
Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band: 9 (1972)

Rubrik: Theme I: The influence of strength and deformations of the following
nonlinear phenomena

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


la

L'influence de la plasticite et de la viscosite sur la resistance et la
deformation des constructions

Der Einfluss der Plastizität und der Viskosität auf die Traglast und
die Verformung von Tragwerken

The Influence of Plasticity and Viscosity on the Strength and
Deformation of Structures

M. SAVE CH. MASSONNET
Professeur ä la Faculte Polytechnique Professeur ä l'Universite

de Mons de Liege

1. IOTRODUCTION.

1.1. Contenu du rapport.

Le theme decrit par le titre ci-dessus est extremement vaste. II a fait
l'objet, dans les quarante dernieres annees, de travaux de recherche innombra-
bles et de dizaines de livres.

Dans le present rapport, nous nous limiterons ä deux materiaux : l'acier,
considere comme un materiau elasto-plastique, et le beton considere comme un
materiau visco-elasto-plastique aux caracteristiques dependant de l'äge, tous deux
ä la temperature ambiante. Nous nous interesserons aux doctrines de calcul
inelastique des structures formees de ces deux materiaux. Nous rappellerons les
elements essentiels de ces doctrines dans leur etat actuel, nous soulignerons les
points delicats ou non resolus et nous tenterons de degager les voies de recherche

les plus interessantes. L'historique et les exposes detailles de ces methodes

de calcul pourront etre trouves dans les textes de references.

Afin d'eviter toute duplication avec les travaux du Colloque de Madrid de
septembre 1970 sur l'influence du fluage et du retrait sur les constructions en
beton, nous nous contenterons d'evoquer les applications essentielles du modele
visco-elastique lineaire.

1.2. Le modele parfaitement plastique.

La Mecanique des Solides deformables schematise les corps reels en des modeles

mecaniques pour lesquels eile construit des theories mathematiques rigoureuses.

En theorie des structures, le modele parfaitement plastique est apparu avec
les travaux de G. de Kazinczy [1 ] en 1914, et de N.C. Kist [_2] en 1917, sur
les poutres flechies. II comporte les hypotheses suivantes :

-1. le moment flechissant dans une section droite ne peut depasser un seuil, ap¬
pele moment plastique (M en flexion positive, M' en flexion negative) inde-
pendant de la deformation subie par cette section (plasticite parfaite).
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-2. quand ce seuil est atteint, les parties adjacentes ä la section droite peu¬
vent subir une rotation relative permanente arbitraire sous moment constant
(plasticite parfaite), cette rotation ayant obligatoirement le meme signe
que le moment flechissant (loi d'ecoulement). On dit qu'il s'est forme une
"rotule plastique dans la section".

Sous un Systeme de charges dont toutes les grandeurs sont proportionnelles
ä un seul parametre scalaire P, une structure formee de poutres flechies parfaitement

plastique possede une "charge limite" P valeur du parametre de charge
ä laquelle eile se transforme, par formation d'un nombre süffisant de rotules
plastiques, en un mecanisme cinematiquement deformable, sous charge constante P

tant que le changement de forme produit par le mecanisme reste negligeable.

Dans l'etat limite qui vient d'etre decrit, le champ des moments flechissants

satisfait aux conditions d'equilibre et ne viole pas la condition de
plasticite :

-M' N< M .< M (1)
P P

^

Tout champ de moments ayant en commun avec le champ ä l'etat limite de
satisfaire aux conditions d'equilibre et ä la condition de plasticite (1) est dit
"statiquement admissible". Si son parametre de charge est appele P-, le
premier theoreme fondamental de l'analyse limite, dit theoreme statique (ou de la
borne inferieure) nous apprend que : [3] [4] [SJ [6]

p. « p£ (2)

Dans l'etat limite, le mecanisme fait produire aux charges appliquees une
puissance positive P

Si le mecanisme comporte n rotules positives de vitesse de rotation e¦ et
m rotules negatives de vitesse de rotation ©, la puissance dissipee dans les
rotules est 3'

n m
I M.6.+ZM*. 9. (3)

jLa conservation de l'energie impose

equation qui fournit P

Pe D (4)

l
Tout mecanisme ayant en commun avec le mecanisme de l'etat limite de

fournir une puissance positive P est dit cinematiquement admissible. Si on
appelle P son parametre de charge calcule par l'equation de puissance (4), le
second theoreme fondamental de l'analyse limite, dit theoreme cinematique (ou de
la borne superieure) nous apprend que [3], [4], [5], [6~]

P, * P+ (5)

Quand P_ P on a, d'apres (2) et (5),

(theoreme combine).

P_ Pr, P+ (6)
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Cette Situation se presente quand le champ de moments statiquement admissible
et le mecanisme cinematiquement admissible se correspondent par la loi d'ecoulement

: signe 6. signe M. en toute rotule i. On a alors une Solution complete.

La theorie qui vient d'etre esquissee s'etend facilement aux structures
plus complexes comportant plusieurs variables statiques Q- (i 1, 2, n) :

poutres simultanement flechies, tendues (ou comprimees) et tordues, plaques,
coques (Tj, [jf]. Un element de structure possede une condition d'ecoulement
representee dans l'espace des forces internes Q- par une surface d'ecoulement
fixe et convexe vers les axes positifs. Tout cnamp de sollicitations internes
en equilibre et represente par des points ä l'interieur de la surface ou sur
celle-ci est statiquement admissible. II fournit une approximation P_ de la
cliarge limite.

Si on superpose ä l'espace des Q. l'espace des vitesses de deformation
correspondantes q. (si Q. est par exemple un moment, q. est une vitesse de courbure,

Q, un effort normal, cu une vitesse d'extension ou de contraction, etc...),
la loi a'ecoulement s'exprime par la normalite du vecteur de composantes q- ä la
surface d'ecoulement au point de contraintes de composantes Q,, situe sur la
surface.

Un mecanisme cinematiquement admissible est maintenant decrit par un champ
de vitesses de deplacement, dont derivent les champs des q. ä l'aide desquels on
peut, par la loi de normalite, calculer la dissipation. En egalant la dissipation

ä la puissance, positive, des forces appliquees, on obtient une approximation
P+ de la cliarge limite.

Cette theorie s'applique egalement lorsque les charges se divisent en un
Systeme de charges permanentes donnees, incapables ä elles seules de produire la
ruine par mecanisme, et en un Systeme de surcharges ä un parametre P [$} [7]
La Charge limite est alors la valeur limite P de P teile que l'ensemble des
charges conduise ä l'etat limite. On a '

P 4 P 4 P (7)
s,- s,2 v s,+

*• '

oü P et P
+ sont, une fois associes aux charges permanentes, fournis

respectivement pär les methodes statique et cinematique. On peut ainsi suivre d'as-
sez pres les recommandations du C.E.B. [9] et de la C.E.A.C.M. en utilisant une
limite d'ecoulement "de calcul" deduite d'une limite d'ecoulement caracteristique
tenant compte de la dispersion dans les limites d'ecoulement mesurees, et deux
coefficients de majoration des charges, l'un y sur les charges permanentes et
l'autre y sur les surcharges. La valeur de Py etant fixee,il faut s'assurer
que, ä 1' etat limite de ruine par mecanisme, y ". est superieur ä la valeur
imposee. Parallelement ä cette facon pratique d'evaluer la securite, on peut
envisager de considerer certaines variables comme aleatoires (la limite elastique de
certaines barres par exemple) de distributions connues, et rechercher la distribution

correspondante de P II s'agit lä d'un probleme de programmation
stochastique (J0].

Si l'on fait un dimensionnement (et non une analyse) il est possible d'assurer
une charge limite minima P imposee tout en optimisant la structure.
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Dans cet ordre d'idees, la theorie du dimensionnement plastique de poids
minimum peut actuellement fournir un grand nombre de solutions, tant analytiques
que mecaniques, de problemes d'ossatures, de plaques et meme de coques, soumises
ä des charges fixes ainsi qu'ä des charges deplacables M 1j.

Jusqu'ä present, nous ne nous sommes pas preoccupes du comportement de
l'eiement de structure avant son ecoulement plastique, ä la seule reserve pres que
la structure doit rester, juste avant la ruine, assez peu deformee que pour
pouvoir etre etudiee dans sa geometrie initiale. Si maintenant nous supposons que
l'eiement de structure est elastique lineaire jusqu'ä son ecoulement plastique,
nous pouvons etudier pas ä pas le comportement de la structure en tenant compte,
si necessaire, de l'influence des deformations elasto-plastiques sur les effets
des forces. Nous obtenons ainsi la force portante de la structure, ä partir de
laquelle les deplacements croissent sous charge decroissante föliDG-

Le comportement post-limite decrit par la forme de la courbe liant le
parametre de charge P ä un deplacement caracteristique 6 apres formation du mecanisme

de ruine est tres important ä connaitre. Selon que cette courbe est descen-
dante ou montante, la charge de ruine par mecanisme est une charge d'ecoulement
ou bien seulement la charge ä partir de laquelle 1'accroissement de force
portante de la structure ne peut se produire qu'au prix de grandes deformations
permanentes. Cette etude peut se faire ä l'aide du modele rigide - parfaitement
plastique.

Tous les problemes evoques ci-dessus peuvent etre traites par des methodes
de calcul qui sont actuellement bien etablies |_6], [7].

II est tres important de faire remarquer ici que, sur la base des theoremes
fondamentaux, l'analyse limite plastique peut se formuler comme un probleme de
programmation lineaire QQ.

Tous les resultats de la programmation mathematique et tous ses algorithmes
de calcul lui sont donc applicables. II en est de meme pour le dimensionnement
de poids minimum (6"J De nombreux problemes specifiques ont dejä ete resolus
de cette maniere.

Avec l'augmentation de puissance des ordinateurs, la methode basee sur la
programmation lineaire [Ti, 6] semble avoir pris le pas.en rendement-machine,
sur les methodes speciales developpees anterieurement par Heyman Q2, 6} et par
Prager - Heyman |J3, 6J et programmees par Kalker [14] Par ailleurs, la meilleure

methode manuelle d'etude des ossatures semble rester celle par combinaison
de me-canismes simples, due ä Neal et Symonds Q5, 6] et basee sur le theoreme

cinematique.

Un essai de programmation de cette methode sur ordinateur,du ä Cohn et
Grierson 06~J a conduit ä un programme nomme COMECH;qui effectue toutes les
combinaisons de mecanismes ä un degre de liberte et se revele par consequent
comme assez inefficient des que le degre d'hyperstaticite de la structure
devient important.

