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Theorems for a Simplified Second Order Limit Analysis of
Elastic-Plastic Frames

Méthode réduite de seconde ordre pour la détermination de la
charge limite des portiques élasto-plastiques

Hilfssatze fir eine vereinfachte Traglastberechnung zweiter Ordnung
elastisch-plastischer Rahmentragwerke

OTTO HALASZ
Prof.
Technical University
Budapest, Hungary

Introduction

The use of simple (or "firet order") limit analysis - assum-
ing rigid-plastic material - is restricted to a limited class
of frames as the computed failure load PFI ("first order failure

load") may give unsafe estimate in presence of axial forces.

Several attempts were made to include the effect of change
in geometrie and thus to establish a "second order" limit ana-
lysis (resulting in a "second order failure load PF)’ ranging

from the most simple Rankine-formula to different computer

methods [1], (2], [3], [4] ’ [5] .

Introducing simplifications this paper is to offer some
theorems, which can be used as techniques for preliminary limit
design of a class of simple frames, requiring generally an addi-
tional check by a more exact method. Because of lack of space
the prove of theorems couldn’t be reproduced and only reference
can be given either to works treating the problem more generally
[6] or to the authors previous reports [7], [8].

Attention is paid to the fact, that while the first order
failure load depends basically on the value of full-plastic mo=-
ment Mf of the cross sections only, the second order failure

load is influenced by the flexural rigidity "EI" of the con-
stituting members as well. Thus a preliminary design procedure
has to include criteria for the required value of both flexural
rigidity and full-plastic moment in case of a prescribed failure
load P

F.

}g. 2 Vorbericht
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Assumptions

The model of a frame in the elastic-plastic range is taken
as composed of perfectly elastic, initially straight members (of
number s) and plastic hinges supposed to develop at certain cross
sections only; their greatest possible number be m. The full-
plastic moment of the cross sections is assumed to be constant
independently of the axial force N acting in the corresponding
member. Concentrated loads are allowed to act at joints only, in-
creasing proportionally to a single load factor P (Fig.l.).

We restrict us to cases where in the equations expressing
requirements of equilibrium and continuity the shortening of mem-
bers due both to flexural deformation and direct axial compression
can be neglected (excluding thus triangulated frames).

This way the analysis of a perfectly elastic frame can be
carried out by solving two simultaneous matrix equations [1] of

the form
P.q = 8. & (1)

N="P.q +8 -2 (2)

where vector q and q
- depends on the distribution
of external loads only
o<, P ‘oc’ C’CJP (quantities o« in Pig.1.);
hulliF E {’f\\ S is the stiffness matrix
‘L2 3 +9 {its elements being func-
tions of the axial forces
in the members), and vector
O represents the '"free"
displacements of the joints.
Second equation expresses,
that vector N representing
the axial forces in the mem-
bers depends on external
Fig.1. loads and displacements of
joints as well.

Basic simplification will be introduced by omitting equation
(2) and replacing it by
N=P B (3)

i.e. assuming axial forces to increase proportionally to the
load factor. /3 can be taken from the solution of a first order
elastic analysis or rather of a rigid-plastic limit analysis.
This assumption allows the use of superposition as well and thus
bending moments M in an elestic-plastic frame can be expressed
M= Mg + M(X); the first term being bending moment of the per-
fectly elastic frame, the second term the moment originated be
hinge-rotations J¢ in the plastic hinges. Dividing the plastic
hinges into "active"™ (M = M,) and "inactive" (IMI < IMpl) groups
(of number ¢ and fn-irespecgively), the vector M representing
the bending moments at the cross sections of the active plastic
hinges can be written as

M=M +BX +AX

1 m
o+

D N

I
d

M ()

where i-vector Me represents the moments of an elastic frane,
i-vector X the rotations in active, m-i vector I, the rotations
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in the inactive plastic hinges; the elements bpq and apq of

i x m- and i1 x i matrix B and A give the moment ail cross-section
p of an elastic frame in presence of axiel forces N = P.8 origi-
nated by an angular discontinuity 3Cq = 1 in the cross section q.
Positiv direction of M and X is given in Pig.2. Sign-convention

is used to have (=0 and M > O in equation (4).

We shall refer to as "active loading
"+fﬁ:\~ process" if at increasing load no
local unloading in plastic hinges

takes place. In this case no in -
active plastic hinges exist and

~F X Mzge+é2§=gp (5)
Fig.2.

