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Rheological Theory of Membranes Undergoing Large Deformations
(Physical, Geometrical and Engineering Aspects)

Théorie rhéologique des membranes soumises aux grandes déformations
(Ses aspects physiques, géometriques et techniques)

Rheologisch-theoretische Untersuchung von Membranen unter Beriicksichtigung
grosser Deformationen
(Deren physikalische, geometrische und ingenieur-technische Aspekte)

Z. BYCHAWSKI W. OLSZAK
Assoc. Prof. Dr. Prof. Dr., Dr. h.c.
Poland

Introduction

In the last years, a rapid development of the theory of large deformations
can be observed. It is due to the need of obtaining a more powerful tool in inves
tigating the modern structural materials and their mechanical properties. How-
ever, the research work in this field is mostly concentrated on the elastic be-
haviour of rubberlike materials under certain specific conditions. A systematic
development of this direction is given in the books of Green and Zerma 1 and
Green and Adkins 2 . In the latter, we also find some indications which may lead
to further generalizations of the theory as far as materials with rheological
properties are concerned. It should be mentioned, however, that because of the
generality of considerations, lack of physical aspects and applications they only
point out clearly the difficulties encountered in formulating the problem.

In recent structural mechanics and the design of engineering structures, we
are oftne faced with the necessity of considering nonlinearities of different
kinds, even within the classical concepts of strain and stress states. However,
all of them cumulate, if large displacements and, especially, large deformations
of flat or spatial modern constructions have to be taken into account. Then the
problem is that of a double nonlinearity: physical and geometrical. A typical
example of such a problem in engineering are the deformation and stress states in
a pneumatic structure. Except some particular cases, the theory of pneumatic struc
tures must necessarily be based on that of nonlinear membranes. Furthermore, since
the materials used, such as, for example, plastics and textiles, are very extensi
ble, the constructions undergo large deformations,

Depending on the physical properties of the applied material and loading con
ditions, it is then necessary to take into account not only the instantaneous ef-
fects which occur at the instant of pressure application, but also time-dependent
phenomena. These are of rheological nature and may considerably influence the re-
sulting states of strain and stress.

3g. 4 Vorbericht
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Although the rheological aspects of the theory of nonlinear membranes are of
great practical importance in different fields of applications, the available in
formation to be found in literature is rather scarce. It is evident that one of
the reasons of such a situation is the lack of an appropriate theoretical approach
to interpreting experimental data for real materials in question. On the other
hand, it seems to be clear that without such data concerned particularly with
large deformations in multiaxial states of strain and stress, the rheological the
ory of nonlinear membranes may less be determined in an explicit way as could be
expected on the basis of its mathematical strictness.

Even if a physical nonlinear theory is founded on proper assumptions, the
problem of solving the resulting nonlinear integral or differential equations for
the considered concrete cases of practical significance still remains. It is evi
dent that solutions can be found only by applying approximate methods. If these
methods are appropriate and carefully chosen,we may, in some particular cases,
even expect to obtain analytical results, It would then be possible to have a
more general basis for discussions than in the case of a numerical solution.

The main difficulty in establishing a physical theory of large rheological
deformations, besides that mentioned above, lies in a proper choice of the form
of constitutive equations and physical variables which we want to expose as those
of outstanding importance, In the theory of nonlinear membranes it is preferable
to have stresses expressed through strains or strain rates. Therefore, all theo-
ries which are founded on strain superposing rather than stress are not very
suitable in application. This is due to the fact that usually the inversion of
a constitutive equation, if at all possible, leads to complicated expressions
for stresses, particularly in high nonlinear cases.

According to our opinion, the most convenient approach in founding a physical
theory for our purposes, especially concerned with nonlinear membranes of rota-
tional symmetry, is that based on energy considerations. Since a nonlinear rheo-
logical process is mainly associated with dissipation of mechanical energy, it
seems to be reasonable to introduce into investigation the form of dissipation
power,

On the other hand, in order to obtain a more clear physical significance of
constitutive relations, it is possible to make use of the known concepts of ther-
modynamical potentials of deformation states, Independently of the fact that ther
modynamical equalities find, in principle, application to stationary reversible
processes, they can also be utilized under certain conditions by analogy in in-
vestigating quasi-stationary irreversible ones, Thus, the stresses can be found
as derivatives of the corresponding energy forms which are functions of the strain
state invariants.