Dans un travail non publie communique ä 1'un des auteurs du present rapport,
Mr. Jubete Portiila a trouve une methode permettant de s-Slectionner automatiquement

les mecanismes combines de maniere ä augmenter le moment plastique (dans le
probleme de dimensionnement restreint). Cette methode devrait pouvoir conduire
ä un dimensionnement efficient sur ordinateur.
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1.3. Le modele viscoelastique lineaire.

Les recherches experimentales de Glanville 0ZJet Davis [j8"J ont montre que
le beton de ciment est essentiellement un materiau viscoelastique lineaire,
c'est-ä-dire que, toutes choses egales d'ailleurs, la deformation de fluage est
proportionnelle, ä la contrainte appliquee II en resulte qu'on peut appliquer
le principe de superposition de Boltzmann, selon lequel il est permis de superpo-
ser les effets de fluage provenant de plusieurs etats de contrainte, en considerant

la duree de leur application et la date de leur debut d'application.

Depuis ces recherches fondamentales, le fluage et le retrait du beton - qui
sont indissociables - ont ete l'objet de recherches experimentales tres nombreuses

(cf. par exemple les publications du C.E.B. et Kesler Q9] qui ont permis
de mettre en evidence les principaux parametres qui controlent ces phenomenes.
II est clair aujourd'hui que la deformation de fluage est une fonction complexe
non seulement de la composition du beton considere, mais encore de la forme de
l'eiement etudie de ses dimensions absolues, de son pourcentage d'armatures, des
variations du degre hygrometrique de 1'atmosphere dans laquelle l'eiement est
plonge. II n'est pas possible actuellement de predire avec precision les
proprietes de fluage d'un element ä partir des donnees ci-dessus.

D'autre part, on peut dire que l'analyse theorique des corps viscoelastiques
lineaires a fait, dans ces vingt dernieres annees, des progres immenses.
Le modele mecanique generalement admis pour ces corps est une combinaison de
ressorts et de dash-pots lineaires. On peut montrer [20, 2l] que, quel que soit le
nombre de ses elements, le modele obeit en traction simple ä la loi :

Po Qe

oü P et Q sont les Operateurs differentiels lineaires :

QP
m

0 dt

n ,K
*¦ „ d
1 \ —
0 dt

(8)

(9)

Souvent, on considere comme süffisant le modele de Kelvin (fig. 1) qui
'////// obeit ä l'equation :

c Ee + pe (10)

Tö"

Fig. 1.

Une autre technique d'analyse est celle basee sur les
integrales hereditaires de Volterra. Elle a 1'avantage de
mieux se preter ä la representation d'un materiau dont les
proprietes dependent de l'age. On y admet que le beton
simple sollicite par une contrainte de compression
constante 0 ä partir du temps t (appele age du beton) presente

au temps t > t la dilatation totale (elastique plus de
de fluage)

1

eTü"
+ C (t, t) 6 (t, t) (11)

qui est lineaire en 0.

La plupart des auteurs admettent que la fonction C (t, t) peut s'ecrire :

C (t, t) f (t) C (t - t)



5(t,x)

E(x,)
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Dans ce cas, les parties courbes de la figure 2

sont semblables de forme. Si la contrainte
varie suivant la loi connue 0=0 (t), on admet
avec Boltzmann que la dilatation totale e est
donnee ä un instant t quelconque par la formule

T*.

""""-—- e 0 (t..) & (t, T.,) do(T)
dx 6(t,T)dT (12)

l1

X] X2 X3 Ce modele suffit pour analyser les poutres, ca¬
dres et portiques, dont les barres travaülent

- Fig. 2.- en flexion composee. Si, par contre, on veut
analyser les effets viscoelastiques dans les coques et dans d'autres pieces ä

trois dimensions, on doit tenir compte du fait que les deformations de fluage
en dilatation sont beaucoup moindres en dilatation qu'en distorsion; on doit
alors decomposer le tenseur contrainte 0 en chaque point en sa composante sphe-
rique

s

s o o

oso00s
avec s - (0 +0 + o

3 x y z'

et son deviateur

xy

avec

xz

s, ete....

xy

yz

xy

yz

t etc.xy'
De meme, on doit decomposer le tenseur deformation e en sa composante spherique
representant une dilatation pure

e avec e — (e + e, + e„)
J x y z

et sa distorsion

E
xy

xy

xz yz

e, ete..., e

yz

etc.."xy xy'
Les lois fondamentales les plus generales du corps viscoelastique lineaires s'e-
crivent alors

'P"s Q"e
[P'S Q'E

oü P', P", Q', Q' sont quatre Operateurs differentiels lineaires differents
analogues ä P et Q.

% (13)
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Une litterature extremement abondante, basee sur les lois [8] ou [13J et
employant comme outil mathematique essentiel la transformation de Laplace, s'est
developpee ces vingt dernieres annees. Cette litterature etant largement igno-
ree des ingenieurs des constructions, il vaut la peine de citer les quelques
syntheses de ces travaux qui sont suffisamment completes et en meme temps relativement

faciles ä lire.
Pour les corps dont les proprietes ne dependent pas de l'äge, on recommande

le chapitre (Viscoelasticity) redige par E. H. LEE, dans le Handbook of Engineering
Mechanics edite par le jProfesseur W. Flügge [22] ainsi que l'excellent

livre de Flügge intituie "Viscoelasticity". Ces deux ouvrages ont peut-etre plus
en vue l'application aux matieres plastiques qu'au beton de ciment. Par contre,
le livre d'Aroutiounian [23] base sur l'emploi des integrales hereditaires, envisage

particulierement l'effet de l'äge du materiau et l'application au beton.
II n'existe pas, en viscoeiasticite, de theoremes generaux equivalents aux deux
principes fondamentaux de l'analyse limite (cf. § 1.2.) Neanmoins, on peut mettre

en evidence les deux principes de correspondance qui donnent la Solution d'u-
ne classe restreinte de problemes pratiques.
Ces principes ont ete decouverts par T. Alfrey [24] et D. Mc. Henry [25], en se
basant d'ailleurs sur des lois de viscoeiasticite legerement differentes. Le
livre de Levi et Pizzetti, paru en 1951 [28] oü ces principes portent le nom de
theoremes d'isomorphisme, a contribue ä les clarifier et ä les diffuser. On

donne ci-apres les enonces de ces principes pour le cas d'ossatures faites de
barres soumises ä flexion composee.d'apres [21] :

Pl§5i?I_Pli5£iE§_45_92II5spondance.

Si l'on applique ä une structure viscoelastique lineaire une mise en charge
simple dans laquelle toutes les forces exterieures varient en fonction du temps
suivant la meme loi L(t), les contraintes en tout point et les reactions
hyperstatiques eventuelles evoluent suivant la meme loi et sont ä tout moment egales ä

celles qui naitraient, sous l'action des memes forces, dans la structure corres-
pondante, parfaitement elastique. Les deplacements et deformations evoluent tous
proportionnellement suivant la loi y(t) identique ä la loi d'allongement par fluage

d'un barreau tendu sollicite par l'effort de traction L(t).
Cas particulier important : Dans le cas simple oü l'on applique brusquement au
temps x des forces de volume et de surface que l'on maintient ensuite constantes,
les contraintes dans la structure viscoelastiques prennent une valeur constante.
Par ailleurs, le deplacement d'un point quelconque varie en fonction du temps
suivant la loi du fluage en traction.

Deuxieme principe de correspondance.

Si l'on donne ä une structure viscoelastique lineaire non chargee certains
deplacements qui evoluent tous proportionnellement en fonction du temps suivant
la loi L(t) (avec L(t) 1} les deplacements et dilatations de tous les points
de la structure evoluent suivant la meme loi et sont,ä 1'instant t t, identiques

ä ceux qui naitraient sous l'effet des deplacements imposes dans la structure

correspondante parfaitement elastique du module d'elasticite E(t). Quant
aux contraintes et reactions hyperstatiques, elles sont ä tout moment proportionnelles

ä celles qui existeraient dans la structure parfaitement elastique. Le
coefficient de proportionnalite est l'effort de traction g(t) necessaire pour
soumettre un barreau du materiau viscoelastique ä un allongement impose 6 L(t).
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Remarque : L'enonce general ci-dessus s'applique egalement au cas oü la structu-
re subit une Variation thermique ou un retrait dont la loi dans le temps est
connue, car on peut aisement calculer les deplacements d'appui equivalents ä ces
phenomenes. On voit, par consequent, que les effets defavorables du retrait et
du tassement g'appui accidentels dans des constructions en beton sont considerablement

attenues par le fluage du beton.

Cas particulier important : Dans le cas simple oü l'on donne brusquement,ä
1'instant t, des deplacements d'appui connus ä une structure viscoelastique non
chargee, cette structure prend brusquement une deformation fixe. Les contraintes

en tout point et les reactions hyperstatiques eventuelles prennent brusquement

les valeurs qui correspondent ä la structure parfaitement elastique de
reference et decroissent ensuite au fil du temps selon la loi de relaxation valable
en traction simple.

x
X X

Pour la generalisation de ces principes aux corps Continus gouvernes
simultanement par les deux lois de fluage [13] nous renvoyons ä la litterature
(cf. par ex. [20J.

La grande importance des principes de correspondance resulte du fait qu'ils
permettent une appreciation plus realiste de l'effet sur les structures en beton
des tassements d'appui, variations thermiques, etc..

II est clair que de nombreux problemes relatifs ä l'effet du fluage sur les
constructions en beton ne peuvent se reduire ä l'emploi pur et simple des principes

de correspondance. En employant des methodes pas ä pas, on peut ecrire des
programmes pour ordinateurs qui resolvent les problemes les plus complexes.
Zienkiewicz [26] a montre comment, par la technique des eiements finis, on peut
ainsi aborder des problemes de pieces planes, plaques flechies, et meme des pieces

des formes les plus complexes telles que barrages-voutes et les enveloppes
de reacteurs nucleaires en beton precontraint.
On peut donc affirmer qu'ä l'heure actuelle, en y mettant le prix en programmation

et consommation d'heures ordinateurs, on peut resoudre ä peu pres
n'importe quel probleme des que les lois fondamentales ont ete formuiees. On ne
saurait cependant mettre trop les ingenieurs en garde contre le caractere il-
lusoire des resultats de calculs complexes, bases sur des methodes mathematiques

correctes, mais dont les equations de depart (c'est-ä-dire les equations
constitutives du materiau) representent mal le comportement physique du mate-



M. SAVE - CH. MASSONNET 9

2. STRUCTURES EN ACIER.

2.1. Ossatures.

L'analyse limite plastique decrite en 1.2. suppose que ni la faiblesse des
assemblages ni l'instabilite elastique ou eiasto-plastique des eiements de la
structure ne viennent limiter la force portante ä une valeur inferieure ä P

Les regles ä suivre pour qu'il en soit ainsi ont ete etablies ä la suite de tres
importants travaux sur ces sujets, surtout entre 1945 et 1965 [29]

On dispose donc actuellement d'une doctrine pratiquement achevee pour les
structures en acier, sanctionnee par plusieurs normes [30] [31][32] et permettant
1'etablissement des projets jusque dans leurs details [6] ©33] [34] Elle
s'applique au moins aux deux principaux aciers de construction (A 37 et A 52), qui
possedent un palier d'etirage süffisant.

