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Ib

Some Practical Considerations on the Postcritical Behaviour of Structures

Quelques remarques pratiques sur le comportement des structures dans le

domaine post-critique

Praktische Bemerkungen über das Verhalten der Konstruktionen -im
überkritischen Bereich

LAJOS KOLLAR
Dr. techn.

Budapest, Hungary

In the following the postcritical behaviour of structures
would be dealt with from the viewpoint of their practical
applications.

Basically, three different types of postbuckling behaviour
can be distinguished. The load-bearing capacity of the structure
can be - after exceeding the critical load P of the classical
/linear/ theory - either increasing, or constant, or decreasing.
Plotting the load P against some average value of the buckling
deformation w, these three cases can be represented by the
diagrams of Pigs. la,b,c. Here, in addition to the perfect /centrally
compressed/ case, some curves corresponding to initially imperfect
structures have been represented too.

Structures with increasing postbuckling load-bearing capacity
/Fig. la/ are insensitive to initial imperfections and/or creep
because their diagrams have no peak which could be influenced by

these two factors. On the other hand, structures with decreasing
diagrams /Fig. lc/ are extremely sensitive to initial imperfections
and creep as well, for the peak value of their P/w/-curves depend

markedly on the magnitude of both. /The influence of creep is sim-

ilar to that of initial imperfections because creep increases
buckling deformation, thus it augments the influence of the imper-
fection./ We can thus choose a much smaller safety factor for
structures corresponding to Fig. la than to those of Fig. lc.

Structures corresponding to Fig. lc form a case of transition
between the two other groups. Its importance comes mainly from the
fact that it can be treated theoretically in a simple way, but it
also describes, at le'ast approximatively, the behaviour of some

structures /e.g. buckling of bars/.
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From all that has been said follows that when designing a

structure, it is most important to know whether its postbuckling
load-bearing capacity increases or decreases. For some structures
we know this from theoretical investigations to be found in the
literature. But if we have to design a structure the postbuckling
analysis of which has not yet been made, some simple criteria to
determine the kind of its postbuckling behaviour could be of great
value. In the following some such criteria will be shown.

Theoretically it can be said [2] [3] that a structure has an

increasing postbuckling load-bearing capacity if the following two
conditions are fulfilled:

a/ The structure must have some parts which can bear more

load, even without the other, more buckled /weaker/ parts,
than the whole structure.

b/ The redistribution of stresses that is necessary for con-
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dition a/ must be physically possible in the structure it-
self as well as at the Supports.

Let us illustrate this on the pure
torsional buckling of a straight
bar with the cross section of an
angle /Fig. 2a/. When the critical
load is exceeded, the angle begins
to buckle with the rotation of the
cross sections around their shear
centre T /Fig. 2b/. We can assume,
as an approximation, that the free
ends of the cross sections cease to
bear any load. Thus, instead of the
original flange width c of the
angle only a part of it, of width
c-,, will be effective. This part,
however, can carry more load than
the original whole structure. This
can be seen in the formula for the
critical load of torsional buckling
for an angle with built-in ends 5 :

.3
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Since P is inversely proportional
to flange width c, the smaller c, the greater the critical load
will be. Condition a/ is thus fulfilled.

In this case the redistributi.on of stresses means that the
point of action of the load must shift from the original centroid
S to the centroid S, of the smaller cross section. If the end con-
ditions make this possible /e.g. in case of rigid end plates/,
then condition b/ is also fulfilled, thus we obtain an increasing
postbuckling load-bearing capacity.

Essentially the same considerations can be made in relation
to the torsional buckling of shell-arches 1 3 plate buckling

5 etc., i.e. in all cases where the critical load is inversely
proportional to some dimension of the structure, and even in some

other cases. Sometimes it is also possible to establish a simple
upper bound for the maximum value of the postbuckling load the
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It is well known [5J

that for structures
corresponding to Pig. Ib, the
asymptotic curves for the
imperfect cases can be

made straight by plotting
the ratio Ö/P against the
buckling deformation 6=

w - w nleasured from
o

the initial /imperfect/
state wQ /Fi?. 5/. The

inverse slops of this line
gives the critical load.
This proceture, called

Southwell's
plot, great-
ly facili-
tates the
determina-
tion of this
latter since
it would be

rauch more

uncertain to
determine
the asymptotic

value
of the
curves in
Pig. Ib by
extra-
polation.

It can
be easily
shown [2j
[4] that in
case of
increasing or
decreasing

Bg. 5 Vorbericht
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postbuckling load-
bearing capacities,
the Southwell
diagram becomes curved
downwards or up-
wards, respectively
/Fig. 6/. Thus,
measuring the buckling

deformations
of the model and

plotting o*/P against
them, we can decide
at once and without
destructing the
model whether it has
a constant /Fig. Ib/,
an increasing /Fig.
la/ or a decreasing
/Fig. lc/ postbuckling

load-bearing
capacity.

For Illustration
we show some

results of the model

lest of the new

Budapest Sports Hall,
designed recently
/Fig. 7/. Its structure

is 3 reti-
culated steel shell
without stiffening
edge arches, sup-
ported by three
points at a dis-
tance of 112,80 m.

For the sta-
bility of the structure

only rough es-
timates could be
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Ib

Überkritisches Verhalten der Stabkonstruktionen

Post-Critical Behaviour of Structures

Comportement post-critique des structures

J. SZABO Zs. GASPAR
Prof. Wissenschaftlicher Mitarbeiter

Technische Universität
Budapest, Ungarn

1. Einleitung
Die auch für grosse Verschiebungen gültige Zustandsänderungs-

Differentialgleichung der aus endlichen Stabelementen bestehenden

Stabkonstruktionen besitzt die folgende Form /s. [l] /
P(u,§) §*(^) • du

ds

+ dq

dt
(1)

Dabei bedeuten

Dü* 3u,. si

G die geometrische Matrix der St&bkonstruktion,
G* die Transponierte von G,

F die Nachgiebigkeits-Matrix der Stabkonstruktion,
u der Vektor der unabhängigen Verschiebungskomponenten der

Knotenpunkte,
s der Vektor der inneren Kräfte und Momente,
q der Vektor der auf die Knotenpunkte wirkenden äusseren

Kräfte und Momente

t der Vektor der vorgeschriebenen Relativverschiebungen der
Stäbe.
Diese Gleichung auf eine einparametrige Last angewandt, lässt

sich die die indifferente Löst bestimmende Differentialgleichung
ableiten, die im allgemeinen Falle nach einem auf die Lösung eines
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Eigenwertproblems beruhenden Iterationsverfahren ausgerechneb
wird. Der postkritische Zustand lässt sich nach einer modifizierten

Variante des für grosse Verschiebungen ausgearbeiteten Verfahrens

errechnen. Die für die einzelnen Fälle ausgearbeiteten Aufgaben

wurden derart gewählt, dass die analytische Lösung bekannt
sei, so konnte das allgemeine Verfahren kontrolliert werden. Es

wurden ebene Aufgaben gelöst und damit nicht die numerischen
Schwierigkeiten vorherrschen, wurde die Anzahl der Stabelemente
nicht hoch gewählt.

2. Das Modell der Stabkonstruktion

Die Stabkonstruktion kann aus elastischen Elementen oder aus
starren Elementen mit elastischen Gelenken aufgebaut werden. Die
geometrische Matrix G der Stabkonstruktion aus elastischen
Elementen erhält man aus der Matrix

io =ij (2)
indem die bei der Kopplung der Stabelemente zu den gleichen
Verschiebungskomponenten gehörenden Spalten summiert, sodann die zu
den vorgeschriebenen Verschiebungskomponenten gehörenden Spalten
getrennt werden, übrigens

Sid - T •

ijv üjk h =dk

wenn der Anfangspunkt des j-ten ßtabelements
der i-te Knotenpunkt ist,
wenn der Endpunkt des j-ten ßtabelements
der i-te Knotenpunkt ist,
wenn die obigen Bedingungen nicht erfüllt sind.

