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L'influence de la plasticité et de la viscosité sur la résistance et la
déformation des constructions

Der Einfluss der Plastizitat und der Viskositat auf die Traglast und
die Verformung von Tragwerken

The Influence of Plasticity and Viscosity on the Strength and
Deformation of Structures

M. SAVE CH. MASSONNET
Professeur a la Faculté Polytechnique Professeur a I'Université
de Mons de Liege

1. INTRODUCTION.

1.1. Contenu du rapport.

Le théme décrit par le titre ci-dessus est extrémement vaste. Il a fait
1'objet, dans les quarante derniéres années, de travaux de recherche innombra-
bles et de dizaines de livres.

Dans le présent rapport, nous nous limiterons a deux matériaux : 1l'acier,
considéré comme un matériau €lasto-plastique, et le béton considéré comme un ma-
tériau visco-élasto-plastique aux caractéristiques dépendant de 1'dge, tous deux
a la température ambiante. Nous nous intéresserons aux doctrines de calcul in-
élastique des structures formées de ces deux matériaux. Nous rappellerons les
éléments essentiels de ces doctrines dans leur état actuel, nous soulignerons les
points délicats ou non résolus et nous tenterons de dégager les voies de recher-
che les plus intéressantes. L'historique et les exposés détaillés de ces métho-
des de calcul pourront &tre trouvés dans les textes de références.

Afin d'éviter toute duplication avec les travaux du Colloque de Madrid de
septembre 1970 sur 1'influence du fluage et du retrait sur les constructions en
béton, nous nous contenterons d'évoquer les applications essentielles du mod€le
visco-élastique linéaire.

1.2. Le modéle parfaitement plastique.

La Mécanique des Solides déformables schématise les corps réels en des modé-
les mécaniques pour lesquels elle construit des théories mathématiques rigoureu-
ses.

En théorie des structures, le modéle parfaitement plastique est apparu avec
les travaux de G. de Kazinczy [1], en 1914, et de N.C. Kist EZ] , en 1917, sur
les poutres fléchies. I1 comporte les hypothéses suivantes

-1. le moment fléchissant dans une section droite ne peut dépasser un seuil, ap-
pelé moment plastique (M_ en flexion positive, M' en flexion négative) indé-
pendant de la déformatiof subie par cette sectioR (plasticité parfaite).
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-2. quand ce seuil est atteint, les parties adjacentes 3 la section droite peu-
vent subir une rotation relative permanente arbitraire sous moment constant
(plasticité parfaite), cette rotation ayant obligatoirement le méme signe
que le moment fléchissant (loi d'écoulement). On dit qu'il s'est formé une
"rotule plastique dans la section'.

Sous un systéme de charges dont toutes les grandeurs sont proportionnelles
d un seul paramétre scalaire P, une structure formée de poutres fléchies parfai-
tement plastique posséde une ''charge limite' P, valeur du paramétre de charge
a laquelle elle se transforme, par formation d'un nombre suffisant de rotules
plastiques, en un mécanisme cinématiquement déformable, sous charge constante By
tant que le changement de forme produit par le mécanisme reste négligeable.

Dans 1'état limite qui vient d'é€tre décrit, le champ des moments fléchis-
sants satisfait aux conditions d'équilibre et ne viole pas la condition de plas-
ticité :

M s Ms M 1
b . (M

Tout champ de moments ayant en commun avec le champ a 1'état limite de sa-
tisfaire aux conditions d'équilibre et 3 la condition de plasticité (1) est dit
''statiquement admissible''. Si son paramétre de charge est appelé P-, le pre-
mier théoréme fondamental de 1'analyse limite, dit théoréme statique (ou de la
borne inférieure) nous apprend que : [i]Eﬂl}j (6]

P_ < P2 (2)

Dans 1'état limite, le mécanisme fait produire aux charges appliquées une
puissance positive Pe'

Si le mécanisme comporte n rotules positives de vitesse de rotation 6. et
m rotules négatives de vitesse de rotation 6., la puissance dissipée dans “les
rotules est J

n m .
D = &t M. +1T M'. |e.]| (3)
i=1 p1 1 J=1 PJ J
La conservation de 1l'énergie impose
P = 1D 4)

équation qui fournit P,.

Tout mécanisme ayant en commun avec le mécanisme de 1'état limite de
fournir une puissance positive P_ est dit cinématiquement admissible. Si on
appelle P, son paramétre de charge calculé par 1'équation de puissance (4), le
second théoréme fondamental de 1'analyse limite, dit théoréme cinématique (ou de
la borne supérieure) nous apprend que [3], [4], [5], [6]

B, 2 P, ()
Quand P_ = P_, on a, d'aprés (2) et (5),
B =1 =F (6)

(théoréme combiné).
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Cette situation se présente quand le champ de moments statiquement admissible

et le mécanisme cinématiquement admissible se correspondent par la loi d'écou-
lement : signe 6; = signe Mi en toute rotule i, On a alors une solution complé-
te.

La théorie qui vient d'étre esquissée s'étend facilement aux structures
plus complexes comportant plusieurs variables statiques Q. (1 =1, 2, ... n)
poutres simultanément fléchies, tendues (ou comprimées) et tordues, plaques,
coques [7], [8]. Un élément de structure posséde une condition d'écoulement
représentée dans 1'espace des forces internes Q. par une surface d'écoulement
fixe et convexe vers les axes positifs. Tout cﬁamp de sollicitations internes
en équilibre et représenté par des points a l'intérieur de la surface ou sur
celle-ci est statiquement admissible. I1 fournit une approximation P_ de la
charge limite.

Si on superpose 3 1'espace des Q. 1l'espace des vitesses de déformation
correspondantes q. (si Q, est par exefple un moment, (, est une vitesse de cour-
bure, Q. un effort normal, g, une vitesse d'extension Au de contraction, etc...),
la loi g'écoulement s'exprim% par la normalité du vecteur de composantes §q. a la
surface d'écoulement au point de contraintes de composantes Q;» situé sur Ia sur-
face.

Un mécanisme cinématiquement admissible est maintenant décrit par un champ
de vitesses de déplacement, dont dérivent les champs des q. 4 1'aide desquels on
peut, par la loi de normalité, calculer la dissipation. En égalant la dissipa-
tion 3 la puissance, positive, des forces appliquées, on obtient une approxima-
tion P_ de la charge limite.

Cette théorie s'applique également lorsque les charges se divisent en un
systéme de charges permanentes données, incapables a elles seules de produire la
ruine par mécanisme, et en un systéme de surcharges i un paramétre P_ [3][7].

La charge limite est alors la valeur limite P de PS telle que 1l'ensemble des

charges conduise a 1'état limite. On a =1
N g 7
PS,_ Ps,z < PS,+ )
ou P et P sont, une fois associés aux charges permanentes, fournis res-

pectfvement par les méthodes statique et cinématique. On peut ainsi suivre d'as-
sez prés les recommandations du C.E.B. [g] et de la C.E.A.C.M. en utilisant une
limite d'écoulement ''de calcul' déduite d'une limite d'écoulement caractéristique
tenant compte de la dispersion dans les limites d'écoulement mesurées, et deux
coefficients de majoration des charges, 1'un y_ sur les charges permanentes et
1'autre y_ sur les surcharges. La valeur de *y_ étant fixée,il faut s'assurer
que, a 1'"état limite de ruine par mécanisme, y , est supérieur d la valeur im-
posée. Parallélement a cette fagon pratique d'8vdluer la sécurité, on peut envi-
sager de considérer certaines variables comme aléatoires (la limite élastique de
certaines barres par exemple) de distributions connues, et rechercher la distri-
bution correspondante de P ,, Il s'agit 13 d'un probléme de programmation sto-
chastique @oﬁ. .

Si 1'on fait un dimensionnement (et non une analyse) il est possible d'assu-
rer une charge limite minima P, imposée tout en optimisant la structure.
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Dans cet ordre d'idées, la théorie du dimensionnement plastique de poids
minimum peut actuellement fournir un grand nombre de solutions, tant analytiques
que mécaniques, de problémes d'ossatures, de plaques et méme de coques, soumises
3 des charges fixes ainsi qu'a des charges déplagables [11].

Jusqu'a présent, nous ne nous sommes pas préoccupés du comportement de 1'é-
1ément de structure avant son écoulement plastique, a la seule réserve prés que
la structure doit rester, juste avant la ruine, assez peu déformée que pour pou-
voir €tre étudiée dans sa géométrie initiale. Si maintenant nous supposons que
1'élément de structure est élastique linéaire jusqu'a son écoulement plastique,
nous pouvons €tudier pas a pas le comportement de la structure en tenant compte,
si nécessaire, de 1'influence des déformations élasto-plastiques sur les effets
des forces. Nous obtenons ainsi la force portante de la structure, da partir de

laquelle les déplacements croissent sous charge décroissante [6],[7].

Le comportement post-limite décrit par la forme de la courbe liant le para-
métre de charge P 34 un déplacement caractéristique 6§ aprés formation du mécanis-
me de ruine est trés important 3 connaitre. Selon que cette courbe est descen-
dante ou montante, la charge de ruine par mécanisme est une charge d'écoulement
ou bien seulement la charge 3 partir de laquelle 1'accroissement de force por-
tante de la structure ne peut se produire qu'au prix de grandes déformations
permanentes. Cette €tude peut se faire 3 1'aide du modéle rigide - parfaitement
plastique.

Tous les problémes évoqués ci-dessus peuvent &tre traités par des méthodes
de calcul qui sont actuellement bien &tablies [6],[7.

I1 est trés important de faire remarquer ici que, sur la base des théorémes
fondamentaux, 1'analyse limite plastique peut se formuler comme un probléme de
programmation linéaire [6].

Tous les résultats de la programmation mathématique et tous ses algorithmes
de calcul lui sont donc applicables. Il en est de méme pour le dimensionnement
de poids minimum [6] . De nombreux problémes spécifiques ont déja €té résolus
de cette maniére.

Avec 1'augmentation de puissance des ordinateurs, la méthode basée sur la
programmation linéaire [11, 6] semble avoir pris le pas,en rendement-machine,
sur les méthodes spéciales développées antérieurement par Heyman [12, 6] et par
Prager - Heyman [13, 6] et programmées par Kalker [14] . Par ailleurs, la meil-
leure méthode manuelle d'étude des ossatures semble rester celle par combinai-
son de mécanismes simples, due i Neal et Symonds [15, 6] et basée sur le théo-
réme cinématique.

Un essai de programmation de cette méthode sur ordinateur,di a& Cohn et
Grierson [16] , a conduit d@ un programme nommé COMECH,qui effectue toutes les
combinaisons de mécanismes A un degré de liberté et se révéle par conséquent
comme assez inefficient d&s que le degré d'hyperstaticité de la structure de-

vient important.

