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Post-Critical Behaviour of Inelastic Structures
Comportement post-critique de structures non-élastiques

Uberkritisches Verhalten unelastischer Trager

GIULIANO AUGUSTI
Assoc. Professor of Structural Engineering
Universita di Firenze
Florence, Italy

As illustrated by Professor Bieniek's Report, it is now increasingly
recognized that in structural engineering the knowledge of the post-critical be-
haviour is almost as essential as that of the critical load itself: in fact, the
unavoidable imperfections that make actual structures different from the "ideal-
ly perfect" models of applied mechanics, affect their strength in a way that de-
pends largely on the post-critical behaviour of their "ideally perfect" models.

This contribution presents an elementary (but hopefully stimulating)
discussion of the joint effects of imperfections and inelastic deformations on
the behaviour of structures that, if perfect, would exhibit a point of bifurca-
tion of equilibrium. As in Ref. (A.1) (°), buckling will be used as a synonym
for bifurcation of equilibrium, while collapse load will indicate a (local)
maximum on an actual load-deformation path. Dynamical and time-rate effects
will not be considered.

The most rational approach to the study of the effect of imperfections
on structural strength is through statistics and probability theory, as indica-
ted by Bieniek (p.38) and proved by an increasing number of research papers.
From this point of view, an actual structure is seen as a sample structure taken
out of a population of nominally identical structures, different from each other
because of random variations of the design parameters (yield stress, geometric
dimensions, etc.). The ideal structure, corresponding exactly to the design, is
the average structure of this population, With some qualifications (°°), it can
be stated that the average (expected) strength of the actual structure is appro-
ximately equal to the strength of the average structure in absence of phenomena
of geometrical instability, and is lower if these phenomena are present. In the
latter case, the introduction of probabilistic methods becomes of utmost import-
ance in order to obtain economical and reliable designs. This point is illustra-
ted, in the following Section 1, by the summary of a probabilistic investigation

(°) See list of References at the end of this contribution.

(°°) The following statement is too general to be more than an approximation.
For instance, it has already been proved (A.2) that the average plastic
collapse load of a ductile structure is smaller than the collapse load
of the average structure, but in the first numerical examples their dif-
ference is rather small.
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of slender imperfect columns, fully published elsewhere (A.3). A basic differ-
ence between this study and previous works by other Authors is the introduction
of other random quantities (namely, the yield stress and the free buckling
length) besides the geometrical imperfections.

In Ref. (A.3), collapse occurs because inelastic deformations develop:
this appears to be the most frequent cause of collapse of actual structures, and
it is rather surprising that the interaction of inelasticity and instability is
still a comparatively little-—explored field, perhaps avoided by most researchers
because of its great 'analytical difficulties,

Section 2 below presents two examples of asymmetric behaviour (i.e.,
of load-deformation paths that depend on the sign of the deformation) of struc-

tures that, if perfect, would buckle elastically. In the first example, the
asymmetry occurs in the inelastic range of deformations and is due to an asym-
metry in the strength of structural cross—sectionm. The second example illus-—

trates asymmetric elastic buckling, a phenomenon now well known, after the great
amount of research spurred by Koiter's fundamental works (Bieniek's Refs. 47 and
71), and apparently the only practically significant case in which collapse may
be completely independent of the onset of inelastic deformations.

Finally, the last Section of this paper discusses and compares differ-
ent cases of buckling in the inelastic range. Again, it will be shown that
either a strength asymmetry or a geometry effect may cause asymmetry of the
post-buckling load-deformation paths of the 'perfect" structure: consequently,
in such cases the collapse load of the actual structure depends on the sign of
the imperfection.

1) ELASTIC BUCKLING AND PLASTIC COLLAPSE: A PROBABILISTIC ANALYSIS
Consider a simple compressed strut, for instance pin-ended as in Fig.