In Matrix (2) gilt
h* ijok

ijok

T •

=0V
T,
:JOV

0 T.
JOV

h- *1 "7:

< -i j-

1

(3)

wo durch die Orthogonalm&trizen T- bzw. T-
=JOK =JOV

System
punkt gehörende lokale Koordinatensystem I, 7|£

der imKoordinaten-

x,y,z angegebene Vektor in das zum Anfangs- bzw. zum End¬

gedreht wird.
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Die Bedeutung der Grössen in der Uhertragungsmatrix B ist in
Abb.l. zu sehen.

k-sJ*
$

2jk

V / \sJV
iJV

Abb. 1.
Die Nachgiebigkeitsmatrix F ist quasi-diagonal, die einzelnen

Blöcke haben die Form

li - liv ilk li iik £i*v (4 }

mit

li l
EA

f5 i2
JEJ^ l* i2 WJJ

JEJ7
t

Sj7

2177

l2 l
tk 2EJ7 177

l
2EJ,. W[

(5)

Wird das Modell der Stabkonstruktion durch die Kopplung von
starren Elementen mit elastischen Gelenken zusammengestellt, so

sind die entsprechenden Achsen der zum Anfangs- bzw. zum Endpunkt
gehörenden Koordinatensysteme zueinander parallel, daher erübrigt
es sich, die dazugehörige
=ü?i]j;=!?i/' Wegen der Orthogonalitat der Matrix 9?i

Drehmatrix zu unterscheiden /d.h. T.

li li I (6)

vereinfachen sich die Beziehungen (2) und (4-) und in Matrix (5)
ist 5j=L, 7.= £.=0. Sind die elastischen Gelenke gewissen Bean-

spruchungen gegenüber starr, so ist die Matrix F singulär, daher
müssen die in der Arbeit [2J angegebenen Transformationen
durchgeführt werden.
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Nach dem Iterationsverfahren in [ij können die Verschiebungen

und Beanspruchungen des Modells ermittelt werden. Um das
Modell und den Algorithmus zu überprüfen, wurde das Problem in Abb.

2. mit Hilfe beider ModelletO M gelöst. Die Angaben wurden
so angesetzt, dass in der
genauen Lösung, der Kragträgor
Viertelkreisform habe. Der

spezifische Wert des Endpunkt
Verschiebungsfehlers ist in
Abb.3. über der Elementenan-
zahl dargestellt /in der
Abbildung bedeuten £ den

Endpunktverschiebungsfehler und

r den Kreisbogenhalbmesser./

Der kritische Parameter einer einparametrigen Last der
Stabkonstruktion wurde nach der Arbeit [3] ermittelt. Wird als Last
keine relative Verschiebung vorgeschrieben, so lautet bei einer
Einparameterlast die Zustandsänderungs-Differentialgleichung (l)

Abb. 2.

£/f
starre Elemente

0,040- \ \ elastische Elemente

0,005-

^- ——
1 1 1 1 1 1 "T~*~*T »-

3 6 9 12 15 18 21 n

Abb. 3.

5. Stabilitätsnachweis

du

ds

+ dR 0

(7)

wo

Ddk
9G.

du,
.LI si + R

9f.
au,

und

I £(&)

II f II const

eine eindeutige Funktion ist.
Beim Angriff der kritischen Last hat der homogene Teil der

Differentialgleichung (7) auch eine von der trivialen verschiedene
Lösung, die zum Eigenwertproblem

3G*

~9Ü"

dt
+ R rr=- - G'

ÖU
F_1G 'du 0 (8)

führt.
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Da sowohl die Matrix G als auch die Vektoren f und s

Funktionen von R sind, lässt sich das Eigenwertproblem nicht
direkt bestimmen. Ist der zum Parameter R. gehörende Zustands-
vektor bekannt, werden die veränderlichen Grössen des Eigenwertproblems

(8) nach dem Verschiebungsvektor in eine Taylorsche Reihe
entwickelt und nur deren erste zwei Glieder berücksichtigt, so
erhält man das verallgemeinerte Eigenwertproblem

(A + R|) du 0 (9)

das bereits direkt gelöst werden kann, wo

B

li
li + h ~ Ri(§2 + £2+ 54)

h

94

h

p2 + d;
-<3i |~

~3G/

äu

3G'

9u

w
Wä

3f
5ü

+ 5*+ £5

ii

y=Hi ii
(r'iir'ii)

im
u=u.

ii

H -D, §3 - Rii5

Ist der Wert |R - R^| höher als ein vorgeschriebener Wert, so

wird der Zustandsvektor für einen Parameterwert R. bestimmt, der
dem kritischen Parameterwert näher liegt und das Verfahren wird
wiederholt.

Wenn beim Angriff der kritischen L^st nur eine geringe oder

gar keine Formänderung entsteht, so ist das Eigenwertproblem (9)
nur einmal zu lösen und auch die Koeffizientenmatrizen werden aus

weniger Gliedern bestehen.
Zur 'Oberprüfung des Algorithmus wurde der t>ti;bilitätsnachweis

des Bogenträgers der Form einer Parabel zweiten Grades in Abb. 4

mit Hilfe eines Modells aus starren Elementen durchgeführt. Der

Parameter der jkritischen Last änderte sich in Abhängigkeit von
der Teilungszahl nach Abb.5.
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4. Postkritischer Zustand bei Stabilitätsverlust
ohne Verzweigungspunkt

Die Zustandsänderungskurve des Problems in Abb.6. lässt sich
auch in Umgebung des Durchschlagpunktes ohne Schwierigkeit auch
auf analytischem Wege ermitteln /z.B. [4] und [5] /, wenn die Bie-
gesteifigkeit der btäbe im Vergleich zur Normalsteifigkeit genügend

gross ist und der Durchschlag ohne Stabknickung erfolgt. Das

Trägermodell wird aus 6 elastischen Stabelementen gleicher Länge

aufgebaut. Jeder beliebige Punkt im Abschnitt AB der Zustands-
änderungskurve in Abb.7. lässt sich mit Hilfe der obenerwähnten
iterativen Lösung der Differentialgleichung (7) für grosse Verschiebungen

ermitteln.

sXXXv
2t ¥'

Ri

2h

Abb.6.

Da der Wert RB

Abb.7•

unbekannt ist und die Last stufenweise auf
den Träger aufgebracht wird, kann es vorkommen, dass ein, zum

Parameterwert R. > Rt-, gehörender Zustandsvektor gesucht wird, der
lediglich mit einer ganz anderen Geometrie des Trägers ausgeglichen
werden kann, daher wird beim Iterationsverfahren die Fehlervektornorm

die Laststufennorm wesentlich übersteigen und die Iteration
nicht konvergieren. Dafür wird durch das folgende Verfahren Ab-
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hilfe geschafft, das sich um die Konvergenz zu beschleunigen auch
dann verwenden lässt, wenn einige - jedoch nicht genau bestimmte -
Punkte der zum Parameter R gehörenden Zustandsänderungskurve
ermittelt werden sollen.

Wird die Differentialgleichung (7) als Differenzgleichung
auf die L&ststufe angewandt, so kann in Kenntnis der erhaltenen
geometrischen Lage und der inneren Kräfte, der Vektor der äusseren
Kräfte, die ausgeglichen werden können, in der Form

£(1)*-g"g
errechnet werden. Der Parameter R Vtärd derart gewählt, dass

||q - Rf || minimal sei. Dies wird durch den Parameter

qU*f
E |* £ (l0)

erfüllt. Wird der Parameter R jeweils so bestimmt, so erhält
man den Punkt E in Abb.7. Soll der Parameter wieder vergrossert
werden, so geht man auf der Zustandsänderungskurve nach Punkt B

aus, der Parameter muss also auf dem labilen Abschnitt vermindert
werden. Ob der so bestimmte Punkt auf dem labilen oder auf dem

stabilen Zweig liegt, wird nach dem Energieprinzip festgestellt. Die

Verschiebung unter Einwirkung des Lastzuwachses ARf /AR 5- 0/
ergibt sich mit der Genauigkeit der Theorie zweiter Ordnung zu

Au AR H-1|

die Arbeit der Last Rf beträgt bei dieser Verschiebung

L Rf*Au
Ist L > 0, so ist das Vorzeichen für AR gleich dem

Vorzeichen von R zu wählen; ist L < 0, so wird für AR das
entgegengesetzte Vorzeichen wie das von R genommen. Kurz, gilt
f*H-1f >0, so liegt der Punkt im stabilen, gilt f*H_1f < 0, so

liegt der Punkt im labilen Kurvenzweig. Im indifferenten Zustand

ist die Matrix H singulär.
Der Konvergenzradius des Iterationsverfahrens ist dem

Krümmungsradius der Zustandsänderungskurve proportional, so kann die
Berechnung in jedem jSchritt mit einer grossen Laststufe begonnen
v/erden, nimmt jedoch die Fehlervektornorm innerhalb einiger
Schritte nicht wesentlich ab, so muss die Schrittgrösse vermindert
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werden. In Abb.7. wurde für h=0,375t der Kurvenabschnitt AD

- bei in 40 Stufen aufgetragener Last - bestimmt.

