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Ductility and Limit States

Ductilite et etats limites

Duktilität und Grenzzustände

M. MARINCEK
Professor at the University of Ljubljana

Jougoslavia

INTRODUCTION The limit states of the load carrying members and structures
clearly can be treated with the help of the typical load-displacement

diagram, obtained experimentally, or with the elasto-plastic theory, which
enables the prediction of the real deformational behaviour. With this theory

any shape of the stress-strain diagram of the material and the influence
of the residual stresses can be taken into aecount. So the instability

loads and/or the suitable defined inelastic deflection limit load can be
established. Various secondary and local effects like lateral instability,
local instability, ductile, brittle, and fatigue fracture have to be refe-
red to the primary global elasto-plastic behaviour. The reliability of
different approximate design methods may be estimated by correlating them to
the elasto-plastic behaviour. The dimensionless treatement which represents

also the model law for experimental work and the appropriate
Classification make possible the wider use of the results of the elasto-plastic
theory.

In this article the inplanar treatement for the single loading of simple

linear structures with time independent inelastic material behaviour ic
presented.
DUCTILITY FUNCTIONS OF THE CROSS-SECTION The nonlinear relationship
between the internal force and corresponding specific deformation of the axe
of the bar can be expressed in the general casp by

(1)
S& EI* Kr f" EI* KV C~ EA

K

P-^Kr h-^^y ö-lfe-Ke
where the ductility function of the cross-section K can depend on all
internal forces, K. f M ,M ,Q ,Q ,N,T Dimensionless, for the case of
uniaxial bending with the normal force, there is

Ky f M 8 (2)

with M M : M° and N N : N°, where M° and N° are typical internal forces

refered to the proportional limit, yield strength limit, or compression

strength of material Using the Bernoulli hypothesis for the chosen

strains over the cross-section, M and N are obtained with the corresponding
integration for a given stress-strain diagram of material.

For the stress-strain diagram after Ramberg-Osgood £ 5"('1+<S' with
£ £ : £.° iJ O : <r° where £° (5°: E and the yield strength e° defined in

Fig.l, the curves in Fig.2 with different parameters n represent four typL-
CP.T. di'Trnr-i onless stress-strain behaviour. For n 10 and the rectangular
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cross-section the ductility functions K„ are given in Fig.3, füll lines for
strain reversal with constant N, and the dashed ones for nonlinear elastic
material.

There is a simple relationship between the ductility functions of the
individual parts of the cross-section and those of the whole composite om;

EEI
fy" <-"ei (5)

n l\ip

In this way calculated ductility functions for bending and compression of
a concrete filled tube are presented in Fig.4» for an ideal elastic-ideal
plastic stress-strain diagram of steel anr1 according to CEB for concrete.
The typical internal forces are here

M° ^rfc°(D3-dJ) + <gd?] N°= ^[>s(D2-d2)+ 6UZ]

DUCTILITY FUNCTIONS OF THE LOAD CARRYING M"EMBERS The typical elasto -
plastic load-displacement diagram can be performed for example with

5 i> KTds (4)

One can replace the influence of K» wi th

but the ductility fa.ctor K,» has a clearer meaning, especially for compo-
sile cross-section.

Similar to the definition of Ku> the ductility of the load carrying
member, or structure Kg is the ratio between the elasto-plastic displacement

and the corresponding elastic one,

K5 5:5e- (5)

Consequently, the relationship between the dimensionless load P P : P
and dimensionless displacement 5= 5: 5°• where P represents for example
the limit state according to the theory of elasticity, and 5° the
corresponding elastic displacement, is

5-P.Ks. (6)

'JOME EXAMPLES For the simple beam with constant properties along the axe
there is the deflection under concentrated load, acting in any point,

KS -pi

P

R^dM, (7)
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for the uniformly distributed load on a beam

H- tt

and on a cantilever
^ij^Tf "')RK^R'

KSÄ ~pr MKTdM

(8)

(9)

with P M Fig.5 shows the results for the rectangular cross-section
and three different stress-strain diagrams with strain hardening.