1.1, and made of an elastic-perfectly plastic material with yield stress o_.
If the strut is initially perfectly straight, it is well known that it remiains

L , Fig, 1.1
T

straight and stable as long as the compressive load P is smaller than both the
elastic buckling load

n

PE = 1r2EI/12 = 1r2EA/A2 = oEA and the squash load Py

o_A
y

If P, < P, the load remains constant at P = Pp (within the first-
order, sma11~dlsp1agements theory) in the early stages of buckling, and begins
decreasing as soon as the first plastic deformations take place; the axial load
vs. mid-span displacement (P-V) path remains below, and tends asymptotically
to, the P-V curve corresponding to full yielding of the cross-section V = MP/P
(Fig. 1.2a): both curves have a horizontal asymptote at P = O.



GIULIANO AUGUSTI 81

First yield

Full yield

First yield
Full yield

(a) (b) Fig. 1.2

If Py < Pg, the strut buckles at P = Py; the load P starts decreasing quite ra-
pidly at the very onset of thec deformations following the full-yield curve, and
again tends asymptotically to zero when V -+ «» (Fig. 1.2b).

If the material has a constant, non-zero tangent modulus Er in the
inelastic range, the horizontal asymptotes are at the load P = Pg (defined in
Section 3) rather than at P = 0 (A.4).

If the strut is affected by an initial geometrical imperfection, for
instance in the form of a half sine-wave

Yo = Yo (x) = VO sin mx/1 (1.1)

(Fig. 1.1), the P-V path in the elastic range is given, with very good approxi-
mation, by (Fig. 1.2)

V=V, / (1-P/PE) (1.2)

The actual elastic-plastic path remains below the full-yield curve: collapse
occurs when sufficient plastic deformations have developed. The relation bet-
ween imperfection magnitude and collapde load P_ of the type (A.3)

y = Y% =3 [F -1 1 -3 [Fe (1.3)
T P P
c E

where r is the relevant core radius of the section.

If the relationship between P. and y is known and y is a random varixr
ble, it is conceptually easy to obtain the probability distribution of the de-
pendent random variable P, or oc = P./A. In Ref.(A.3), eq.(l.3) was assumed to
hold throughout the relevant range; and, since the geometrical imperfection is
essentially due to errors of fabrication with respect to the straight strut one
aims at, it appeared logigal to take y to be normally distributed with zero mem,
although only its absolute value, Yy , appears in eq.(l1.3). Fig.l.3 shows ty-
pical probability density curves of the collapse stress 0> calculated under the

lg. 6 Vorbericht
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above assumptions for the yield stress
oy = 2800 kg/cm2, two slenderness ra-
tios A, and several values of the stan-
dard variation, s, of the imperfection
coefficient vy, All these curves show
a sharp cut-off at the collapse stress
of the imperfect strut

Oup = Pco/A = min (oy, UE): Bl ™ Gy
when A = 60, O = Op = PE/A when
A = 100.

For a more realistic treatment, one
must remember that the yield stress of
a given material is also a random quan-
tity : some earlier investigations seem
to suggest that, at least in a first
approximation, it can be considered to
be normally distributed with a standard
deviation, t, equal to about 107 of its
mean value Jy. In the already quoted
Ref. (A.3), 1t seemed appropriate to
introduce also a random variability of
the slenderness ratio X, because this
quantity may be different from the de-
sign value because of defective res-—
traints and/or approximations introdu-
ced in the calculations; also A has
been assumed to be normally distribu-
ted, and its standard deviation, k,

has been taken equal to 107 of the

average value A. With these assumptions, the probability density curves of the
colhpse stress o, take the form shown in Fig. 1.4 : the upper cut-off disappears,
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because large values of 0., are now possible, albeit with little probability.
However, the average collapse stress Ec remains much smaller than the collapse
stress of the average, straight strut, To = min (Gy, BE).

In order to have indications for actual design practice, the relatiom
ship has also been investigated between the nominal safety factor ¥ introduced
in the calculations (ratio of nominal collapse stress ., to design admissible
stress ocam) and the probability of collapse

#—
P” = Prob (cc < Gcam) (1.4)

A typical set of curves, plotted in semi-logarithmic scale in the relevant
range of (very small) values of P* , is shown in Fig. 1.5 : they can be well
approximated by a set of parallel straight lines. It is also worth noting that
very small variations of the nominal
P <o safety factor ¥ can easily induce ten-
o : ’ — or hundred-fold variations of actual
S:0003X |  safety; this clearly calls for a "ratio-
! nalization" of design practice through
the probabilistic approach. A quali-
tative and quantitative comparison bet-
ween the results of the probabilistic
treatment just summarized and the
Italian Steel Building Code has also
been presented in Ref. (A.3).