5. Postkritischer Zustand nach dem VerzweiKungspunkt

Wird das Modell des Trägers in Abb.6. nur aus durch
biegungselastische Gelenke verbundenen Stabelementen aufgebaut, so kann
der Durchschlag lediglich mit Knickung erfolgen.

Bei einer Last unter der kritischen, tritt keine Formänderung
ein, so hat das Eigenwertproblem (9) die Form

(pi + RD,-)du 0

Der kleinste Eigenwert gibt die erste kritische Last, durch
den dazugehörenden Eigenvektor wird die Knickform von einem freien
Parameter abgesehen bestimmt. Um die Punkte der zur Knickform
gehörenden Zustandsänderungskurve nach dem Verzweigungspunkt zu
bestimmen, muss auf dem Träger das Skalarfache der durch den Eigenvektor

bestimmten Form erzeugt werden. Die richtige Annahme des
Skalarparameters ist von grosser Wichtigkeit,da bei einem zu
niedrigen Parameterwert, die Matrix H schlecht konditioniert
/ill-conditioned/ ist, und das für die Elimination des Fehlervektors,

zufolge der eingeschalteten endlichen Verschiebung,
erforderliche Iterationsverfahren nicht konvergiert. Wird der Skalar
zu hoch gewählt, so ist die Fehlervektornorm grösser als der
Konvergenzradius.

Mit richtigen Werten gerechnet und durch die in Punkt 4
beschriebene Minimalisierung des Fehlervektors erhält man einen
Punkt der Zustandsänderungskurve. Das Vorzeichen von AR, wieder
dementsprechend angenommen, ob der Punkt auf dem stabilen oder
auf dem labilen Abschnitt liegt, können die Punkte der
Zustandsänderungskurve nach dem für die grossen Verschiebungen gültigen
Verfahren, mit beliebiger Dichte ermittelt werden.

Ir

o6
2,0

%\

05

23
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R*

2h

[1]

[2]

M

[5]

Abb.8. zeigt den Träger im

ursprünglichen und im Endzustand, der
nach einer, mit einem Eigenvektor der
Norm 0,2 begonnenen Iteration berechnet

wurde, weiterhin einige Zwischenzustände

des Durchschlags, wobei die
jeweiligen Grössen der Ausgleichkraft
angegeben sind.In Abb.9. ist die
Grösse der Ausgleichkraft in Abhängigkeit

von der Verschiebung des Gelenks
C dargestellt.

Abb.9.
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Zusammenfassung

Durch die Lösung eines Eigenwertproblems, das aus der Zu-

standsänderungs-Differentialgleichung einer mit starren oder e-
lastischen Stabelementen modellierten, durch einparametrige
Belastung belasteten Stabkonstruktion folgt, lassen sich der
Parameter der kritischen Last und das Affinbild der Knickform bestimmen.

Die Punkte der Zustandsänderungskurve werden numerisch mit
Hilfe eines konvergenten Iterationsverfahrens bestimmt.
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Post-Critical Behaviour of Inelastic Structures
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As illustrated by Professor Bieniek's Report, it is now increasingly
recognized that in structural engineering the knowledge of the post-critical
behaviour is almost as essential as that of the critical load itself: in fact, the
unavoidable imperfections that make actual structures different from the "ideal-
ly perfect" modeis of applied mechanics, affect their strength in a way that
depends largely on the post-critical behaviour of their "ideally perfect" modeis.

This contribution presents an elementary (but hopefully stimulating)
discussion of the Joint effects of imperfections and inelastic deformations on
the behaviour of structures that, if perfect, would exhibit a point of bifurca-
tion of equilibrium. As in Ref. (A.l) (°), buckling will be used as a synonym
for bifurcation of equilibrium, while collapse load will indicate a (local)
maximum on an actual load-deformation path. Dynamical and time-rate effects
will not be considered.

The most rational approach to the study of the effect of imperfections
on structural strength is through statistics and probability theory, as indica-
ted by Bieniek (p.38) and proved by an increasing number of research papers.
From this point of view, an actual structure is seen as a sample structure taken
out of a population of nominally identical structures, different from each other
because of random variations of the design parameters (yield stress, geometric
dimensions, etc.). The ideal structure, corresponding exactly to the design, is
the average structure of this population. With some qualifications (°°) it can
be stated that the average (expected) strength of the actual structure is appro-
ximately equal to the strength of the average structure in absence of phenomena
of geometrical instability, and is lower if these phenomena are present. In the
latter case, the introduction of probabilistic methods becomes of utmost importance

in order to obtain economical and reliable designs. This point is illustrated,
in the following Section 1, by the summary of a probabilistic investigation

(°) See list of References at the end of this contribution.
t o o The following Statement is too general to be more than an approximation.

For instance, it has already been proved (A.2) that the average plastic
collapse load of a ductile structure is smaller than the collapse load
of the average structure, but in the first numerical examples their
difference is rather small.
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of slender imperfect columns, fully published elsewhere (A.3). A basic difference
between this study and previous works by other Authors is the introduction

of other random quantities (namely, the yield stress and the free buckling
length) besides the geometrical imperfections.

In Ref. (A.3), collapse occurs because inelastic deformations develop:
this appears to be the most frequent cause of collapse of actual structures, and

it is rather surprising that the interaction of inelasticity and instability is
still a comparatively little-explored field, perhaps avoided by most researchers
because of its great analytical difficulties.

Section 2 below presents two examples of asymmetric behaviour (i.e.,
of load-deformation paths that depend on the sign of the deformation) of structures

that, if perfect, would buckle elastically. In the first example, the
asymmetry occurs in the inelastic ränge of deformations and is due to an asym-
metry in the strength of structural cross-section. The second example illus-
trates asymmetric elastic buckling, a phenomenon now well known, after the great
amount of research spurred by Koiter's fundamental works (Bieniek's Refs. 47 and
71), and apparently the only practically significant case in which collapse may
be completely independent of the onset of inelastic deformations.

Finally, the last Section of this paper discusses and compares different
cases of buckling in the inelastic ränge. Again, it will be shown that

either a strength asymmetry or a geometry effect may cause asymmetry of the
post-buckling load-deformation paths of the "perfect" structure: consequently,
in such cases the collapse load of the actual structure depends on the sign of
the imperfection.

1) ELASTIC BUCKLING AND PLASTIC COLLAPSE: A PROBABILISTIC ANALYSIS

Consider a simple compressed strut, for instance pin-ended as in Fig.
1.1, and made of an elastic-perfectly plastic material with yield stress a

If the strut is initially perfectly straight, it is well known that it remains

a. *. i _j i i p

«,i>i

y(x)

Fig. 1.1

straight and stable as long as the compressive load P is smaller than both the
elastic buckling load

2 2 2 2
P„ ir EI/1 it EA/X a„ A and the squash load P a A

E E n y y

If P„ < P the load remains constant at P P£ (within the first-
order, small-displacements theory) in the early stages of buckling, and begins
decreasing as soon as the first plastic deformations take place; the axial load
vs. mid-span displacement (P-V) path remains below, and tends asymptotically
to, the P-V curve corresponding to füll yielding of the cross-section V ML/P
(Fig. 1.2a): both curves have a horizontal asymptote at P 0.
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t yield
yieldFul
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(b) Fig. 1.2

If Py < Pe, the strut buckles at P Py; the load P Starts decreasing quite ra-
pidly at the very onset of the deformations following the full-yield curve, and

again tends asymptotically to zero when V -> <» (Fig. 1.2b).

