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The Significance of Shake Down Loading
La signification du ""Shake Down’’ des charges

Die Bedeutung des "Shake Down'’ der Belastungen

JACQUES HEYMAN
Professor of Engineering
University of Cambridge

England, GB

The incremental collapse of frames, calculated according to accepted ideas
of simple plastic theory, has been illuminated recently by a new formulation
[1, Z]. Suppose that a unit load acting at section j of a frame produces an
elastic bending moment ”ij at section i of the frame; ”ij is computed in the
usual way on the assumption that the frame is initially stress free. Then the

actual load Wj acting at j will give rise to an elastic bending moment of value
M, = u..w, . (1)

If the value of the load wJ. is not fixed, but can take on any value within the

range

W?i“sw sw?ax " (2)

b
then the value of the elastic momentJ“& will also fluctuate. To determine its
max ;
largest value,ALi say, the value of Wj will be taken to be as large or as
small as possible according as the unit moment u.. is positive or negative,
+ - -+ - 1] P
denoted by +pij and _“ij’ where uij and "ij are themselves positive numbers.

Thus

max _ ax _ - .min
M = §<uijw? TR I (3)
and, similarly,
T N TR S 4
M g( IR SR (4)

Now the basic equation for determining the full plastic moments (M;)i of a
frame so that is just on the point of incremental collapse by the formation of

a mechanism with hinge rotations d:i is

s _ max ,+ _{ymin -
Foy,lo; | = ™4 w0y (5)
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The numbers ¢Z and ¢; are themselves positive, and the same sign convention for
the hinge rotations +¢; and-¢; has been used as that for the unit moments uij'
Each term in the sum on the left-hand side of equation (5) is essentially
positive, since it represents work dissipated at a rotating plastic hinge.

Thus, introducing equations (3) and (4) into (5),

s + ax - in + — ax + in -
§<Mp)i|¢i| = §{§(uijw? - uijw? Yo, - é{ﬁ(—uijw? + uijw? Yo, . (6)

It is convenient to introduce a corresponding static design (Mg)i’
calculated for the same mechanism ¢i, but with the loads Wj all having their

: . ax . : . ; .
fixed maximum values W? . This static design is thus given by

o + _max - _max,,,+ - _max + _max,.,-
M) lo. | = T{E(ut ™ - Tyt - Vol s ) e, . @
FOCY o ] = HEQL W —u WD ey = JECu w5+ W e, (D)
i i] ij
and it will be seen that this is almost identical with equation (6); the only
difference is that in (7) all bending moments are due to w?ax. Subtracting the

two equations,

s o _ o~ ax _ .min —es ax _ .min
§{<Mp)i M) Hogl = §[¢i{§uij(w? WY ¢i{§uij<w? Wi (8)

Three important conclusions may be drawn immediately from a study of equation

(8).

First, the whole of the right-hand side of equation (8) is positive or zero.

The range of loading (W.o© - Wi ") is essentially positive or zero, while the
+ - -+ 3 ] ..

products ¢ u and ¢ u are positive by definition. Thus the equation indicates
that the values of full plastic moment M; required to prewent incremental
collapse in a given mechanism ¢ will exceed (or at best equal) the corresponding
values M; for static collapse. In other words, a frame subjected to fluctuating
loads will always require more material than a frame subjected to steady peak

values of those loads.

Secondly, only the range of loading (w?ax = W?in) occurs in equation (8),
and not the absolute values of the loads. Now the equation is a measure of the
difference between the incremental collapse design M: and the static collapse
design M;; thus this difference in design cannot be affected by any dead load
(or any other load of fixed magnitude). That is, the dead loads will affect the
actual value of M;, but are not concerned in any increase to M; to guard against

incremental collapse.

Thirdly, it is only products ¢+u_ and ¢_u+ which appear in equation (8).

The difference between M; and Mg arises only from loads which produce unit
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negative elastic moments at sections where there are positive hinge rotations,
or which produce unit positive elastic moments at sections where there are

negative hinge rotations.