"107 10 107 10-¢ 05 pe
Fig. 1.5

2) ELASTIC BUCKLING: ASYMMETRIC BEHAVIOUR

The behaviour described in Section 1 is, within the elastic range,
perfectly symmetrical with respect to the sign of the displacement and/or the
imperfection, regardless of a possible asymmetry of the strut cross-section with
respect to the axis of bending : in fact, the geometry of the section affects
the behaviour of strut only through its moment of inertia. This type of beha-
viour (symmetric elastic buckling) is not limited exclusively to the pin-ended
strut, but 1s common to many of the elastic structures that are liable to insta-
bility : indeed, before the development of Koiter's theory (Bieniek's Refs. 47
and 71), it was thought to be common to them all.

M However, the symmetry of behaviour does
x LE;_ not extend beyond the elastic range of
—154 Mpo deformation, unless the strength of the

cross—-section is symmetric (as it has
y

implicitly been assumed throughout Sec-
tion 1). For instance, if the strut of

~ Fig. 1.1 has a T-section, the first- and
N = -p full-yield interaction curves in the

s moment-axial load (M-N) plane are quali-

oA tatively indicated in Fig. 2.1. (For a

detailed derivation, cf. Ref. (A.5).)

Full yield

Fig. 2,1
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Transformed into P-v coordinates, the interaction curves appear like in Fig.
2.2, and the P-v equilibrium paths become, on the whole, asymmetric for both

A P

First yield
Full yield q\\\

—_— — s — —

Fig., 2,2
the perfect and the imperfect strut, in both cases Py < Py, (illustrated by Fig.
2.2) and P_ < PE In particular, the collapse load does depend on the sign
y of the imperfection
P(V) # P, (V) (2s1)

(a) Unbuckled
The preceding discussion has illustrated
the case of symmetric elastic buckling,
followed by asymmetric plastic collapse
t due to an asymmetry of the cross-sec-
f tion : an asymmetry of yield stress
different yield points in tension and
compression) would have the same quali-
tative effect.

Another important case of asymmetric be-
haviour is that of asymmetric elastic
buckling, analytically described in the
already quoted works by Koiter and here
illustrated by the simple model of a
three-hinged arch shown in Fig. 2.3a:
AB, BC, etc. are rigid links; A, C, E
are momentless hinges; the two deforma-
ble cells B and D consist of two paral-
lel elastic rods (1 and 2) and a soft
core that does not allow a shear deform-—
ation of the cell. Assume that Fig.2.3a
R _ represents the configuration at the

(e) point of buckling-with a load P = Pg
and a horizontal thrust
Hg/2 Ry H_E = PE c/f (2.2)
arctan K &
0 } ——
0 Aa

Fig, 2.3
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The following treatment is limited to geometrically symmetrical buckled confi-
gurations, such as in Fig. 2.3b; equilibrium yields

P (c+ Ac) =H (f - wv)
H (v - ) = R - R, E‘z. (2.3)
H = R1 + R2

where R; and Ry are the (compressive) reactions in the elastic rods, related
to their variation of length by (Fig. 2.3c)

K 8a; =R, - H/2 (i=1,2) (2.4)

ba; is measured with respect to the point of buckling, and is taken positive
when a shortening.

In deriving the post-buckling P-v relationship, introduce firstly the
(wrong) assumption that the deformable cells do not change length during the
deformation. Then geometry yields, up to second-order infinitesimals

(¢ - 8¢) d = Ba; - ha, (2.5)
2
e =b (1-cosd) =bs’ ; a=Sac=24 (2.6
2
2 2
Sy -Af v _cg” _Af _Ac _b ¢
b= Ty EZT P MTTTFETE R (a7

Introducing into eqs. (2.3), taking account of (2.4) and letting

2
P = H'E £ &= K %E _f_ (2-8)

E c e

some algebra leads to the following expression

_ 3 v
P = PE (1 7 F * i) (2.9)

Note that neglecting the second-order quantities A¢, Ac and Af in the initial
equations (2.3), the final equation would be

v
P = PE (]_ - ?) (2.10)

i.e. would present an error of the same order of v : the possibility of such
an error was pointed out by Koiter with reference to a simple fully elastic
frame (A.6).