If the material has a constant, non-zero tangent modulus Ef in the
inelastic ränge, the horizontal asymptotes are at the load P Pr (defined in
Section 3) rather than at P 0 (A.4).

If the strut is affected by an initial geometrical imperfection, for
instance in the form of a half sine-wave

(1.1)Y (x) V sin itx/1
o o

(Fig. 1.1), the P-V path in the elastic ränge is given, with very good approxi-
mation, by (Fig. 1.2)

V V / (1-P/P„) (1.2)
O E

The actual elastic-plastic path remains below the full-yield curve: collapse
occurs when sufficient plastic deformations have developed. The relation
between imperfection magnitude and collapge load P of the type (A.3)

Y o

r
1 - (1.3)

where r is the relevant core radius of the section.

If the relationship between Pc and y is known and y is a random variable,

it is conceptually easy to obtain the probability distribution of the de-
pendent random variable Pc or ac Pc/A. In Ref.(A.3), eq.(1.3) was assumed to
hold throughout the relevant ränge; and, since the geometrical imperfection is
essentially due to errors of fabrication with respect to the straight strut one
aims at, it appeared logical to take y t0 be normally distributed with zero mean,

although only its absolute value, y > appears in eq.(1.3). Fig.1.3 shows ty-
pical probability density curves of the collapse stress o calculated under the

lg. 6 Vorbericht
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average value X.
coüapse stress ac

S=0,06

above assumptions for the yield stress
Oy 2800 kg/cm^, two slenderness
ratios X, and several values of the Standard

Variation, s, of the imperfection
coefficient y. All these curves show
a sharp cut-off at the collapse stress
of the imperfect strut

a P /A min (a a„) : a aco co y' E' co y

when X 60, a a_ P_/A when
co E E

X 100.

For a more realistic treatment, one
must remember that the yield stress of
a given material is also a random quan-
tity : some earlier investigations seem
to suggest that, at least in a first
approximation, it can be considered to
be normally distributed with a Standard
deviation, t, equal to about 10% of its
mean value öy. In the already quoted
Ref. (A.3), it seemed appropriate to
introduce also a random variability of
the slenderness ratio X, because this
quantity may be different from the
design value because of defective res-
traints and/or approximations introdu-
ced in the calculations; also X has
been assumed to be normally distribu-

1-3 ted, and its Standard deviation, k,
has been taken equal to 10% of the

With these assumptions, the probability density curves of the
take the form shown in Fig. 1.4 : the upper cut-off disappears,

P(ac)xto4

IX 60

S=0.12

S=0.18

S=0.24
S=O.30

1500 2000 2500 2600

p(CTc)x10«

u 100

S=01

5 0.2

S=03
S=0/t
S=0.5

1000 1500 2000

Flg.

' f(crc)xio4

Curva0^=2800 Kg/cmq

l 280 Kg/cmq

s =0003 X

k =0.1 5. 140

CTC1500 2500 3000 3b00I0C0

Fig. 1.4
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because large values of ac0 are now possible, albeit with. little probability.
However, the average collapse stress öc remains much smaller than the collapse
stress of the average, straight strut, er min (ö ö_,)

In order to have indications for actual design practice, the relation-
ship has also been investigated between the nominal safety factor iJj introduced
in the calculations (ratio of nominal collapse stress aco to design admissible
stress a and the probability of collapse

cam * —
Prob (er < a

c ~ cam
(1.4)

A typical set of curves, plotted in semi-logarithmic scale in the relevant
ränge of (very small) values of P* is shown in Fig. 1.5 : they can be well
approximated by a set of parallel straight lines. It is also worth noting that

very small variations of the nominal
safety factor i(j can easily induce ten-
or hundred-fold variations of actual
safety; this clearly calls for a "ratio-
nalization" of design practice through
the probabilistic approach. A qualitative

and quantitative comparison
between the results of the probabilistic
treatment just summarized and the
Italian Steel Building Code has also
been presented in Ref. (A.3).

0,003

Mo

10-' 10-' p»
Fig. 1.5

2) ELASTIC BUCKLING: ASYMMETRIC BEHAVIOUR

The behaviour described in Section 1 is, within the elastic ränge,
perfectly symmetrical with respect to the sign of the displacement and/or the
imperfection, regardless of a possible asymmetry of the strut cross-section with
respect to the axis of bending : in fact, the geometry of the section affects
the behaviour of strut only through its moment of inertia. This type of
behaviour (Symmetrie elastic buckling) is not limited exclusively to the pin-ended
strut, but is common to many of the elastic structures that are liable to insta-
bility : indeed, before the development of Koiter's theory (Bieniek's Refs. 47

and 71), it was thought to be common to them all.
However, the symmetry of behaviour does
not extend beyond the elastic ränge of
deformation, unless the strength of the
cross-section is Symmetrie (as it has
implicitly been assumed throughout Section

1). For instance, if the strut of
Fig. 1.1 has a T-section, the first- and

full-yield interaction curves in the
moment-axial load (M-N) plane are quali-
tatively indicated in Fig. 2.1. (For a
detailed derivation, cf. Ref. (A.5).)

Fig. 2.1

X

1 iM

1—'

y / \ \
0yA\ \

J? ^First yield
^M ^Full yield

"po
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Transformed into P-v coordinates, the interaction curves appear like in Fig.
2.2, and the P-v equilibrium paths become, on the whole, asymmetric for both

y pE

//

First yield
Füll yield

Fig. 2.2

the perfect and the imperfect strut, in both cases Pc < Py (illustrated by Fig.
2.2) and P <

(a) Unbuckled

In particular, the collapse load does depend on the sign
of the imperfection

1<v (- V (2.1)

(b) Buckled Ac

AfVi

T
/

f /
«6

Ac|>

^-^

(c)

HE/2

arcc an

Aa

Fig.

The preceding discussion has illustrated
the case of Symmetrie elastic buckling,
followed by asymmetric plastic collapse
due to an asymmetry of the cross-section

: an asymmetry of yield stress
Öifferent yield points in tension and
compression) would have the satne qualitative

effect.
Another important case of asymmetric
behaviour is that of asymmetric elastic
buckling, analytically described in the
already quoted works by Koiter and here
illustrated by the simple model of a
three-hinged arch shown in Fig. 2.3a:
AB, BC, etc. are rigid links; A, C, E

are moraentless hinges; the two deforma-
ble cells B and D consist of two parallel

elastic rods (1 and 2) and a soft
core that does not allow a shear deformation

of the cell. Assume that Fig.2.3a
represents the configuration at the
point of buckling-with a load P PE
and a horizontal thrust

HE i/f (2.2)

2.3
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The following treatment is limited to geometrically symmetrical buckled confi-
gurations, such as in Fig. 2.3b; equilibrium yields

P (c + Ac) H (f - v)
H (v - Af) (Rx - R2) | (2.3)
H Rx + R2

where R^ and R2 are the (compressive) reactions in the elastic rods, related
to their Variation of length by (Fig. 2.3c)

K A&i R£ - 1^/2 (i 1,2) (2.4)

Aa^ is measured with respect to the point of buckling, and is taken positive
when a shortening.

In deriving the post-buckling P-v relationship, introduce firstly the
(wrong) assumption that the deformable cells do not change length during the
deformation. Then geometry yields, up to second-order infinitesimals

(<j> - A<J>) d Aax - Aa2 (2.5)
2

Ac b (1 - cos 0» b <)>2
• Af |. Ac ^ ^ (2.6)

2
2 2

_ v - Af _ v _ c ij> Af _ Ac _ b <fi ,- 7x*—r"F it ; ^"z—r_i t (2,7)

Introducing into eqs. (2.3), taking account of (2.4) and letting
f - V

d2 f
•E " "E c 2b c
P„ HE|=K^-i (2.8)

some algebra leads to the following expression

P PE (1 ~\ I + •••) (2-9)

Note that neglecting the second-order quantities A<|>, Ac and Af in the initial
equations (2.3), the final equation would be

P PE (1 - j) (2.10)

i.e. would present an error of the same order of v : the possibility of such
an error was pointed out by Koiter with reference to a simple fully elastic
frame (A.6).