Stability considerations

Simplification introduced by equation (3) allows to formu-
late the condition of stability of the state of equilibrium
defined by equation (4) as follows:

/

4
Z (fEIy"z ax - Pjﬁs v’ dx) = 0 (6)
s 0 )

for any function y describing geometrically possible transverse
displacements of the points of the members having angular dis-
continuities C = 0O at the cross sections of active plastic hinges
only. To facilitate stability investigation, the state of equi-
librium defined by equation (4) (having i plastic hinges) should
be accompanied by an elastic subsystem "i" %Fig.B.), loaded by
axial forces N = P, A& only and
containing real hinges of
number i at the location of
plastic hinges. The lowest
critical load-factor causing
buckling of this subsystem is
denoted by Pcr,i and is re-

ferred to as "deteriorated

critical load" in the litera-

ture [1). The buckling-mode

of this subsystem at P = Pcr i
]

Bﬁ described by eigenfunction
¥i (containing angular dis-

continuities X; at the real
Pig. 3. hinges). -

Using above notations following statements can be done:
Theorem (I)

Supposed that at load factor P the elastic—plastic frame
contains i active plastic hinges:

It P<P the state of equilibrium is stable,

cr,i
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If Por,i< P< P gul (Pcr,i-l being the lowest critical

load of an elastic subsystem containing i-1 hinges only)
two cases has to be deslt with:

If'ééiézo the state of equilibrium is unstable,

If é;i has negative component the state of equilibrium
is stable.

uadratic programmi approach

Starting from the state defined by equations (4) and chang-
ing load factor to P + dP, the incremental forces and deforma-
tions can be described:

M= d(M, + BX) + A4 X+ 4 dX (7.2)

Additionally the nature of plastic hinges requiress
dM = O; dXx =0 end dX. dd = O, (7.b)

ag either incremental rotation or decrease of full-plastic moment
in the same hinge must be zero.

As pointed out elsewhere in the literature [9], [10] problems
of this kind can be solved by a quadratic programming approach,
as (7.a) and (?7.b) can be written in form of

Is

u > 0; X =0 and x.u=0 (8.b)
By introducing the scalar function

2() =8ax-3xAX
the solution of problem (8) can be defined as a non-negative
vector x = X, =0, in case of which the value of function z=2z(x,)
doesn’t exceed the values z(x, + dx) in its vicinity, provided
X4 + dx = 0, By virtue of known mathematical theorems [11l] a
solution always exist if x 4 x < 0 for x>0, x # O. As condi-
tion x A x = d2XA dX <0 for dX=0 is fullfilled in a stable
state of equilibrium; following statement can be done:

Theorem (II)
Starting from a stable state of eggilibrium at load factor
P, equilibrium will exist at P + as well, Thus failure
load (peak load) can be reached only in an unstable state
of equilibrium.

If dealing with active loading process only and supposing
that plastic hinges can develop in cross sections of number 4 only
with given direction of rotation (chosen to be positiv), the mo-
ments and hinge-rotations at a load factor can be determined by
transforming equation (5):

E_led-p-!e-ég_c (9-3)

and considering additionally that according to the nature of

plastic hinges:
Ep-h_ﬂ?_o; X =0 and (EP-B_II).D_C=O. (9.b)
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Problem (9) can be regarded as integrated form of (8), made
equivalent by assuming that local unloading in plastic hinges is
excluded. Problem (9) can be rewritten in form of (8) again and
investigating the properties of i xi matrix A (its components
being function of P), we can state: -

Theorem (IIT)

If P<P there exists one and only one solution.

er;i
Iheorem (IV)
It P ":P'<Pcr 1-1? the existence and number of solutions
. P

cr,i
depénd on the sign of the components of i-vector

R |
s = A (MP-MG)

_0 =
If all components of-&% are positive (2%:>0), two diffe-

rent solutions exist, one describing a stable, the
other an unstable state of equilibrium.

If all components of-Z% are non-negative, but at least
one of them equals zero (J%j = 0), a single solution
exists, describing an unstable state of equilibrium.

If not all components of«ﬁ% are non-negative, no solu-
tion exists.

—p e ¢
’?‘/j(ép 48}/‘,1-/ P = pc'/‘,r
L
(M 1)K >0

Fig.y, Flg. 5.
Theorem (V)
As special case let be P = Pcr i- The existence and number
’
of solutions depends on the sign of the scalar product

(Ep - Me) ‘:}_{i'

If (Mp - Me).ié}>0 one solution exists, describing a
stable state of equilibrium.
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If (Ep - Ee)j§i<:0 no solution exists.
it (Ep - X)) S-Zi=0 an infinite number of solution exists,
describing indifferent states of equilibrium.
Theorem (IV) and (V) can be illustreted by Fig.4. and Fig.>5.