Actually, during buckling, the length of the elastic cells decreases
of the quantity

Ab = (Aa1 + Aaz) /2 (2.11)
Eqs. (2.6a) and (2.7b) become respectively
2
Ac = (b - pAb) (1 - cos ¢) = b(%f'+ %? (2.12)
A¢=é£=.l_).(ﬁ+Ab)
f f 2 B

Introducing these new expressions into (2.3) and (2.4) and rearranging, one ob-
tains
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9 Ab _ _ gf_ (gi ” Ab. (2.13)
¢ T YT7®
so that, up to second-order terms,

ab = - ¢2 4 e = Af = A =0 (2.14)

b 2

and eq. (2.10) holds, at least in the vicinity of the P-axis: this equation has
been accepted in an earlier presentation of this arch model (A.7).

The 1limit condition of the arch corresponds to the most stressed rod
reaching its yield value R, (Fig.2.3c):
the first- and full-yield M-N interac-
tion profiles of the cells coincide in-
to a diamond (Fig.2.4). Neglecting, in
accord with eq. (2.14), all second-
order displacements, it is easy to
transform this diamond into the follow-
ing P-v curves:

1-v/f

v > O; R]. = RY; P = PY m (2.15)
. _ . _ 1-v/f
v < 03 R2 = Ry, P = Py l—_m (2.16)
where
Py =2 Ry f/c (2.17)
Eqs. (2.15) and (2.16), qualitatively sketched in Fig. 2.5, have the horizontal
asymptote -
P=¥P d/2f (2.18)
respectively; eq. (2.15) intersects the v-axis at v = f, with a slope
P
= . L (2.19)
dv|P =0 f 1+2 £/d

so that, provided Py > Pg > Py/(1+2 £/d), eq.(2.10) intersects both eqs. (2.15)
and (2.16) (Fig. 2.§). In words, elastic buckling of the perfect elastic arch
just described is followed by compression yielding in the deformable cell.
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If an initial imperfection, v,, is present, the elastic P-v paths
tend asymptotically to the straight line, eq. (2.10). Therefore, as shown in
Fig. 2.5, when v, > O the collapse load P, is most probably reached within
the elastic range of behaviour, while if vg < O collapse occurs at the yield
limit curve. It is thus shown that, in a structure liable to asymmetric elas-
tic buckling, (a) the sign of the imperfection may affect the value of the
collapse load as well as the qualitative type of collapse; and (b) the possi-
bility of yielding may have no influence on collapse, if the imperfection weak-
ens the structure.

3) STRUCTURES THAT BUCKLE IN THE INELASTIC RANGE

If the structural material is elastic-perfectly plastic, inelastic
buckling occurs, under a rapidly decreasing load, when Py, < Pg, as in Fig.l.2b:
the corresponding modifications of Figs. 2.2 and 2.5 are immediate. If the
material has a non-zero inelastic modulus Ep, the simplest case of buckling be-
yond the elastic range is well illustrated by the well known Shanley's strut
model (A.8). Assuming a constant modulus ET and elastic unloading (Fig. 3.1),

@ P
arcton £, Pg
0 |-— i
T . Lorclan £
T £
- ’x
- - i
= W . -~
Fig, 3.1 Pr
5 Fig. 3.2
0 v
-Vo

Y

"’0
L
i
g : b
2
Al s
&_r R, o
hl kh . .
Fig. 3.3 Fig. 3.4
Plate 2 — - Plate 7
(Area kA) (Area A) 0 v
Core Y, \B
Section 4-B

the inelastic perfect strut may buckle at any load comprised between Pp and Pg;
all P-v paths have a horizontal asymptote at a load P = Py <(Pp, Pg), so that
the load increases with |v| (and the strut is stable,(A.1)) if buckling starts
between Pp and Pg, decreases if buckling starts between Py and Pg(°).  The

(°) The validity of these statements is limited to comparatively small values
of v. Otherwise, not only the small-displacements approximation loses va-
1lidity, but the material may yield in tension in the "unloading" zone, or
Er may vary in the '"loading" zone. Note that the latter probably occurs
before the former in a real material, at least in the more significant
range P € Py, where the average stress ¢ = P/A increases with the deforma-
tion.
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loads Py and Py are obtained from the formula for the elastic buckling load P,
substituting the elastic (Young's) modulus E, respectively with the tangent mo-
dulus ET and with the so-called reduced modulus Eg, that depends on E, ET and
the shape of the section.