Actually, during buckling, the length of the elastic cells decreases
of the quantity

Ab (Aa]_ + Aa2) / 2 (2.11)

Eqs. (2.6a) and (2.7b) become respectively
2

Ac (b - Ab) (1 - cos <(,) b(^- + !£¦) (2.12)

2
Ac b <f> Ab.

A* T j If * T)
Introducing these new expressions into (2.3) and (2.4) and rearranging, one ob-
tains
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Ab _ _
d2 ,£_ AK

T 2f l 2 h'
(2.13)

Ac Af A(j> 0 (2.14)
so that, up to second-order terms,

Ab - *£
b 2

and eq. (2.10) holds, at least in the vicinity of the P-axis: this equation has
been accepted in an earlier presentation of this arch model (A.7).

The limit condition of the arch corresponds to the most stressed rod
reaching its yield value Ry (Fig.2.3c):
the first- and full-yield M-N interac-
tion profiles of the cells eoineide into

a diamond (Fig.2.4). Neglecting, in
aecord with eq. (2.14), all second-
order displacements, it is easy to
transform this diamond into the following

P-v curves:
1 -IT / 4=

v > 0; R,

R.,d

-H

2R

Ryd Fig

-2R

V P Py 1+2 v/d (2.15)

R; p p i-w;.
y y 1-2 v/d (2.16)

P 2 R f/cy y
(2.17)

2.4 v < 0; R2

where

Eqs. (2.15) and (2.16), qualitatively sketched in Fig. 2.5, have the horizontal
asymptote

P + P d/2f (2.18)

respectively; eq. (2.15) intersects the v-axis at v f, with a slope

m _y
ff üfm (2-19)

so that, provided P„ > PE > Py/(l+2 f/d), eq.(2.10) intersects both eqs. (2.15)
and (2.16) (Fig. 2.5). In words, elastic buckling of the perfect elastic arch
just described is followed by compression yielding in the deformable cell.

yield

X
yield

Vo

Fig. 2.5
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If an initial imperfection, vQ, is present, the elastic P-v paths
tend asymptotically to the straight line, eq. (2.10). Therefore, as shown in
Fig. 2.5, when vQ > 0 the collapse load Pc is most probably reached within
the elastic ränge of behaviour, while if v0 < 0 collapse occurs at the yield
limit curve. It is thus shown that, in a structure liable to asymmetric elas-
tic buckling, (a) the sign of the imperfection may affect the value of the
collapse load as well as the qualitative type of collapse; and (b) the possi-
bility of yielding may have no influence on collapse, if the imperfection weak-
ens the structure.

3) STRUCTURES THAT BUCKLE IN THE INELASTIC RANGE

If the structural material is elastic-perfectly plastic, inelastic
buckling occurs, under a rapidly decreasing load, when Py < Pg, as in Fig.1.2b:
the corresponding modifications of Figs. 2.2 and 2.5 are immediate. If the
material has a non-zero inelastic modulus Erp, the simplest case of buckling
beyond the elastic ränge is well illustrated by the well known Shanley's strut
model (A.8) Assuming a constant modulus E>p and elastic unloading (Fig. 3.1),

:rclon t

?rclan E

Fig. 3.1

aT

fi ATI

Plate?-
(Area k.A)

3(ate 1

Area A

uore

Section X B

Fig. 3.2

XK

v„ v

\
"W

FigFig. 3.3

the inelastic perfect strut may buckle at any load comprised between Pj and Pg;
all P-v paths have a horizontal asymptote at a load P P^ S(PT, PE), so that
the load increases with |v| (and the strut is stable, (A.l)) if buckling Starts
between PT and P^, decreases if buckling Starts between Pj^ and Pg( The

(°) The validity of these Statements is limited to comparatively small values
of v. Otherwise, not only the small-displacements approximation loses
validity, but tho material may yield in tension in the "unloading" zone, or
E^ may vary in the "loading" zone. Note that the latter probably occurs
before the former in a real material, at least in the more significant
ränge P < PR, where the average stress o

tion.
P/A increases with the deforma-
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loads PT and Pr are obtained from the formula for the elastic buckling load PE,

substituting the elastic (Young's) modulus E, respectively with the tangent
modulus Ej and with the so-called reduced modulus Er, that depends on E, Et and
the shape of the section.

If the strut is not initially straight, the P-v path lies on either
side of the P-axis according to the sign of the initial imperfection VQ, and
below the lowest path of the perfect strut (which Starts from P P?, Fig.3.2),
to which path it tends when V0 -*¦ 0. But some degree of imperfection is un-
avoidable in an actual structure; therefore, of the infinite theoretically
possible buckling paths, only the lowest ones seem to be significant from an
engineering point of view. Collapse of the inelastic strut, be it perfect or
not, occurs with one of the phenomena mentioned in the footnote on the previous
page; for detailed examples see e.g. Refs.(A.4) and (A.9) dealing respectively
with Shanley's model and with the practically important case of mild steel
columns with residual stresses.

In Shanley's treatment and in the above description, the strut cross-
section is assumed to be Symmetrie with respect to the axis of bending: the
whole picture in Fig.3.2 is also Symmetrie with respc-ct to the P-axis. But if
the cross-section is not Symmetrie (as in the example of Fig.3.3, Ref. (A.l))the
buckling interval of the perfect strut (PT, V-g) remains unique, but each P-v
path is different for v > 0 and v < 0, including the initial slope [dP/dvjv=0
and the horizontal asymptote (Fig.3.4). In case of inelastic buckling, therefore,

an asymmetry of strength implies asymmetric behaviour from the first
stages of deformation. Again, the P-v path of any imperfect strut "is below
the relevant lowest branch of the perfect strut and tends to such branch
when the imperfection tends to zero" (A.l); the effects of an imperfection
clearly depend on its sign.

The previous examples illustrate the inelastic behaviour of structures

that, in the elastic ränge, exhibit Symmetrie buckling. The model arch
of Fig.(2.3) was used in Ref.(A.7) to exemplify the inelastic behaviour of a
structure liable to asymmetric elastic buckling; the effects of imperfections

on this model have been investigated
in detail by Batterman (A.10). Ano-

• p^ ther simple model and a more realis-
tic example have been presented by
Hutchinson (A.ll), with qualitatively
similar results.
Referring to (A.9) and (A.10) for the
analytical treatment (°), the behaviour

of the perfect arch is summar-
ized by Fig.3.5, and that of the im-
perfect arch by Fig.3.6 (reproduced
from (A.10)).

p p.

A

«,,*

P P v/f

Flg_ f 3.5

(°) The second-order quantities Ac, Af, etc., were neglected in the analysis
(cf. eqs.(2.3) seqq.). This can be approximately justified, for small v,
by the result of the complete elastic analysis, eqs. (2.14) and (2.10).
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Inspection of these Figures shows that the behaviour of the arch is markedly
asymmetric, in the sense that it depends strongly on the sign of the displacement

(and the initial imperfection). As in the previous examples, all paths
of the imperfect structure (v0 =/= 0) lie below the lowest paths of the perfect
one (v0 0) and tend to either of these when v0 ¦* 0 (Fig. 3.6); the straight
asymptotes have a finite slope and, as noted by Batterman, are different on
either side of the P-axis. The perfect arch is stable, for zero displacement,
up to a load indicated by Pßn in Fig. 3.5; but, when buckling with positive v,it always reaches a collapse point and becomes unstable. The imperfect arch
collapses only (and always) when v0 > 0, unless account is taken of the possi-
bility of tension yielding (which leads to the dashed lines of Fig.3.6) or of
a decrease in E-j.

The behaviour illustrated by Figs. 3.5 and 3.6 is the inelastic
analogue of Koiter's asymmetric elastic buckling.

(A.l)

(A.2)
(A.3)

G

G

(A.4)
(A.5)

G

J

(A.6)

(A.7)
(A.8)
(A.9)
(A.10)
(A.ll)
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SUMMARY

The influence of random imperfections and inelastic deformations on
the buckling and post-buckling behaviour of structures has been examined in
several cases.
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Interaction of Postcritical Plate Buckling with Overall Column Buckling
of Thin-Walled Members

Interaction du voilement post-critique de plaques et du flambement de
colonnes aux parois minces

Wechselwirkung von überkritischem Plattenbeulen und Knicken des ganzen
dünnwandigen Stabes

JOHN DeWOLF TEOMAN PEKOZ GEORGE WINTER
Cornell University, Ithaca, New York, USA

I. Introduction
The interaction of postcritical plate buckling with overall

column buckling in thin-walled members is a complex phenomenon which
is very important in many situations. Thin-walled steel construc-
tion in buildings has increased greatly in the past two to three
decades; thin-walled members have always been used extensively in
aircraft construction.