Application I. Limit design of "stiff frames”

In a limit design problem the value of Prp be given and the
flexural rigidity EI of the members and full plastic moment M
of cross sections are to be determined. The design problem can
be solved on various ways as both EI and Mp contribute to the
value of the failure load. So additional restrictions can be
given.

We require additionally, that failure should take place if
the number of plastic hinges has reached the number . of plastic
hinges contained in a yield-mechanism (rigid-plastic collapse-
mechanism) ,thus ¢ = n . Frames designed this way will referred
to as "stiff frames", Supposing active loading process, theorems
(I) - (IV) can be applied.

The subsystem . corresponding to a yield-mechanism is un-

stable in presence of any forces and thus Pcr 5 = O can be taken

’ ~
and the corresponding buckling-mode (eigenfunction) yp coincides
with the displacements of a rigid-plastic yield-mechanism, having
angular discontinuities X, most esasily to determine. According
to theorem (I) the chosen yield-mechanism prescribes not only the
location, but possible rotational direction of plastic hinges as
well, as 3¢, =0 has to be taken. The additional requirement given

above states, that

O<Pp <P na

Pcr n1 being the deteriorated critical load of a subsystem pro-
-

duced by removing any of the hinges in the yield-mechanism. As
P can be written symbolically

c

cr,n=-1

- EI

Pcr,n—l = L2

Gy 1 being a constant, EI and L representing flexural-rigidity

and geometrical data, the criterion for flexural rigidity can be
given in the form 2

EI > L
n-1

= Pp (10)

The required values of full plastic moments M, should be de-
termined according to theorem (IV)
_ =1

X, = A7 (M, - M) >0 for P=Pp (11)
This later requirement cen be illustrated practically by Fig.6.,
as according to virtual-work considerations X, represents hinge-
rotations of the frame under the action of extermal loads and
full-plastic moments at the hinges of number n (axial forces
supposed to beé N = P,3). Thus this method is equivalent to that
referred to as Mlast hinge method" in the literature [1].
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X, &0
K. =0

]

X =0

Yo,

Fig.6.

If " >, more than one yield mechanism should be con-
sidered. To make appropriate choice, following theorem can be
used.

Iheorem (VI)
Supposing active loading process, at
P=Pp<Pip n-1
the moments will not exceed the value of full plastic
moment at any of the cross sections ™, if unequality (11)

is fullfilled for all groups of hinges of number m. cor-
responding to & possible yield-mechanism,

This theorem can be formulated as & minimum principle for
fallure loads Pp computed with respect the different possible
yield-mechanisms (Fig.7.) or as a maximum principle for a multi-
plier, if the ratio of full-plastic moments is previocusly pre-
scribed.

PMe. 7.
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Application II, Limit design of "flexible frames"

If requirement (10) results in an unrealistic flexural ri-
gildity, it bhas to be allowed to reach failure load in presence
of a lower number of plastic hinges, than that transforming the
structure into a yield-mechanism (i<n). Prames designed this
way will referred to as "flexible frames". A possible way of
limit design easy to carry out results from an additional re-
striction in form of '

ciEI
Pp = Pcr,i = LE d
2 (12)
El = = P
ci F

which can be regarded as criterion for the flexural rigidity
required.

Using theorem (V) the values of full-plastic moments in
cross section 1 can be determined as - supposing active loading
process - equllibrium can exist at P = Pcr n only if:

’

This condition can brought to a more convenient form by using
virtual work consideration, resulting in

o X,
where uj and-z& represent the displacements and hinge-rotations
due to the buckling-mode (eigenfunction §1) of the plastic sub-

system "i" at P = P, = P (Pig.8.). This inequality resembles
F oryd €

the virtual-work inequality used in a single-plastic limit ana-
lysis, but displacements and rotations of a rigid-plastic yield
mechanism should be replaced by those belonging to the bucklinge
mode described by eigenfunction ?i'

o, P 4

~—-6)

Fig,8.

Using this method an additional check must be carried out with
respect to the moments at cross sections being not represented
as possible locations of plastic hinges in the subsystem.
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Application III, Bifurcation of equilibrium

Attention is to be paid to the fact, that the assumption of
active loading process disregards the possibility of bifurcation
of equilibrium which can take place in stable state of equilibrium
a8 well [6], due to the "two-faced" nature of plastic hinges.

As illustrativ example a symmetric and symmetrically loaded
frame should be regarded with only two possible locations 1. and
2. for plastic hinges, assuming that at a load factor

Pep,2<FP<Por

(Pcr,l and Pcr,2 denoting the deteriorated critical load of a

subsystem containing one and two real hinges respectively) both
plastic hinges are active (Fig.9.).

