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Ductility and Limit States
Ductilité et états limites

Duktilitdt und Grenzzustande

M. MARINCEK
Professor at the University of Ljubljana
Jougoslavia

INTRODUCTION The 1imit states of the load carrying members and structu-
res clearly can be treated with the help of the typical load-displacement
diagram, obtained experimentally, or with the elasto-plastic theory, which
enables the prediction of the real deformational behaviour. With this the-
ory any shape of the stress-strain diagram of the material and the influ-
ence of the residual stresses can be taken into account. So the instability
loads and/or the suitable defined inelastic deflection limit load can be
established. Various secondary and local effects like lateral instability,
local instability, ductile, brittle, and fatigue fracture have to be refe-
red to the primary global elasto-plastic behaviour. The reliability of dif
ferent approximate design methods may be estimated by correlating them to
the elasto-plastic behaviour. The dimensionless treatement ( which repre-
sents also the model law for experimental work ) and the appropriate clas-
sification make possible the wider use of the results of the elasto-plastic
theory.

In this article the inplanar treatement for the single loadingof sim-
ple linear structures with time independent inelastic material behaviour is
presented.

DUCTILITY FUNCTIONS OF THE CROSS-SECTION The nonlinear relationship be-
tween the internal force and corresponding specific deformation of the axe
of the bar can be expressed in the general case by
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where the ductility function of the cross-section K can depend on all in-
ternal forces, Ki =f ( MX,M ,Q ,Q ,N,T ). Dimensionless, for the case of
uniaxial bending with the no¥mal fgrce, there is

Ky = f (M, &) (2)
with = M : M® and § = N : N9, where M° and N° are typical internal for-
ces ( refered to the proportional limit, yield strength limit, or compres-
sion strength of material ). Using the Bernoulli hypothesis for the chosen
strains over the cross-section, M and N are obtained with the corresponding
integration for a given stress-strain diagram of material.
For the stress-strain diagram after Ramberg-Osgood £ = &(1+3") , with

E=€:€°,=05:0° where £ = G°: E and the yield strength &°, definedin
Fig.1l, the curves in Fig.2 with different parameters n represent four typ-
¢l dimencionless stress-strain behaviour. For n = 10 and the rectangular
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cross-section the ductility functions Ky are given in Fig.3, full lines fa
strain reversal with constant N, and the dashed ones for nonlinear elastic
material.

There is a simple relationship between the ductility functions of the
individual parts of the cross-section and those of the whole composite ong

TET
k&7='___ﬁi__ (3)
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In this way calculated ductility functions for bending and compression of
a concrete filled tube are presented in I'ig.4, for an ideal elastic-ideal
plastic stress-strain diagram of steel and according to CEB for concrete.
The typical internal forces are here

W= 3 [62(0%- oY) + 62d’] N°= L [o3(D*-d?)+ 62d?]

s™M

DUCTILITY FUNCTIONS OF THE LOAD CARRYING MEMBERS The typical elasto -
plastic load-displacement diagram can be performed for example with

S

MMy
5=J——des (4)
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One can replace the influence of KT with

E}]
K " Ely =Bl = (EI)gr

but the ductility factor K? has a clearer meaning, especially for compo-
sile cross-section.
Similar to the definition of K¢ , the ductility of the load carrying

member, or structure Kg , is the ratio between the elasto-plastic displa-
cement and the corresponding elastic one,

K5=515¢' (5)

Consequently, the relationship between the dimensionless load P=Pr: P0
and dimensionless displacement S=5:5°, where p° represents for example
the limit state according to the theory of elasticity, and 8° the corre-
sponding elastic displacement, is

o= P.Ks. (6)

HOME EXAIPLES For the simple beam with constant properties along the axe
there is the deflection under concentrated load, acting in any point,

5
_ 2 (m2y m
Ks = F,st KgdM, (7)

0
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for the uniformly distributed load on a beam

P
A - -
Ks = 2= — A\ MKpdM (8)
Pl | v
and on a cantilever -
2 'P—- —
Ks= —=z| MKyodM (9)
) pe Jg i )

with P = [ . Fig.5 shows the results for the rectangular cross-section
and three @ifferent stress-strain diagrams with strain hardening. _

For the examples in Fig.6 the dimensionless deflection limit load Bas
defined with 10% irreversible deflection and the plastic hinge load, both
related to the elastic 1limit loads, are presented in the table I. Thus
there is the possibility for higher allowable stresses in elastic design,
dependent on the cross-section and loading ( in this case for the material
with n = ®, without residual stresses ).