In thin-walled members plate buckling is of major importance
and constitutes one of the chief design criteria. The classical
critical plate buckling stress for the component plates, which is
the stress at which local bifurcation buckling occurs, is often re-
garded as the chief design criterion. However, this is by no means
the maximum load which the component plate can carry. The plate
will usually continue to take increasing load, often more than twice
the critical local buckling load. This postcritical plate buckling
strength can be used to achieve substantial economies.

This paper concerns itself with postcritical plate buckling and
its effect on the overall buckling of columns. For most thin-walled
columns of low and medium slenderness, critical plate buckling of
one or more of the component plates occurs first, and is then fol-
lowed by overall column buckling at some point in the postcritical
plate buckling ränge. The prior plate buckling lowers the overall
capacity of the column, but the load at which local bifurcation
buckling occurs is less than the actual carrying capacity of the
member and may not be used as a reasonable indication of the overall

capacity.
The investigation reported herein has been sponsored at Cornell

University by the American Iron and Steel Institute. It is aimed at
developing Information on this interaction between postcritical
plate buckling and overall column buckling. Thirty-three tests have
been conducted on columns in which both the postcritical plate buckling

strength and the overall column buckling strength were varied
systematically. The results of these tests illustrate clearly the
interaction effects between postcritical plate buckling and overall
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column buckling.

II. Survey of Previous Work

Many researchers have investigated plate buckling and a number
have done work in the postcritical plate buckling ränge; also, overall

column buckling has been extensively investigated. However,
little has been done in the area of the interaction of postcritical
plate buckling with overall column buckling. In fact, postcritical
plate buckling by itself needs further clarification. This refers
particularly to the later stages, where relatively large plate
deflections interact with nonlinear materials1 behavior.

One researcher, T.R.G. Smith in England^J, has made a very im-
portant contribution in the field which considers both of the above
nonlinearities in the postcritical plate buckling ränge as they
interact with overall column buckling. Unfortunately his analysis is
limited to tubes and cannot be applied to other shapes without re-
peating his lengthy derivations for each type of section.

Some work has been done toward a simpler method of treating
different types of common sections such as by Uribe [2] and Wang
[3] at Cornell University, though their work was primarily involved
with things other than interaction effects and was not very extensive.

Others [4-7] have made contributions to the field of
interaction, but their work has not involved both types of nonlinearities

as has T.R.G. Smith. There appears to be no thorough set of
tests utilizing different column shapes upon which a general method
of design of thin-walled columns subject to the interaction of
postcritical plate buckling with overall column buckling can be based.

III. Testing

Since thin-walled members are made of essentially two types of
elements, elements with one edge stiffened by a web, flange or
stiffener and elements with both edges stiffened, two types of
sections were chosen in order to test each type of element separately.
One section was composed entirely of stiffened elements; it was made
of two Channels connected together at the flanges to form a rectan-
gular tube (see Fig. la). The other was composed primarily of un-
stiffened elements (the stiffened element was designed so that
local buckling would not occur); it was made of two Channels connected
back to back along the webs to form an "H" type section (see Fig.
Ib).

Four sections of each type were fabricated. The dimensions of
the sections were chosen so that the critical and postcritical plate
buckling strength were varied by varying the element width-thickness
ratios over a wide ränge. The dimensions are given in Table 1.

For each section, the overall column buckling strength was varied
by varying the slenderness ratio L/r. In addition to a stub

column test (no column buckling), three different column lengths
were chosen to cover the region in which local buckling had an ef-
fect on the ultimate load a column will support.
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The testing
achieved. This
of the expected
ments in the cen
sure the lateral
distributions, a
buckling occurre
the strain gage
in all of the co
and whose result

arrangement was such that concentric loads were
was done by loading to approximately twenty percent
failure load and then unloading and making adjust-
tering as necessary. Dial gages were used to mea-
deflections and strain gages to obtain the strain

s well as to determine approximately when local
d in the plate elements. It is easily verified from
results that nearly concentric loads were achieved
lumns, except for three tests which were eccentric
s are ignored.

Measurements of the out-of-plane deflections were taken for all
of the unstiffened plate elements. It was found that these deflections

were minimal until failure, being no more than a few thou-
sandths of an inch.

The initial portion of the stress-strain curve for the material
used, a carbon steel of a structural quality, is shown in Fig. 2.
The average yield stress was 41.9 ksi., and the average ultimate
stress was 53.8 ksi. Strain hardening occurred at an average strain
of 0.014. The average percentage of elongation of a two-inch gage
length at rupture was 37 percent.

IV. Results

(a) General

The results of these tests illustrate clearly the interaction
between postcritical plate buckling behavior and overall column
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Table 1

DIMENSIONS OF SECTIONS

(a) Sections S

Specimen w

(in)
d

(in)
t

(in)
Width/Thickness
Single Thickness
Element (d/t)

Width/Thickness
Double Thickness
Element (w/2t)

S-l 2.0 3.5 0.058 57.2 16.7
S-2 2.0 5.0 0.058 83.0 16.7
S-3 2.0 7.0 0.058 117.4 16.7
S-4 2.0 9.0 0.058

(b)

151.8

Sections U

16.7

Specimen w

(in)
d

(in)
t

(in)
Width/Thickness
Single Thickness
Element (w/t)

Width/Thickness
Double Thickness
Element (d/2t)

U-l 1.0 3.0 0.058 16.2 24.8
U-2 1.25 3.0 0.058 20.5 24.8
U-3 1.5 3.0 0.058 24.8 24.8
U-4 1.75 3.0 0.058 29.1 24.8

buckling. The ultimate carrying capacities for the columns are giv-
en graphically in Figs. 3 and 4. The figures compare the experimen-
tal carrying capacity with the expected strength (1) when local in-
stability is entirely neglected; (2) when the effect of local insta-
bility is based on the critical bifurcation stress, neglecting
postcritical strength; (3) when postcritical buckling is included
approximately by means of an effective width concept. These will now
be discussed separately.
(b) Local Instability Neglected

A concentric, perfect column which is elastic will fail at the
critical Euler stress or at the yield stress, provided that local
instability and residual or cold-forming effects are nonexistent.
For this type of column behavior, column curves, i.e. slenderness
ratio vs. critical stress, are given as curves (1) in Figs. 3 and 4

for each of the different sections.
As mentioned, this neglects the effects of local instability,

which were present in the test specimens. Additionally, the speci-
mens were cold-worked so that cold-forming effects were present.
However, since cold-forming effects are related to the area of the
corners as a fraction of the total area (8), and since the ratio of
the corners to the total area was less than one percent for all of
the sections, the cold-forming effects were negligible. The columns
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were thus assumed to have a uniform stress-strain curve which is ap-
proximated by the material stress-strain curve in Fig. 2.

It is seen that almost all test points fall significantly below
curves (1) which indicates that local instability had a great effect
on strength. This effect became greater as the width/thickness
ratios of the elements were increased.

(c) Theoretical Critical Stress

The theoretical critical bifurcation stress is that stress at
which a perfect plate begins to buckle. Here it refers to the
widest elements for the closed tubulär sections and to the unstif-
fened flanges for the "H" sections. The theoretical critical stress
by definition is the stress at which postcritical strength begins.

The classical critical stress for a plate element that buckles
elastically is calculated from:

TT E
1°cr "

12(1 - u')(|)Z
where E is the modulus of elasticity, p Poisson's ratio, w the plate
width, t the plate thickness, and k depends on the edge conditions,
chiefly along the longitudinal edges parallel to the compression
stress. Values of k which are often used in practice, and which in
some cases will be conservative, are 0.5 for elements with one edge
supported by a web and the other edge unsupported, and 4.0 for
elements with both edges supported by a web.