Expecially, use can be made of dissipative potentials (often introduced in
analogy to elastic potentials) when solving plastic and creep problems by apply-
ing variational theorems and methods,
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It is the main aim of our paper to give a comprehensive dis-
cussion of the problem of setting up a physical theory of nonli-
near viscoelastic materials which can be adapted directly to mem-
branes exhibiting large deformations . Because of specific featu-
res of the problem in the case of rotational symmetry , which we
want to study exclusively , characterized by symmetry of strain
and stress states , it is possible to base our considerations on
purely homogeneous deformation . Therefore , we do not intend to
go deeper into generalities than necessary for our purposes . We
shall touch these questions only which , according to our opinion,
are fundamental and can lead us directly to effective results .
In realizing this aim we bear in mind the possible apg}ications .

In our further investigation we shall assume that"materials
considered are isotropic , homogensous and incompressible .

1.Geometrical aspects of the theory

We consider geometry of deformation of a nonlinear membranse
the middle surface of which at time t = t- (neutral state) is de-
noted by S_ and represented by dotted 1in8s in Fig.1 . S_ is ge-

o nerated by the rev8lution
of a plane curve f through
a full angle about x,-axis
in its plane . The carve f
has no multiple points and
is smooth . All kinds of
gingularities are excludsd
from our considerations .

The membrane is of
very small thickness 2h
which is constant in th
neutral state .

So is given in a sys-
tem of~ cylindrical coordi-
nates x, (i=1,2,3) .

At t=t0 the membrane
is loaded by~ a uniform
pressure p = p(t) and at
an arbitrary instant ¥ ,in
consequence of ‘deformation
process , we obtain a dif-
ferent rotational membrane
with initial axis of symme-
try . Its middle surface
is now S and thickness 2h .

The latter varies with sur-
Fig.1 face coordinates and time .,
We assume for S a sys-
_ tem of cylindrical coordi-
nates Xy o Both the systems assumed satisfy the relations

x; = xi(fj,t) , X o= :?i(xj,t) , (1.1)

where j = 1,2,3 for every i .
On the other hand , we introduce a system of curvilinear co-
ordinates ; in which e&:Gx=1,2) coincide with'lines of main
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curvatures on S_ . 0, varies within the values % h0 on the direc-
tion of outward®normdl to S_ and @, = O defines S_°. This system
deforms in time together wi?h:mamb%ane and the sef of 6, related
to a fixed (at t _)point P_ remains attached to it as it mMoves to a
new position P 8t . This , We may write
x; = xi(Bj) , X; = ii(ej,t) , (.2)
where j = 1,2,3 for every i .
Poisplacement vector of P. to P is given as the difference of
corresponding radius vectors 8f thess positions from the origin O

u(e;,t) = B%(0;,-R%(0,) = R (8., BR (8. +6fa5(6,,t) -a5(ax)] , (1.3)

where the vectors R and'g are related to S_ and S , respective-
ly , and 8, and A 8re veclors normal to SO 8nd S . Thus , for a
point on the middle surface we find from (133)

u,(8x,t) = B, (8xst) - B, (8. (1.4)

- The line elements on S and SO , corresponding to the vectors
R, and R, are , regpectively ,

ds? = Aypn 46,385 G.5)

where Ayp and ayp are covariant base tensors of S and SO s Trespe-
ctively &

According to the existing symmetry we define the principal
extension ratios A; (i=1,2,3) in meridional , latitudinal and
normal directions | These coincide with the principal directions
of strain . Denoting by 91 and O, the arc lengths measured along
meridians from A tp P and AO to %o , respectively , we have

