
Post-critical behavior

Autor(en): Bieniek, M.P.

Objekttyp: Article

Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band (Jahr): 9 (1972)

Persistenter Link: https://doi.org/10.5169/seals-9526

PDF erstellt am: 28.04.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-9526


Ib

Post-Critical Behavior

Comportement post-critique

Überkritisches Verhalten

M.P. BIEN1EK
Professor of Civil Engineering

Columbia University
New York

1. INTRODUCTION

The problem of post-critical behavior of structural elements

and structures is not new. The load-carrying capacity of structures

in the post-critical ränge has been attracting attention of
structural engineers for many years, and it has been successfully
utilized in many practical designs. The analysis of the post-
critical behavior of structures has been an interesting and

challenging task of applied mechanics; even very early works in
the theories of bars, plates, and Shells contain investigations of
buckling and post-buckling states.

Thin-walled structures represent the area in which the post-
critical behavior is undoubtedly of greatest importance. Numerous

significant contributions on various aspects of thin-walled structures

were presented at the previous congresses of IABSE. Most

recently, the 8th Congress, held in New York in 1968, had a theme

dealing exclusively with thin-walled structures [1] The reports
by Prof. Winter [2], Dr. Scalzi [3], and Prof. Massonnett [4] give

very extensive and enlightening accounts of the Status up to 1968.

The discussion in the Final Report contains many original theoretical

and practical developments. The comments by Prof. Beer [5]
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emphasize the great potential of structures working in the post-
critical ränge.

Consistent with the spirit of Theme I of the present Congress,

this report will concentrate on the progress of the general

theory, necessarily nonlinear, of the post-critical behavior of
structures. The formulation of the problem, methods of Solution,
and recent results for various types of structures will be

reviewed. An intensive effort of many researchers in the field of
mechanics of solids and structural mechanics generated, especially
in the past two decades, an immense amount of original and important

contributions in the field of the post-critical behavior and

the related nonlinear analysis of structures. This makes the

writing of a report in this field an extremely difficult task,
forcing certain selection of the presented topics. Here,
the effects of large deformations, or geometrical nonlinearities,
will be emphasized at the expense of the effects of the nonlinear
material properties.

The scope of the problem of the post-critical behavior of
structures can be defined by examining typical load deflection
relations.
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Fig. 1

If a properly defined load parameter is plotted against a

deflection component of the structure, a diagram of one of the

types shown in Fig. 1 is usually observed. From the origin 0 to
the point A, the structure is in the fundamental path of eguili-
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brium. At the point A, which is referred to as the first critical
point, the path changes either by bifurcation buckling to A - D,

Fig. la, or by snap buckling to B - D, Fig. Ib. Occasionally, no

state of equilibrium exists for loadings above the critical
point A (Fig. Ic). The point D in Figs. la and lb represents the

ultimate state, at which the structure fails by fracture, total
buckling, or plastic flow. It is the path between the point A

and the point D in Figs. la and lb which corresponds to the post-
critical state of the structure, and which is the main subject of
this report.

An engineer's interest in the post-critical state of a structure

is based on the fact that the ultimate load exceeds sometimes

considerably the critical load, and the structure can be perfectly
serviceable in the post-critical ränge. On the other hand, his
caution in utilizing the post-critical loading capacity of the

structure is also well founded, since frequently the deflections
increase quite rapidly, and the deformations may become irreversible.

The above factors justify a thorough investigation of the

problem of the post-critical behavior.

2. FORMULATION OF THE PROBLEM

The equations describing the post-critical behavior of a

structure cannot be based on the assumption of small displacements
and small displacement gradients. The strain-displacement
relations should include at least some of the second order terms, and

the analysis of stress should take into aecount the effect of the
deformed configuration. There are many excellent books and papers
on the foundations of the nonlinear mechanics of solids. The

current state, as well as the historical development, can be

obtained from the works of F. D. Murnaghan [6] C. Truesdell [7],
V. V. Novozhilov [8], [11], A. E. Green and W. Zerna [9], T. C.

Doyle and J. L. Ericksen [10], C. Truesdell and R. A. Toupin [12],
A. C. Eringen [13], L. I. Sedov [14], and M. A. Biot [15].