For the purpose of comparing the test results to a theoretical
stress, these two values of k were used for the sections under
study. The results are given in curve (2) in Figs. 3 and 4. With
the exception of Fig. 4a the theoretical critical stress was below
the highest load at failure, indicating that postbuckling strength
existed. For Fig. 4a, the theoretical elastic critical stress was
above the yield stress, though the section showed local waving prior
to failure during the tests. It is seen that, except for Fig. 4a,
almost all test points fall significantly above curve (2) indicating
that postcritical strength does add considerably to the carrying
capacity. This effect increases with increasing width/thickness
ratios.

(d) Effective Width Approach

In order to consider the postbuckling strength, an effective
width approach is now under development. At present, this approach
is only an approximate method for considering postbuckling strength,
and in its present form is not always satisfactorily accurate. The
concepts of the method are these:

The bifurcation stress of a column is well accepted to be given
by the Engesser-Shanley tangent-modulus equation:

>g. 7 Vorbericht
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IT E„

at= fKL_, 2

where E<- is the tangent modulus for the material, L is the column
length, r is the radius of gyration, and K is the effective length
factor. Dividing the cross-section into j elements, one can define:

j

v2
l Eti1!i=l ri x

Then, for K 1.0, by Substitution, Eq. 2 becomes:

*2 l Eti1!
T2 _ i=l ri x

-L OK
4

where, for any selected strain, Eti is the tangent modulus of the
itn element, I± is the raoment of inertia of the itn element about
the weak principal axis, A is the füll area of the cross-section,
and °Cr is given by:

T(A -o.
_

L *- ef fJ i i
A

where (Aeff)i is the effective area of the itn sub-element at the
stress Oj[ corresponding to the assumed strain e, and A is the füll
area of the section. Essentially, Eq. 5 considers the effects of
local buckling and postbuckling strength by reducing the area to an
effective area, using the effective widths of the elements.

The general equation for the effective width on which American
specifications are now based is :

b
w

er
max

(1 0.22 er •)

max

which constitutes a slight revision of the equation first given by
Winter [9]. Here b is the effective width, w is the real width of
the particular plate element, °cr is the classical plate bifurcation
buckling stress for the given edge conditions, and omoX the edge
stress in the postbuckling ränge. This equation can be transformed
into the more convenient form:

Cj^t
max

(i.o - c2 i -)
max

where t is the plate element thickness, E the modulus of elasticity,
and Ci and C2 are constants which depend on the edge conditions.
For elements with one side supported by a web and the other side un-
supported, approximately Ci 0.672 and C2 0.148. For elements
with both edges supported, approximately Ci 1.9 and C2 0.415.

The ultimate loads predicted using this effective width approach
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are given in curves (3) in Figs. 3 and 4. It is seen that the test
results agree best with the last of the three methods (curve 3),
which includes the effect of postcritical plate buckling strength on
column capacity. At the same time, it is also seen that the accura-
cy of this approach is inadequate. Further development of this method

is needed, and is under way at the present time.

V. Conclusions

On the basis of extensive test results and theoretical compari-
sons, it is shown that:

(1) The strength of thin-walled columns can be considerably
reduced by local plate buckling.

(2) Column capacities calculated on the basis of the classical
critical plate buckling stress considerably underestimate the actual
column strength.

(3) The effect of the postcritical strength of the component
plates increases the column strength significantly over that deter-
mined by the critical plate buckling stress.

(4) A tentative method, based on the postcritical effective
width of plates, is now under development and promises to furnish
a satisfactory tool for calculating the strength of thin-walled
columns.
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Summary

Experimental data are given which illustrate clearly the
interaction of postcritical plate buckling with overall column buckling

in thin-walled members. The experimental carrying capacity is
compared with the expected strength when (1) local instability is
entirely neglected; (2) the effect of local instability is based on
the critical bifurcation stress, neglecting postcritical strength;
(3) postcritical buckling is included approximately by means of an
effective width concept.
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1» Introductory Remarks

After the completion of the investigation into the post-
buckled behaviour of webs in shear, which was conducted
partially by K.C.Hockey and the first of the authors in Swansea
and Cardiff /!/ and partly, after the return of the author to
Czechoslovakia, at the Institute of Theoretical and Applied
Mechanics in Prague /2/, a new research project was started.
This deals with the influence of flange stiffness upon the
ultimate load behaviour and incremental collapse of thin webs
subjected to a concentrated (or, more accurately, to a narrow
partial edge) load. The investigation is carried out by a
research team that consists of the first of the authors,
Ing.Drdacky, Ing.Kratena, Ing.Zörnerovä (all of them from the
Institute of Theoretical and Applied Mechanics in Prague), the
other author and Ing.Bohdanecky (both from the Structural
Institute in Prague). The objective is to obtain (together with
other investigators /j/> A/, /5/ enough information about
the ultimate load behaviour of plate girders the webs of which
are subjected to a patch load, such as are crane run-way
girders, certain types of bridge girders and similar structures.

2. Test Girders
Two series of test girders were tested. The general

details of the test girders of the first series are given in
Pig. la, the corresponding dimensions (in mm) in Table la. The
details of the second series girders are shown in Pig. Ib, and
the dimensions in Table Ib.

An inspection of the figures shows that the test girders
of the second series had two web panels. Each of them was
tested individually, the supports being positioned under the
boundary vertical stiffeners of the panel. Web panel W 2 was
tested first, the girder being subjected to a static load.
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Table 7a

Sirder Loading

Web flange
HB

Per

[T]

pult

m
Depth

b
[mri&

Thickness
b

t
Width bf
bnnü

Thickness t.
ünml 'f/aXnitsoflO°]

Upper Lowe/ Uppet Lower Upper Lower

PT61 statte

500 4? 250

50 50

5.35 5.95 3*8 3*8 2 18 3.6

PT62 statte 5.S7 5.93 3 50 3*3 2.2 *0

PT63 cyclic 5.09 5.03 2.17 2.09 2.38 50

PT64 cyclic 5.08 5.06 2.16 2.13 2.19 *.6

PT65 static

*5 45

16.21 16.lt 63.89 63.07 2.53 55

FT66 cyclic 16.21/ 16.1* 6*25 63.0* 2.53 5.5

PT67 cyclic 16.17 16.07 63*8 62.31 252 5.6

PT68 statte 1625 16.11 6*36 62.72 2.53 5.5

PT69 cyclic

50 50

2*25 21.78 237.68 253.60 2.83 7.2

PT6M cyclic 2*6* 21.2* 2*9.33 237.38 2.83 70

PT611 statte 2//80 2*8* 25*22 255*5 2.8* 7.5

PT612 statte 2t. «0 2500 2*2.11 260*2 2.85 8.0

Table Ib

Sirder Web Loading

Web Hange
HB

Pcr

W

pt/lt

m

«

's

Thickness
b
t

Width b,
Dnern ' Thickness U

Dnnü 'f/%nitscf1Öts

Upper Lower Upper Lower Upper Lower

T67 W1 cyclic

1000 25 *00

160 160

5.50 5.18 0.887 0.7*1 2 2
6.5

W2 statte 5.0

Wf W1 cyclic 5*2 5.56 0.8*9 0.S17
W2 stat/c

T62 Wl cyclic

200 200

10.09 10.08 8.85 6.83 2 2*
7.0

W2 statte 8.5

T63 W1 cyclic 162* 1615 28.55 28.08 2.36
9.2

W2 statte 7.0

T6b W1 cyclic 20.17 20.12 5*.70 5*-30 2*8
9.8

W2 statte SO

T65 W1 cyclic

250 250
30.81 30t* 2*5 39 235.05 2.78

78.0

W2 statte 180

T6f Wl cyclic 305030.*8 236.** 236.00
W2 statte
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Then this web panel was cut off,
and web panel W 1 was subjected
to a cyclic load.

All web panels in both
aforesaid series had aspect
ratio « of 1. Test girders
with other ot -ratios will be
tested in 1972. In each series
the depth-to-thickness ratio
/? b/t of the web was
constant, but the flange
dimensions varied from girder
to girder, so that the effect
of the flexural rigidity of
flanges upon the ultimate load
behaviour of webs could be
studied.

The research on steel
girders was accompanied by
a photoelasticity investigation
conducted by the first of the
authors and J.Krat§na on
reduced-scale epoxy-resin modeis.

