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Theorie der Gleichwertigkeiten
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Theory of the Equivalences
Fundamentals and Applications of the Calculation of Plates and Shells

E. ABSI
Délégué Général Scientifique du Centre Expérimental
de Recherches et d'Etudes du B&timent et des Travaux Publics
Paris, France

La Théorie des équivalences constitue une approche générale permet-
tant de substituer a4 1'étude d'un corps chargé celle d'un corps fictif plus
accessible au calcul. Ce corps fictif peut avoir des caractéristiques et
des lois de comportement qui n'ont aucun sens physique. Cette théorie, que
nous développons depuis une dizaine d'années, s'applique & tous les proble-
mes qui dérivent d'un champ et se préte aisément au traitement sur ordina-
teur. Elle nous a permis d'aborder avec succés 1l'étude de divers ouvrages
d'art complexes. L'équivalence peut &tre réalisée entre un corps continu et
un corps discret, entre deux corps continus ou entre deux corps discrets.
Dans la présente étude nous illustrerons, en particulier, son application
au calcul des dalles et des coques.

=

Considérons un corps déformable soumis 4 un chargement dérivant d'un
potentiel g, Le potentiel total m du systéme (corps + charges), supposé con-

servatif, s'écrit :
n:ondV+ﬁ (1)
b

ou U, est la densité d'énergie de déformation dans le corps chargé.

La résolution de ce systéme revient & rechercher un champ de déforma-
?ion co?patible avec les liaisons du corps et minimisant la fonction =
611:0-

Soit un deuxiéme corps occupant le méme espace V que le premier et
soumis au méme chargement, Désignons par U', sa densité d'énergie de défor-
mation., Le potentiel total n' du systéme s'écrit alors :

n'=f U', av + g (2)
v

De méme, la résolution de ce systéme revient & trouver le champ de dé-
formation minimisant n' (6n' = 0).

Supposons qu'on ait (6 = 6n'). Dans ce cas, les deux systémes sont
dits équivalents., Ils admettent le méme champ de déformation. En effet
tout champ de déformation minimisant m minimise aussi n' (6n = o' = OS.

Il y a, en particulier, équivalence si les deux densités d'énergie de
déformation sont égales (U, = U',) ou si elles différent d'une certaine



840 VIl — THEORIE DES EQUIVALENCES, APPLICATIONS AU CALCUL DES DALLES ET DES COQUES

quantité u, (U, = U', + u,) telle que 1l'on ait

5| w, av =0 (3)
v

Dans ce cas on a aussi (6% = &n').

II) PROBLEMES DE_CONTRAINTES PLANES

Soit une plaque mincé chargée dans son plan moyen (x1, 12) et d'épais-

seur h (fig.1). Le tenseur de déformation e, est donné en fonction des

i}
composantes u1 et u2 du déplacement u par la relation ¢
du 6u
1 et
eij'z(aj ) (4)

La densité d'énergie de déformation U, par unité de surface s'éecrit,
d'aprés la théorie de l'élasticité :

U, = ﬁ [(311)2 + (ey)% + 2De, 0, + 2(@)(912)2) (5)

On peut trouver des corps équivalents formés par des modetles élémen-

taires supposés suffisamment petits pour que le tenseur eij reste uniforme

au sein de chacun d'eux. Les modéles envisagés sont constitués par des élé-
ments travaillant & la flexion composée., Calculons leur énergie de déforma-

X2 X'2 xl1
\\\\\V////////,B
A
u2 [
X
> > 1 X4
u1 2
fig. 1

figo 2

Soit une barre AB de faible longueur l. On lui associe un systéme de
référence propre x' tel que x'1 soit dirigé suivant AB (fig.2). Désignons

par u'k la composante de U suivant x'k et para(j_les cosinus directeurs
de x', (ou de AB). On a alors :
=
u', o(iui (6)
L'allongement unitaire € de AB s'écrit donc :

su! du, &x! du
1 i d i
E = 61'1 =0<i _—6Ij 61'1 °<10<j 5% j =£ P(J eij (7)

De méme, en désignant parlg i les cosinus directeurs de x'z, on a @

u', = ﬁi u (8)
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sdu! du. o6x du

2 i i| i
—_— = - = | — 9
61'1 ﬁi 6xj 6x'1 ﬂ i“;j 6xj (9)

L'effort normal N dans AB est évidemment

N=Es.e=Es.a<ia<jeij (10)
et 1l'énergie de déformation correspondante est donc :
(D
1 1 2 1 2
| QS A S e = = =
W'=2N.el=3ES1le 2r(c7§ia<j eij) (f E.S.1) (11)