Quand Certains eiements de la structure ne peuvent etre consideres sans danger

comme parfaitement plastiques (cordons de soudure ou boulons d'un assemblage)

on est conduit ä n'admettre qu'une redistribution limitee des sollicitations
internes entre ces elements, selon des regles qui restent encore ä perfection-
ner ßsD.

Sous chargement statique ä un parametre, une ossature metallique correctement
dimensionnee par le calcul plastique ne presentera une rupture qu'apres tres

grandes deformations, loin au delä de la formation du mecanisme. Au contraire,
si les charges varient independamment entre des bornes, cn peut craindre une ac-
cumulation des deformations plastiques ou meme une rupture par epuisement de la
ductilite. Le calcul de la charge de stabilisation (shake-do n load"), prescrit
par certaines normes [32], n'est alors meme pas süffisant car il faudrait savoir
au prix de quelle deformation permanente eile est obtenue. Par contre, dans des
cas oü le nombre de cycles de chargement prevu est faible, et certaines deformations

permanentes permises, une charge de non stabilisation pourrait etre prise
comme limite. On est ici ä la frontiere du probleme de la fatigue plastique des

structures, oü presque tout reste ä faire.

Le calcul des ossatures en acier ä l'etat limite plastique apparait ainsi
comme encore perfectible dans certains points de detail et demandant un developpement

vers le calcul ä la fatigue plastique. II n'en reste pas moins qu'il
constitue, dans le cadre oü il est applicable, une methode en bon accord avec les
faits experimentaux, suffisamment simple ä employer, et plus realiste que le calcul

elastique qui se refere ä un etat limite (de premiere plastification) denue
de sens physique reel et generalement hors d'atteinte du calcul (presence de
contraintes initiales de laminage, soudage, etc...).

Le calcul plastique permet d'uniformiser la securite des structures
isostatiques et hyperstatiques vis-ä-vis d'un etat limite reel (ruine par mecanisme).
Pourtant, il conduit en general ä un dimensionnement plus economique des structures

hyperstatiques formees de barres laminees. II exploite en effet la possibilite
de redistribution des moments lors d'une surcharge, qu entraine une

precontrainte automatique apres dechargement subsequent. Son influence croissante
marque meme les normes de nombreux pays [36] cü il n'est meme pas encore totalement

accepte. Son application tend aussi ä s'etendre ä de plus nombreux
types de structures et en particulier aux ossatures ä etages multiples.
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Plusieurs normes [30] [31] [32] admettent le calcul plastique des ossatures
contreventees, quel que soit le nombre d'etages. Pour les ossatures non contre-
ventees, la prise en compte des phenomenes du second ordre (effet P, 6) qui ame-
nent l'instabilite eiastoplastique d'ensemble avant la production de toutes les
rotules de la theorie plastique simple, fait que le dimensionnement de ces ossatures

n'est pas encore entre dans les Normes. II permet une recherche directe
de la structure de poids minimum [6], eventuellement par programmation lineaire.
11 s'inscrit dans le cadre d'une doctrine generale de calcul des constructions
metalliques vis-ä-vis des differents etats limites que ces constructions peuvent
presenter [9].

2.2. Plaques et coques.

Le calcul ä l'etat limite plastique de flexion des plaques en acier est
tres developpe [7] QöOjjcependant il n'a de sens physique que pour des plaques
relativement epaisses. Si v est la minceur de la plaque, rapport de la "portee
caracteristique" (diametre d'une plaque circulaire, petit cote d'une plaque
rectangulaire) ä l'epaisseur, il semble [7], [38] que l'on doive se limiter a
m < 40.

Quand u -40, les efforts de membrane dus ä la deformation elasto-plastique,
sont predominants (ils sont d'ailleurs dejä importants en regime purement elastique

des que la charge devient assez grande). La force portante doit donc s'e-
valuer par une theorie de plaque-membrane eiasto-plastique [39] L40] ou plus
simplement par une analyse plastique en membrane pure, de forme ä pricri inconnue,
[7]. Cette force portante est, en general, continument croissante avec la
deformation plastique et n'est limitee que par celle ci.

Cette influence des changements de forme, pre et post-limite, est moins
grande dans de nombreux cas de coques de revolution [7], mais risque de reprendre

vigueur dans les eiements de couverture, oü l'instabilite elastique peut etre
preponderante.
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3. STRUCTURES EiN BETON.

3.1. Introduction.

On se bornera dans ce qui suit ä examiner les structures en beton arme ou
preccntraint. Le materiau beton simple peut etre considere comme un materiau
semi-raide, qui manifeste au cours du temps les phenomenes de retrait et de
fluage.

Tout d'abord, une piece quelconque faite en beton de ciment, libre ae se
deformer, et placee dans une atmosphere non saturee d'humidite subit au cours du
temps un raccourcissement triaxial appele retrait. Ce phenomene est independant
de l'etat de contrainte. De plus, une piece de beton soumise de facon permanente

ä l'action de forces exterieures subit, outre une deformation elastique ou
elasto-plastique instantanee, une deformaticn differee partiellement irreversible

appeiee fluage. Ces phenomenes ont ete etudies extensivement au cours des
toutes dernieres annees.

:?.:!.il.i_L§_I5£I§i.©^y_!?!::2^}_§I13i•

D'apres les Recommandations du Comite Mixte CEB-FIP, la dilatation finale
de retrait er d'une piece en beton arme peut etre determinee par la relation :

er i: ar er (1 " °'1 ^
oü :

ii est le retrait final du beton non arme, dependant de l'humidite relative du
milieu de conservation ;

o. est un coefficient traduisant l'influence de la plus petite dimension de la
piece. Flus cette dimension est faible, plus le retrait est important ; a de-
perd "du diametre moyen de la section droite de la piece, egal ä 2 ß/1, oürß est
l'aire de la section et 1 son perimetre ;
ß est un coefficient dependant de la composition du beton et principalement du
rapport eau/ciment et du dosage en ciment ;
3 est le pourcentage geoir.etrique d'armatures longitudinales de la piece.

Tous ces coefficients scnt definis dans les Recommandations susdites par
des courbes experimentales

5j;lj:2j;_Le_fluage_du_beton_a™e_ou_precontraint.

Comme le retrait, le fluage d'une piece en beton arme ou precontraint
depend principalement des trois variables ci-apres : conditions climatiques -
dimensions de la piece - composition du beton. Le Comite Mixte FIP-CEB propose
une relation permettant de calculer en fonction du temps la dilatation totale
d'une fibre due ä une contrainte unitaire, relation dans laquelle interviennent
divers coefficients experimentaux traduisant l'effet des variables ci-dessus.

II est admis par la generalite des auteurs que la dilatation en un point
est proportionnelle ä la contrainte appliquee en ce point ; on peut donc appliquer

aux structures en beton arme ou precontraint la theorie des corps viscoe-
lastiques lineaires dont les proprietes dependent de l'äge (cf § 1.3.).
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En tenant compte du fluage eventuel des cäbles de precontrainte, il est
donc possible de prevoir le comportement d'un ouvrage en beton precontraint
sollicite par des postcontraintes appliquees ä des temps successifs, comme c'est le
cas pour les ponts construits en encorbellement ou par voussoirs prefabriques.
Evidemment, il faut tenir compte egalement du retrait du beton et du fluage des
cäbles de precontrainte.

Un travail de Fin d'Etudes execute par un des etudiants de la section des
Constructions de l'Universite de Liege, sous la direction du professeur R. Baus,
montre qu'il est possible, moyennant des calculs ä la portee des bureaux d'etudes,
d'arriver ä des predictions numeriques concernant :

a) l'evolution dans le temps de la fleche d'une travee d'un pont continu ;

b) la Variation dans le temps des moments dits "parasitaires" par feu le profes¬
seur Magnel - et de montrer que ces moments croissent avec le temps d'une
maniere non negligeable, contrairement ä la theorie elastique qui les suppose
constants ;

c) l'importance de l'effet de la relaxation des armatures sur les pertes diffe-
rees de precontrainte, qui est sous-estimee en pratique.

Par ailleurs, il faut veiller, pour les pieces comprimees soumises ä des
charges de longue duree, ä prendre en consideration le flambement par fluage.
La theorie des deformations progressives d'une piece chargee axialement obeis-
sant au modele viscoelastique P o Q e du § 1.3. et presentant une deformee
initiale quelconque a ete donnee par Hilton [27] II reste evidemment ä

l'ingenieur ä tirer parti de cette theorie en definissant un etat limite pour la
piece.

?j.lj.3j:_Les_2roprietes_plastigues des_pieces_en beton_ame_ou_grecontraint^

Le beton de ciment lui-meme etant d'autant plus raide qu'il est plus age,
la plasticite d'une piece en beton arme ou precontraint ne provient que de
l'acier qu'on y a place et depend essentiellement :

a) du pourcentage d'armature ;

b) de la limite elastique de l'acier utilise ;

c) du caractere (passif, precontraint, ou mixte) de l'armature ;

e) de la resistance du beton ä la compression ;

d) de la ductilite supplementaire eventuelle provenant de la presence d'une arma¬
ture comprimee et d'etriers [51] [55].

II en resulte que la ductilite de la piece en question est essentiellement
variable d'une piece ä l'autre et eventuellement, pour une meme piece, d'une
section droite ä l'autre.

3.2. Dimensionnement non-lineaire des ossatures formees de barres en beton arme
ou precontraint.

3^2.];_Introduction.

