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Theorie des equivalences
Fondements et applications au calcul des dalles et des coques
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Theory of the Equivalences
Fundamentals and Applications of the Calculation of Plates and Shells

E. ABSI
Delegue General Scientifique du Centre Experimental

de Recherches et d'Etudes du Bätiment et des Travaux Publics
Paris, France

La Theorie des equivalences constitue une approche generale permettant
de substituer ä l'etude d'un corps Charge celle d'un corps fictif plus

accessible au calcul. Ce corps fictif peut avoir des caracteristiques et
des lois de comportement qui n'ont aucun sens physique. Cette theorie, que
nous developpons depuis une dizaine d'annees, s'applique ä tous les problemes

qui derivent d'un champ et se prete aisement au traitement sur ordinateur.

Elle nous a permis d1aborder avec succes l'etude de divers ouvrages
d'art complexes. L'equivalence peut etre realisee entre un corps continu et
un corps discret, entre deux corps Continus ou entre deux corps discrets.
Dans la presente etude nous illustrerons, en particulier, son application
au calcul des dalles et des coques.

I) EXPOSE_GENERAL.

Considerons un corps deformable soumis ä un chargement derivant d'un
potentiel 0. Le potentiel total n du systfeme (corps + charges), suppose con-
servatif, s'ecrit :

dV + 0 (1" =/v "'
oü U0 est la densite d'energie de deformation dans le corps Charge.

La resolution de ce Systeme revient ä rechercher un champ de deformation

compatible avec les liaisons du corps et minimisant la fonction %

(61t 0).
Soit un deuxieme corps occupant le meme espace V que le premier et

soumis au meme chargement. Designons par U'0 sa densite d'energie de
deformation. Le potentiel total n' du Systeme s'ecrit alors s

ü'0 dV + 0 (2)
V

De meme, la resolution de ce Systeme revient ä trouver le champ de
deformation minimisant n ' (öti ' 0).

Supposons qu'on ait (6it 6n'). Dans ce cas, les deux systemes sont
dits equivalents. Ils admettent le meme champ de deformation. En effet.
tout champ de deformation minimisant it minimise aussi ti ' (öit 6it * 0).

II y a, en particulier, equivalence si les deux densites d'energie de
deformation sont egales (U0 U'0) ou si elles different d'une certaine
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quantite u0 (ü0 U'8 + u0) teile que l'on ait

•J>6 / u0 dV 0 (3)

Dans ce cas on a aussi (6k 6h1).

II) |EOBLEpS=jpj=CON|RA||TES=|LA|ES

Soit une plaque mince chargee dans son plan moyen (x. x?) et d'epaisseur

h (fig.l). Le tenaeur de deformation e.. est donne en fonction des

composantes u et u du deplacement u par la relation :

- —- + —1
'ij 2

*• 6x 6x ; (4)

La densite d'energie de deformation ü0 par unite de surface s'ecrit,
d'apres la theorie de l'elasticite i

Eh

2(1 -*Z)
(en)2 + (e22)2 + 2-Pei1e22 + 2(M) (e12)2j (5)

On peut trouver des corps equivalents formes par des modeles elementaires

supposes suffisamment petits pour que le tenseur e.. reste uniforme

au sein de chacun d'eux. Les modeles envisages sont constitues par des
eiements travaillant ä la flexion composee. Calculons leur energie de deformation.

x

fig. 1
fig. 2

Soit une barre AB de faible longueur 1. On lui associe un Systeme de
reference propre x'. tel que x' soit dirige suivant AB (fig.2). Designons

par u'. la composante de u suivant x'. et par X. les cosinus directeurs
de x'1 (ou de AB). On a alors :

u'l =^i ui
L'allongement unitaire e de AB s'ecrit donc

6u' 6u. öx'., 6u

(6)

(7)6x' i 6x. 6x' i j 6x l 3 ij
De meme, en designant par ß les cosinus directeurs de x'„, on a :

U'2=/?iui (8)
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6u' 6u. 6x. 6u

JI^TiöT 6x»1 =/^i^j6x7 (9)

L'effort normal N dans AB est evidemment

N=ES.e=ES.o<ie7<. e (10)

et l'energie de deformation correspondante est donc :
f

W ^N el -| E S 1 e2 jf («^^j ei;j)2 P„ E.S.l) (11)

Supposons qu'on applique a l'extremite libre B une force transversale
F et que l'extremite A subisse une certaine rotation 9 (fig.3). La

longueur 1 etant petite, le deplacement BB* s'ecrit, compte tenu de la relation
(11

6u'
bb' A + i e —-

6u,

6x' «^r1*lmrr-i 6x,

D'apres les lois de la resistance des materiaux, on a

(12)