Dans un travail non publié communiqué a 1'un des auteurs du présent rapport,
Mr. Jubete Portilla a trouvé une méthode permettant de sélectionner automatique-
ment les mécanismes combinés de maniére 3 augmenter le moment plastique (dans le
probléme de dimensionnement restreint). Cette méthode devrait pouvoir conduire
d un dimensionnement efficient sur ordinateur.
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1.3. Le modéle viscoélastique linéaire.

Les recherches expérimentales de Glanville [17]et Davis [i8] ont montré que
le béton de ciment est essentiellement un matériau viscoélastique linéaire,
c'est-a-dire que, toutes choses égales d'ailleurs, la déformation de fluage est
proportionnelle, a 1la contrainte appliquée. Il en résulte qu'on peut appliquer
le principe de superposition de Boltzmann, selon lequel il est permis de superpo-
ser les effets de fluage provenant de plusieurs états de contrainte, en considé-
rant la durée de leur application et la date de leur début d'application.

Depuis ces recherches fondamentales, le fluage et le retrait du bé&ton - qui
sont indissociables - ont été 1l'objet de recherches expérimentales trés nombreu-
ses (cf. par exemple les publications du C.E.B. et Kesler [19] ), qui ont permis
de mettre en évidence les principaux paramétres qui contrdlent ces phénoménes.
I1 est clair aujourd'hui que la déformation de fluage est une fonction complexe
non seulement de la composition du béton considéré, mais encore de la forme de
1'élément étudié de ses dimensions absolues, de son pourcentage d'armatures, des
variations du degré hygrométrique de 1'atmosphére dans laquelle 1'€lément est
plongé. Il n'est pas possible actuellement de prédire avec précision les pro-
priétés de fluage d'un €lément a partir des données ci-dessus.

D'autre part, on peut dire que 1'analyse théorique des corps viscoé€lastiques
linéaires a fait, dans ces vingt derniéres années, des progrés immenses.
Le modéle mécanique généralement admis pour ces corps est _une combinaison de res-
sorts et de dash-pots linéaires. On peut montrer Ego, 21] que, quel que soit le
nombre de ses €léments, le modéle obéit en traction simple a la loi :

Po = Qe (8)
ol P et Q sont les opérateurs différentiels linéaires :
m K n K
d d
P = Ipp—, Q= Iq —% (9)
K K K K
9 dt 9 dt

Souvent, on considére comme suffisant le modéle de Kelvin (fig. 1) qui
L obéit a 1'équation :

o = Ee + e (10)

Une autre technique d'analyse est celle basée sur les inté-
grales héréditaires de Volterra. Elle a l'avantage de
mieux se préter 3 la représentation d'un matériau dont les
propriétés dépendent de 1'dge. On y admet que le béton
simple sollicité par une contrainte de compression cons-
tante o 3 partir du temps 1 (appelé &ge du béton) présen-
te au temps t > t la dilatation totale (€lastique plus de
de fluage)

e=0[E—1c?j-+C(t, T)] - o § (t, 1) (1)

Fig. 1. qui est linéaire en o.

La plupart des auteurs admettent que la fonction C (t, 1) peut s'écrire :

C(t,u)=f(x)C(t-r1)
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o(t,t) ) .
Dans ce cas, les parties courbes de la figure 2

sont semblables de forme. Si la contrainte
varie suivant la loi connue ¢ = ¢ (1), on admet
avec Boltzmann que la dilatation totale € est
donnée a un instant t quelconque par la formule

t
¢ =0 (1)) 6 (t, ) + [ dolr) s¢e,0dc (12)
T
1

Ce modéle suffit pour analyser les poutres, ca-
dres et portiques, dont les barres travaillent
- Fig., 2.- en flexion composée. Si, par contre, on veut
analyser les effets viscoélastiques dans les coques et dans d'autres piéces a
trois dimensions, on doit tenir compte du fait que les déformations de fluage
en dilatation sont beaucoup moindres en dilatation qu'en distorsion; on doit

alors décomposer le tenseur contrainte & en chaque point en sa composante sphé-

rique
s o)
_ 1
s= |o o) avec s = — (o_ + g+ o)
z > y z
o)
et son déviateur
s s
Sx xX¥ "X
S=|s 3 s
Xy ¥y yz
s s S
Xz “yz "z
vec S. = o_ - S, etc... = .
a » X , etc " sXy Txy’ etc

De méme, on doit décomposer le tenseur déformation e en sa composante sphérique
représentant une dilatation pure

e 0 o |
1
= = — + *
e o] € o] avec e 3 (ex ey sz)
o} e
et sa distorsion
e, exy e,
E= |e e e
¥ Yz
xz eyz ©; ]
avec e = ¢ -¢e, etc..,, € =g _, €tC...
X X Xy Xy
Les lois fondamentales les plus générales du corps viscoélastique linéaires s'é-
crivent alors
P's = Que
iP!S = Q'E (13)

ou P', P, Q', Q' sont quatre opérateurs différentiels lin€aires différents ana-
logues a P et Q. '
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Une littérature extrémement abondante, basée sur les lois [8] ou [ji] et
employant comme outil mathématique essentiel la transformation de Laplace, s'est
développée ces vingt derniéres années. Cette littérature €tant largement igno-
rée des ingénieurs des constructions, il vaut la peine de citer les quelques
synth&ses de ces travaux qui sont suffisamment complétes et en méme temps relati-
vement faciles a lire.

Pour les corps dont les propriétés ne dépendent pas de 1'4dge, on recommande
le chapitre (Viscoelasticity) rédigé par E. H. LEE, dans le Handbook of Enginee-
ring Mechanics édité par le Professeur W. Flugge [22Z] ainsi que 1l'excellent li-
vre de Flugge intitulé 'Viscoelasticity'. Ces deux ouvrages ont peut-&tre plus
en vue 1'application aux matiéres plastiques qu'au béton de ciment. Par contre,
le livre d'Aroutiounian [23] basé sur 1l'emploi des intégrales héréditaires, envi-
sage particuliérement 1'effet de 1'4ge du matériau et 1'application au béton.

I1 n'existe pas, en viscoélasticité, de théorémes généraux €quivalents aux deux
principes fondamentaux de l'analyse limite (cf. § 1.2.). Néanmoins, on peut met-
tre en évidence les deux principes de correspondance qui donnent la solution d'u-
ne classe restreinte de probleémes pratiques.

Ces principes ont été découverts par T. Alfrey [24] et D. Mc. Henry [25], en se
basant d'ailleurs sur des lois de viscoélasticité 1égérement différentes. Le
livre de Levi et Pizzetti, paru en 1951 [28] ol ces principes portent le nom de
théorémes d'isomorphisme, a contribué & les clarifier et a les diffuser. On
donne ci-aprés les énoncés de ces principes pour le cas d'ossatures faites de
barres soumises a flexion composée,d'apres [g1] :

Si 1'on applique 3 une structure viscoélastique linéaire une mise en charge
simple dans laquelle toutes les forces extérieures varient en fonction du temps
suivant la méme loi L(t), les contraintes en tout point et les réactions hypers-
tatiques éventuelles évoluent suivant la m@me loi et sont 3 tout moment €gales a
celles qui naitraient, sous l'action des mémes forces, dans la structure corres-
pondante, parfaitement é€lastique. Les déplacements et déformations évoluent tous
proportionnellement suivant la loi y(t) identique & la loi d'allongement par flu-

age d'un barreau tendu sollicité par 1l'effort de traction L(t).

Cas particulier important : Dans le cas simple ol 1l'on applique brusquement au
temps t des forces de volume et de surface que 1'on maintient ensuite constantes,
les contraintes dans la structure viscoélastiques prennent une valeur constante.
Par ailleurs, le déplacement d'un point quelconque varie en fonction du temps
suivant la loi du fluage en traction.

Deuxiéme principe de correspondance.

-~

Si 1'on donne a une structure viscoélastique linéaire non chargée certains
déplacements qui évoluent tous proportionnellement en fonction du temps suivant
la loi L(t) (avec L(t) = 1} les déplacements et dilatations de tous les points
de la structure évoluent suivant la méme loi et sont,a l'instant t = t, identi-
ques d ceux qui naitraient sous 1l'effet des déplacements imposés dans la struc-
ture correspondante parfaitement élastique du module d'élasticité E(tr). Quant
aux contraintes et réactions hyperstatiques, elles sont 3 tout moment proportion-
nelles a celles qui existeraient dans la structure parfaitement €lastique. Le
coefficient de proportionnalité est 1'effort de traction g(t) nécessaire pour

~

soumettre un barreau du matériau viscoélastique 3 un allongement imposé & = L(t).
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Remargue : L'énoncé général ci-dessus s'applique également au cas ol la structu-
re subit une variation thermique ou un retrait dont la loi dans le temps est
connue, car on peut aisément calculer les déplacements d'appui €quivalents a ces
phénoménes. On voit, par conséquent, que les effets défavorables du retrait et
du tassement c¢'appui accidentels dans des constructions en béton sont considéra-
blement atténués par le fluage du béton.

Cas particulier important : Dans le cas simple ol 1'on donne brusquement,a
1"instant 1, des déplacements d'appui connus d une structure viscoé€lastique non
chargée, cette structure prend brusquement une déformation fixe. Les contrain-
tes en tout point et les réactions hyperstatiques éventuelles prennent brusque-
ment les valeurs qui correspondent 3 la structure parfaitement €lastique de ré-
férence et décroissent ensuite au fil du temps selon la loi de relaxation valable
en traction simple.

X
X X

Pour 1la généralisation de ces principes aux corps continus gouvernés simul-
tanément par les_deux lois de fluage [13] , nous renvoyons i la littérature
(cf. par ex. [20].

La grande importance des principes de correspondance résulte du fait qu'ils
permettent une appréciation plus réaliste de 1'effet sur les structures en béton
des tassements d'appui, variations thermiques, etc...

I1 est clair que de nombreux problémes relatifs a 1'effet du fluage sur les
constructions en béton ne peuvent se réduire a 1l'emploi pur et simple des princi-
pes de correspondance. En employant des méthodes pas a pas, on peut écrire des
programmes pour ordinateurs qul résolvent les problémes les plus complexes.
Zienkiewicz [26] a montré comment, par la technique des €léments finis, on peut
ainsi aborder des problémes de piéces planes, plaques fléchies, et méme des pié-
ces des formes les plus complexes telles que barrages-voiites et les enveloppes
de réacteurs nucléaires en béton précontraint.

On peut donc affirmer qu'a 1'heure actuelle, en y mettant le prix en program-
mation et consommation d'heures ordinateurs, on peut résoudre a peu prés n'im-
porte quel probléme dés que les lois fondamentales ont été formulées. On ne
saurait cependant mettre trop les ingénieurs en garde contre le caractére il-
lusoire des résultats de calculs complexes, basés sur des méthodes mathémati-
ques correctes, mais dont les équations de départ (c'est-a-dire les équations
constitutives du matériau) représentent mal le compertement physique du maté-
riau.
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2. STRUCTURES EN ACIER.