Le probleme du dimensionnement ä la ruine a donne lieu ä un nombre de
publications äepassant largement la centaine. C'est pourquoi nous ne pouvons en donner

qu'une bibliographie tres partielle et renvoyer le lecteur, entre autres, au
Symposium d'Ankara du C.E.B. 1964 et au Symposium de Miami de l'A.C.I.-A.S.C.E.
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Idealement, on devrait, dans le dimensionnement d'une structure soumise ä

un certain chargement, considerer plusieurs Stades de ruine de plus en plus
severes et de moins en moins probables [53]. Pour du beton arme travaillant
essentiellement en flexion, ces Stades pourraient etre le debut de

1. la fissuration fine (d'habitude precedant la plastification de l'acier) ;

2. la fissuration large (d'habitude apres plastification de l'acier) et la
deformation excessive ;

3. l'ecrasement et 1'epaufrement du beton ;

4. la ruine locale ;

5. la ruine generale par ecroulement de la structure.

C'est pourquoi Sawyer [53] considere que, idealement, le dimensionnement
est une procedure complexe par laquelle on etablit une correlation entre les
resistances de la structure aux differents Stades cites ci-dessus ef la probabilite
des charges correspondantes de facon ä minimiser le coüt total,y compris le coüt
initial et les valeurs des pertes provenant des divers etats de ruine.

Le dimensionnement elastique lineaire et»le dimensionnement ä la ruine ne
sont que des aspects limites de ce probleme general.

Comme il semble impossible d'appliquer pratiquement la procedure ci-dessus,
on doit la simplifier arbitrairement. A ce point de vue, les positions du Comite

Europeen du Beton [9] et celles exprimees par Sawyer [54] au Symposium de
Miami sur le Comportement inelastique du Beton Arme sont les memes, ä savoir que
le dimensionnement du beton arme hyperstatique devrait etre base sur deux Stades
principaux de ruine :

1) le Stade de ruine par fissuration large ;

2) le Stade de ruine par ecrasement et epaufrement du beton.

La structure doit etre etudiee dans le premier Stade pour garantir une bonne

serviciabilite sous les conditions de service. L'etude dans le second Stade,
de son cote, montrera sa resistance effective ä une surcharge.

5.:2.:2^_MalYse_du_stade_largement_fissurf •

L'opinion la plus repandue est que le premier Stade peut etre analyse sur la
base de la theorie elastique. Cependant, Macchi [49] [50] a montre theoriquement
et experimentalement que la redistribution des efforts interieurs commence ä

l'apparition de la premiere fissure et que son effet est dejä important sous la
charge de service. Cette redistribution existe donc aussi si la structure est
dimensionnee pour les moments flechissants predits pour la theorie elastique ;

par consequent, dans ce cas, son effet est defavorable.

5j.?i31_Malvse_du_stade_ultijne^

Pour ce qui concerne le second Stade de ruine, de grandes divergences existent

parmi les chercheurs en ce qui concerne la forme de la courbe moment-courbure
ou moment rotation ä utiliser comme base de l'etude, et en ce qui concerne la

meilleure methode d'analyse.
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Les calculs executes sur ordinateur par Ferry iBorges et ses collaborateurs
[47] en admettant la loi de conservation des sections planes d'oü decoule l'existence

d'une loi moment-courbure, ont nettement mis en lumiere le fait que.pour
des structures ä faible degre d'hyperstaticite, on peut compter sur la formation
et la rotation plastique süffisante des rotules plastiques dans le cas de pieces
ayant un pourcentage d'armature nettement inferieur au pourcentage critique, ces
armatures etant faites d'acier doux. Dans ces conditions, le modele elastique
(ou rigide) parfaitement plastique du § 1.2. peut s'appliquer de facon tres
satisfaisante.

Au für et ä mesure que le pourcentage d'armature et la limite elastique de
l'acier utilise augmentent, la capacite de rotation plastique des rotules diminue,

pour eventuellement disparaitre totalement (rupture par insuffisance du
beton), et avec eile, le benefice du ä la redistribution des moments flechissants.

Selon un travail non publie, ce probleme complexe d'analyse peut se formuler
comme un probleme de programmation mathematique et etre resolu sur ordinateur
par les methodes mathematiques correspondantes. On peut, dans ce cas, tenir
compte des variations des proprietes du beton arme d'une section ä l'autre et
des differents etats limites qui peuvent etre atteints.

3^2.4. Procedures de dimensionnement,

Notons immediatement une difference essentielle entre les ossatures en
acier et en beton : dans les secondes, il est possible de faire varier les
proprietes de resistance et de ductilite d'une section ä l'autre en variant le
pourcentage d'armature, le frettage par etriers, etc..

Les trois conditions fondamentales qui doivent etre satisfaites dans un
dimensionnement limite concret des structures en beton arme ou precontraint sont:

1) l'equilibre limite ;

2) la compatibilite des rotations ;

3) la serviciabilite.

Celä etant, on peut distinguer deux grandes categories de methodes de
dimensionnement :

.Premiere categorie : les methodes de dimensionnement proprement dites, oü l'ac-
cent est mis sur l'optimalisation. Dans cette categorie rentrent les methodes
de A.L.L. Baker 01] ,[42] [45] de Ferry Borges et collaborateurs [47], de
Guyon ßS] de Macchi [45] ,[49] [SO] de Sawyer [54 "J etc.. La place nous
manque meme pour presenter ces diverses methodes. Bornons-nous donc ä depeindre
les grandes lignes de la methode de A.L.L. Baker, qui est une des premieres et
des mieux connues :

Baker considere qu'une structure doit etre dimensionnee pour avoir une marge de
securite predeterminee contre la ruine et.dans ce but, developpe une technique
simplifiee. De plus, il faut eviter une fissuration et des deformations excessives

sous la charge de service, de sorte qu'on a egalement besoin d'une Solution

elastique; cependant, cette Solution ne doit etre qu'approchee, parce
qu'elle ne sert qu'ä contröler que la fissuration n'est pas excessive. Les
deux analyses mentionnees ci-dessus peuvent se faire en utilisant des versions
simplifiees des equations de compatibilite de la methode des forces (Müller-
Buslan) generalisees pour les deformations non lineaires.



M. SAVE - CH. MASSONNET 15

Deuxieme categorie : les methodes de dimensionnement optimal. Ces methodes,
dues surtout a Cohn [43][44j et Petcu [51J>ont evolue fortement au cours des
annees et la terminologie employee par leurs inventeurs a egalement varie.

Les recherches recentes ont reveie, ainsi qu'on l'a dejä dit (fin § 3.2.3)
la possibilite de formuler le probleme de dimensionnement en sorte que les
Solutions soient optimales au sens mathematique, c'est-ä-dire qu'elles minimisent
des "fonctions economiques" adequates qui sont le volume de beton, d'armatures,
ou mieux le coüt total de la structure.

Theoriquement, il est possible ä present (44] de formuler (et dans des
cas simples) de resoudre des problemes en satisfaisant simultanement aux conditions

d'equilibre limite de serviciabilite, de compatibilite elastique, de
limitation des rotations maxima dans les rotules plastiques, et ä un critere d'op-
timalite. Cependant, pour l'application pratique, il parait plus s imple dcne coli -
siderer au depart que les conditions d'equilibre limite et de serviciabilite
[43] [43 bis] [43 ter] [51]

3j.L^_§ituation_actuelle_£1970i.

La pratique actuelle du calcul du beton arme ä travers le monde ne fait
generalement intervenir qu'un seul contröle de resistance au lieu du double
contröle defini au § 3.2.1. ; eile est donc insatisfaisante. De plus, il y a de
grandes variations dans les methodes employees. En effet, dans certains pays
tels que 1'U.R.S.S., on utilise des relations non lineaires, tant pour determiner

la distribution des moments flechissants que pour determiner les dimensions
des diverses sections droites [46] [48]. Au Portugal, les Normes permettant un
certain degre de redistribution decoulent des etudes de Ferry Borges et collaborateurs

commentees au § 3.2.3. Dans d'autres pays, on determine la distribution
des moments flechissants par la theorie elastique, tandis que le dimensionnement
organique des sections est base sur leur resistance ultime. II est donc clair
qu

' ä travers le monde, les ingenieurs du genie civil ont des opinions tres
divergentes quant ä la maniere de tenir compte de l'ineiasticite des structures en
beton dans leur dimensionnement.

3.2.6. Conclusions.

II semble qu'apres une intense activite de recherche deployee entre 1955 et
1965, le sujet en discussion soit un peu en veilleuse actuellement. Cela
provient ä notre avis de la resistance des ingenieurs ä exploiter des phenomenes
ineiastiques dans les barres flechies pour des raisons fondamentales de securite
et de durabilite de la structure.

Ce point de vue a ete clairement mis en evidence en 1964 par Winter, dans
sa discussion introductive presentee au Symposium de Miami [56]. Quelques uns
des arguments du professeur Winter sont resum.es ci-apres :

1) II y a une difference fundamentale entre le comportement de l'acier, materiau
ductile ecrouissable, et du beton, materiau semi-raide desecrouissable, dans

lequel les deformations plastiques sont dues ä une micro-fissuration progressive.
Cette difference a d'importantes consequences sur le comportement

inelastique des structures faites de ces deux materiaux :

a) Quand une structure continue soudee en acier est chargee jusqu'au point oü
certaines rotules plastiques se sont developpees mais que le Stade de ruine
n'est pas encore atteint, aucun dommage visible n'a ete produit.

3. 3 Einführungsbericht
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Au contraire, quand des soi-disant rotules plastiques se sont developpees en
beton arme, une fissuration par traction absolument excessive a dejä eu lieu
dans les rotules "underreinforced" c'est-ä-dire de pourcentage inferieur au
pourcentage critique) ou bien des ecrasements et epaufrements inadmissibles
ont eu lieu dans des rotules ä pourcentage eleve d'armatures ;

b) Si une structure en acier partiellement plastifiee est dediargee, pui* re-
chargee dans le meme sens, on constate que son domaine de comportement elastique

s'est agrandi ä cause des moments flechissants residuels favorables
provoques par le premier cycle de charge. Dans le cas du beton arme, les
informations concernant le comportement apres rechargement de structures qui
ont ete partiellement plastifiees puis dediargees, semblent rares. Pour de
faibles pourcentages d'armatures, le comportement est probablement semblable
ä celui de structures en acier. Pour de plus grands pourcentages, le developpement

des rotules exige d'utiliser la branche descendante de la courbe
moment-rotation. Or, ä ce moment, l'experience montre que la structure est une
semi-ruine. On peut accepter de baser le dimensionnement sur un tel etat de
semi-ruine dans des situations extremes telles que violents seismes ou souffle
de bombes nucleaires, mais un etat de semi-ruine peut difficilement servir de
critere de dimensionnement pour les structures civiles habituelles.