2SI A (13)

L'energie de deformation correspondante s'ecrit :

1
W» £ F. A - 2

.3 S A2.1ri a£,2t i (?)' EI(7-3^) (H)

Si au noeud A, suppose rigide, aboutissent divers eiements (AB, AC,
AN), l'equilibre des moments pris par rapport ä A donne (fig.3)

(l.F)AB+ (l.F)AC+ + (l.F)^ =0 (15)

En combinant les diverses equations (12) ä (15), ecrites pour
l'ensemble des eiements (AB, AC, AN), il est possible d1eliminer la rotation

9 du noeud A et d'avoir l'expression (14) de W" en fonction des
6ut
Ixi

uniquement.
6u,

w=l?(f)2 f (^)
J

(16)

Divers mod&les equivalents sont possibles. Examinons en particulier
les modeles rectangulaires et en losange.
X„ ts

2 A

-^^r-'-J 9l

fig. 3 fig. 4



842 VII - THEORIE DES EQUIVALENCES, APPLICATIONS AU CALCUL DES DALLES ET DES COQUES

a) Modele rectangulaire : Les noeuds situes aux sommets du rectangle
ABCD sont articules et le centre H est un noeud rigide (fig.5). En
consequence, les barres situees sur le contour ABCD travaülent uniquement ä
la compression. Par contre, les eiements diagonaux (HA, HB, HC et HD)
travaülent ä la flexion composee.

Designons par A l'eiement de surface deiimite par le contour ABCD et
par W l'energie de deformation susceptible d'emmagasiner. Exprimons la
condition d'equivalence en ecrivant l'egalite des energies de deformation.
On a des equations (5), (ll) et (14) s

W AU. w'ab + w'bc + w'cd + w'da + w"ha + w"hb + w"hc + w"hd (17)
6u.

Remplacons chaque terme par sa valeur en fonction des termes -—
des e. On trouve par Identification

-1- eJ

Tab

fHA

*| (2 A+^u-yi/co tg2*)

Ah
2 2

4sin t/. cos *><.

Ah(^ - h
(18)

7 HA 2 24sin ot. cos cts.

b) Modfeie en losange : Les quatre sommets du losange ABCD sont articules

et le centre H est, par contre, un noeud rigide (fig.6). En suivant
le meme raisonnement que precedemment, on trouve tout calcul fait

AhA
\ AD 2, 2,4sin gi. cos cTr.

HA *| (A + 2JU -fi cotglO

f»-*«^«/-^-] f^ff'^

fig. 5

<p4* fNl>
fig. 6

(19)

Xc Ao\
Nj/

x* nX

fig. 7

On voit des equations (18) et (19) que les parametres y de divers
eiements diagonaux s'annulent si ,A =M Dans ce cas, les modeles preci-
tes deviennent a barres articulees. On peut demontrer que cette propriete

est tout ä fait generale.
La figure (7) donne un Schema de maillage possible.
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IIl) ETUDE DES DALLES.

Considerons une dalle d'epaisseur variable h(x, y) dont le feuillet
moyen est contenu dans le plan (x, y). L'energie de deformation emmaga-
sinee par unite de surface est donnee par la relation :

U„ 7>'\&*£&)2 -2(1 -*)[£% *fw_-
(_ 6x 6y L 6x* 6x6y

/ 62wv2

6x6y J
(20)

oü vr est la fleche prise par la dalle et D est sa rigidite

D Eir
12(1 -*')

On se propose de trouver un Systeme equivalent constitue par des
poutres travaillant a la flexion et ä la torsion. L'etude generale des
eiements triangulaires permet d'obtenir divers types d'eiements equivalents
et qui sont interessants pour les applications.

Soit un eiement triangulaire constitue par les trois poutres ij, jk,
ki "(fig.8). L'energie de deformation W.. emmagasinee par une de ces pou-
tres ij s'ecrit dans son Systeme de reference propre (X, Y) :

*ij i (Ell>ij <£*>* ?i<f ji) ij
t 62w k2

6X 6Y
(21)

oü EI etl*J caracterisent respectivement les rigidites ä la flexion et a
la torsion des barres considerees.