Supposons qu'on applique & l'extrémité libre B une force transversa-
le F et que l'extrémité A subisse une certaine rotation © (fig.3). La lon-
gueur 1 étant petite, le déplacement BB' s'derit, compte tenu de la rela-

tion (11) sur, 2 bu,
1 = = - —
BB _A+1e_6x,11_(ia<jale (12)
D'aprés les lois de la résistance des matériaux, on a

F=%A (13)

L'énergie de déformation correspondante s'derit :
1 3 EI A2 _ 1 ALY EI
" = - = = —_— = - = —
We=gFA=5T Q=775 (7=37) (14)

Si au noeud A, supposé rigide, aboutissent divers &léments (aB, AC, ..
AN), 1'équilibre des moments pris par rapport & A donne (fig.3)

(1.1-')12LB % (l'F)AC B F (1.F)AN =0 (15)

En combinant les diverses dquations (12) a (15), écrites pour 1'en-
semble des éléments (AB, AC, ..., AN), il est possible d'éliminer la rota-
tion © du noeud A et d'avoir 1l'expression (14) de W" en fonction des

6'u.i
—= uniquement.
bxj du
1 O 2 i
| . —_— - —

Divers modéles équivalents sont possibles. Examinons en particulier

les modéles rectangulaires et en losange.

X2

A fig. 3 B
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a) Modéle rectangulaire : Les noeuds situés aux sommets du rectangle
ABCD sont articulés et le centre H est un noeud rigide (fig.5). En consé-
quence, les barres situées sur le contour ABCD travaillent uniquement &
la compression, Par contre, les éléments diagonaux (HA, HB, HC et HD) tra-
vaillent 4 la flexion composée,

Désignons par A 1'élément de surface délimité par le contour ABCD et
per W l'énergie de déformation susceptible d'emmagasiner. Exprimons la
condition d'équivalence en écrivant 1'égalité des énergies de déformation.
On a des dquations (5), (11) et (14) :

Wo=Alp =W o+ Woo+ W o+ W) + Wiy + Wiop o+ W+ WY (17)

A BC CD DA HA HB HC
6ui
Remplagons chaque terme par sa valeur en fonction des termes — ou
: ; éx.
des eij' On trouve par identification : J
Ah 2 _ Ah _ 2
(18)
- Ah 7 _ Ah(f/ﬂ -N)
fHA 4sin%< cos < Ha 4sin%£ cos%{

b) Modéle en losange : Les quatre sommets du losange ABCD sont arti-
culés et le centre H est, par contre, un noeud rigide (fig.6). En suivant
le méme raisonnement que précédemment, on trouve tout calcul fait

= Ah A =é£(/\ 2 —lct%()
FAD 4sinzaé coszaﬁ FHA 2 ! /" /L o (19)
Ah 2 2uB_7m  An(M - )
fHD: 2['\+2/b—»tg&{1 P8 *Pmp | 2

c
D
. m 5
A B
o \l/ 2 =
c

A B
fig. 5
fig. 7
On voit des équations (18) et (19) que les paramitres # de divers
éléments diagonaux s'annulent si A=4 . Dans ce cas, les modéles préci-

tés deviennent & barres articulées, On peut démontrer que cette propri-
été est tout & fait générale.

La figure (7) donne un schéma de maillage possible.
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Considérons une dalle d'épaisseur variable h(x, y) dont le feuillet
moyen est contenu dans le plan (x, y). L'énergie de déformation emmaga-
ginée par unité de surface est donnée par la relation :

2 2 2 2 2
U, =10 (5;+a;)2_2(1_0)[5gaw“(aw)z] (20)
6x 8y 6x oxby dxdy.
ou w est la fléche prise par la dalle et D est sa rigidité :
_ Eh3
12(1 -92)

On se propose de trouver un systéme équivalent constitué par des pou-
tres travaillant & la flexion et & la torsion., L'étude générale des élé-
ments triangulaires permet d'obtenir divers types d'éléments équivalents
et qui sont intéressants pour les applications,

Soit un élément triangulaire constitué par les trois poutres ij, jk,
ki (fig.8). L'énergie de déformation Wi emmagasinée par une de ces pou-

J
tres ij s'éerit dans son systéme de référence propre (X, Y) :
2 2
2 .1
Riy =g By e g (o), ()2 (21)
5Y 68X &Y

ou EI et #J caractérisent respectivement les rigidités 4 la flexion et a
la torsion des barres considérées.