As a numerical example, the uniform fixed-ended beam of fig.l carries
loads Wl and WZ, where the values of the loads can vary randomly and

independently within the ranges

Wl Wz
S < 352
A4 5 c Dy, ! 1\
7 (9)
Z 2 0 < W, < 270 /
13 5 |4 F 2 '
i *1
Fig.1 If the loads wl and W2 have their
3 1 fixed maximum values, then the

x\\‘\\\‘:f___,__.______—,—-—‘% conventional methods of plastic

design lead to the static value

1 (a) " of full plastic moment:
< D o
M = 536 . (10)
C p
. Static collapse occurs by mechanism
(b) Fig.2

(b) of fig.2.

If, on the other hand, the loads are allowed to vary between the limits
(9), then a shakedown analysis must be made. Conventional elastic theory

leads to the following table of bending moments:

Table 1

Moment due to
max min

Section Wl = 352 w2 = 270 Jm JMO ONL

A 594 240 834 834 0
B -297 30 =267 30 =297
c =22 =320 =342 0 =342
D 198 480 678 678 0

The column labellede7in table 1 represents the static elastic solution when
both loads act together with their full values, and it may be noted that the

design given by equation (10) can be recovered from the fundamental equation
o pr—
To0) lo;] = sho, )

(where, indeed, the elastic momentsdmi can be replaced by any distribution of
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moments in equilibrium with the given external loading). Using the valuesJﬁi

from table 1, equation (11) applied to mechanism (a) of fig.2 gives

8M; (834) (3) + (-267)(-4) + (678)(1) ,

o
or M

531 ; (12)
P

a similar calculation for mechanism (b) gives the more critical M; = 536 of

equation (10).

The last two columns of table 1 give values of M"E* andcu?ln as the loads

vary between their limits (9). Using equation (5) with mechanism (a),

8M: = (834)(3) + (-297)(-4) + (678)(1) ,
or MIS) = 546 ; (13)

similarly, for mechanism (b),

6M; = (834)(1) + (-342)(-3) + (678)(2)
S o
or M =53% . )

Clearly equation (13), mechanism (a), is more critical; the design full plastic
moment must be increased from the value 536 of equation (10) for the static case

to the value 546 of equation (13) in order to prevent incremental collapse.

Now the formulation of equation (8) shows how this increase arises. Since
only products ¢+u_ or ¢+u— can enter into the calculations, the first step is
to examine the signs of the elastic bending moments and of the corresponding
hinge rotations. The two mechanisms of fig.2 have positive (hogging) hinge
rotations at the ends A and D of the beam, and negative (sagging) rotations at
the internal points B and C. From table 1 it is seen that the signs of the

elastic bending moments due to the load W, are precisely the same as those of

1
the hinge rotations at the four critical sections; the conclusion is that the
load Wl cannot contribute at all to any increase in the value of Mp’

(from M° to Ms).
P P

Similarly, the signs of the bending moments due to W2 are the same as the
signs of the hinge rotations for mechanism (b); thus mechanism (b) must give
the same design value for Mp whether the loads are static or fluctuating, and

this is confirmed by the identity of equations (10) and (14).

The only opposition in sign of bending moment and of hinge rotation occurs
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for section B with mechanism (a) and the load W,; in this simple example, it

2’
is this single contribution which increases the value of Mp from the 531 of

equation (12) to the 546 of equation (13).

This discussion indicates that equation (8) can be simplified for the
purpose of calculation of shakedown limits. The right-hand side may be written

§{¢;‘(J§u;j'ﬁj) + ¢;(§u;jﬁj)} = i{(«{i’JL; + o k) = §|¢iaue:| : (15)
where WJ represents the range of loading (wmax W?in), leading to a change of
elastic bending momenth denoted plus or mlnus according as the change is an
increase or a decrease from the datum. As before, only the products of a
positive change of momentd& with a negative hinge rotation ¢l, and vice versa,
are taken, and this is 1nd1cated by the final short notation |¢ Mal of (15).