On a evidemment des expressions similaires pour les deux autres
poutres jk et ki. On peut reduire toutes ces expressions, par un changement
de variable, au Systeme de reference general (x, y). En designant par A

la surface du triangle ijk, l'egalite des potentiels s'ecrit :

W, + W + W. AU.ij jk ki ° (22)

Par Identification, on trouve tout calcul fait :

cos tp(Ell)., A (1 +t>) —:—. Vv 7i0 sinXsin #

cos 2 <p(^¦tm^M^asCa^
(23)

(24)

Pour les autres poutres on obtient des expressions similaires.

a) Approximation de la theorie des dalles : La theorie classique des
dalles admet que le feuillet moyen est inextensible. Ceci revient ä
considerer que la courbure totale de la deformee de ce feuillet, qui se
produit par flexion apres chargement, reste quasi nulle. Par consequent :

u0*f[ if»
6x2

K26 w

6y2
(•

,.26 w ¦r te o (25)
6x 6y J
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La densite d'energie de deformation U'0 dans le corps equivalent
peut donc s'ecrire t

U'o U0 M \\ (A)2 + A)* 2(^-)2]
L bx 6y 6x 6y J

(26)

L'expression precitee de U'0 devient une egalite parfaite si le
coefficient de Poisson est nul ou si la dalle est parfaitement encastree sur
son contour. En effet, S etant la surface de la dalle, on peut demontrer
aisement que dans ce dernier cas

6 I u0 dS 0 (27)

Ce developpement est a rapprocher de l'equation (3).

b) Modele equivalent forme par un grillage orthogonal de poutres t

En adoptant l'expression (26) de U'0, on peut obtenir un modele
equivalent oonstitue par un grillage orthogonal de poutres dont l'utilisation
est tres commode dans la pratique (fig.9). Determinons les caracteristiques

des divers eiements (ij, kl, Par analogie avec l'equation (22),
on a t

AU'0 Wi;) + Wkl (28)

oü A est la surface du rectangle (ij x kl). En remplacant chaque tenue par
sa valeur, on obtient 1

AD Ä)2 + (*V 2(-^-)2]
6x 6y J6x 67

(Ell)., A)2 +
J 6x

2
6 ws2 /62wx2

' / J 6x6y öjt

Par Identification on trouve immediatement

(BiDi3 (En)kl - J[yni)±J + (y*Ji)kl] AD (29)

On voit que les rigidites ä la flexion du modfeie equivalent sont bien
definies. Par contre. les rigidites ä la torsion sont arbitraires pourvu
que la condition (29) soit realisee. y A

-t
1

—?—

L_4___!j
k

fig.8 fig. 9
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IV) COQTOS=ET_VOILES_MINCES.

La densite d'energie de deformation d'une coque par unite de surface
s'obtient en additionnant celle d'une plaque, equation (5), avec celle
d'une dalle, equation (20). En consequence, tout type de modfeie equivalent

vallable simultanement pour un probleme d'elasticite plane et de dalle
l'est aussi pour les coques et les voiles minces.

V) COMPATIBILITE=DES=MODELES.

La juxtaposition de divers modeles autour d'un milme noeud courant, ou
sur le contour, doit satisfaire en ce noeud aux conditions d'equilibre
exprimees en fonction du tenseur de deformation e. Si ces conditions ne

sont pas realisees, les modfeles sont dits incompatibles entre eux.

VI) AP|LICATI0|S.

La Direction des Ouvrages d'Art de la S.N.C.F. a eonfie au C.E.B.T.P.
l'etude theorique et experimentale des deux ponts-dalles :

- Passage Superieur de Saint-Pol-sur-Temoise
- Passage Inferieur de Hautepierre
Les figures (10-a, b, c et 11-a, b, c) illustrent les resultats

numeriques donnes par la Theorie des equivalences et ceux obtenus par mesures
sur modfeles reduits dans le cas d'un chargement uniforme.

VII) CONCLUSIONS.

La theorie que nous proposons constitue une approche generale pouvant
servir de cadre a diverses methodes particulieres et juetifier parfois
leur utilisation. Son application nous a permis de retrouver, d'une
maniere relativement simple, certains resultats dejä oonnus et d'en etablir
de nouveaux. Le traitement d'un corps continu par equivalence avec un corps
discret est trfes interessant dans la pratique. C'est un procede d'une
utilisation aisee et qui s'adapte parfaitement aux ordinateurs.

II est a noter que cette theorie reste valable que le milieu soit
isotrope ou anisotrope, ä comportement lineaire ou non lineaire.

EESUME

Dans la presente etude nous examinons les fondements de la Theorie
des equivalences ainsi que son application aux problemes de contraintes
planes, de dalles ou de coques. Une etude comparative est donnee concernant

deux ponts-dalles.

P.S. II est ä rappeler que les coefficients d'elasticite E et de Poisson
sont relies aux ooefficients de Lame ,A et U par les relations :

fr E 1. Efi Vi u
(1 - 2v)(l+"5) / 2(1 +\»
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fig 10a - Pas. sup. Saint Pol sur Ternoise.
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fig. 11a - Pos sup. Hautepierre.
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