2.1. Ossatures.

L'analyse limite plastique décrite en 1.2. suppose que ni la faiblesse des
assemblages ni 1'instabilité €lastique ou €lasto-plastique des €léments de la
structure ne viennent limiter la force portante a une valeur inférieure a P,.
Les régles 3 suivre pour qu'il en soit ainsi ont €té établies a la suite de trés

importants travaux sur ces sujets, surtout entre 1945 et 1965 [29] ..

On dispose donc actuellement d'une doctrine pratiquement achevée pour les
structures en acier, sanctionnée par plusieurs normes [3@1[3{][32] et permettant
1'établissement des projets jusque dans leurs détails [6] ,[33)[34] . Elle s'ap-
plique au moins aux deux principaux aciers de construction (A 37 et A 52), qui
possédent un palier d'étirage suffisant.

Quand ¢ertains éléments de la structure ne peuvent €tre considérés sans dan-
ger comme parfaitement plastiques (cordons de soudure ou boulons d'un assembla-

ge) on est conduit a n'admettre qu'une redistribution limitée des sollicitations

-~

internes entre ces €léments, selon des régles qui restent encore a perfection-

ner [35].

Sous chargement statique a un paramétre, une ossature métallique correcte-
ment dimensionnée par le calcul plastique ne présentera une rupture qu'aprés tres
grandes déformations, loin au dela de la formation du mécanisme. Au contraire,
si les charges varient indépendamment entre des bornes, on peut craindre une ac-
cunulation des déformations plastiques ou méme une rupture par épuisement de la
ductilité. Le calcul de la charge de stabilisation (shake-do n load'), prescrit
par certaines normes [32], n'est alors méme pas suffisant car il faudrait savoir
au prix de quelle déformation permanente elle est obtenue. Par contre, dans des
cas ou le nombre de cycles de chargement prévu est faible, et certaines déforma-
tions permanentes permises, une charge de non stabilisation pourrait étre prise
comme limite. On est ici 4 la frontiére du probléme de la fatigue plastique des
structures, ou presque tout reste a faire.

Le calcul des ossatures en acier a 1'état limite plastique apparait ainsi
comme encore perfectible dans certains points de détail et demandant un dévelop-
pement vers le calcul 3 la fatigue plastique. Il n'en reste pas moins qu'il
constitue, dans le cadre ol il est applicable, une méthode en bon accord avec les
faits expérimentaux, suffisamment simple a employer, et plus réaliste que le cal-
cul élastique qui se référe 3 un état limite (de premiére plastification) dénué
de sens physique réel et généralement hors d'atteinte du calcul (présence de
contraintes initiales de laminage, soudage, etc...).

Le calcul plastique permet d'uniformiser la sécurité des structures isos-
tatiques et hyperstatiques vis-d-vis d'un état limite réel (ruine par mécanisme).
Pourtant, il conduit en général a un dimensionnement plus &ccromique des structu-
res hyperstatiques formées de barres laminées. Il exploite en effet la possibi-
1ité de redistribution des moments lors d'une surcharge, qu entraine une pré-
contrainte automatique aprés déchargement subséquent. Son influence croissante
marque méme les normes de nombreux pays [3€]cd il n'est méme pas encore totale-
ment accepté. Son application tend aussi a s'étendre a de plus nombreux ty-

~ 2

pes de structures et en particulier aux ossatures a €tages multiples.
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Plusieurs normes [:30] [31] [32] admettent le calcul plastique des ossatures
contreventées, quel que soit le nombre d'étages. Four les ossatures non contre-
ventées, la prise en compte des phénoménes du second ordre (effet P, §) qui ameé-
nent 1l'instabilité €lastoplastique d'ensemble avant la preduction de toutes les
rotules de la théorie plastique simple, fait que le dimensionnement de ces ossa-
tures n'est pas encore entré dans les Normes. I1 permet une recherche directe
de la structure de poids minimum (6], &ventuellement par programmation linéaire.
I1 s'inscrit dans le cadre d'une doctrine générale de calcul des constructions
métalliques vis-a-vis des différents états limites que ces constructions peuvent
présenter [9].

2.2. Plaques et coques.

Le calcul a 1'état limite plastique de flexion des plaques en acler est
trés développé (7] [60];cependant il n'a de sens physique que pour des plaques
relativement épaisses. Si v est la minceur de la plaque, rapport de la '"portée
caractéristique'* (diamétre d'une plaque circulaire, petit cOté d'une plaque
rectangulaire) a 1'épaisseur, il semble [7], [38] que 1'on doive se limiter a
p < 40.

Quand . >40, les efforts de membrane dus a la déformation €lasto-plastique,
sont prédominants (ils sont d'ailleurs déja importants en régime purement élas-
tique dés que la charge devient assez grande). La force portante doit donc s'é-
valuer par ure théorie de plaque-membrane élasto-plastique [39) [40] ou plus sim-
plement par une analyse plastique en membrane pure, de forme a pricri inconnue,
[7]. Cette force portante est, en général, continlment croissante avec la dé-
formation plastique et n'est limitée que par celle ci.

Cette influence des changements de forme, pré et post-limite, est moins
grande dans de nombreux cas de coques de révolution [75, mais risque de repren-
dre vigueur dans les €léments de couverture, ou 1'instabilité &lastique peut &tre
prépondérante.
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3. STRUCTURES EN BETON.

3.1. Introduction.

On se bornera dans ce qui suit a examiner les structures en béton armé ou
précentraint. Le matériau béton simple peut &tre considéré comme un matériau
semi-raide, qui manifeste au cours du temps les phénoménes de retrait et de
fluage.

Tout d'abcrd, une piéce quelcongue faite en béton de ciment, libre ce se dé-
former, et placée dans une atmosphére non saturée d'humidité subit au cours du
temps un raccourcissement triaxial appelé retrait. Ce phénoméne est indépendant
de 1'état de contrainte. De plus, une piéce de béton soumise de facon permanen-
te @ 1'action de forces extérieures subit, outre une déformation €lastique ou
€lasto-plastique instantanée, une déformaticn différée pertiellement irréversi-
ble appelée fluage. Ces phénoménes ont été€ étudiés extensivement au cours des
toutes derniéres années.

3.1.1. Le retrait du béton armé.

D'aprés les Recommandatiors du Comité Mixte CEB-FIP, la dilatation finale
de retrait e d'une piéce en béton armé peut €tre déterminée par la relation :

€ = ¥ o Br (1 - 0,1 EO)

~

ol :
y est le retrait final du bé&ton ncn armé, dépendant de 1'humidité relative du
milieu ae conservaticn ;

a_ est un coefficient traduisant 1'influence de la plus petite dimension de la
pi€ce. Flus cette dimension est faible, plus le retrait est important ; o_ dé-
perd 'du diamétre moyen de la section droite de la piéce, €gal & 2 @/1, ol Q est
1'aire de la section et 1 son périmétre ;

.. est un coefficient dépendant de la composition du béton et principalement du
rgpport eau/ciment et du dosage en ciment ;

@, est le pourcentage géométrique d'ammatures longitudinales de la piéce.

Tous ces ccefficients sent définis dans les Recommandations susdites par
aes courbes expérimentales

Conme le retrait, le fluage d'une piéce en béton armé ou précontraint
dépend principalement des trois variables ci-aprés : conditions climatiques -
dimensions de la pi€éce - compcsition du béton. Le Comité Mixte FIP-CEB propose
une relation permettant de calculer en fonction du temps la dilatation totale
d'une fibre due a une contrainte uritaire, relation dans laquelle interviennent
divers coefficients expérimentaux traduisant 1'effet des variables ci-dessus.

I1 est admis par la généralité des auteurs que la dilatation en un point
est proportionnelle a la contrainte appliquée en ce point ; on peut donc appli-
quer aux structures en béton armé ou précontraint la théorie des corps viscoé-
lastiques linéaires dont les propriétés dépendent de 1'dge (cf § 1.3.).
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En tenant compte du fluage éventuel des cdbles de précontrainte, il est
donc possible de prévoir le comportement d'un ouvrage en béton précontraint sol-
licité par des postcontraintes appliquées a des temps successifs, comme c'est le
cas pour les ponts construits en encorbellement ou par voussoirs préfabriqués.
Evidemment, il faut tenir compte également du retrait du béton et du fluage des
cables de précontrainte.

Un travail de Fin d'Etudes exécuté par un des €tudiants de la section des
Constructions de 1'Université de Liége, sous la direction du professeur R. Baus,
montre qu'il est possible, moyennant des calculs 3 la portée des bureaux d'études,
d'arriver a3 des prédictions numériques concernant

a) 1'évolution dans le temps de la fléche d'une travée d'un pont continu ;

b) la variation dans le temps des moments dits ''parasitaires'' par feu le profes-
seur Magnel - et de montrer que ces moments croissent avec le temps d'une ma-
niére non négligeable, contrairement 3 la théorie &lastique qui les suppose
constants ;

c) 1'importance de 1l'effet de la relaxation des armatures sur les pertes diffé-
rées de précontrainte, qui est sous-estimée en pratique.

Par ailleurs, il faut veiller, pour les piéces comprimées soumises a des
charges de longue durée, 4 prendre en considération le flambement par fluage.
La théorie des déformations progressives d'une piéce chargée axialement obéis-
sant au modéle visco€lastique P ¢ = Q € du § 1.3. et présentant une déformée
initiale quelconque a &té donnée par Hilton (27]. Il reste &évidemment & 1'in-
génieur a tirer parti de cette théorie en définissant un €tat limite pour la
piéce.

————— ———— v e = = e = P - - = = ————— —_— ———_ ——————— e ——— T ———— — —

Le béton de ciment lui-méme &tant d'autant plus raide qu'il est plus 3agé,
la plasticité d'une piéce en béton armé ou précontraint ne provient que de 1'a-
cier qu'on y a placé et dépend essentiellement

a) du pourcentage d'armature ;

b) de la limite élastique de l'acier utilisé ;

c) du caractére (passif, précontraint, ou mixte) de 1'armature ;

e) de la résistance du béton d la compression ;

d) de la ductilité supplémentaire éventuelle provenant de la présence d'une arma-
ture comprimée et d'étriers [51][55].

I1 en résulte que la ductilité de la piéce en question est essentiellement
variable d'une piéce a 1'autre et éventuellement, pour une méme piece, d'une sec-
tion droite a 1l'autre.