- - -1
2 - 4981 Py =Tz o, A3 =2=(12,) t.7)

where d, = d4/d6q ; the value of A (from the condition of incompress-
ibi1iP})being dependent on both the remaining ratios .
On the basis of Eq. (1.7) we may write Eqs.(1.5)and (.6) as

follows 2 2
oo -2 as) % 222 GeD)” (.0
2 N2 2, 22
dst = (ae') "+ x1(ﬁe ) ’ (1.9)

the.,
and thus define surface strain tensor

given by the difference of Eqs.(1.8) and (1.9)
2 ; 5\ &
2Y,,36,d6p = as?- as2 =(25-1)@e") "+ x2(23-1)@6?)" . G.11)
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The relative extension of the line element ds is then found to be

¥ = (ds-ds )/ds (1 +25)2- 1= 23,%deddeﬁ(ds°)“2 . d.12)

0 ?
g U
Let us consider now Strain rate tensor which plays an impor-
tant part in what follows . If the rheological process of defor-

mation is such that at t_ the line element ds  is given by Eqd.6)
and at t by Eq.(1.5), th8n at t+dt ite length®becomes equal to

ds + d(ds)=(1+¥) ds, + a(@s) , (1.13)

the rate of extension being dEds)/dt . Thus , the deformation ra-
te is obtained.as the ratio[d(ds)/dt]/ds

e = *3’(1+x)’1 , ¥ =ady/at . (1.14)

On the other hand , by differentiating Eq.(1.12) at fixed t we
find

U ° —2
FO+Y) = FupdOud8a@s) (1.15)
and from Eq.(1.14) follows that
. -2
= Yypdoydepli+¥)as] =~ (1.16)
the counterpart of Eq.(1.11) being
° s 2 s ¢ 2
36,885 = 3421 (@01) %+ x§ 3,2, @6°) . (1.17)

Since on the basis of Eq.(1.11) we have main strains at the
middle surface

¥10 =M -1, ¥y =(3 - 05, (1.18)
%éin strain rates are
¥i1 = Ay o ¥op =AM, x5 . (1.19
The nondimensional strain tensor components are obtaiﬁ¢by
means of transformation 1
ot/ = Yo (ot 240 2, (1.20)

which instead of Eq.(1.18) gives
_ _ ~2 _ _ _~2
86,4 =6, =27 -1 , e, =6e,=25-1 . (1.21)

Thus , the nondimensional strain rate tensor components are

oy = AN . ey = A0, (1.22)

The remaining components of the general strain tensor'Xij
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are found on the basis of genseral metric tensors for S and S de-
noted G,. and g.., , respectively .
Fo%aan arblgrary point of the membrane we may write , respect-

ively ,

0 ]

2
Cyp = Aup=203Bys » Gy3 =0 , G33 =27 (1.23)
where
2 = €22 =
Ry 23, Mgy = X205, A= 0(t4p) , Byy= Ky, (1.24)
Byo = -kpp 4 Bya=0 x#p) ,
and
€xp™ Pup 2050%xp » B3 =0, B33 =1 (1.25)
where 2

=1, 80 T X s Byn = 0 X#3) , b«n = 'k'!? ’ (1.26)

bpp = “Kpp 5 Dyp= O (X#AR) .

Here Bypa 43 byn are tensors associated with the second funda-
mental form of the surfaces S and S0 , respectively , and kdﬂ'and
kaz are corresponding curvatures ,

From Eq.(1.23) and Eq. (1.25)it follows that

Xol.} =0 , X33 = ;'(7\2" 1)= 15[(7’132)—1“ 1] ’ (.27

and its rate is . . 1 = i
¥33 =A== 50‘17‘2)?317‘2'7‘132) . (1.28)

Furthermore , from Eq.(1.20) we conclude that
€33 = ¢ ~ 1?(7'2"1) ’ 53 =A2 . (1.29)

We shall express now the components of strain tensor through
the components of displacement vector given q%:Eq.(ﬁ.B)(for 8,=0),
or Eq.(1.4). In order to do that we represent”displacemsnt vedtor
in the form i

_ i
x =148

=u gi ’ (1 '3°)

~r o

where g. and gi are covariant and contravariant vectors ¢f the ba-
se , reapectively ,

, ggd =gl . (1.31)