On a évidemment des expressions similaires pour les deux autres pou-
tres jk et ki. On peut réduire toutes ces expressions, par un changement
de variable, au systéme de référence général (x, y). En désignant par A
la surface du triangle iJk, 1'égalité des potentiels s'écrit :

Wyt Wy + Wy = AU, (22)

Par identification, on trouve tout calcul fait :

COS
(EIl)ij =A (1 +9) TFEEFE (23)
_ cos 2 0@
(/‘ J1)y5 = (BIL) 5+ 494 s oS 9 (24)

Pour les autres poutres on obtient des expressions similaires,

a) Approximation de la théorie des dalles : La théorie classique des

dalles admet que le feuillet moyen est inextensible., Ceci revient & con-
sidérer que la courbure totale de la déformée de ce feuillet, qui se pro-
duit par flexion aprés chargement, reste quasi nulle. Par conséquent :

2
u, = Q_[ 62w . 62w - ( S w )2] A2 0 (25)

21 x* &y°  6x &y
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La densité d'énergie de déformation U', dans le corps équivalent
peut donc s'éderire :

2 < 2
', = T, #%[(5—;? + (5% 4 2 (2 )2] (26)

L'expression précitée de U', devient une égalité parfaite si le coef-
ficient de Poisson est nul ou si la dalle est parfaitement encastrée sur
son contour. En effet, S étant la surface de la dalle, on peut démontrer
aisément que dans ce dernier cas

5fu,ds=o (27)
s

Ce développement est & rapprocher de l'équation (3).

b) Modéle équivalent formé par un grillage orthogonal de poutres i

En adoptant l'expression (26) de U',, on peut obtenir un modéle équi-
valent constitué par un grillage orthogonal de poutres dont l'utilisation
est trés commode dans la pratique (fig.9). Déterminons les caractéristi-
ques des divers éléments (ij, ki, ...%. Par analogie avec 1l'équation (22),
on a

AU', =W, + ¥ (28)

ij kl

ou A est la surface du rectangle (ij x k1). En remplagant chaque terme par
sa valeur, on obtient :

2 2 2
1] 3%+ CF + 252 )"j -
6x &y 6x &y

(e11), . B2 4 | (war),. + (ua1) ](—ﬁ!)%(m) (82
13 52 gy A taBy Kl 2
Par identification on trouve immédiatement
(B11);; = (B11)y =:1,—[(/.|J1)ij + (/qu)kl]= AD (29)

On voit que les rigidités & la flexion du modéle équivalent sont bien
définies, Par contre, les rigidités & la torsion sont arbitraires pourvu
que la condition (295 soit réalisée. y A

Yy

" ] T
it |1
» K

x VY

xVY

fig.8 fig. 9
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La densité d'énergie de déformation d'une coque par unité de surface
s'obtient en additionnant celle d'une plaque, dquation (5), avec celle
d'une dalle, équation (20). En conséquence, tout type de moddle équiva-
lent valble simultanément pour un probléme d'élasticité plane et de dalle
l'est aussi pour les coques et les voiles minces.

V) COMPATIBILITE DES MODELES.

La juxtaposition de divers modéles autour d'un méme noeud courant, ou
sur le contour, doit satisfaire en ce noeud aux conditions d'équilibre

exprimées en fonction du tenseur de déformation eiJ' S1i ces conditions ne

sont pas réalisées, les modtles sont dits incompatibles entre eux.

VI) APPLICATIONS.
EmmS s
La Direction des Ouvrages d'Art de la S.N,C.P., a e¢confié au C.E.B.F.P.
1'étude théorique et expérimentale des deux ponts-dalles :

- Passage Supérieur de Saint-Pol-sur-Ternoise
- Passage Inférieur de Hautepierre

Les figures (10-a, b, c et 11-a, b, c¢) illustrent les résultats numé-
riques donnés par la Théorie des équivalences et ceux obtenus par mesures
sur modéles réduits dans le cas d'un chargement uniforme.

La théorie que nous proposons constitue une approche générale pouvant
servir de cadre & diverses méthodes particuliéres et justifier parfois
leur utilisation. Son application nous a permis de retrouver, d'une ma-
niére relativement simple, certains résultats déja connus et d'en établir
de nouveaux, Le traitement d'un corps centinu par équivalence avec un corps
discret est trés intéressant dans la pratique, C'est un procédé d'une uti-
lisation esisée et qui s'adapte parfaitement aux ordinateurs.

Il est & noter que cette thédorie reste valable que le milieu soit
isotrope ou anisotrope, &4 comportement linéaire ou non linéaire.

RESUME

Dans la présente étude nous examinons les fondementis de la Théorie
des équivalences ainsi que son application aux problémes de contraintes
planes, de dalles ou de coques. Une étude comparative est donnée concer-
nant deux ponts-dalles.

P.S. Il est & rappeler que les coefficients d'élasticité E et de Poisson
sont reliés aux coefficients de Lamé A et/p par les relations :

_ O E g
A= (1 - 29)(1+V) /“ 2(1 +9)
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fig. 10a - Pas. sup. Saint Pol sur Ternoise.
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