrete System - Frequency CPS
No. R 2 Cables| 3 Cables | 4 Cables| 5 Cables
m n Membrane
wq 1 1 290.0 278.0 284.0 287.0 288.0
wq 1 2 369.5 329.5 345.5 354.0 358.0
w4 2 1 537.5 448.0 486.5 505.0 513.58
w4 2 2 584.5 482.5 524.5 546.0 556,10
we 1 3 470.0 -—— 398.0 422.5 436.0
we 3 1 794.0 -—- 626.0 685.0 715.0
W 2 3 653.0 -— 560.0 593.5 609.0
wg 3 2 826.0 -— 8560 715.0 745.0
wg 3 3 875.0 -— 686.0 75)1.5 785.0
w5 | 4 584.0 -—- -— 471.0 501.0
w11 4 1 1050.0 S ——— 800.5 870.0
w7y 2 4 739.0 -—- -—- 627.0 658.0
w13 4 2 1075.0 m—— i 827.0 897.5
w714 3 4 941.0 -—- -—- 779.0 825.0
wyg 4 3 1115.0 i s 858.0 930.0
Wyg 4 4 1068.0 =i e 882.5 962.5
w1 1 5 TO2.5 —— i e 513 .5
Wig 5 1 1310.0 s -—- -—= 970.0
wig 2 5 836.0 ey s . 691.0
P 5 2 1330.0 —— = e 986.0
w4 3 5 1018.0 ) e e 851.0
wg9 5 3 1361.0 -—- -— ——— 993.0
w53 4 5 1228.0 -—- - -—- 1022.0
W, 4 5 4 1405.0 —-——— ——m i 1052.,0
wo g ) 5 1460.0 -—— -—— ——- 1072.0
possible to adjust the mass dis-
tribution such that the error is
80 minimized. This is accomplished
— by multiplying the natural fre-
|1 quency of the membrane in which
6.0 the mass of cablesis uniformly
L] R=10 distributed, by a factor called
o) e the mass ratio, p. For cable net-
g- 4.0 works with span to spacing ratio
o greater than 10, the mass ratio
3 4 for vari frequencies is shown
& or various quencies is s
” in Fig. 6.
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7. Symbols
Length of rectangular bound-
ary parallel to x axis, in.
Total area of cables parallel
to x axis, in.
Total area of cables parallel
to y axis, in.?2

Length of rectangular boundary parallel to y axls, in.

Cable spacing parallel to x axis, in.
Cable spacing parallel to y axis, in.

Modulus of elasticity of membrane, lbs./in.2

Time dependent function

Time dependent forcing function (1 = x,y, 2)
Membrane thickness, in,

Identity matrix

[K] Stiffness matrix of cable network defined in equation (15)

m

il
R

t

T ik

u

U

v
0

v

VY

w

w(x,

Concentrated mass at node j, 1lb. sec.z/in.

Mass matrix of cable network defined in equation (15)
Ratio of network span to cable spacing (a/dy or b/dy)

Independent time variable

Tension in cable segment jk, lbs.
Displacement of membrane parallel to x axis
Initial strain in membrane parallel to x axis

Membrane tension per unit of length parallel to x axis, lbs./in.

Displacement of membrane parallel to y axis
Initial strain in membrane parallel to y axis

Membrane tension per unit length parallel to y axis, lbs./in,

Displacement of membrane parallel to z axis
y) Initial shape of membrane att = 0

X,y,z Orthogonal cartesian coordinates

X
Y

Tension in cable parallel to x axis, lbs.
Tension in cable parallel to y axis, lbs.

Wmn Frequency of free vibration of the membrane in the mn-th mode, cps
Q) Frequency of free vibration of cable network in the k-th mode, cps

P

Mass density, lbs.sec.z/in.4

€,n,( Components of nodal displacements in the cable network parallel to the x,

W

y, and z axes respectively.

Ratio of mass of membrane obtained by uniform distribution of mass of cable

system to modified mass of membrane to be used.

Derivative 'vith respect to time variable t.
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Subscripts:
x,y Derivatives with respect to space variables x and y
C Cable network

M Membrane
8. Summary

It has been shown that an appropriate flat membrane can be used to predict
the frequencies of free vibrations of a flat cable network. Thus, the much simpler
frequency equation of a membrane permits the accurate determination of the natural
frequencies for the cable network with span to spacing ratios greater than 10. This
simplified procedure eliminates the determination of eigenvalues of large order
matrices by relatively complex numerical methods or computer computations.
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