The following comments are made in order to clarify the posi-



28 Ib - POST-CRITICAL BEHAVIOR

tion of various special equations of structural mechanics within
the general theory of continuous media. In the general theory,

*
three types of coordinate Systems are being used : (a) Material
(or Lagranean) coordinate system x, with x being the coordin-
ates of a particle P0 in the initial configuration of the body

B0 at the initial time t ; (b) Spatial (Eulerian) coordinate
System z, with z being the coordinates of the position P of
the particle in the deformed, or current configuration B at time

t; (c) Convected coordinate system 5, which deforms with the

body in such a way that to the coordinates 5 corresponding to
the subsequent positions P of a particle P0 remain constant.
For small, or "infinitesimal", deformations the distinetion
between different types of coordinate Systems disappears. The problems

of finite deformation in structural mechanics are usually
formulated in the fixed material system x or in the convected

system §, although it is very seldom that the choiee of the
method of description is stated explicitly. (Also, in many cases,
these two descriptions are formally very similar).

If u (x,t) are the components of the displacement vector in
the system x, the components of the material strain tensor e

in this system are

2AB 2(UA|B + UB|A + UC |
AU°

| A

The components of the same tensor in the convected System t; are
1 ye ft ET(u Ir + urI + ©,l u Ir) (2.2)

Q?P 2 Q.|ß ß[<y y|o, |ß
where u (?,t) are the components of the displacement vector in
the system 5 at Po• the covariant differentiation in (2.2) is
performed in the initial configuration, i.e. using the Christoffel
Symbols corresponding to the configuration of the system § at to.
If at t0 the system e; coincides with the system x, the values

e,T, Tiu, + u_i, + u .u ,© (2.1)

*
The subscripts and superscripts A, B, C,. k, 1, m,. ot, ß,
y,... assume values 1, 2, 3; repeated indices imply summation;
partial differentiation with respect to a coordinate is denoted
by a comma followed by the index of the coordinate; covariant
differentiation with respect to a coordinate is denoted by a bar
followed by the index of the coordinate.
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of the corresponding components of e and e „ are identical.AB ,-V/ß

Frequently, the Systems x and 5 at t0 are orthogonal
cartesian; the system § at t, however, becomes some curvilinear
system, following deformation of the body.

The description of the state of stress in continuum mechanics

is most frequently accomplished in terms of: (a) The spatial,
or Cauchy, stress tensor associated with the position P in the

kldeformed State and with the components p in the fixed system z;
AI(b) The Kirchhoff two-point tensor t associated with the

particle P0 in the system x and with the position P in the

system z; (c) The material, or Piola-Kirchhoff, stress tensor
AB

s associated with the particle P0 in the system x. The

relations between these three tensors are
A AB.ai _ ki ax ab ki ax ax ,_t =Jp —-,s =Jp kl * ]

3z ^z äz

where J dV/dV0 P0/p, with dV0 and dv being the initial and

the deformed volume elements, and P0 and p, the initial and the

current densities, respectively. In the convected coordinates 5,

.«ß, t«ß. Jp«ß (2.4)

If p. is the stress vector referred to unit area in the deformed~(n)
state and acting on the area element whose unit normal vector in
the deformed state is n, its components are

1 ^1 ,_
P(n) =P \ (2-5)

For the stress vector s, referred to unit area in the initial~(n)
state and acting on the area element whose unit normal vector in
the initial state is nD, we have the components in the z system

1 AI ab az ,_s / 1 t n s —— n (2.6)(n) °A B °A
ax

In the absence of body forces, the equations of equilibrium
kl ABin terms of the tensors p and s are

kl n kl lk
P |k 0, p p (2.7)
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r AB, C C n AB BA
[s (6ß + u iB)]|A 0, s s (2.8)

In the convected coordinate Systems §, they read

paß|a 0, paß pßa (2.9)

[saß(^ + u^|a)]ia 0, saß sßa (2.10)

It should be noted that the covariant differentiation in (2.9)
is performed in the deformed configuration of the system §, while
the differentiation in (2.10) is performed in the initial
configuration. (The lack of the displacement gradients in eq. (2.9)
is apparent only; since the coordinate System is that of the
deformed configuration, the effect of the displacement is included.)

In structural mechanics, the components p ' t s ' or
AB

s are used. With the assumption J «s 1, which appears to be

justified in most practical problems; and if the Systems x and

^ coincide at to, we have

sAB s*ß= ^^rf for A Sj B ß> (2>11)

The theory presented by M. A. Biot [15] differs from the
above outline. Biot's theory is geared towards problems of
stability and solutions of large deformations problems in small
incremental steps. The acknowledged efficiency of the incremental
methods of Solution, makes Biot's theory an attractive tool in
structural analysis.