2) Vu la capacite de rotation limitee du beton arme, si le dimensionnement des
structures en beton arme devait etre base sur la charge ultime calculee en
utilisant pleinement cette capacite, il n'y aurait plus de ductilite additionnelle

disponible pour absorber les effets des tassements d'appui, du retrait
et des effets thermiques, ete

3) La ductilite d'une structure en beton arme decroit rapidement quand la limite
elastique de l'armature augmente. Ainsi, il apparait que le dimensionnement
inelastique est economiquement prometteur principalement pour les aciers doux.
D'autre part, tous les developpements de ces dix dernieres annees, aux
Etats-Unis comme en Europe, demontrent la superiorite economique des armatures

en acier ä haute resistance. Nous arrivons ainsi ä la Situation parado-
xale qu'une nouvelle methode (le dimensionnement inelastique) est presentee,
qui promet quelque benefice economique precisement pour les nuances douces
d'acier qui se voient rapidement remplacees par de plus economiques.

3.3. Plaques et coques.

Les plaques en beton arme sont, avec les ossatures en acier, le domaine dans
lequel, ä 1'heure actuelle, le calcul plastique (dit ici aussi "calcul ä la
rupture") s'applique le mieux, C'est d'ailleurs au congres de l'AIPC (Zürich 1932)
que fut presente un des premiers memoires sur ce sujet [57]. Bien que le critere
de plasticite le plus generalement admis reste l'objet de certaines discussions
[58j[59], les applications auxquelles il conduit ont obtenu une bonne verification

experimentale [60] [61], Les dalles en beton arme sont en effet tres generalement

peu armees et suivent donc bien. le Schema parfaitement plastique. Les
efforts tranchants y sont negligeables, sauf dans le probleme du poinconnement.
Meme l'analyse purement cinematique, donnant une charge limite erronee par
exces, est tres souvent aeeeptee comme süffisante compte tenu de divers effets
stabilisants et ä condition de prendre ä son egard une securite adequate. Ce-
pendant^le progres est sans aucun doute dans le developpement des solutions
statiques, grace auxquelles on peut distribuer au mieux les armatures [7] [61].
Pour des plaques fabriquees en serie, on peut meme rechercher l'armature de poids
minimum [62], et ar-ijrer la rigidite en service par une epaisseur süffisante de
la plaque. De maniere plus generale, on peut, dans le dimensionnement plastique,
imposer une optimisation (prix minimum par exemple) sous diverses contraintes
(charge limite minimum assuree, fleche en service limitee, ete
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Quoi qu'il en soit, l'analyse limite cinematique des plaques est actuellement
d'un emploi courant en pratique dans de multiples pays, oü eile est accompagnee
de regles empiriques permettant de pallier 1'absence d'analyse statique.

II n'en est pas de meme de l'analyse limite des coques (couvertures,
reservoirs, etc.) oü la recherche, theorique [633 et experimentale [64], [65], en
est encore ä ses debuts. L'importance du sujet est cependant evidentet car le
"mecanisme plastique" est bien un des plus frequent modes de ruine d'une coque
en beton arme. Un autre mode tout aussi important est le voilement par fluage,
qui a entraine plusieurs ecroulements. A notre avis, la Solution la plus directe

de ce probleme est par un essai sur modele dont le materiau doit representer
aussi fidelement que possible le materiau reel. La voie theorique exigerait
l'analyse pas ä pas de l'equilibre des formes successives en lesquelles la
coque initiale se transforme par le fluage. Ceci impose bien entendu le recours
ä un ordinateur de grande puissance.

4. STRUCTURES MIXTES ACIER - BETON.

La litterature relative aux structures mixtes, dont 1'exemple prineipal est
le pont ä poutres metalliques et tablier en beton, est bien connue des ingenieurs
des constructions. Elle debute avec les recherches de Dischinger [66] et a trouve

un developpement plus ou moins raffine dans les ouvrages de Sattler [67]
Fritz [68] et d'innombrables articles de revue.

Les calculs de dimensionnement sont assez complexes et sont souvent, ä

1'heure actuelle, effectues sur ordinateur. Le modele rheologique adopte pour
le beton est generalement le modele simple de Kelvin (Fig. 1) qui en fluage simple

se deforme suivant la loi exponentielle bien connue.

L'objeetion principale ä ces methodes est que la prediction du coefficient
de fluage est si complexe et si incertaine (cf. L19J) que la signification des
calculs est quelque peu illusoire. Pour ces raisons, il semble que, dans les
pays non de langue allemande, de nombreux bureaux d'etudes se contentent toujours
de tenir compte du fluage en jouant sur la valeur du coefficient d'equivalence
m E /E, Si cette methode nous parait insuffisante, par contre l'emploi des
methoaes raffinees ne se justifiera pleinement que quand on sera mieux arme

pour predire les proprietes rheologiques effectives des eiements de beton
qu'il est prevu de mettre en oeuvre, Pour le present, il faut signaler 1'excellent

petit livre de Birkenmaier [69] qui, en decomposant l'effet du fluage en
un petit nombre d'intervalles de temps - souvent un ou deux suffisent - permet
d'obtenir de facon tres simple des resultats suffisamment precis. La methode de
Birkenmaier donne toute la precision que l'on desire - il suffit d'augmenter le
nombre d'intervalles it - et est reellement coneue dans l'esprit "ordinateur".

En conclusion de ce paragraphe, il faut attirer l'attention sur la necessite,
sous peine de s'exposer ä des deboires, de tenir compte du fluage du beton

si l'on veut combattre la fissuration de la dalle en beton par denivellement des
appuis interieurs dans les ponts Continus ou par precontrainte longitudinale des
troncons de la dalle situes au droit de ces appuis.
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5. CONCLUSIONS.

5.1. Influence de la theorie de la plasticite sur la pensee de 1'ingenieur
construeteur.

L*introduction du calcul plastique en theorie des constructions a etabli
clairement la distinetion entre

1) le groupe des lois de statique ;

2) le groupe des lois de cinematique ;

3) le groupe des lois de comportement du materiau,

auparavant tres meiees dans le traitement du seul corps elastique. II a ouvert
la voie vers l'etude d'autres comportements (modele visco-eiastique). La
Resistance des Materiaux et la Theorie des Structures sont ainsi devenues des
applications de la Mecanique des Solides ä l'art de l'ingenieur construeteur.

Jusqu'en 1940, la seule doctrine enseignee et appliquee etait la theorie
elastique, pessimiste quant ä la capacite portante de la structure et en desac-
cord avec les regles pratiques de la construction metallique (en particulier
dans le calcul des assemblages). Le theoreme statique, sous sa forme la plus
generale (cf (jj etait employe intuitivement par les ingenieurs depuis un
siecle. II a donne une formulation precise ä la regle empirique d'apres laquelle

il faut dimensionner les pieces de maniere ä trouver un chemin pour les efforts
sans violer la capacite de resistance du materiau. Le theoreme statique nous
apprend que cette regle n'est valable que pour un materiau de ductilite infinie.
D'oü :

1) l'accent mis sur la ductilite et la necessite de la contröler soigneusement
lors de la reception des materiaux ;

2) l'accent mis sur la necessite de preserver la ductilite pendant la fabrication
(exemple : interdiction des trous poinconnes) ;

3) l'accent mis sur 1'Obligation de restaurer la ductilite initiale si eile a
ete diminuee par le processus de fabrication (recuit apres eintrage, apres
soudage^pour detendre les contraintes residuelles).

La doctrine plastique a deteint sur la doctrine classique (dite des
contraintes admissibles) en tendant ä faire adopter - dans le cas des charpentes
soumises ä des charges quasi-statiques - une coneeption plus simple des
assemblages et un mode de calcul purement statique ainsi qu'un coefficient de securite

porte sur les charges plutöt que sur les contraintes (regles CM. 1966), ce
qui est obligatoire en cas de comportement non lineaire.

Alors que l'ingenieur de 1940 n'avait ä sa disposition qu'une theorie
pessimiste en laquelle il n'avait qu'une foi relative, l'ingenieur de 1970 a ä sa
disposition plusieurs modeles mathematiques, dont deux particulierement develop-
pes vers les applications :

- le modele elastique (pessimiste)

- le modele parfaitement plastique (souvent optimiste quant ä la ductilite, parfois

encore pessimiste quant ä la resistance).
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Comme nous l'avons dit dans notre communication au Congres de Rio de
Janeiro [9] il reste ä elaborer une "doctrine-cadre" generale dans laquelle
chacun de ces modeles entrerait, et ä developper d'autres theories particulieres

entrant dans ce cadre (visco-eiasticite appliquee, fatigue plastique et
avec fluage ete...).

La clef de l'elaboration d'une teile "doctrine-cadre" reside dans la
Classification des processus de ruine en fonction d'une part du comportement mecanique

du materiau et d'autre part de la variabilite des charges dans le temps.

Devant la puissance des methodes de la programmation mathematique et leur
adaptation au calcul sur ordinateur, et devant la decouverte de leur applicabi-
lite au calcul des structures, il importe de faire un effort considerable vers
une meilleure connaissance des lois de comportement des materiaux et des modes

d'application des charges, afin de ne pas perdre dans l'incertitude des donnees
de base tout le progres realise dans les methodes de calcul.
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1. INTRODUCTION

The problem of post-critical behavior of structural elements

and structures is not new. The load-carrying capacity of structures

in the post-critical ränge has been attracting attention of
structural engineers for many years, and it has been successfully
utilized in many practical designs. The analysis of the post-
critical behavior of structures has been an interesting and

challenging task of applied mechanics; even very early works in
the theories of bars, plates, and Shells contain investigations of
buckling and post-buckling states.

Thin-walled structures represent the area in which the post-
critical behavior is undoubtedly of greatest importance. Numerous

significant contributions on various aspects of thin-walled structures

were presented at the previous congresses of IABSE. Most

recently, the 8th Congress, held in New York in 1968, had a theme

dealing exclusively with thin-walled structures [1] The reports
by Prof. Winter [2], Dr. Scalzi [3], and Prof. Massonnett [4] give

very extensive and enlightening accounts of the Status up to 1968.

The discussion in the Final Report contains many original theoretical

and practical developments. The comments by Prof. Beer [5]
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emphasize the great potential of structures working in the post-
critical ränge.

Consistent with the spirit of Theme I of the present Congress,

this report will concentrate on the progress of the general

theory, necessarily nonlinear, of the post-critical behavior of
structures. The formulation of the problem, methods of Solution,
and recent results for various types of structures will be

reviewed. An intensive effort of many researchers in the field of
mechanics of solids and structural mechanics generated, especially
in the past two decades, an immense amount of original and important

contributions in the field of the post-critical behavior and

the related nonlinear analysis of structures. This makes the

writing of a report in this field an extremely difficult task,
forcing certain selection of the presented topics. Here,
the effects of large deformations, or geometrical nonlinearities,
will be emphasized at the expense of the effects of the nonlinear
material properties.