If the strut is not initially straight, the P-v path lies on either
side of the P-axis according to the sign of the initial imperfection V,, and
below the lowest path of the perfect strut (which starts from P = Pp, Fig.3.2),
to which path it tends when V4, + 0. But some degree of imperfection is un-
avoidable in an actual structure; therefore, of the infinite theoretically pos-
sible buckling paths, only the lowest ones seem to be significant from an en-
gineering point of view. Collapse of the inelastic strut, be it perfect or
not, occurs with one of the phenomena mentioned in the footnote on the previous
page; for detailed examples see e.g. Refs.(A.4) and (A.9) dealing respectively
with Shanley's model and with the practically important case of mild steel
columns with residual stresses.

In Shanley's treatment and in the above description, the strut cross-
section is assumed to be symmetric with respect to the axis of bending: the
whole picture in Fig.3.2 is also symmetric with respect to the P-axis. But if
the cross-section is not symmetric (as in the example of Fig.3.3, Ref. (A.1))the
buckling interval of the perfect strut (Pp, Pg) remains unique, but each P-v
path is different for v > 0 and v < 0, including the initial slope [dP/dv]v=o
and the horizontal asymptote (Fig.3.4). In case of inelastic buckling, there-
fore, an asymmetry of strength implies asymmetric behaviour from the first
stages of deformation. Again, the P-v path of any imperfect strut "is below
the relevant lowest branch of the perfect strut ... and tends to such branch
when the imperfection tends to zero" (A.1); the effects of an imperfection
clearly depend on its sign.

The previous examples illustrate the inelastic behaviour of struc-
tures that, in the elastic range, exhibit symmetric buckling. The model arch
of Fig.(2.3) was used in Ref.(A.7) to exemplify the inelastic behaviour of a
structure liable to asymmetric elastic buckling; the effects of imperfections
on this model have been investigated
in detail by Batterman (A.10). Ano-
P ther simple model and a more realis-—
T& tic example have been presented by
PP, Hutchinson (A.11), with qualitatively
similar results.

Referring to (A.9) and (A.10) for the
analytical treatment (°), the beha-
viour of the perfect arch is summar-
ized by Fig.3.5, and that of the im-
perfect arch by Fig.3.6 (reproduced
from (A.10)).

(°) The second-order quantities Ac, Af, etc., were neglected in the analysis
(cf. eqs.(2.3) seqq.). This can be approximately justified, for small v,
by the result of the complete elastic analysis, eqs.(2.14) and (2.10).
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Inspection of these Figures shows that the behaviour of the arch is markedly
asymmetric, in the sense that it depends strongly on the sign of the displace-
ment (and the initial imperfection). As in the previous examples, all paths
of the imperfect structure (v, st 0) lie below the lowest paths of the perfect
one (vo = 0) and tend to either of these when vy, » O (Fig. 3.6); the straight
asymptotes have a finite slope and, as noted by Batterman, are different on
either side of the P-axis. The perfect arch is stable, for zero displacement,
up to a load indicated by Pp, in Fig. 3.5; but, when buckling with positive v,
it always reaches a collapse point and becomes unstable. The imperfect arch
collapses only (and always) when vy > O, unless account is taken of the possi-
bility of tension yielding (which leads to the dashed lines of Fig.3.6) or of
a decrease in Ef.

The behaviour illustrated by Figs. 3.5 and 3.6 is the inelastic
analogue of Koiter's asymmetric elastic buckling.
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SUMMARY
The influence of random imperfections and inelastic deformations on

the buckling and post-buckling behaviour of structures has been examined in
several cases.
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