3.2. Dimensionnement non-linéaire des ossatures formées de barres en béton armé
ou précontraint.

3.2.1. Introduction.

Le probléme du dimensionnement 3@ la ruine a donné lieu & un nombre de publi-
cations dépassant largement la centaine, C'est pourquoi nous ne pouvons en don-
ner qu'une bibliographie trés partielle et renvoyer le lecteur, entre autres, au
Symposium d'Ankara du C.E.B. 1964 et au Symposium de Miami de 1'A.C.I.-A.S.C.E.
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Idéalement, on devrait, dans le dimensionnement d'une structure soumise a
un certain chargement, considérer plusieurs stades de ruine de plus en plus sé-
véres et de moins en moins probables [53]. Pour du béton armé travaillant es-
sentiellement en flexion, ces stades pourraient €tre le début de

1. la fissuration fine (d'habitude précédant la plastification de l'acier) ;

2. la fissuration large (d'habitude aprés plastification de 1l'acier) et la dé-
formation excessive ;

3. 1'écrasement et 1'épaufrement du béton ;
4. la ruine locale ;
5. la ruine générale par écroulement de la structure.

C'est pourquoi Sawyer [53] consid®re que, idéalement, le dimensionnement
est une procédure complexe par laquelle on établit une corrélation entre les ré-
sistances de la structure aux différents stades cités ci-dessus et” la probabilité
des charges correspondantes de fagon 3 minimiser le colit total,y compris le cofit
initial et les valeurs des pertes provenant des divers €tats de ruine.

Le dimensionnement élastique linéaire et*le dimensionnement 3 la ruilne ne
sont que des aspects limités de ce probléme général.

Comme il semble impossible d'appliquer pratiquement la procédure ci-dessus,
on doit la simplifier arbitrairement. A ce point de vue, les positions du Comi-
té Européen du Béton [9] et celles exprimées par Sawyer [54 au Symposium de
Miami sur le Comportement inélastique du Béton Armé sont les mé€mes, a savoir que
le dimensionnement du béton armé hyperstatique devrait &tre basé sur deux stades
principaux de ruine :

1) le stade de ruine par fissuration large ;

2) le stade de ruine par écrasement et épaufrement du béton.

La structure doit &tre étudiée dans le premier stade pour garantir une bon-
ne serviciabilité sous les conditions de service. L'étude dans le second stade,

-~

de son cOté, montrera sa résistance effective d une surcharge.

L'opinion la plus répandue est que le premier stade peut étre analysé sur la
base de la théorie élastique. Cependant, Macchi [}9],[305 a montré théoriquement
et expérimentalement que la redistribution des efforts intérieurs commence &
1'apparition de la premiére fissure et que son effet est déja important sous la
charge de service. Cette redistribution existe donc aussi si la structure est
dimensionnée pour les moments fléchissants prédits pour la théorie é&lastique ;
par conséquent, dans ce cas, son effet est défavorable.

Pour ce qui concerne le second stade de ruine, de grandes divergences exis-
tent parmi les chercheurs en ce qui concerne la forme de la courbe moment-courbu-
re ou moment rotation d utiliser comme base de 1'étude, et en ce qui concerne la
meilleure méthode d'analyse.
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Les calculs exécutés sur ordinateur par Ferry Borges et ses collaborateurs
[47] en admettant la loi de conservation des sections planes d'ol découle 1'exis-
tence d'une loi moment-courbure, ont nettement mis en lumiére le fait que.pour
des structures 3 faible degré d'hyperstaticité, on peut compter sur la formation
et la rotation plastique suffisante des rotules plastiques dans le cas de piéces
ayant un pourcentage d'armature nettement inférieur au pourcentage critique, ces
armatures étant faites d'acier doux. Dans ces conditions, le modéle €lastique
(ou rigide) parfaitement plastique du § 1.2. peut s'appliquer de fagon trés sa-
tisfaisante.

Au fur et 3 mesure que le pourcentage d'armature et la limite &lastique de
1'acier utilisé augmentent, la capacité de rotation plastique des rotules dimi-
nue, pour &ventuellement disparaitre totalement (rupture par insuffisance du
béton), et avec elle, le bénéfice di a la redistribution des moments fléchissants.

Selon un travail non publié, ce probléme complexe d'analyse peut se formuler
comme un probléme de programmation mathématique et &tre résolu sur ordinateur
par les méthodes mathématiques correspondantes. On peut, dans ce cas, tenir
compte des variations des propriétés du béton armé d'une section d 1'autre et
des différents états limites qui peuvent €tre atteints.

3.2.4. Procédures de dimensionnement,

Notons immédiatement une différence essentielle entre les ossatures en
acier et en béton : dans les secondes, il est possible de faire varier les pro-
priétés de résistance et de ductilité d'une section a l'autre en variant le
pourcentage d'armature, le frettage par étriers, etc...

Les trois conditions fondamentales qui doivent €tre satisfaites dans un
dimensionnement limite concret des structures en béton armé ou précontraint sont:

1) 1'équilibre limite ;
2) la compatibilité des rotations ;
3) la serviciabilité.

Celd étant, on peut distinguer deux grandes catégories de méthodes de dimen-
sionnement

Premiére catégorie : les méthodes de dimensionnement proprement dites, ol 1'ac-
cent est mis sur 1'optimalisation., Dans cette catégorie rentrent les méthodes
de A.L.L. Baker [@1],[42],[45] de Ferry Borges et collaborateurs [47]), de

Guyon [45], de Macchi [Ail [49], [ 0] , de Sawyer [54], etc... La place nous
manque méme pour présenter ces diverses méthodes. Bornons—nous donc 3 dépeindre
les grandes lignes de la méthode de A.L.L. Baker, qui est une des premiéres et
des mieux connues

Baker considére qu'une structure doit €tre dimensionné€e pour avoir une marge de
sécurité prédéterminée contre la ruine et,dans ce but, développe une technique
simplifiée. De plus, il faut &viter une fissuration et des déformations exces-
sives sous la charge de service, de sorte qu'on a egalement besoin d'une solu-
tion €lastique; cependant cette solution ne doit &tre qu'approchée, parce
qu'elle ne sert qu'a controler que la fissuration n'est pas excessive. Les
deux analyses mentionnées ci-dessus peuvent se faire en utilisant des versions
simplifiées des équations de compatibilité de la méthode des forces (Miller-
Buslan) généralisées pour les déformations non linéaires.
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Deuxiéme catégorie : les méthodes de dimensionnement optimal. Ces méthodes,
dues surtout a Cohn [43][44] et Petcu [51J)ont évolué fortement au cours des an-
nées et la terminologie employée par leurs inventeurs a €galement varié.

Les recherches récentes ont révélé, ainsi qu'on 1'a déja dit (fin § 3.2.3)
la possibilité de formuler le probléme de dimensionnement en sorte que les solu-
tions soient optimales au sens mathématique, c'est-a-dire qu'elles minimisent
des "fonctions économiques'' adéquates qui sont le volume de béton, d'armatures,
ou mieux le colit total de la structure.

Théoriquement, il est possible a4 présent [44] , de formuler (et dans des
cas simples) de résoudre des problémes en satisfaisant simultanément aux condi-
tions d'équilibre limite de serviciabilité, de compatibilité élastique, de limi-
tation des rotations maxima dans les rotules plastiques, et a un critére d'op-
timalité. Cependant, pour 1l'application pratique, il parait plus simplede mecon-
sidérer au départ que les conditions d'équilibre limite et de serviciabilité

[43],[43 bis], [43 ter],[51].

La pratique actuelle du calcul du b&ton ammé & travers le monde ne fait
généralement intervenir qu'un seul contrdle de résistance au lieu du double con-
trble défini au § 3.2.1. ; elle est donc insatisfaisante. De plus, il y a de
grandes variations dans les méthodes employées. En effet, dans certains pays
tels que 1'U.R.S.S., on utilise des relations non linéaires, tant pour détermi-
ner la distribution des moments fléchissants que pour déterminer les dimensions
des diverses sections droites [46] [48]. Au Portugal, les Normes permettant un
certain degré de redistribution découlent des études de Ferry Borges et collabo-
rateurs commentées au § 3.2.3. Dans d'autres pays, on détermine la distribution
des moments fléchissants par la théorie élastique, tandis que le dimensionnement
organique des sections est basé sur leur résistance ultime. Il est donc clair
qu '3 travers le monde, les ingénieurs du génie civil ont des opinions trés di-
vergentes quant 3 la maniére de tenir compte de 1'iné€lasticité des structures en
béton dans leur dimensionnement.

3.2.6. Conclusions.

—— - — —— - = = — = ——

I1 semble qu'aprés une intense activité de recherche déploy€e entre 1955 et
1965, le sujet en discussion soit un peu en veilleuse actuellement. Cela pro-
vient 3 notre avis de la résistance des ingénieurs a exploiter des phénoménes
inélastiques dans les barres fléchies pour des raisons fondamentales de sécurité
et de durabilité de la structure.

Ce point de vue a été clairement mis en évidence en 1964 par Winter, dans
sa discussion introductive présentée au Symposium de Miami [56]. Quelques uns
des arguments du professeur Winter sont résumés ci-apreés

1) 11 y a une différence fondamentale entre le comportement de 1l'acier, matériau
ductile écrouissable, et du béton, matériau semi-raide désécrouissable, dans
lequel les déformations plastiques sont dues @ une micro-fissuration progres-
sive. Cette différence a d'importantes conséquences sur le comportement iné-
lastique des structures faites de ces deux matériaux :

a) Quand une structure continue soudée en acier est chargée jusqu'au point ou

certaines rotules plastiques se sont développées mais que le stade de ruine
n'est pas encore atteint, aucun dommage visible n'a &té produit.

3. 3 Einfihrungsbericht
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Au contraire, quand des soi-disant rotules plastiques se sont développées en
béton armé, une fissuration par traction absolument excessive a déja eu lieu
dans les rotules "'underreinforced' c'est-a-dire de pourcentage inférieur au
pourcentage critique) ou bien des écrasements et épaufrements inadmissibles
ont eu lieu dans des rotules a pourcentage €levé d'ammatures ;

b) Si une structure en acier partiellement plastifiée est déchargée, puis re-
chargée dans le méme sens, on constate que son domaine de comportement é&las-
tique s'est agrandi 3 cause des moments fléchissants résiduels favorables
provoqués par le premier cycle de charge. Dans le cas du béton armé, les
informations concernant le comportement aprés rechargement de structures qui
ont été partiellement plastifiées puis déchargées, semblent rares. Pour de
faibles pourcentages d'armatures, le comportement est probablement semblable

a celui de structures en acier. Pour de plus grands pourcentages, le dévelop-
pement des rotules exige d'utiliser la branche descendante de la courbe mo-
ment-rotation. Or, a ce moment, 1'expérience montre que la structure est une
semi-ruine. On peut accepter de baser le dimensionnement sur un tel €tat de
semi-ruine dans des situations extr@mes telles que violents séismes ou souffle
de bombes nucléaires, mais un état de semi-ruine peut difficilement servir de
critére de dimensionnement pour les structures civiles habituelles.