Table T —

| e ® —. D/t=20|D/%=c0 | IPB_100|IPB _340 IPB, 300
il nunm'l 1,43 1’ 31 ]_,23 ]_,]_7 1’21 1,14 1,08 EM

&_l_A 1,54 1,39 1,29 | 1,22 1,23 1,16 136 1§ B,

1,70 | 1,50 | 1,34 | 1,27 | 1,24 | 1,16 | 1,10 | B°*

The symmetric continuous beam, loaded as in Fig.7, has the ductility
function

—

Mq - — —,\ -
”y_‘qwﬁ + e -’i‘—m&j HZKYAM), (10)
Mo

K5= 6(3+2J\)

(3+404)(M,+ M) M2 A

with

Vo o
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0 4+“E—;‘L2 A 0

as the deformational condition. There is strong dependence on A, the ratio
of spans.

Fig.8 shows for A = 1 the influence of different stress-strain para -
meters n , compared with the plastic hinge theory, and Fig.9 the influencc
of the cross-section properties for X\ = O.

In Fig.1l0 the load carrying capacities are given for a beam-column,
made of the material with n = 10, as tre function of the slenderness A .The
dashed lines represent the influence of strain reversal at N = const and
growing Q. _

In Fig.ll the elasto-plastic load deflection diagram § - § for N =Q1
for different parameter n of material can be compared with those of the
second order elastic theory and the second order plastic hinge theory. Si-
milarly in Fig.13 for N = 0,25 and in Fig.14 for N = 0,525 are §Q - dcurves
for weak axial bending of DIE20, material with n = @, dashed curves for
the presence of residual stresses and nonhomogeneity, dimensionless given
in Fig.12. For higher A and higher W the difference between elastic limit
load, plastic hinge limit load, and elasto-plastic instability limit load,
with and without residual stresses, are substantional. _

For the case when Q = const, in Fig.1l5 and 16, the relationship N - 8§
is presented for the material with n = oand the rectangular cross-~section.
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in Fig.15 for @ = 0,5 there exists the elastic limit curve and the plastic
hinge curve, whereas in Fig.l6 the value Q = 1 alone represents already
the elastic 1limit state, but for all that there is a large additional nor-
mal force carrying capacity, particularly for lower slendernesses.

The dimensionless buckling curves for column with the composite cross-
section can be represented in the same diagram as for columns with the sin-
gle material. So in Fig.l7 the lower curve is the tangent modulus curve for
the plain concrete, CEB stress-strain diagram, and the upper curve is the
Buler curve for the ideal elastic - ideal plastic diagram of steel. Three
curves in between belong to columns with concrete filled tubes and encased
I-profile ( numhers describe the steel cross-section, steel yield strength
and concrete compression strength ). The slenderness of concrete filled steel
tube is

with c =

D iy (11)

0f course, the real columns have geometrical and structural imperfections.
Therefore, the corresponding instability limit loads with the help of the
beam-column elasto-plastic theory have to be determined. Fig.l8 gives the

Q - 8 curves with the instability limit states for different slender beam-—
columns with concrete filled tube cross-section, having ductility functions
in Fig.4.

FINAL REMARKS The consequent dimensionless treatement would have larger
effects in using the results of the elasto-plastic theory for better under-
standing of the ductile behaviour of structures and with this more ratio-
nal use of material.

The deterministic treatement of structures with the elasto-plastic
theory supports and supplies the probabilistic treatement because a signi-
ficant variation is possible only with representative parameters for sepa-
rated influences. On the contrary, the pure empirical statistical analysis
of the complex phenomena appearing in the ductile bahaviour of structures
is rather questionable, if not impossible.

The extension of the elasto-plastic theory on the preblems, taking
into account more complicated loading and structural geometry, the Bauschi-
nger effect, the influence of the temperature ( also fire ), and strsin
velocity, calls even more attention to the international collaboration in
finding the appropriate classification of the shapes for stress-straindia-
grams of the material, cross-sections, structural and geometrical imper-
fections.
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ject, carried aut with the financial support by "Boris Kidri&" Foundation
of Ljubljana. The collaboration with my past and present assistent P.Fajfmr,
V.Marolt, J.Reflak and M.Vitek, and also numerous students, is very much
appreciated.

SUMMARY Presented results of the elasto-plastic theory, compared with the
corresponding elastic theory and plastic hinge theory, show on the one side,
that the possibility exists for better exploatation of material also for
statical determined structures when inelastic deflection limit state has

to be decisive, and on the other side, that one should be carefull with the
unlimited use of the plastic hinge theory for stability limit states.
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