The scope of the problem of the post-critical behavior of
structures can be defined by examining typical load deflection
relations.

load

Pult
D

Per
A ./

deflection

a

load load

Uli

p,.=

u

deflection deflection

b c

Fig. 1

If a properly defined load parameter is plotted against a

deflection component of the structure, a diagram of one of the

types shown in Fig. 1 is usually observed. From the origin 0 to
the point A, the structure is in the fundamental path of eguili-
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brium. At the point A, which is referred to as the first critical
point, the path changes either by bifurcation buckling to A - D,

Fig. la, or by snap buckling to B - D, Fig. Ib. Occasionally, no

state of equilibrium exists for loadings above the critical
point A (Fig. Ic). The point D in Figs. la and lb represents the

ultimate state, at which the structure fails by fracture, total
buckling, or plastic flow. It is the path between the point A

and the point D in Figs. la and lb which corresponds to the post-
critical state of the structure, and which is the main subject of
this report.

An engineer's interest in the post-critical state of a structure

is based on the fact that the ultimate load exceeds sometimes

considerably the critical load, and the structure can be perfectly
serviceable in the post-critical ränge. On the other hand, his
caution in utilizing the post-critical loading capacity of the

structure is also well founded, since frequently the deflections
increase quite rapidly, and the deformations may become irreversible.

The above factors justify a thorough investigation of the

problem of the post-critical behavior.

2. FORMULATION OF THE PROBLEM

The equations describing the post-critical behavior of a

structure cannot be based on the assumption of small displacements
and small displacement gradients. The strain-displacement
relations should include at least some of the second order terms, and

the analysis of stress should take into aecount the effect of the
deformed configuration. There are many excellent books and papers
on the foundations of the nonlinear mechanics of solids. The

current state, as well as the historical development, can be

obtained from the works of F. D. Murnaghan [6] C. Truesdell [7],
V. V. Novozhilov [8], [11], A. E. Green and W. Zerna [9], T. C.

Doyle and J. L. Ericksen [10], C. Truesdell and R. A. Toupin [12],
A. C. Eringen [13], L. I. Sedov [14], and M. A. Biot [15].

The following comments are made in order to clarify the posi-
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tion of various special equations of structural mechanics within
the general theory of continuous media. In the general theory,

*
three types of coordinate Systems are being used : (a) Material
(or Lagranean) coordinate system x, with x being the coordin-
ates of a particle P0 in the initial configuration of the body

B0 at the initial time t ; (b) Spatial (Eulerian) coordinate
System z, with z being the coordinates of the position P of
the particle in the deformed, or current configuration B at time

t; (c) Convected coordinate system 5, which deforms with the

body in such a way that to the coordinates 5 corresponding to
the subsequent positions P of a particle P0 remain constant.
For small, or "infinitesimal", deformations the distinetion
between different types of coordinate Systems disappears. The problems

of finite deformation in structural mechanics are usually
formulated in the fixed material system x or in the convected

system §, although it is very seldom that the choiee of the
method of description is stated explicitly. (Also, in many cases,
these two descriptions are formally very similar).

If u (x,t) are the components of the displacement vector in
the system x, the components of the material strain tensor e

in this system are

2AB 2(UA|B + UB|A + UC |
AU°

| A

The components of the same tensor in the convected System t; are
1 ye ft ET(u Ir + urI + ©,l u Ir) (2.2)

Q?P 2 Q.|ß ß[<y y|o, |ß
where u (?,t) are the components of the displacement vector in
the system 5 at Po• the covariant differentiation in (2.2) is
performed in the initial configuration, i.e. using the Christoffel
Symbols corresponding to the configuration of the system § at to.
If at t0 the system e; coincides with the system x, the values

e,T, Tiu, + u_i, + u .u ,© (2.1)

*
The subscripts and superscripts A, B, C,. k, 1, m,. ot, ß,
y,... assume values 1, 2, 3; repeated indices imply summation;
partial differentiation with respect to a coordinate is denoted
by a comma followed by the index of the coordinate; covariant
differentiation with respect to a coordinate is denoted by a bar
followed by the index of the coordinate.
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of the corresponding components of e and e „ are identical.AB ,-V/ß

Frequently, the Systems x and 5 at t0 are orthogonal
cartesian; the system § at t, however, becomes some curvilinear
system, following deformation of the body.

The description of the state of stress in continuum mechanics

is most frequently accomplished in terms of: (a) The spatial,
or Cauchy, stress tensor associated with the position P in the

kldeformed State and with the components p in the fixed system z;
AI(b) The Kirchhoff two-point tensor t associated with the

particle P0 in the system x and with the position P in the

system z; (c) The material, or Piola-Kirchhoff, stress tensor
AB

s associated with the particle P0 in the system x. The

relations between these three tensors are
A AB.ai _ ki ax ab ki ax ax ,_t =Jp —-,s =Jp kl * ]

3z ^z äz

where J dV/dV0 P0/p, with dV0 and dv being the initial and

the deformed volume elements, and P0 and p, the initial and the

current densities, respectively. In the convected coordinates 5,

.«ß, t«ß. Jp«ß (2.4)

If p. is the stress vector referred to unit area in the deformed~(n)
state and acting on the area element whose unit normal vector in
the deformed state is n, its components are

1 ^1 ,_
P(n) =P \ (2-5)

For the stress vector s, referred to unit area in the initial~(n)
state and acting on the area element whose unit normal vector in
the initial state is nD, we have the components in the z system

1 AI ab az ,_s / 1 t n s —— n (2.6)(n) °A B °A
ax

In the absence of body forces, the equations of equilibrium
kl ABin terms of the tensors p and s are

kl n kl lk
P |k 0, p p (2.7)
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r AB, C C n AB BA
[s (6ß + u iB)]|A 0, s s (2.8)

In the convected coordinate Systems §, they read

paß|a 0, paß pßa (2.9)

[saß(^ + u^|a)]ia 0, saß sßa (2.10)

It should be noted that the covariant differentiation in (2.9)
is performed in the deformed configuration of the system §, while
the differentiation in (2.10) is performed in the initial
configuration. (The lack of the displacement gradients in eq. (2.9)
is apparent only; since the coordinate System is that of the
deformed configuration, the effect of the displacement is included.)

In structural mechanics, the components p ' t s ' or
AB

s are used. With the assumption J «s 1, which appears to be

justified in most practical problems; and if the Systems x and

^ coincide at to, we have

sAB s*ß= ^^rf for A Sj B ß> (2>11)

The theory presented by M. A. Biot [15] differs from the
above outline. Biot's theory is geared towards problems of
stability and solutions of large deformations problems in small
incremental steps. The acknowledged efficiency of the incremental
methods of Solution, makes Biot's theory an attractive tool in
structural analysis.

For most structural material in the elastic ränge, the relation

between the stress tensors (s or s and the strain
tensors (e. or e can be assumed in the form of Hooke's law. An

AB aß
exposition of the theory of plasticity for arbitrary deformation
can be found in the paper by A. E. Green and Naghdi [17]. Some

problems of the theory of viscoelasticity for finite deformations

are presented in the paper by Oldroyd [18] and in the book by

A. E. Green and J. E. Adkins [16]. A discussion of the constitu-
tive equations of various materials is beyond the scope of this
paper. Let us only point out that the use of the material or con-
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vected coordinates offers distinet advantages also in this part of
the problem. In fact, most of the constitutive relations used in
the analysis of inelastic structures subjected to small deformations

can be adapted to the present problem without major changes.

Comprehensive reviews of these relations are given in the article
by A. M. Freudenthal and H. Geiringer [19] and in the book by
T. H. Lin [20].

The procedure of derivation of the fundamental equations for
specific types of structures follows the general ideas of the
three-dimensional mechanics of solids. The strain-displacement
relations, the equations of equilibrium in the deformed configuration,

and the stress-strain relations must be established. As a

rule, the assumption of small strains can be made; moreover,

satisfactory theories can be developed by taking into aecount that
only some of the displacements and displacement gradients are

large (e.g. normal deflections of beams and plates).
A theory of moderately large deflections of plates has been

proposed by Th. von Karman in 1910 [21] (see also S. Timoshenko

and S. Woinowsky-Krieger [22]). It retains all the basic assumptions

of the classical (linear) theory of thin plates. The

expressions, however, for the extensional strain components in the

plane of the plate contain the Squares of the gradients of the

normal deflection, i.e., _

e =M + I«2, etc. (2.12)
xx Qx 2 5x

Simüarly, the deformed configuration of the plate is taken into
aecount in the equations of equilibrium which contain terms of
the type 2 2

s Hs H etc- <2-13>
xx ax2 yy ay2

The resulting system of equations may be used in its original form,

or it can be reduced to three equations with the three displacement

components of the middle plane, or two equations for the normal

deflection and a stress function can be written. The choiee

of the final form of the equations depends on the method of solu-

Jg. 4 Einführungsbericht
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tion.
For curved panels, K. Margeurre [23] proposed a theory

whose assumptions are similar to those of Ka'rman' s plate theory.
There are several versions of nonlinear theories of Shells, which

differ mainly in the degree of precision in which the geometry of
the Shell is taken into aecount. This Situation is parallel to
the variety of linear theories of Shells. A discussion of this
can be found in the works of L. H. Donneil [24], J. L. Synge and

W. Z. Chien [25], W. Z. Chien [26], V. S. Vlasov [27], A. S. Vol-
mir [28], Kh. M. Mushtari and K. Z. Galimov [29], J. L. Sanders,Jr.
[30], P. M. Naghdi and R. P. Nordgren [31], W. T. Koiter [32].

Among the methods of Solution of the nonlinear problems of
post-critical behavior, the finite element method appears to be

unusually versatile and effective. The basic ideas and relations
of this method, including stability and large deformations, are

presented in the papers by J. H. Argyris [33] and J. H. Argyris,
S. Kelsey, and H. Kamel [34], and the books by 0. C. Zienkiewicz

[35], and J. S. Przemieniecki [36]. The papers by J. J. Turner,
E. H. Dill, H. C. Martin and R. J. Melosh [37], H. C. Martin [38],
R. H. Mallett and P. V. Marcal [39] concentrate on the buckling

*
and nonlinear problems.