2) Vu la capacité de rotation limitée du béton armé, si le dimensionnement des
structures en béton armé devait &tre basé sur la charge ultime calculée en
utilisant pleinement cette capacité, il n'y aurait plus de ductilité addition-
nelle disponible pour absorber les effets des tassements d'appui, du retrait
et des effets thermiques, etc ...

3) La ductilité d'une structure en béton armé décroit rapidement quand la limite
élastique de 1'armature augmente, Ainsi, il apparait que le dimensionnement
inélastique est économiquement prometteur principalement pour les aciers doux.
D'autre part, tous les développements de ces dix derniéres années, aux
Etats-Unis comme en Europe, démontrent la supériorité économique des armatu-
res en acier a haute résistance. Nous arrivons ainsi a la situation parado-
xale qu'une nouvelle méthode (le dimensionnement inélastique) est présentée,
qui promet quelque bénéfice économique précisément pour les nuances douces
d'acier qui se voient rapidement remplacées par de plus €conomiques.

3.3. Plaques et coques.

Les plaques en béton amé sont, avec les ossatures en acier, le domaine dans
lequel, 3 1'heure actuelle, le calcul plastique (dit ici aussi ''calcul a la rup-
ture') s'applique le mieux, C'est d'ailleurs au congreés de 1'AIPC (Zurich 1932)
que fut présenté un des premiers mémoires sur ce sujet [57]. Bien que le critére
de plasticité le plus généralement admis reste 1'objet de certaines discussions
[583[59], les applications auxquelles il conduit ont obtenu une bonne vérifica-
tion expérimentale [60] [61]. Les dalles en béton armé sont en effet trés généra-
lement peu armées et suivent donc bien le schéma parfaitement plastique. Les
efforts tranchants y sont négligeables, sauf dans le probléme du poingonnement.
Méme 1'analyse purement cinématique, donnant une charge limite erronée par
excés, est trés souvent acceptée comme suffisante compte tenu de divers effets
stabilisants et 3 condition de prendre i son égard une sécurité adéquate. Ce-
pendant,le progrés est sans aucun doute dans le développement des solutions sta-
tiques, gréce auxquelles on peut distribuer au mieux les armatures [7][61].

Pour des plaques fabriquées en série, on peut méme rechercher 1l'armature de poids
minimum [gZ], et azsurer la rigidité en service par une épaisseur suffisante de
la plaque. De maniére plus générale, on peut, dans le dimensionnement plastique,
imposer une optimisation (prix minimum par exemple) sous diverses contraintes
(charge limite minimum assurée, fléche en service limitée, etc ...).
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Quoi qu'il en soit, 1l'analyse limite cinématique des plaques est actuellement
d'un emploi courant en pratique dans de multiples pays, ol elle est accompagnée
de régles empiriques permettant de pallier 1'absence d'analyse statique.

I1 n'en est pas de méme de 1'analyse limite des coques (couvertures, réser-
voirs, etc...) ol la recherche, théorique [63) et expérimentale [64], [65], en
est encore 3 ses débuts. L'importance du sujet est cependant évidente,car le
"mécanisme plastique' est bien un des plus fréquent modes de ruine d'une coque
en béton armé. Un autre mode tout aussi important est le voilement par fluage,
qui a entrainé plusieurs écroulements. A notre avis, la solution la plus direc-
te de ce probléme est par un essai sur modéle dont le matériau doit représenter
aussi fidélement que possible le matériau réel. La voie théorique exigerait
1'analyse pas a4 pas de 1'équilibre des formes successives en lesquelles la co-
que initiale se transforme par le fluage. Ceci impose bien entendu le recours
a un ordinateur de grande puissance,

4, STRUCTURES MIXTES ACIER - BETON.

La littérature relative aux structures mixtes, dont 1l'exemple principal est
le pont 4 poutres métalliques et tablier en béton, est bien connue des ingénieurs
des constructions. Elle débute avec les recherches de Dischinger [66j et a trou-
vé un développement plus ou moins raffiné dans les ouvrages de Sattler [67] 3
Fritz [68] et d'innombrables articles de revue.

Les calculs de dimensionnement sont assez complexes et sont souvent, a
1'heure actuelle, effectués sur ordinateur. Le modéle rh€ologique adopté pour
le béton est généralement le modéle simple de Kelvin (Fig. 1) qui en fluage sim-
ple se déforme suivant la loi exponentielle bien connue.

L'objection principale i ces méthodes est que la prédiction du coefficient
de fluage est si complexe et si incertaine (cf. [19]) que la signification des
calculs est quelque peu illusoire. Pour ces raisons, il semble que, dans les
pays non de langue allemande, de nombreux bureaux d'é@tudes se contentent toujours
de tenir compte du fluage en jouant sur la valeur du coefficient d'équivalence
m=E /E . Si cette méthode nous parait insuffisante, par contre 1l'emploi des
méthodes raffinées ne se justifiera pleinement que quand on sera mieux armé
pour prédire les propriétés rhéologiques effectives des &léments de béton
qu'il est prévu de mettre en oeuvre, Pour le présent, il faut signaler 1l'excel-
lent petit livre de Birkemnmaier [69] qui, en décomposant 1'effet du fluage en
un petit nombre d'intervalles de temps - souvent un ou deux suffisent - permet
d'obtenir de fagon trés simple des résultats suffisamment précis. La méthode de
Birkenmaier donne toute la précision que l'on désire - il suffit d'augmenter le
nombre d'intervalles at - et est réellement congue dans 1'esprit "ordinateur'.

En conclusion de ce paragraphe, il faut attirer 1l'attention sur la nécessi-
té, sous peine de s'exposer A des déboires, de tenir compte du fluage du béton
si 1'on veut combattre la fissuration de la dalle en béton par dénivellement des
appuis intérieurs dans les ponts continus ou par précontrainte longitudinale des
trongons de la dalle situés au droit de ces appuis.
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5. CONCLUSIONS.

5.1. Influence de la théorie de la plasticité sur la pensée de 1'ingé€nieur
constructeur.

L'introduction du calcul plastique en théorie des constructions a établi
clairement la distinction entre

1) le groupe des lois de statique ;
2) le groupe des lois de cinématique ;
3) le groupe des lois de comportement du matériau,

auparavant trés mélées dans le traitement du seul corps €lastique. I1 a ouvert
la voie vers 1l'étude d'autres comportements (modéle visco-€lastique). La Ré-
sistance des Matériaux et la Théorie des Structures sont ainsi devenues des ap-
plications de la Mécanique des Solides & l'art de 1'ingénieur constructeur.

Jusqu'en 1940, la seule doctrine enseignée et appliquée &tait la théorie
élastique, pessimiste quant 3 la capacité portante de la structure et en désac-
cord avec les régles pratiques de la construction métallique (en particulier
dans le calcul des assemblages). Le théoréme statique, sous sa forme la plus
générale (cf (7] ) était employé intuitivement par les ingénieurs depuis un
siécle. I1 a donné une formulation précise & la régle empirique d'aprés laquel-
le il faut dimensionner les piéces de maniére 4 trouver un chemin pour les efforts
sans violer la capacité de résistance du matériau. Le théoréme statique nous
apprend que cette régle n'est valable que pour un matériau de ductilité infinie.
D'ou :

1) 1'accent mis sur la ductilité et la nécessité de la contrdler soigneusement
lors de la réception des matériaux ;

2) 1'accent mis sur la nécessité de préserver la ductilité pendant la fabrica-
tion (exemple : interdiction des trous poingonnés) ;

3) 1'accent mis sur l'obligation de restaurer la ductilité initiale si elle a
été diminuée par le processus de fabrication (recuit aprés cintrage, aprés
soudage,pour détendre les contraintes résiduelles).

La doctrine plastique a déteint sur la doctrine classique (dite des con-
traintes admissibles) en tendant d faire adopter - dans le cas des charpentes
soumises 3 des charges quasi-statiques - une conception plus simple des assem-
blages et un mode de calcul purement statique ainsi qu'un coefficient de sécu-
rité porté sur les charges plutdt que sur les contraintes (régles C.M. 1966), ce
qui est obligatoire en cas de comportement non linéaire.

Alors que 1'ingénieur de 1940 n'avait 3 sa disposition qu'une théorie pes-
simiste en laquelle il n'avait qu'une foi relative, 1'ingénieur de 1970 a a sa
disposition plusieurs modéles mathématiques, dont deux particuliérement dévelop-
pés vers les applications :

- le modéle élastique (pessimiste)

- le modéle parfaitement plastique (souvent optimiste quant a la ductilité, par-
fois encore pessimiste quant 3 la résistance).
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Comme_nous 1'avons dit dans notre communication au Congrés de Rio de
Janeiro [9] , il reste d élaborer une ''doctrine-cadre" générale dans laquelle
chacun de ces modéles entrerait, et a développer d'autres théories particulié-
res entrant dans ce cadre (visco-élasticité appliquée, fatigue plastique et

avec fluage etc...).

La clef de 1'élaboration d'une telle 'doctrine-cadre' réside dans la clas-
sification des processus de ruine en fonction d'une part du comportement mécani-
que du matériau et d'autre part de la variabilité des charges dans le temps.

Devant la puissance des méthodes de la programmation mathématique et leur
adaptation au calcul sur ordinateur, et devant la découverte de leur applicabi-
1ité au calcul des structures, il importe de faire un effort considérable vers
une meilleure connaissance des lois de comportement des matériaux et des modes
d'application des charges, afin de ne pas perdre dans 1'incertitude des données
de base tout le progrés réalisé dans les méthodes de calcul.
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1. INTRODUCTION

The problem of post-critical behavior of structural elements
and structures is not new, The load-carrying capacity of struc-
tures in the post-critical range has been attracting attention of
structural engineers for many years, and it has been successfully
utilized in many practical designs. The analysis of the post-
critical behavior of structures has been an interesting and
challenging task of applied mechanics; even very early works in
the theories of bars, plates, and shells contain investigations of
buckling and post-buckling states.

Thin-walled structures represent the area in which the post-
critical behavior is undoubtedly of greatest importance. Numerous
significant contributions on various aspects of thin-walled struc-
tures were presented at the previous congresses of IABSE., Most
recently, the 8th Congress, held in New York in 1968, had a theme
dealing exclusively with thin-walled structures [1]. The reports
by Prof. Winter [2], Dr. Scalzi [3], and Prof, Massonnett [4] give
very extensive and enlightening accounts of the status up to 1968,
The discussion in the Final Report contains many original theoret-

ical and practical developments. The comments by Prof. Beer [5]
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emphasize the great potential of structures working in the post-
critical range.