In all tests the web
panels were subjected to a
narrow partial edge load,
applied on to the upper flange
at the mid-distance of the
vertical stiffeners. The width
of the load c a/10 (in one

case c a/5), a denoting the width of the web panel (Fig.2).

3. Apparatus
A description of the experimental apparatus and of the

Programme of measurements was the objective of the paper /6/
presented by the authors at the Congress of RIIiEM in Buenos
Aires. Por this reason only a brief Information about the
apparatus will be given in this publication, the aim of which
is to discuss main test results.

The buckled pattern of the web was measured by means of
a stereophotogrammetric method /?/» The application of this
method was advantageous in the aforesaid tests, since itenabled the authors to take all readings in a very Short time
moment (0,001 see). This was desirable in the static load
tests (because a study of the final, plastic, stage - in which
the web and flanges were alread^ yielding - was one of the main
objeetives of the investigation) and indispensable in the cyclic
load tests (in which the web and flanges were "breathing").

A special device, designed by P.Pasnik, enabled the
authors to take deflection readings at a given moment of
loading cycles; for example, when, in a "breathing" cycle, the
web deflection attained its m-aximum (amplitude) value. Moreover,
the stereophotogrammetric method made it possible to measure
not only the deflection perpendicular to the web, but also the
in-plane distortion of the mesh that was marked on the web, and
the deformation of the boundary frame of the web panel.
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A set of strain gauges was attached to both sides of the
web and of the upper flange in order the stress pattern in the
girder could be studied. Several of the strain gauges, as well
as two deflection pick-ups, were linked to an automatic recorder
"Ultralette". Thus it was possible to study, as a function of
time, the progression of the plastifiaation of the girder in
the static load tests and the deflection (and strain) stability
in the cyclic load ones.

The post-failure plastic residue in the web and flanges of
each test girder was also carefully measured.

4. Static Load Tests
The first part of the investigation was concerned with the

post-buckled behaviour of webs subjected to a static patch load.
The influence of the flexural rigidity of flanges upon the
buckled pattern and stress state in the web and flanges, and
upon the ultimate load of the whole girder was studied.

The post-failure plastic residues wpi in web panels W 2
of test girders TG 1 (flexible flanges) and TG 5 (rigid flanges;
are plotted in Pigs. 3a and b. The plastic residues in the
upper (i.e. loaded) flange of girders TG 1, TG 3 and TG 5 are
given in Pig. 3c. A photo of the collapsed girder TG 4 is shown
in Fig. 3d.

T61-W2»at

4j—'

»*

.— 0

T65- kV2

b) Pig. 3

An inspection of the aforesaid figures shows the pronounced
influence that flange stiffness has on the deformation of the
test girder. Wnile, in the case of flexible flanges, the
buckling of the web and the deflection of the flanges are
xocalized in the neignbourhood of the partial edge load, for
heavy flanges the buckled pattern of the web and the flexure
of the flange are distributed almost over the whoie width of
the weD panel. The Performance of the web panel is then more
nomogeneous; this affecting - as it will be demonstrated
below - very beneficiaiiy the ultimate load behaviour of the
girder.

The pattern of £my £my denoting the vertical - i.e.
parallel to the load - membrane strain) in web W 2 of girder
TG 1 (flexible flanges) is given in Fig. 4. Pig. 4a shows the
values of £my along two horizontal lines (the first of them
being situated 30 mm and the other 300 mm from the top flange),
and Fig. 4b gives the strains £my along the vertical axis of
the web. The bending strains £bx in the upper (i.e. loaded)
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flange of the same girder
are plotted in Fig. 5»

The membrane strain
distribution in web W 2
of girder TG 5 (heavy
flanges) is shown in Fig.
6, the bending strains in
the flange of the same
girder are given in Pig.
7.

A comparison of the
membrane strain patterns
plotted in Pigs. 4 and 6
again shows the consider-
able influence of flange
inertia upon the post-
buckled.Performance of
the web. In the case of
a girder with flexible
flanges, the membrane
stress pattern, like the
buckled surface of the
web discussed above, is
localized in the neigh-
bourhood of the partial
edge load. Moreover, in
this case are the strainsstill small for a load
amounting to 90 % of the
experimental load-
-carrying capacity. This
indicates that the upper

flange and the adjacent part of the web buckled inwardly (and
the girder failed) before, or shortly after, the onset of
yielding in the web. On the other hand, for a girder with rigid
flanges, the stress pattern is wider (more distributed over the
width of the web panel); and, even after the web has plastifiedin a considerable portion, the girder can sustain further load -
thanks to the rigidity of the boundary framework consisting of
the flanges and vertical stiffeners. Besides that, in this case
the collapse of the girder is a slower process (and, therefore,
not so dangerous a type of failure) than that which occurs with
a girder having flexible flanges.

The ultimate loads Pyg of theMtest eirders are given in
Tables la, b, and the ratios Pult /Per (PCr denoting the critical
load evoluated by Rockey s theory /5/t which takes account of
flange dimensions) are plotted, in terms of the flange stiffness
Parameter If /a3t and of the depth-to-thickness ratio /\ b/t
of the web, in Pig. 8. An analysis of the tables and figure
indicates that thin webs subjected to a concentrated load,
applied on to the upper flange between the vertical stiffeners
of the web, manifest (like thin webs subjected to shear, bending
and che like) a considerable post-critical reserve of strength,
which ought to be taken into account in an Optimum design of
steel plate girders. This post-buckled strength grows with the
depth-to-thickness ratio of the web and with the moment of
inertia of the flange.

The effect of flange stiffness is very significant. For
example,for girder TG 1, which had flexible flanges with
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If /a t 0,89, the load-carrying capacity was 5 tons. On the
other hand, for girder TG 5, having rigid flanges with
If/a3t 254.4, the ultimate load attained 18 tons; which is
260% higher than the abovementioned collapse load of TG 1.

5. Cyclic Load Tests
The other part of the investigation dealt with "breathing"

of the web, with stability of plastic post-critical web
deflection and with incremental collapse.

The position of the concentrated load was the same as in
the case of static tests; but the load cycled between 0.5 T
and Pi Pi denoting various loading steps. For each loading
step, 1000 loading cycles were applied.

Three questions then needed replying:(i) When a girder, subjected to a load cycling between 0.5T
and an amplitude value P, operates in the plastic ränge,
does an increase in web deflection occur during a
certain number of loading cycles?(ii) If it is so, do these deflection increments cease
after a limited number of cycles of load applications?(iii) Does the aforesaid deflection increase lead to a
premature failure of the girder and to a reduction in
its ultimate load, if compared to the value resulting
from a static test?

Thanks to deflections and strains being measured carefully
on an automatic recorder Ultralette, it was possible to give
answers to the abovementioned questions.

An increase in web deflection (and strain) under a cyclic
load was observed frequently in the plastic stage of the tests
(see, for example, Pig. 9). This phenomenon "shook down",
however, after a few (usually 3-5) cycles, the deflection
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stabilized, and the girder was able to sustain a higher load
(Fig. 9). This happened for several successive lo.ading steps;
and only then the girder failed by deflection instability and
incremental collapse (Fig. 10).

The failure loads Pult resulting from the cyclic load tests
are listed in Tables la, b and plotted, in terms of the flange
stiffness Ir/ast and the depth-to-thickness ratio 7\ in Pig.11.

In almost all tests, the cyclic ultimate loads were not
lower than the load-carrying capacities resulting from the
corresponding static experiments; and, in several cases, they
were even higher. The cyclic loading and the incremental collapse
did not, thererore, lead to any reduction in ultimate strength«

An inspection of Tables la, b and Fig. 11 also shows that
the load-carrying capacities JPyjf grew substantially with the
flange stiffness, thereby demonstrating again the beneficial
effect of flanges of great inertia.

Pult
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67 PT68 JT610i z TS 6
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Fig. 11
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Summarg
The paper deals with the ultimate load behaviour of thin

webs subjected to a) static b) cyclic narrow partial edge
load. An analysis of the experimental results shows that such
webs (like those in shear, bending, etc.) posses a considerable
post-buckled reserve of strength. It was also demonstrated that
the post-critical behaviour and the ultimate load of the girder
were very significantly affected by the flexural rigidity of
flanges.
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