For most structural material in the elastic ränge, the relation

between the stress tensors (s or s and the strain
tensors (e. or e can be assumed in the form of Hooke's law. An

AB aß
exposition of the theory of plasticity for arbitrary deformation
can be found in the paper by A. E. Green and Naghdi [17]. Some

problems of the theory of viscoelasticity for finite deformations

are presented in the paper by Oldroyd [18] and in the book by

A. E. Green and J. E. Adkins [16]. A discussion of the constitu-
tive equations of various materials is beyond the scope of this
paper. Let us only point out that the use of the material or con-
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vected coordinates offers distinet advantages also in this part of
the problem. In fact, most of the constitutive relations used in
the analysis of inelastic structures subjected to small deformations

can be adapted to the present problem without major changes.

Comprehensive reviews of these relations are given in the article
by A. M. Freudenthal and H. Geiringer [19] and in the book by
T. H. Lin [20].

The procedure of derivation of the fundamental equations for
specific types of structures follows the general ideas of the
three-dimensional mechanics of solids. The strain-displacement
relations, the equations of equilibrium in the deformed configuration,

and the stress-strain relations must be established. As a

rule, the assumption of small strains can be made; moreover,

satisfactory theories can be developed by taking into aecount that
only some of the displacements and displacement gradients are

large (e.g. normal deflections of beams and plates).
A theory of moderately large deflections of plates has been

proposed by Th. von Karman in 1910 [21] (see also S. Timoshenko

and S. Woinowsky-Krieger [22]). It retains all the basic assumptions

of the classical (linear) theory of thin plates. The

expressions, however, for the extensional strain components in the

plane of the plate contain the Squares of the gradients of the

normal deflection, i.e., _

e =M + I«2, etc. (2.12)
xx Qx 2 5x

Simüarly, the deformed configuration of the plate is taken into
aecount in the equations of equilibrium which contain terms of
the type 2 2

s Hs H etc- <2-13>
xx ax2 yy ay2

The resulting system of equations may be used in its original form,

or it can be reduced to three equations with the three displacement

components of the middle plane, or two equations for the normal

deflection and a stress function can be written. The choiee

of the final form of the equations depends on the method of solu-

Jg. 4 Einführungsbericht
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tion.
For curved panels, K. Margeurre [23] proposed a theory

whose assumptions are similar to those of Ka'rman' s plate theory.
There are several versions of nonlinear theories of Shells, which

differ mainly in the degree of precision in which the geometry of
the Shell is taken into aecount. This Situation is parallel to
the variety of linear theories of Shells. A discussion of this
can be found in the works of L. H. Donneil [24], J. L. Synge and

W. Z. Chien [25], W. Z. Chien [26], V. S. Vlasov [27], A. S. Vol-
mir [28], Kh. M. Mushtari and K. Z. Galimov [29], J. L. Sanders,Jr.
[30], P. M. Naghdi and R. P. Nordgren [31], W. T. Koiter [32].

Among the methods of Solution of the nonlinear problems of
post-critical behavior, the finite element method appears to be

unusually versatile and effective. The basic ideas and relations
of this method, including stability and large deformations, are

presented in the papers by J. H. Argyris [33] and J. H. Argyris,
S. Kelsey, and H. Kamel [34], and the books by 0. C. Zienkiewicz

[35], and J. S. Przemieniecki [36]. The papers by J. J. Turner,
E. H. Dill, H. C. Martin and R. J. Melosh [37], H. C. Martin [38],
R. H. Mallett and P. V. Marcal [39] concentrate on the buckling

*
and nonlinear problems.

For a linear elastic structure, the finite element method

results in a system of linear algebraic equations of the type

[K]{q] {P} (2.14)
where [K] is the stiffness matrix, {q} is the nodal displacement

vector, and {P} is the nodal load vector. The nodal displacement
vector {q} determined from eq. (2.14) the state of stress and

deformation of the structure. The stiffness matrix [K] depends on

the geometry of the structure, its material properties, and on

the geometry of the finite element system. The vector {P] represents

the external loading on the structure.
If the nonlinear effects of large deformations are taken into

Additional references can be found in a recent survey paper by
0. C. Zienkiewicz [40].