Consistent with the spirit of Theme I of the present Congress,
this report will concentrate on the progress of the general
theory, necessarily nonlinear, of the post-critical behavior of
structures. The formulation of the problem, methods of solution,
and recent results for various types of structures will be re-
viewed. An intensive effort of many researchers in the field of
mechanics of solids and structural mechanics generated, especially
in the past two decades, an immense amount of original and impor-
tant contributions in the field of the post-critical behavior and
the related nonlinear analysis of structures. This makes the
writing of a report in this field an extremely difficult task,
forcing certain selection of the presented topics. Here,
the effects of large deformations, or geometrical nonlinearities,
will be emphasized at the expense of the effects of the nonlinear
material properties,

The scope of the problem of the post-critical behavior of

structures can be defined by examining typical load deflection

relations,.
load load B load
[ S S
Fily =——rr Putt
A Perz| A
Per 17777 B I:)ult
A
Pcr .
C
deflection deflection deflection
0 0 o]
(a) (b) (c)
Fig. 1.

If a properly defined load parameter is plotted against a
deflection component of the structure, a diagram of one of the
types shown in Fig. 1 is usually observed. From the origin 0 to

the point A, the structure is in the fundamental path. of equili-
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brium, At the point A, which is referred to as the first critical
point, the path changes either by bifurcation buckling to A - D,
Fig. la, or by snap buckling to B - D, Fig. 1lb., Occasionally, no
state of equilibrium exists for loadings above the critical

point A (Fig. lc). The point D in Figs. la and 1lb represents the
ultimate state, at which the structure fails by fracture, total
buckling, or plastic flow, It is the path between the point A

and the point D in Figs. la and 1lb which corresponds to the post-
critical state of the structure, and which is the main subject of
this report.

An engineer's interest in the post-critical state of a struc-
ture is based on the fact that the ultimate load exceeds sometimes
considerably the critical load, and the structure can be perfectly
serviceable in the post-critical range. On the other hand, his
caution in utilizing the post-critical loading capacity of the
structure is also well founded, since frequently the deflections
increase quite rapidly, and the deformations may become irrever-
sible. The above factors justify a thorough investigation of the

problem of the post-critical behavior,

2., FORMULATION OF THE PROBLEM

The equations describing the post-critical behavior of a
structure cannot be based on the assumption of small displacements
and small displacement gradients. The strain-displacement rela-
tions should include at least some of the second order terms, and
the analysis of stress should take into account the effect of the
deformed configuration. There are many excellent books and papers
on the foundations of the nonlinear mechanics of solids. The
current state, as well as the historical development, can be ob-
tained from the works of F. D. Murnaghan [6], C. Truesdell [7],

V. V. Novozhilov [8], [1ll], A. E. Green and W, Zerna [9], T. C.
Doyle and J. L. Ericksen [10], C. Truesdell and R. A. Toupin [1l2],
A, C. Eringen [13], L. I. Sedov [14], and M, A, Biot [15].

The following comments are made in order to clarify the posi-
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tion of various special equations of structural mechanics within
the general theory of continuous media. 1In the general theory,
three types of coordinate systems are being used*: (a) Material
(or Lagranean) coordinate system x, with xA being the coordin-
ates of a particle P, in the initial configuration of the body
B, at the initial time ¢t ; (b) Spatial (Eulerian) coordinate
system =z, with zk being the coordinates of the position P of
the particle in the deformed, or current configuration B at time
t; (c) Convected coordinate system g, which deforms with the
body in such a way that to the coordinates gu corresponding to
the subsequent positions P of a particle P, remain constant.
For small, or "infinitesimal", deformations the distinction bet-
ween different types of coordinate systems disappears. The prob-
lems of finite deformation in structural mechanics are usually
formulated in the fixed material system x or in the convected
system £, although it is very seldom that the choice of the
method of description is stated explicitly. (Also, in many cases,
these two descriptions are formally very similar),

If uA(x,t) are the components of the displacement vector in
the system x, the components of the material strain tensor enpg =
in this system are

+ u + u (2.1)

e Ay C
®aB ~ 2'"alB T "B[a T “c|a" |a

The components of the same tensor in the convected system £ are
1 Y

e = —(u + u + u u 2:2

B = 2% 18 ¥ Ysle ¥ Yyl |8 (2.2)

where u (g,t) are the components of the displacement vector in
3

the system g at P the covariant differentiation in (2.2) is

03
performed in the initial configuration, i.e. using the Christoffel
symbols corresponding to the configuration of the system g at t,.
If at t, the system ¢ coincides with the system x, the values

%)

The subscripts and superscripts A, B, C,..., k, 1, m,..., «~, B,
Ys... assume values 1, 2, 3; repeated indices imply summation;
partial differentiation with respect to a coordinate is denoted
by a comma followed by the index of the coordinate; covariant
differentiation with respect to a coordinate is denoted by a bar
followed by the index of the coordinate.
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of the corresponding components of e\n and e 8 are identical.
[ad

Frequently, the systems x and g at ¢t, arerorthogonal car-
tesian; the system g at t, however, becomes some curvilinear
system, following deformation of the body.

The description of the state of stress in continuum mechanics
is most frequently accomplished in terms of: (a) The spatial,
or Cauchy, stress tensor associated with the position P in the
deformed state and with the components pkl in the fixed system z;
(b) The Kirchhoff two-point tensor tAl, associated with the

particle P in the system x and with the position P in the

]

system 2z; (c) The material, or Piola-Kirchhoff, stress tensor
A ; :
s B, associated with the particle P in the system x. The

]

relations between these three tensors are

A A B
tAl =g pkl ax ,sAB -7 Pkl dX X (2.3)
k k 1
9z AZ 3z

where J = dv/dv, = p,/,, with dv, and dV being the initial and
the deformed volume elements, and P, and p, the initial and the

current densities, respectively. In the convected coordinates E§,

smB = tc"ES =J pcxB (2.4)

If p is the stress vector referred to unit area in the deformed

(n)

state and acting on the area element whose unit normal vector in
the deformed state is n, its components are

1 k1l
Pin) = P n (2.5)

For the stress vector referred to unit area in the initial

s
~(n)
state and acting on the area element whose unit normal vector in

the initial state is n,, we have the components in the 2z system

s%n) = 4P n,, = Pl ggé D, o {2,6)
3%
In the absence of body forces, the equations of equilibrium
in terms of the tensors pkl and SAB are
k1 k1l 1k
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AB, C C AB BA
[s (5B + u [B)]IA =0, s = s (2.8)

In the convected coordinate systems £, they read

pasla = o, p*P = pP@ (2.9)
(s*P () + w1, = 0, 5P = P (2.10)

It should be noted that the covariant differentiation in (2.,9)

is performed in the deformed configuration of the system g, while
the differentiation in (2.,10) is performed in the initial config-

uration. (The lack of the displacement gradients in eq. (2.9)

is apparent only; since the coordinate system is that of the de-

formed configuration, the effect of the displacement is included.)

PO’B; taB, SQB’ or

In structural mechanics, the components
sAB are used. With the assumption J a~ 1, which appears to be
justified in most practical problems; and if the systems x and
g coincide at t_ , we have

o o
sAB = s P =t & A paB’ for A = o, B = B, (2.11)

The theory presented by M. A. Biot [15] differs from the
above outline. Biot's theory is geared towards problems of stab-
ility and solutions of large deformations problems in small in-
cremental steps. The acknowledged efficiency of the incremental
methods of solution, makes Biot's theory an attractive tool in
structural analysis,

For most structural material in the elastic range, the rela-
tion between the stress tensors (sAB or saB) and the strain ten-
sors (eAB or euﬁ) can be assumed in the form of Hooke's law, An
exposition of the theory of plasticity for arbitrary deformation
can be found in the paper by A, E. Green and Naghdi [17]. Some
problems of the theory of viscoelasticity for finite deformations
are presented in the paper by Oldroyd [18] and in the book by
A, E. Green and J. E. Adkins [16é]. A discussion of the constitu-

tive equations of various materials is beyond the scope of this

paper. Let us only point out that the use of the material or con-
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vected coordinates offers distinct advantages also in this part of
the problem. In fact, most of the constitutive relations used in
the analysis of inelastic structures subjected to small deforma-
tions can be adapted to the present problem without major changes.
Comprehensive reviews of these relations are given in the article
by A. M. Freudenthal and H. Geiringer [19] and in the book by

T, H, Lin [20].

The procedure of derivation of the fundamental equations for
specific types of structures follows the general ideas of the
three-dimensional mechanics of solids. The strain-displacement
relations, the equations of equilibrium in the deformed configura-
tion, and the stress-strain relations must be established. As a
rule, the assumption of small strains can be made; moreover,
satisfactory theories can be developed by taking into account that
only some of the displacements and displacement gradients are
large (e.,g. normal deflections of beams and plates),

A theory of moderately large deflections of plates has been
proposed by Th. von Karman in 1910 [21] (see also S. Timoshenko
and S, Woinowsky-Krieger [22]). It retains all the basic assump-
tions of the classical (linear) theory of thin plates, The ex-
pressions, however, for the extensional strain components in the
plane of the plate contain the squares of the gradients of the

normal deflection, i.e.,

du 1 azw 2
= — - 2' 2
XX ax * 2(ax ) s mbo, (2,12)

Similarly, the deformed configuration of the plate is taken into
account in the equations of equilibrium which contain terms of

the type 2
S x g"%; syy g_g) etc. (2.13)
] 8x QY
The resulting system of equations may be used in its original form,
or it can be reduced to three equations with the three displace-
ment components of the middle plane, or two equations for the nor-
mal deflection and a stress function can be written. The choice

of the final form of the equations depends on the method of solu-

3g. 4 Einfiihrungsbericht



32 Ib — POST-CRITICAL BEHAVIOR

tion.

For curved panels, K, Margeurre [23] proposed a theory
whose assumptions are similar to those of Kdrmdn's plate theory.
There are several versions of nonlinear theories of shells, which
differ mainly in the degree of precision in which the geometry of
the shell is taken into account. This situation is parallel to
the variety of linear theories of shells. A discussion of this
can be found in the works of L. H. Donnell [24], J. L. Synge and
W. 2. Chien [25], W, Z. Chien [26], V. S. Vlasov [27], A. S. Vol-
mir [28], Kh. M. Mushtari and K. Z. Galimov [29], J. L. Sanders,Jr,
[30], P. M. Naghdi and R. P. Nordgren [31], W. T, Koiter [32].