For the examples in Fig. 6 the dimensionless deflection limit load Ijj,,,
defined with 10$ irreversible deflection and the plastic hinge load, both
related to the elastic limit loads, are presented in the table I. Thus
there is the possibility for higher allowable stresses in elastic design,
dependent on the cross-section and loading in this case for the material
v/ith n oo without residual stresses

Table I^^ • 1 D/t=20 D/t=0D IPB 100
V IPBv340 IPB1300

/"""""""lr^ 1,43 1,31 1,23 1,17 1,21 1,14 1,08
1,54 1,39 1,29 1,22 1,23 1,16 1,10
1,70 1,50 1,34 1,27 1,24 1,16 1,10 P-

The Symmetrie continuous beam, loaded as in Fig.7, has the ductility
function

with

as the deformational condition. There is strong dependence on A the ratio
of spans.

Fig.8 shows for A 1 the influence of different stress-strain
parameters n compared with the plastic hinge theory, and Fig.9 the influence
of the cross-section properties for \ 0.

In Fig.10 the load carrying capacities are given for a beam-column,
made of the material with n 10, as the function of the slenderness A .The
dashed lines represent the influence of strain reversal at N const and
growing Q.

In Fig.11 the elasto-plastic load deflection diagram 5-5 for N =0,1
for different parameter n of material can be compared with those of the
second order elastic theory and the second order plastic hinge theo_ry.
Simüarly in Fig.13 for N 0,25 and in Fig.14 for N 0,525 are Q - 5curves
for weak axial bending of DIE20, material with n 00 dashed curves for
the presence of residual stresses and nonhomogeneity, dimensionless given
in Fig.12. For higher A and higher N the difference between elastic limit
load, plastic hinge limit load, and elasto-plastic instability limit load,
with and without residual stresses, are substantional.

For the case when Q const, in Fig.15 and 16, the relationship N - E

is presented for the material with n 00 and the rectangular cross-section.
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In Fig.15 for Q 0,5 there exists the elastic limit curve and the plastic
hinge curve, whereas in Fig.lö the value Q 1 alone represents already
the elastic limit state, but for all that there is a large additional normal

force carrying capacity, particularly for lower slendernesses.
The dimensionless buckling curves for column with the composite cross-

section can be represented in the same diagram as for columns with the Single

material. So in Fig.17 the lower curve is the tangent modulus curve for
the piain concrete, CEB stress-strain diagram, and the upper curve is the
Euler curve for the ideal elastic - ideal plastic diagram of steel. Three
curves in between belong to columns with concrete filled tubes and encased
I-profile numbers describe the steel cross-section, steel yield strength,
and concrete compression strength). The slenderness of concrete filled steel
tube is

s?
1 + c4L ££^ Wl Tt, W"h C

-_r£ _
(11)

Of course, the real columns have geometrical and structural imperfections.
Therefore, the corresponding instability limit loads with the help of the
beam-column elasto-plastic "theory have to be determined. Fig.18 gives the
Q -§curves with the instability limit states for different slender beam-
columns with concrete filled tube cross-section, having ductility functions
in Fig.4-
FINAL REMARKS The consequent dimensionless treatement would have larger
effects in using the results of the elasto-plastic theory for better
understanding of the ductile behaviour of structures and with this more rational

use of material.
The deterministic treatement of structures with the elasto-plastic

theory supports and supplies the probabilistic treatement because a
significant Variation is possible only with representative parameters for
separated influences. On the contrary, the pure empirical Statistical analysis
of the complex phenomena appearing in the ductile bahaviour of structures
is rather questionable, if not impossible.

The extension of the elasto-plastic theory on the problems, taking
into aecount more complicated loading and structural geometry, the Bauschinger

effect, the influence of the temperature also fire and strsin
velocity, calls even more attention to the international collaboration in
finding the appropriate Classification of the shapes for stress-strain
diagrams of the material, cross-sections, structural and geometrical
imperfections.
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SUMMARY Presented results of the elasto-plastic theory, compared with the
corresponding elastic theory and plastic hinge theory, show on the one side.
that the possibility exists for better exploatation of material also for
statical determined structures when inelastic deflection limit state has
to be decisive, and on the other side, that one should be carefull with the
unlimited use of the plastic hinge theory for stability limit states.
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