Thus, finally, if the static collapse equation is written
Static: o .
ic Z(Mp)i|¢i| CTDRE M. (16)

where (MF)i represents any convenient set of bending moments in equilibrium
with the maximum values of the loads, then the incremental collapse equation

for the same mechanism but with fluctuating values of the loads may be written
*
I tal: . =
ncrementa Z(Mp)i|¢i[ Z(MF)id)i + ZU&i¢i| . (17)

The numerical example of fig.l may be reworked by means of a

rearrangement of table 1:

Table 2

Maximum positive and (a) (b)
negative change in

Section bending moment i S ‘\\‘~\,//’
Y = * *
M Mo o Mo |6 Mo

A 834 0 3 0 1 0
B 30 -297 =4 120
c 0 -342 -3 0
D 678 0 1 0 2 0
Static collapse: SMS = 4248 GMS = 3216
Incremental collapse: BMS = 4368 BMS = 3216




8 la — THE SIGNIFICANCE OF SHAKE DOWN LOADING

As a second example, the collapse of the fixed-base portal frame will be
investigated, both under static and under fluctuating loads. Figure 3 shows
the frame, of uniform section, acted upon by loads V and H; the values of V

and H are supposed to vary randomly and independently within the ranges

[ (18)

0 <H<H .
o

Also shown in fig.3 are sketch elastic solutions for H =1 and V = 1, together

with the three possible modes of collapse.

*V

[ —aH = +
b /
\ % _
+

X

(a)

— |/ *

+\ + +

iy

(e)

(b)
+

Fig.3

Comparing the elastic solution for H = 1 with mode (a), it will be seen
that the signs of the bending moments at the hinge positions are the same in
all cases as the signs of the hinge rotations. The conclusion is that there
will be no 'U“r¢" terms arising from the side load H for mode (a), and that
therefore the terms in H will be identical for the static collapse and the

incremental collapse equation. On the other hand, the elastic solution for
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V = 1 indicates an opposition in sign for the hinges in the left-hand column

*
for mode (a), so that there will be an'ﬂL¢" contribution from the load V.

The final solution requires, of course, expressions for the elastic
bending moments in the frame; using these known values, it will be found that

collapse by mode (a) leads to the following equations

[ Static: Hh = ™ 1
o P
Mode (a)\ Ve f (19)
. o 3% _ s
Incremental: Hoh ks (22+h) = 4Mp :

Similarly, examination of the unit bending moment distributions in fig.3
shows at once that the side load H will make no extra contribution to mode (b)
of incremental collapse, and the vertical load V will make no extra contribution

to the incremental collapse equation for mode (c). The final equations are

vV L
. . 0 _ o
f Static: Hoh + — BMP , \‘
Mode (b) " (20)
\ 0 (92+4h) 6MS (
Incremental: Hoh + < b 0 ™ b
VOR o
[ Static: - = AMP " 1
Mode (c)\ Hoh 3h s v L . J 21
Incremental: 5 (2+6h'+ > = AMP .

Equations (19), (20) and (21) are plotted schematically in the interaction
diagram of fig.4 (this diagram is drawn for 2 = 2h, but the general features
of the diagram will be preserved for other ratios of 2/h). It will be noted

H h
_°
Mo

pa {4 STATIC COLLAPSE

INCREMENTAL

) COLLAPSE
. it
0 1 1 1 1 1 | 1 -
1 2 3 4 5 6 7 g V2
M
P
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that the "yield surface' for incremental collapse lies entirely within (as it

must) the corresponding yield surface for static collapse.
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Summary

A new formulation of the basic equation of incremental collapse shows
immediately which loads acting on a frame are of significance in shakedown
design, and which loads are not. A simple numerical example illustrates the
procedure, and an interaction diagram is given for the collapse of the fixed-

base portal frame.
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