Among the methods of solution of the nonlinear problems of
post-critical behavior, the finite element method appears to be
unusually versatile and effective., The basic ideas and relations
of this method, including stability and large deformations, are
presented in the papers by J. H. Argyris [33], and J. H. Argyris,
S. Kelsey, and H. Kamel [34], and the books by 0, C. Zienkiewicz
[35], and J. S. Przemieniecki [36]. The papers by J. J. Turner,
E. H. Dill, H. C. Martin and R. J. Melosh [37], H. C. Martin [38],
R. H. Mallett and P, V. Marcal [39] concentrate on the buckling
and nonlinear problems.*

For a linear elastic structure, the finite element method
results in a system of linear algebraic equations of the type

[K]{q} = {P} (2.14)

where [K] is the stiffness matrix, {g} is the nodal displacement
vector, and {P} is the nodal load vector. The nodal displacement
vector {g} determined from eg. (2.14) the state of stress and de-
formation of the structure. The stiffness matrix [K] depends on
the geometry of the structure, its material properties, and on
the geometry of the finite element system. The vector {P} repre-
sents the external loading on the structure.

If the nonlinear effects of large deformations are taken into

*
Additional references can be found in a recent survey paper by
0. C. Zienkiewicz [40].
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account the systems of equations for {g) can be written as

([K] + [Kg]) {a} = {P} (2.15)

where [Kg] is sometimes referred to as the geometrical stiffness
matrix. It depends on {g}; hence, the system of equations (2,15)
is nonlinear, Instead of egs. (2.15), the incremental formulation
can be used. For the (small) increments of displacement {Aq}n
and loading [AP}n, from the state of equilibrium {q}n and {P}n,
the system of equations holds

((K] + [Ky)) (aa}, = {aP} (2.16)

where the matrix [K(';]n is determined at the state {q}n. The in-
cremental formulation is especially suitable for nonlinear elastic
or inelastic materials with incremental stress-strain relations
(e.g. elastic-plastic solids)., Then, however, also the matrix

[K] depends on {g} and, its elements in eq. (2.16) have to be
determined at the state {q}n. Instead of the systems of equations
(2.15) or (2.16), an energy formulation may be used in which the
vector {g} minimizes the total energy of the system. The methods

of mathematical programming are then employed for the determination

of {qg}.

3. STABILITY

The problem of stability of a structure is usually formu-
lated as follows. Suppose that the loadings are specified by a
vector p. A state of equilibrium is a displacement vector u(x,p)
which satisfies the equations of equilibrium and the boundary con-
ditions of the structure. The fundamental states of equilibrium,
or the fundamental path of equilibrium, are the displacements
u, (x,p) single-valued and continuously differentiable in the com-
ponents of P and such that u, as EﬂO. In addition to the
fundamental path, a structure may have, in general, other states
or paths of equilibrium. The points of intersection of different
paths of equilibrium are of two types: bifurcation points and
limit points. They are shown in Fig. 2 for the simple case of one

load component p and one displacement component u.
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o bifurcation point
* limit point

Fig. 2.

A precise and practically meaningful definition of stability is
not an easy task. In engineering terms, a state of equilibrium is
considered to be stable if sufficiently small perturbations cause
arbitrarily small displacements of the structure. A path consisting
of stable states O0f equilibrium is called a stable path. The
states at which a path changes from stable to unstable are called
critical states (or critical points); the corresponding loads are
called the critical loads.

For the above notion of stability, certain criteria, or
tests, of stability have been developed.

According to the static criterion, at a critical point two

infinitesimally adjacent states of equilibrium exist for the same
external loads. If the loads acting on the structure are pro-
portional to a parameter, and if the fundamental state is linear
elastic, the static criterion leads to the well known eigenvalue
problems, for which an extensive literature is available.

The energy criterion of stability states that in any suffic-

iently small displacement from the state of equilibrium the inter-
nal energy stored or dissipated, AE, exceeds the work of the exter-
nal loads, AW. Thus the condition of stable or neutral equilibrium
is

AE - AW=20 {3 51)
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In the case of an elastic structure loaded with potential forces,
eg. (3.1) implies that the change of the total potential energy is
positive or zero,

AU=0 (3.2)
The condition (3.2) represents an extension of the Dirichlet cri-
terion of stability of discrete systems.

The dynamic criterion is based on the investigation of small

free oscillations about the state of equilibrium. For a stable
state of equioibrium of an elastic structure, all the natural
frequencies of these oscillations are real and different from zero.

In the cases of conservative systems under conservative
loadings, these three criteria lead to the same lowest critical
values of the load parameter, and the existing experimental evi-
dence confirms their basic validity; the known examples of sub-
stantial discrepancies between the theory and the experimental
results can be explained by factors other than faults in the basic
concepts of the theory.

The above ideas and criteria form the foundations of the
stability, or buckling, analysis in a large number of problems of
structural mechanics. This theory is the product of over one-
hundred-year effort. Important contributions have been made by
R. V. Southwell [41], S. P. Timoshenk [42], G. B. Biezeno and
H. Hencky [43], E. Trefftz [44], W. T. Koiter [45], H. Ziegler [46],
C. E. Pearson [47], R. Hill [48]. There is a number of excellent
books dealing with the methods of analysis and practical applica-
tions. To mention some of them: S. P. Timoshenko and J. M. Gere
[49], F. Bleich [50], Pflinger [51], C. F. Kollbrunner and M. Meis-
ter [52], G. Gerard [53], A. S. Volmir [54], M. Gregory [55],

H. Ziegler [56].

The actual application of any of the criteria of stability
is based on the equations of small displacements, or vibrations,
superimposed on a state of deformation, and on the expressions for
the corresponding change of energy. They are given in Ref. [16],

[44], and [15] for the general case of a three-dimensional solid.
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In Refs. [49] through [56], and in numerous other papers the
necessary relations are given for various types of structures.

In the finite element formulation, the conditions leading
to the determination of the critical loads are discussed in Refs.
(331, [35], [36], [38, [39] and [57] through [61]. It is worth
mentioning that in the cases of linear elastic fundamental states,

the critical load parameter A follows either from the equation

det|K + A\K,| =0 (3.3)
or from

det|K(\)| =0 (3.4)
([K(A)] = the stiffness matrix whose elements are known functions

of \). For nonlinear fundamental states, the equation for the
critical load is
det|K' (g, (\))] =0 (3.5)

where [K'(g, (A))] is the incremental stiffness matrix correspond-

ing to the fundamental state {qg, (A)} which, in turn, depends on
the load parameter A\.

In spite of great achievements of the classical theory of
stability, there are certain areas which require more general
approaches or, at least, refinements of the existing methods.

The fallacy of the static methods in the case of nonconservative
systems has been discovered long ago. A comprehensive review of
this question and of recent contributions has been given by

G. Herrmann [62]. Another area of practical interest is the
stability, or buckling, under dynamic loading. Also, it has been
pointed out (R. T. Shield and A. E. Green [63], R. J. Knops and

E. W. Wilkes [64]), that, in general, the uniqueness of a path of
equilibrium and the energy and the dynamic criteria not necessarily
assure boundedness of the displacements, velocities, and strains.

An important step in answering certain fundamental questions
is the development of the theory of stability of continuous media
(A. A. Movchan [68], [69], [70] and Ref. [64]) along the lines of
Liapunov's general theory of stability of motion [65] . (Modern

accounts of this theory can be found in the books by N. G. Chetaev
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[66] and W. Hahn [67]). The major points of this work are: pre-
cise definitions of "initial perturbations", rational measures of
the magnitudes of the initial perturbations and the ensuing per-
turbed motions, rigorous definitions of stability, and derivation
in-

of the corresponding stability criteria. It has been shown,

cidentally, that the classical energy criterion corresponds to the
stability, or boundedness, in the mean square value of the dis-
placements (but not to the boundedness of the maxima of the dis-
placements).

Further studies on the foundations of the theory of stability
are presented in Refs. [71] to [83].

A relatively new and important problem of the theory of
stability (and in the post-critical buckling) is the effect of
initial imperfections. It has been investigated originally to
explain the discrepancies between the theoretical predictions and
the experimental data in buckling of shells (L. H. Donnell and
C.C. Wan [83], W. H. Horton and S. C. Durham [84]); recently, it
became a part of more general studies on structural stability
(W. T. Koiter [71], J. M. T. Thompson [85], [87], J. Roorda [86];
also the survey paper [76] by B. Budiansky and J. W. Hutchinson).
The effect of initial imperfection may be one of the following:
(a)

of the same type as in the perfect structure, with the displace-

The equilibrium paths and the critical points are essentially

ments and the critical loads slightly influenced by the initial

imperfections. (b) The bifurcation point vanishes; the pre-
P perfect P perfect
structure structure
—
~
//
e
(a) ,/”{:\inwperfect (b) ”’,,/’
b structure /”'— —
o imperfect
/ / structure
i /4
4
u u

Fig. 3.
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buckling and the postbuckling states form a continuous path

(Fig. 3a). (c) The bifurcation point vanishes and a limit point
appears, usually at much smaller magnitudes of the loadings

(Fig. 3Db).

The essential factor in the analysis of the effects of ini-
tial imperfections is their shape and size. It is, of course,
possible to assume some unfavorable configuration of the initial
imperfections and to determine the corresponding buckling load
and the postbuckling behavior. Sometimes, conceivably, specific
information concerning the initial imperfections in a structure
may be available. Basically, however, the initial imperfections
are errors of fabrication, of random magnitude and random distri-
bution over the structure. Accordingly, the statistical methods
appear to be the most rational approach. The analyses of buckling
of various structures with random imperfections are presented in
the works by V. V. Bolotin [88] and [89], W. E. Boyce [90],

J. M. T. Thompson [91], B. Budiansky and W. B. Fraser [92], J. C.
Amazigo [93], and J. Roorda [94]. There is a close relation bet-
ween the statistical approach to the buckling loads and the

statistical methods in structural safety.

4. METHODS OF ANALYSIS OF POST-CRITICAL STATES

The primary objective of the analysis is the determination of
a stable state (or states) of equilibrium of the structure for a
given system of loadings exceeding the lowest critical level. 1In
the case of non-unique solutions, the accessibility of each state
via a realistic path (history) of loading should be evaluated.
The determination of the ultimate loading capacity of the structure
is also an important part of the problem. Frequently, the complete
path (or paths) of equilibrium from zero to the ultimate loading
capacity is required.

The difficulties connected with the nonlinear equations of
the post-critical behavior necessitate the use of approximate and
numerical methods. The presently available solutions are usually

based on one or a combination of the following methods: perturba-
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tion methods, successive approximations, Ritz' method, Galerkin's
method, finite differences and finite element method. The per-
turbation methods and the methods of successive approximations
reduce the solution of the original nonlinear differential equa-
tions to repeated solutions of linear differential equations. The
Ritz, Galerkin, finite difference, and finite element methods re-
sult in a system of nonlinear algebraic equations.

There is an extensive literature on the approximate and numer-
ical methods; see, for example, Refs. [96], [97], [98], [99],
[100]. The solution of the nonlinear algebraic equations connected
with some of these methods is a formidable task in itself (Refs.
[101] and [102]). The numerical treatment of the eigenvalue prob-
lems, which arise in the course of this analysis, is described in
Refs, [103], [104], and [105].