For a linear elastic structure, the finite element method

results in a system of linear algebraic equations of the type

[K]{q] {P} (2.14)
where [K] is the stiffness matrix, {q} is the nodal displacement

vector, and {P} is the nodal load vector. The nodal displacement
vector {q} determined from eq. (2.14) the state of stress and

deformation of the structure. The stiffness matrix [K] depends on

the geometry of the structure, its material properties, and on

the geometry of the finite element system. The vector {P] represents

the external loading on the structure.
If the nonlinear effects of large deformations are taken into

Additional references can be found in a recent survey paper by
0. C. Zienkiewicz [40].
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aecount the Systems of equations for {ql can be written as

([K] + [Kl) {q} {P} (2.15)
y

where [K ] is sometimes referred to as the geometrical stiffness
g

matrix. It depends on {q}; hence, the system of equations (2.15)
is nonlinear. Instead of eqs. (2.15), the incremental formulation
can be used. For the (small) increments of displacement [Aq]
and loading [AP] from the state of equilibrium fql and fp]l S^' rL 1.1 n l n>

the system of equations holds
([K] + [K^]n) (Aq]n {APln (2.16)

where the matrix [K'] is determined at the state fq) The in-
g n L n

cremental formulation is especially suitable for nonlinear elastic
or inelastic materials with incremental stress-strain relations
(e.g. elastic-plastic solids). Then, however, also the matrix
[K] depends on {q} and, its elements in eq. (2.16) have to be

determined at the state fq] Instead of the Systems of equations
(2.15) or (2.16), an energy formulation may be used in which the

vector [q] minimizes the total energy of the system. The methods

of mathematical programming are then employed for the determination
Of {q}.

3. STABILITY

The problem of stability of a structure is usually formu-

lated as follows. Suppose that the loadings are specified by a

vector p. A state of equilibrium is a displacement vector u(x,p)
which satisfies the equations of equilibrium and the boundary
conditions of the structure. The fundamental states of equilibrium,
or the fundamental path of equilibrium, are the displacements
u0 (x,p) single-valued and continuously differentiable in the
components of p, and such that u0 as p-*0. In addition to the

fundamental path, a structure may have, in general, other states
or paths of equilibrium. The points of intersection of different
paths of equilibrium are of two types: bifurcation points and

limit points. They are shown in Fig. 2 for the simple case of one

load component p and one displacement component u.
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o bifurcation point
• limit point

Fig 2.

A precise and practically meaningful definition of stability is
not an easy task. In engineering terms, a State of equilibrium is
considered to be stable if sufficiently small perturbations cause

arbitrarily small displacements of the structure. A path consisting
of stable states of equilibrium is called a stable path. The

states at which a path changes from stable to unstable are called
critical states (or critical points); the corresponding loads are

called the critical loads.
For the above notion of stability, certain criteria, or

tests, of stability have been developed.

According to the static criterion, at a critical point two

infinitesimally adjacent states of equilibrium exist for the same

external loads. If the loads acting on the structure are
proportional to a parameter, and if the fundamental State is linear
elastic, the static criterion leads to the well known eigenvalue
problems, for which an extensive literature is available.

The energy criterion of stability states that in any sufficiently

small displacement from the State of equilibrium the internal

energy stored or dissipated, AE, exceeds the work of the external

loads, AW. Thus the condition of stable or neutral equilibrium
is

AE - AWao (3.1)



M.P. BIENIEK 35

In the case of an elastic structure loaded with potential forces,
eq. (3.1) implies that the change of the total potential energy is
positive or zero,

AUaO (3.2)
The condition (3.2) represents an extension of the Dirichlet
criterion of stability of discrete Systems.

The dynamic criterion is based on the investigation of small
free oscillations about the State of equilibrium. For a stable
State of equioibrium of an elastic structure, all the natural
frequencies of these oscillations are real and different from zero.

In the cases of conservative Systems under conservative
loadings, these three criteria lead to the same lowest critical
values of the load parameter, and the existing experimental
evidence confirms their basic validity; the known examples of
substantial discrepancies between the theory and the experimental
results can be explained by factors other than faults in the basic
concepts of the theory.

The above ideas and criteria form the foundations of the

stability, or buckling, analysis in a large number of problems of
structural mechanics. This theory is the product of over one-

hundred-year effort. Important contributions have been made by
R. V. Southwell [41], S. P. Timoshenk [42], G. B. Biezeno and

H. Hencky [43], E. Trefftz [44], W. T. Koiter [45], H. Ziegler [46],
C. E. Pearson [47], R. Hill [48]. There is a number of excellent
books dealing with the methods of analysis and practical applications.

To mention some of them: S. P. Timoshenko and J. M. Gere

[49], F. Bleich [50], Pflinger [51], C. F. Kollbrunner and M. Meister

[52], G. Gerard [53], A. S. Volmir [54], M. Gregory [55],
H. Ziegler [56].

The actual application of any of the criteria of stability
is based on the equations of small displacements, or vibrations,
superimposed on a State of deformation, and on the expressions for
the corresponding change of energy. They are given in Ref. [16],
[44], and [15] for the general case of a three-dimensional solid.
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In Refs. [49] through [56], and in numerous other papers the

necessary relations are given for various types of structures.
In the finite element formulation, the conditions leading

to the determination of the critical loads are discussed in Refs.

[33], [35], [36], [38, [39] and [57] through [61]. It is worth
mentioning that in the cases of linear elastic fundamental states,
the critical load parameter X follows either from the equation

det|K + XK., | =0 (3.3)

or from

det|K(X) | 0 (3.4)
([K(X)] the stiffness matrix whose elements are known functions
of X). For nonlinear fundamental states, the equation for the

critical load is
det|K' (q0 (X))| =0 (3.5)

where [K'(q0 (X))] is the incremental stiffness matrix corresponding

to the fundamental state {q0 (X)} which, in turn, depends on

the. load parameter X.

In spite of great achievements of the classical theory of
stability, there are certain areas which require more general
approaches or, at least, refinements of the existing methods.

The fallacy of the static methods in the case of nonconservative
Systems has been discovered long ago. A comprehensive review of
this question and of recent contributions has been given by
G. Herrmann [62]. Another area of practical interest is the

stability, or buckling, under dynamic loading. Also, it has been

pointed out (R. T. Shield and A. E. Green [63] R. J. Knops and

E. W. Wilkes [64]), that, in general, the uniqueness of a path of
equilibrium and the energy and the dynamic criteria not necessarily
assure boundedness of the displacements, velocities, and strains.

An important step in answering certain fundamental questions
is the development of the theory of stability of continuous media

(A. A. Movchan [68], [69], [70] and Ref. [64]) along the lines of
Liapunov's general theory of stability of motion [65] (Modern

accounts of this theory can be found in the books by N. G. Chetaev
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[66] and W. Hahn [67]). The major points of this work are: precise

definitions of "initial perturbations", rational measures of
the magnitudes of the initial perturbations and the ensuing per-
turbed motions, rigorous definitions of stability, and derivation
of the corresponding stability criteria. It has been shown, in-
cidentally, that the classical energy criterion corresponds to the

stability, or boundedness, in the mean square value of the

displacements (but not to the boundedness of the maxima of the

displacements)

Further studies on the foundations of the theory of stability
are presented in Refs. [71] to [83]

A relatively new and important problem of the theory of

stability (and in the post-critical buckling) is the effect of
initial imperfections. It has been investigated originally to
explain the discrepancies between the theoretical predictions and

the experimental data in buckling of Shells (L. H. Donneil and

CC. Wan [83], W. H. Horton and S. C. Durham [84]); recently, it
became a part of more general studies on structural stability
(W. T. Koiter [71], J. M. T. Thompson [85], [87], J. Roorda [86];
also the survey paper [76] by B. Budiansky and J. W. Hutchinson).
The effect of initial imperfection may be one of the following:
(a) The equilibrium paths and the critical points are essentially
of the same type as in the perfect structure, with the displacements

and the critical loads slightly influenced by the initial
imperfections. (b) The bifurcation point vanishes; the pre-

(a)

perfect
structure

©/
/ V^imperfect

structure

p perfect

sf structure

//1/
\^_ imperfect

structure

U

Fig. 3.
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buckling and the postbuckling states form a continuous path
(Fig. 3a). (c) The bifurcation point vanishes and a limit point
appears, usually at much smaller magnitudes of the loadings
(Fig. 3b).

The essential factor in the analysis of the effects of
initial imperfections is their shape and size. It is, of course,
possible to assume some unfavorable configuration of the initial
imperfections and to determine the corresponding buckling load
and the postbuckling behavior. Sometimes, conceivably, specific
information concerning the initial imperfections in a structure
may be available. Basically, however, the initial imperfections
are errors of fabrication, of random magnitude and random distribution

over the structure. Accordingly, the Statistical methods

appear to be the most rational approach. The analyses of buckling
of various structures with random imperfections are presented in
the works by V. V. Bolotin [88] and [89], W. E. Boyce [90],
J. M. T. Thompson [91], B. Budiansky and W. B. Fräser [92], J. C.

Amazigo [93], and J. Roorda [94], There is a close relation
between the Statistical approach to the buckling loads and the

Statistical methods in structural safety.

4. METHODS OF ANALYSIS OF POST-CRITICAL STATES

The primary objective of the analysis is the determination of
a stable State (or states) of equilibrium of the structure for a

given system of loadings exceeding the lowest critical level. In
the case of non-unique solutions, the accessibility of each State
via a realistic path (history) of loading should be evaluated.
The determination of the ultimate loading capacity of the structure
is also an important part of the problem. Frequently, the complete

path (or paths) of equilibrium from zero to the ultimate loading
capacity is required.

The difficulties connected with the nonlinear equations of
the post-critical behavior necessitate the use of approximate and

numerical methods. The presently available solutions are usually
based on one or a combination of the following methods: perturba-
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tion methods, successive approximations, Ritz' method, Galerkin's
method, finite differences and finite element method. The

perturbation methods and the methods of successive approximations
reduce the Solution of the original nonlinear differential equations

to repeated solutions of linear differential equations. The

Ritz, Galerkin, finite difference, and finite element methods

result in a System of nonlinear algebraic equations.
There is an extensive literature on the approximate and numerical

methods; see, for example, Refs. [96], [97], [98], [99],
[100]. The Solution of the nonlinear algebraic equations connected

with some of these methods is a formidable task in itself (Refs.

[101] and [102]). The numerical treatment of the eigenvalue problems,

which arise in the course of this analysis, is described in
Refs. [103], [104], and [105].