€185 < 843 £

=J
Taking into account the relation between base vectors
Gi =8y + Uy (1.32)
and , hence ,
Gi,j = gij L EiE’j * §_31}_si + E’i‘}-’,j ’ (1 ’33)

where
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K 3y
Upy = W48 5 Wlg = ey - Tiguy (1.34)

we find strain tensor .Xij by introducing Eq. (1.34) into Eq.(1.33)
Thus , we obtain

¥i5 = 3 (v j*ujli*ukli“k 3) s Wy = u,enlt (1.35)

wherase Christoffel'g_symbols I’ are calculated for S_ from the me-
tric tensors g;.,8%Jd of S_ . 0

By perforﬁing the in8icated in Eq.(1.35) operations on dis-
placement components and having in mind Eq. (1.20) we find physic-
al components of strain state (for S , gfo)

1 2
€1 = Ogiq # E(be1u1 + ki?uB) + %(be1u3 - k1?u1)2 , (1.36)
2
°2 = k23“3 * %(k23u3) ’ (.37
2
e3 = - 39wy » (1.38)

These are geometrical formulas expressing strain state components
through displacement components . As it is seen , the first equa-
tion depends on Egs.(1.37) and (1.38). By solving the latter with
respect to u, and u, , respectively , and introducing the results
into the former . wd thus obtain the condition of compatibility
of strain state .

From Eqs.(1.37) and (1.38) we find , respectively ,

uy = —RS(I + 41+262) y Uy = R?J-ZQB » 8340 , (1.39)

and the said condition gives
aQ(R?J§§;)+ %[az(Rgfggg)-RSR?—%ﬁ+11+2azﬂd+ %{bQ[RS(1+0202*1H+

=12
+V293} -e, =0 y 83 =-83, M= 8, - (1 .40)
Here , RO,Rg denote main curvature radii
o o o-1
k.3 =Ry .+ ky5=R; . (1.47)
The curvatures of Eq.(1.41) satisfy the equation

d,ZCrkzg) = k9 dp 1 r=x, , (1.42)

€9 = - d,2zr [1 —(d.zr)‘?]— 2 , (1.43)

where
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Substituting Eq. (1.43) into Eq. (1.42)and taking into account the
fact that k g is finite for r=0 and dqr =1 for r=0 , through in-
tegration wg obtain

1
k9 = r 11 - (@,r)?] z (1.44)

Analogous formulae are valid for the curvatures k 1 and
ﬁg@ at arbitrary instant t of the deforming membrane . Thué , We
e

- i 1
kyy = - age [1-(3g0)?] %, xpp = o7 -(a§9)2]5 » - (1.43)

where we put ¢ = X, and § = ®, . Thus , BEgs. (1.43)and (1.44) can
be considered as iditial conditions for Egs. (1.45)describingcon-
tinuous change of curvatures during deformation process

k@ =[R G , k6 =[RG)]7 (1.46)

where R.,R ar;ﬁradii of main curvatures at instant t .

Fiﬁalfy y it should@ be mentioned that the corresponding com-
ponents of strain rate statemay**Bund by differentiating Eq. (1.35)
or Eqs. (1.36)-(1.38) with respect to time .

2.5tatical aspects of the theory

According to the membrane theory,we neglect all moments and
shearing forces in our considerations of gquasi static equilibrium
of rheological process ., In what follows we refer all results to
the undeformed membrane .

The physical stress resultants per unit length are given

by the relation 1
o3 = n“ﬂ(aﬂﬁ/a“"‘)?_ s (2.1)

n
where n*/? satisfy the conditions of equilibrium
n*Pl.= 0 , n“ﬁbo%-i- P=0 , P=DPy =Dy o 2.2)
Here, p is the resultant pressure in the direction of the outward
normal to the middle surface and
n*A| = n%A,  + LAn%¥ + Ty . (2.3)

In our particular case we have only two stress resultant com-
ponents n and n and two non-vanishing components of the Chri-
stoffel tddsor ’ 864 Eq.(2.2) furnishes

n1}1 # Ib$n11+ Ié%an =0 (2.4)
or 2
do (rn1 )} = T nydyr ; (2.5)

if Eq.(2.1) is taken into account . On the other hand , the ssc-
ond of Eq.(2.2) gives

o) 2,0 _
koqnyq + k0N, = D (2.6)
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