K. O. Friedrichs and J. J. Stoker [106] analyse a supported
circular plate subjected to radial aedge compression p, and des-
cribed by von Karmdn's equations. For this problem, they develope
and appraise three methods suitable for three ranges of the ratio
P/pCr (where P is the lowest buckling load): a perturbation
method for l<p/pcr<2.5, a power series solution for 2.5<p/pcr<25,
an asymptotic solution for p/pcraw with a perturbation method for
very large values of p/pcr.

W. T. Koiter ([45] and [71]) discusses the energy method
for the analysis of the initial post-buckling behavior of an arbi-
trary elastic structure. The determination of the critical points
and buckling modes is accomplished with the aid of a stability
criterion. The initial post-buckling deflections in the vicinity
of a bifurcation point result from the minimizing of the energy
increment functional. The stability at the critical point and the
stability of the post-buckling states is investigated in terms of
the asymptotic expansion of the energy in the vicinity of the
critical point. Koiter's work includes also the effect of initial
imperfections.

An extension of the well-known Newton's method for calculat-
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ing roots of algebraic equations to the differential equations of
nonlinear mechanics has been presented by G. A. Thurston [107],
[1o08].

In general, the problem of determination of stable states of
postbuckling equilibrium is not an easy one. The difficulties of
the analysis beyond the first bifurcation or limit points exist
even if the task is reduced to a system of nonlinear algebraic
equations or a discrete system is dealt with, such as in the finite
element method. The works by A. H. Chilver [109], M. J. Sewell
[110], and J. M. T. Thompson [111], [1l12] contain further research
on the methods of analysis.

The difficulties in the tests of stability and in the search
for critical points make the linearization of the pre-buckling
states an extremely tempting step. The consequences of this
linearization are discussed in a paper by A. D. Kerr and M. T.

Soifer [113].

5. APPLICATIONS

Trusses and Frames

For certain types of statically indeterminate, pin-jointed
plane or space trusses, the post-buckling behavior can be deter-
mined in a relatively elementary manner, with the assumptions that
the bars in their pre-buckling states are linearly elastic, the
compressive forces in buckled bars remain constant, and the changes
of the geometry of the truss are negligible. If successive buck-

lings of individual bars occur at the load levels ISERERS W the

X% load-deflection history is as
(P MT————————= == shown in Fig. 4, E. F. Masur
u e
/ [114] has derived the lower and
)\2"_-_

! upper bounds for the ultimate
|/ loads of redundant trusses in

post-critical states, There is

u an analogy between this phenom-

enon and the elastic-plastic

Fig. 4. behavior of certain frames.
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The assumptions listed above are not always satisfied; in

numerous structural systems the changes of geometry influence the
pre-buckling and post-buckling behavior, which become strongly
nonlinear. A typical example is the truss shown in Fig. 5, with
similar conditions existing in
shallow reticulated shells.
Large deflections cause also

non-negligible secondary bend-

moments; consequently, a truss
must be analyzed as a frame
Fig.5. (unless, of course, pin joints
are actually constructed).

The classical works (Bleich [50]) in the area of stability of
frames reduce the problem to a system of equations which are
linear with respect to the joint displacements and rotations and
joint forces and moments. The coefficients of these equations are
known functions of the load parameter ). While this approach has
been successful in predicting the critical loads in many practical
applications, it is inadequate for dealing with the post-critical
behavior or for the cases when the pre-buckling behavior is non-
linear.

The analysis of the post-critical behavior and the fundamental
states, and the determination of the critical loading conditions of
a plane or space frameworks should take into account the following
effects: (a) The influence of the axial forces acting in the
individual bars on their stiffness characteristics. (b) The non-
linearities of the force-displacement relations in the bars (the
effect of bending curvature on the relative axial displacement of
the ends, large bending deformations, material nonlinearities, etc.)
(c) The effect of the changes of geometry on the equations of
equilibrium., An extensive discussion of the nonlinear effects in
the frame behavior may be found in the works by R. K. Livesly [115],
M. R, Horne [116], [117], S. J. Britvec and A,H. Chilver [118],

S. A. Saafan [119], R. W. Williams [120], J. H. Argyris [33], and
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R. H. Mallett and P. V. Marcal [39]; Th. V. Galambos, G. C,.
Driscoll, and L.-W. Lu report some related experimental research
[121].

The results of the analysis which takes the above effects into
account differ considerably from the stability problem of pin-joint
trusses of linearized rigid-joint frames, not only quantitatively
but also gqualitatively. For example, the presence of primary and
secondary bending moments will remove at least some of the bifurcation
points in the equilibrium path (such as in Fig,4) and the behavior
up to the ultimate load may consist of the fundamental path only.
The absence, however, of the bifurcation points should not be
assumed in advance. (To this effect, see H., L, Schreyerand E. F.
Masur [122]). Also, a nonlinear analysis may reveal the existence
of snap-buckling at certain load levels (Fig. 1b), which is entirely
beyond any linearized theory,

Under certain circumstances, some of the effects listed above
may be disregarded. For example, J. H. Argyris [33] proposes a
method of analysis which neglects the influence of axial forces on
the element stiffness, Accordingly, the buckling phenomena within
individual elements cannot be predicted with this theory. If,
however, the elements are relatively short and stiff, and the prob-
lem is such that the buckling "waves" extend over several elements,
the analysis should yield satisfactory results, with considerable
simplification of the numerical work. The theories presented by
R. K. Livesley [175], J. D. Renton [122], S. J. Britvec and A, H.
Chilver [118], R. J. Aguilar and T.-A. Huang [124], S. J. Britvec
(125], S. S. Tezcan and B. Ovunc [126], J. J. Connor, R, D. Logcher,
and S.-C. Chan [127] assume flexible elements to which the linear-
ized theory of bending with axial loading is applicable. The
stiffness coefficients of these elements contain trigonometric or
hyperbolic functions of the axial forces. With the equilibrium
equations written in the deformed configuration, the problems of
local buckling, overall buckling (including snap-buckling), and post-

buckling behavior are analyzed. The systems of nonlinear equations
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of these theories are solved by either iterative or incremental
schemes. The analyses presented by G. Lobel [128], F, W. Williams
[120], Cc. N. Kerr [129], S. -L. Lee, F. S. Manuel, and E. C.
Rossow [130] utilize the nonlinear bending theory of beams. They
are capable to deal with the problems in which the post-buckling
deflections are of the order of the column or girder lengths.

Some of the problems discussed in this report occur in the
analysis of tall buildings and have been reviewed in the prelimin-
ary report by Professors Steinhardt and Beer [131] (8th Congress,

1968), which contains a very extensive list of references.

Plates

The papers by A, van der Neut [122], G. Winter[2], and Ch.
Massonnet [4] contain comprehensive reviews of previous works on
the post-critical behavior of plates, There are also two recent
books on thin-walled structures (Refs. [133] and [134]), where the
papers by W. J. Supple and A. H. Chilver [135], A. C. Walker [136],
J. B. Dwight and A. T, Ractliffe [137], T. R. Graves Smith [138],
and others, deal with plates in post-critical states.

Among most recent contributions, J. W. Dwight and K. E. Moxham
[139] describe their research on welded steel plates in compression.
The work reported by them is obviously a necessary step without
which a full practical utilization of the post-buckling strength
of plates would not be acceptable. K. R. Rushton [140] analyzes
the post-critical state of tapered plates. The problem of a plate
with three edges simply supported and one edge attached to a
stiffener has been investigated by K. Kldppel and B. Unger [141],
the analysis is based on the von Kdrmdn equations and the energy
method. The computed deflections agree very well with the results
of a test program. An analysis of the post-critical behavior of
thin plates, employing the finite element method has been presented
by D. W. Murray and E. L. Wilson [142], [143]. The effect of creep
deformation on the post-critical behavior of compressed plates has

been investigated by I, M., Levi and N, J. Hoff [144].
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Shells

The problems of post-critical behavior become probably most
interesting and difficult in the theory of shells. They have
received ample attention from many researchers, and a list of
publications in this field could easily reach a few hundred posi-
tions. A review of the research on shell buckling has been made
by Y. C. Fung and E. E. Sechler in 1960 [145]. The book by A, S.
Volmir [54] contains numerous Russian contributions.

The load-displacement behavior of cylindrical shells under
axial compression has been analyzed by Th. von Karmdn and H. S.
Tsien [146], W. T. Koiter [147], B. O. Almroth [148], N. J. Hoff,
W. A, Madsen, and J. Mayers [149], R, L. de Neufville and J. J.
Connor [150],and others (see also N, J. Hoff [151]). The load-
displacement relations are of the type in Fig. 1lb, with strong
imperfection-sensitivity at the critical point A. The ultimate
shape of the buckled shell (Fig. 6) is referred to as Yoshimura
pattern [152]. (This shape, together with considerable loading
capacity of a buckled cylinder,
prompted K. Miura's suggestion
of a shell structure resembling
Yoshimura's pattern [153]).

The problem of stiffened and
Fig-o. barreled shells is analyzed by
J. W. Hutchinson and J. C.
Frauenthal [154].

The nonlinear buckling problem and the initial post-buckling
behavior of a complete spherical shell has been analyzed by W. T.
Koiter [155], who also gives a review and assessment of previous
work in this area. The papers by J. R, Fitch [156] and J. R.
Fitch and B. Budiansky [157] deal with a similar problem for
spherical caps. Ref., [157] clarifies, in particular, the effect
of the load distribution, and of the shell thickness, on the type
‘of buckling (bifurcation or snap-through)and on the post-buckling

load carrying capacity.
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An analysis of the initial post-buckling behavior of the

toroidal shell segments has been given by J. W. Hutchinson [158].

The paper by G. A. Greenbaum and D. C. Conroy [159] contains an

example of an efficient numerical analysis of a conical shell.
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SUMMARY
This report reviews the problems related to the analysis of
post-critical behavior of structures, including formulation of the
basic equations, methods of their solution, and criteria of stab-
ility. Recent applications to trusses, frames, plates and shells

are outlined.

RESUME
Ce rapport traite de l'analyse du comportement post-critique
des structures, avec formulation des équations fondamentales, les
méthodes de leur résolution et les cryteéres de stabilité. On
présente aussi les applications récentes aux treillis, aux cadres,

aux plaques et aux voiles.

ZUSAMMENFASSUNG
Dieser Bericht bahandelt die Probleme der Berechnung des uber-
kritischen Verhaltens von Tragwerken, einschliesslich die Formu-
lierung von Grundgleichungen, der Methode ihrer Ldsung, und der
Stabilitdtskriterien. Neue Anwendungen auf Stabwerke, Platten und

Schalen sind beschrieben.
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