K. O. Friedrichs and J. J. Stoker [106] analyse a supported

circular plate subjected to radial aedge compression p, and

described by von Karman's equations. For this problem, they develope

and appraise three methods suitable for three ranges of the ratio
P/p (where p is the lowest buckling load): a perturbation
method for ^p/p <2.5, a power series Solution for 2.5<p/p <2 5,

an asymptotic Solution for p/p -°= with a perturbation method for
very large values of p/p

W. T. Koiter ([45] and [71]) discusses the energy method

for the analysis of the initial post-buckling behavior of an

arbitrary elastic structure. The determination of the critical points
and buckling modes is accomplished with the aid of a stability
criterion. The initial post-buckling deflections in the vicinity
of a bifurcation point result from the minimizing of the energy
increment functional. The stability at the critical point and the

stability of the post-buckling states is investigated in terms of
the asymptotic expansion of the energy in the vicinity of the

critical point. Koiter's work includes also the effect of initial
imperfections.

An extension of the well-known Newton's method for calculat-
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ing roots of algebraic equations to the differential equations of
nonlinear mechanics has been presented by G. A. Thurston [107],
[108].

In general, the problem of determination of stable states of
postbuckling equilibrium is not an easy one. The difficulties of
the analysis beyond the first bifurcation or limit points exist
even if the task is reduced to a System of nonlinear algebraic
equations or a discrete system is dealt with, such as in the finite
element method. The works by A. H. Chilver [109], M. J. Sewell
[110], and J. M. T. Thompson [111], [112] contain further research
on the methods of analysis.

The difficulties in the tests of stability and in the search

for critical points make the linearization of the pre-buckling
states an extremely tempting step. The consequences of this
linearization are discussed in a paper by A. D. Kerr and M. T.

Soifer [113].

5. APPLICATIONS

Trusses and Frames

For certain types of statically indeterminate, pin-jointed
plane or space trusses, the post-buckling behavior can be determined

in a relatively elementary manner, with the assumptions that
the bars in their pre-buckling states are linearly elastic, the
compressive forces in buckled bars remain constant, and the changes

of the geometry of the truss are negligible. If successive buck-

lings of individual bars occur at the load levels \^,...\ the1' n
load-deflection history is as

shown in Fig. 4. E. F. Masur

[114] has derived the lower and

upper bounds for the ultimate
loads of redundant trusses in
post-critical states. There is
an analogy between this phenomenon

and the elastic-plastic
Fig. 4. behavior of certain frames.

Ulf

(Per) X

\„--
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The assumptions listed above are not always satisfied; in
numerous structural Systems the changes of geometry influence the

pre-buckling and post-buckling behavior, which become strongly
nonlinear. A typical example is the truss shown in Fig. 5, with

similar conditions existing in
shallow reticulated Shells.
Large deflections cause also

non-negligible secondary bend-

moments; consequently, a truss
must be analyzed as a frame

Fig.5. (unless, of course, pin joints
are actually constructed).

The classical works (Bleich [50]) in the area of stability of
frames reduce the problem to a system of equations which are

linear with respect to the Joint displacements and rotations and

Joint forces and moments. The coefficients of these equations are
known functions of the load parameter \. While this approach has

been successful in predicting the critical loads in many practical
applications, it is inadequate for dealing with the post-critical
behavior or for the cases when the pre-buckling behavior is
nonlinear.

The analysis of the post-critical behavior and the fundamental

states, and the determination of the critical loading conditions of
a plane or space frameworks should take into aecount the following
effects: (a) The influence of the axial forces acting in the

individual bars on their stiffness characteristics. (b) The non-

linearities of the force-displacement relations in the bars (the
effect of bending curvature on the relative axial displacement of
the ends, large bending deformations, material nonlinearities, etc.)
(c) The effect of the changes of geometry on the equations of
equilibrium. An extensive discussion of the nonlinear effects in
the frame behavior may be found in the works by R. K. Livesly [115],
M. R. Hörne [116], [117], S. J. Britvec and A.H. Chilver [118],
S. A. Saafan [119], R. W. Williams [120], J. H. Argyris [33], and
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R. H. Mallett and P. V. Marcal [39] ; Th. V. Galambos, G. C.

Driscoll, and L.-W. Lu report some related experimental research

[121].
The results of the analysis which takes the above effects into

aecount differ considerably from the stability problem of pin-joint
trusses of linearized rigid-joint frames, not only quantitatively
but also qualitatively. For example, the presence of primary and

secondary bending moments will remove at least some of the bifurcation
points in the equilibrium path (such as in Fig.4)and the behavior

up to the ultimate load may consist of the fundamental path only.
The absence, however, of the bifurcation points should not be

assumed in advance. (To this effect, see H. L. Schreyerand E. F.

Masur [122]). Also, a nonlinear analysis may reveal the existence

of snap-buckling at certain load levels (Fig. lb), which is entirely
beyond any linearized theory.

Under certain circumstances, some of the effects listed above

may be disregarded. For example, J. H. Argyris [33] proposes a

method of analysis which neglects the influence of axial forces on

the element stiffness. Accordingly, the buckling phenomena within
individual elements cannot be predicted with this theory. If,
however, the elements are relatively Short and stiff, and the problem

is such that the buckling "waves" extend over several elements,
the analysis should yield satisfactory results, with considerable

simplification of the numerical work. The theories presented by

R. K. Livesley [175], J. D. Renton [122], S. J. Britvec and A. H.

Chilver [118], R. J. Aguilar and T.-A. Huang [124], S. J. Britvec
[125], S. S. Tezcan and B. Ovunc [126], J. J. Connor, R. D. Logeher,
and S.-C. Chan [127] assume flexible elements to which the linearized

theory of bending with axial loading is applicable. The

stiffness coefficients of these elements contain trigonometric or

hyperbolic functions of the axial forces. With the equilibrium
equations written in the deformed configuration, the problems of
local buckling, overall buckling (including snap-buckling), and

postbuckling behavior are analyzed. The Systems of nonlinear equations
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of these theories are solved by either iterative or incremental
schemes. The analyses presented by G. Lobel [128], F. W. Williams
[120], C. N. Kerr [129], S. -L. Lee, F. S. Manuel, and E. C.

Rossow [130] utilize the nonlinear bending theory of beams. They

are capable to deal with the problems in which the post-buckling
deflections are of the order of the column or girder lengths.

Some of the problems discussed in this report occur in the

analysis of tall buildings and have been reviewed in the preliminary

report by Professors Steinhardt and Beer [131] (8th Congress,
1968), which contains a very extensive list of references.

Plates
The papers by A. van der Neut [132], G. Winter[2], and Ch.

Massonnet [4] contain comprehensive reviews of previous works on

the post-critical behavior of plates. There are also two recent
books on thin-walled structures (Refs. [133] and [134]), where the

papers by W. J. Supple and A. H. Chilver [13 5], A. C. Walker [136],
J. B. Dwight and A. T. Ractliffe [137], T. R. Graves Smith [138],
and others, deal with plates in post-critical states.

Among most recent contributions, J. W. Dwight and K. E. Moxham

[139] describe their research on welded steel plates in compression.
The work reported by them is obviously a necessary step without
which a füll practical utilization of the post-buckling strength
of plates would not be acceptable. K. R. Rushton [140] analyzes
the post-critical state of tapered plates. The problem of a plate
with three edges simply supported and one edge attached to a

stiffener has been investigated by K. Klöppel and B. Unger [141],
the analysis is based on the von Kärmän equations and the energy
method. The computed deflections agree very well with the results
of a test program. An analysis of the post-critical behavior of
thin plates, employing the finite element method has been presented
by D. W. Murray and E. L. Wilson [142], [143]. The effect of creep
deformation on the post-critical behavior of compressed plates has

been investigated by I. M. Levi and N. J. Hoff [144].
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Shells
The problems of post-critical behavior become probably most

interesting and difficult in the theory of Shells. They have

received ample attention from many researchers, and a list of
publications in this field could easily reach a few hundred
positions. A review of the research on shell buckling has been made

by Y. C. Fung and E. E. Sechler in 1960 [145]. The book by A. S.

Volmir [54] contains numerous Russian contributions.
The load-displacement behavior of cylindrical shells under

axial compression has been analyzed by Th. von Kärmän and H. S.

Tsien [146], W. T. Koiter [147], B. 0. Almroth [148], N. J. Hoff,
W. A. Madsen, and J. Mayers [149], R. L. de Neufville and J. J.
Connor [150],and others (see also N. J. Hoff [151]). The load-
displacement relations are of the type in Fig. lb, with strong
imperfection-sensitivity at the critical point A. The ultimate
shape of the buckled shell (Fig. 6) is referred to as Yoshimura

pattern [152]. (This shape, together with considerable loading
capacity of a buckled cylinder,
prompted K. Miura's Suggestion
of a shell structure resembling
Yoshimura's pattern [153]).
The problem of stiffened and

Fiq 6. ,© x © © ©
1 '"A N 7/ ' barreled Shells is analyzed by

J. W. Hutchinson and J. C.

Frauenthal [154].
The nonlinear buckling problem ana the initial post-buckling

behavior of a complete spherical shell has been analyzed by W. T.

Koiter [155], who also gives a review and assessment of previous
work in this area. The papers by J. R. Fitch [156] and J. R.

Fitch and B. Budiansky [157] deal with a similar problem for
spherical caps. Ref. [157] clarifies, in particular, the effect
of the load distribution, and of the shell thickness, on the type
of buckling (bifurcation or snap-through)and on the post-buckling
load carrying capacity.
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An analysis of the initial post-buckling behavior of the
toroidal shell segments has been given by J. W. Hutchinson [158].
The paper by G. A. Greenbaum and D. C. Conroy [159] contains an

example of an efficient numerical analysis of a conical shell.
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SUMMARY

This report reviews the problems related to the analysis of

post-critical behavior of structures, including formulation of the

basic equations, methods of their Solution, and criteria of
stability. Recent applications to trusses, frames, plates and Shells
are outlined.

RESUME

Ce rapport traite de l'analyse du comportement post-critique
des structures, avec formulation des equations fondamentales, les
methodes de leur resolution et les cryteres de stabilite. On

presente aussi les applications recentes aux treillis, aux cadres,
aux plaques et aux voiles.

ZUSAMMENFASSUNG

Dieser Bericht bahandelt die Probleme der Berechnung des

überkritischen Verhaltens von Tragwerken, einschliesslich die
Formulierung von Grundgleichungen, der Methode ihrer Lösung, und der

Stabilitätskriterien. Neue Anwendungen auf Stabwerke, Platten und

Schalen sind beschrieben.
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