Fl Fﬁid¢’ APitﬂp =
Fig.9.

The possible direction of rotation in plastic hinges is
given and taken to be positive. As the buckling-mode at P= P

of the subsystem containing two real hinges is antimetric,
according to theorem (II) X, } O and the equilibrium is stable.

Analysing incremental deformations by equation
at P H=Me+é‘?_c9
at P +4AP: dil = dM, + dA X+ A d

cr,2

dM<0, dX =0, dMd. dX =0

Supposing now, that at P +AP a symmetric state of equilibrium
with two active hinges exists,

dM = O and

a=a"t (aM, + apx) > 0,

according to theorem (IV) a second solution exists. Thus at P,
although having stable state of equilibrium two different

loading paths are possible: a symmetric one and another including
side~-sway as well.
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Apperdix
As illustration, the prove of theorem (IV) is given as
follows:

() IfP__ .<P<P and X; engular discontinuities of

cr,i Cryi=1
eigenfunction y; are all positive
X = A"l M =0, when M=>0 (14)

This can be proved by describing the displacements of the
structure originated by moments M acting at the hinges by
function y and rotat10na<X? and 1nvest1gat1ng the expression

» ~ N ) ~? 2
erfty- ey Pa G eaFe] 0 o
Q o s "
By o = (16)
J O o

Y
as y + cj y; are geometrically possible displacements of sub-

system "i-1" ©being stable at PEF e 4
’ -_—
regarding the virtual work equations

1° Transforming and

2

mx——Z(EIILj”dx PB, ﬁ, o),

M X, =- (EIJg””” dX—PﬁéJ,Lj G dx),

OC~ ~
we receive: -NX -2 — gD_C (17)
Multiplying by Jcij MJ>-0 and adding up similar expressions for
which together with equation (17) proves statement (14).
The solution of problem (9) can be written in the form

=1 -1
A= 470 - B) - AT, - M) =0, (19.a)
¥, -M>0 and (M) - M) X=0, (19.D)

As the second term in (19.a) according to (14) is non-negative,
X >0 is impossible if

-1
é (Ep - Ee) k 0,
and no solution exists.

If %

=
X, = A (_n_qp - M) >0, (20)
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one solution is given by (20). A second solution can be found
as well. With reference to those stated earlier in connection
with problem (8), a local minimum of the function

(%) = (U - BN - X4 (21)

in the subspace X >0 will define a solution. Chosing one compo-

nent of X to be AXﬁ = 0, and omitting all elements of Mp, !e

and A with indices j, we have an i - 1 - dimensional expression

2(X) = (M, -M)X-3XFX (22)

1X2
>

which has always a minimum (denoted by zj min) for X >0 as
~ J H
because of P‘:Pcr,i-l A is negative definite. The value zj,min

is therefore a minimum on the boundary-plane of subspace X =0
defined by X; = O. A series of such minimums can obtained by
chosing j = 1,2...1i. This among them having the lowest value be
denoted by z,, (at a location given by X)).

Considering equations (20), (21) and (22) the values of
function Z on the boundary of subspace X > O can be expressed

as
z = %‘56 é:ﬁb = % Z

T (23)

e

where r denotes the vector between point X = X and the point

P A is indefinite, the

on the boundary. As because of P <
cr,i =

boundary contains points, where
< % 4%,

and so

1

= =0 =-=Q

4z,

where vector T, connects points given by 5% and ﬁ%. Equation
(23) and (24) prove, that Z in 18 @ minimum on the boundary and

a local minimum in the subspace X > 0, thus defining a second
solution of problem (19), representing a stable state of equi-
librium, being Zpip OB the boundary of the subspace .zrz:o.w

A third solution is impossible, as supposing its existence-ﬁg
and using notations of problem (8)

Ezé-éi&o’ 2.6020’ BEO, B’lco:O
w=a-4%, X =20 uz0 u.X =0

would require - o o Ry
(;)_Co = 2.60) é (.)_(o = )_Co) > 0,
which is impossible according theorem (I), as the vector X, X

)
connecting two points on the boundary of subspace X =0
can't be composed of non-negative components only.
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Summary

The second order limit analysis - including the effect of
change in geometrie ~ of certain class of frames can be simpli-
fied by assuming (i) axial forces to increase proportionally to
a load factor (ii) disregarding local unloading in plastic
hinges and (1iii) taking full-plastic moments to be independent
of axial forces. Using these assumptions paper offers some
theorems to be used in preliminary 1limit design of frames.
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