M.P. BIENIEK 33

aecount the Systems of equations for {ql can be written as

([K] + [Kl) {q} {P} (2.15)
y

where [K ] is sometimes referred to as the geometrical stiffness
g

matrix. It depends on {q}; hence, the system of equations (2.15)
is nonlinear. Instead of eqs. (2.15), the incremental formulation
can be used. For the (small) increments of displacement [Aq]
and loading [AP] from the state of equilibrium fql and fp]l S^' rL 1.1 n l n>

the system of equations holds
([K] + [K^]n) (Aq]n {APln (2.16)

where the matrix [K'] is determined at the state fq) The in-
g n L n

cremental formulation is especially suitable for nonlinear elastic
or inelastic materials with incremental stress-strain relations
(e.g. elastic-plastic solids). Then, however, also the matrix
[K] depends on {q} and, its elements in eq. (2.16) have to be

determined at the state fq] Instead of the Systems of equations
(2.15) or (2.16), an energy formulation may be used in which the

vector [q] minimizes the total energy of the system. The methods

of mathematical programming are then employed for the determination
Of {q}.

3. STABILITY

The problem of stability of a structure is usually formu-

lated as follows. Suppose that the loadings are specified by a

vector p. A state of equilibrium is a displacement vector u(x,p)
which satisfies the equations of equilibrium and the boundary
conditions of the structure. The fundamental states of equilibrium,
or the fundamental path of equilibrium, are the displacements
u0 (x,p) single-valued and continuously differentiable in the
components of p, and such that u0 as p-*0. In addition to the

fundamental path, a structure may have, in general, other states
or paths of equilibrium. The points of intersection of different
paths of equilibrium are of two types: bifurcation points and

limit points. They are shown in Fig. 2 for the simple case of one

load component p and one displacement component u.
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o bifurcation point
• limit point

Fig 2.

A precise and practically meaningful definition of stability is
not an easy task. In engineering terms, a State of equilibrium is
considered to be stable if sufficiently small perturbations cause

arbitrarily small displacements of the structure. A path consisting
of stable states of equilibrium is called a stable path. The

states at which a path changes from stable to unstable are called
critical states (or critical points); the corresponding loads are

called the critical loads.
For the above notion of stability, certain criteria, or

tests, of stability have been developed.

According to the static criterion, at a critical point two

infinitesimally adjacent states of equilibrium exist for the same

external loads. If the loads acting on the structure are
proportional to a parameter, and if the fundamental State is linear
elastic, the static criterion leads to the well known eigenvalue
problems, for which an extensive literature is available.

The energy criterion of stability states that in any sufficiently

small displacement from the State of equilibrium the internal

energy stored or dissipated, AE, exceeds the work of the external

loads, AW. Thus the condition of stable or neutral equilibrium
is

AE - AWao (3.1)
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In the case of an elastic structure loaded with potential forces,
eq. (3.1) implies that the change of the total potential energy is
positive or zero,

AUaO (3.2)
The condition (3.2) represents an extension of the Dirichlet
criterion of stability of discrete Systems.

The dynamic criterion is based on the investigation of small
free oscillations about the State of equilibrium. For a stable
State of equioibrium of an elastic structure, all the natural
frequencies of these oscillations are real and different from zero.

In the cases of conservative Systems under conservative
loadings, these three criteria lead to the same lowest critical
values of the load parameter, and the existing experimental
evidence confirms their basic validity; the known examples of
substantial discrepancies between the theory and the experimental
results can be explained by factors other than faults in the basic
concepts of the theory.

The above ideas and criteria form the foundations of the

stability, or buckling, analysis in a large number of problems of
structural mechanics. This theory is the product of over one-

hundred-year effort. Important contributions have been made by
R. V. Southwell [41], S. P. Timoshenk [42], G. B. Biezeno and

H. Hencky [43], E. Trefftz [44], W. T. Koiter [45], H. Ziegler [46],
C. E. Pearson [47], R. Hill [48]. There is a number of excellent
books dealing with the methods of analysis and practical applications.

To mention some of them: S. P. Timoshenko and J. M. Gere

[49], F. Bleich [50], Pflinger [51], C. F. Kollbrunner and M. Meister

[52], G. Gerard [53], A. S. Volmir [54], M. Gregory [55],
H. Ziegler [56].

The actual application of any of the criteria of stability
is based on the equations of small displacements, or vibrations,
superimposed on a State of deformation, and on the expressions for
the corresponding change of energy. They are given in Ref. [16],
[44], and [15] for the general case of a three-dimensional solid.
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In Refs. [49] through [56], and in numerous other papers the

necessary relations are given for various types of structures.
In the finite element formulation, the conditions leading

to the determination of the critical loads are discussed in Refs.

[33], [35], [36], [38, [39] and [57] through [61]. It is worth
mentioning that in the cases of linear elastic fundamental states,
the critical load parameter X follows either from the equation

det|K + XK., | =0 (3.3)

or from

det|K(X) | 0 (3.4)
([K(X)] the stiffness matrix whose elements are known functions
of X). For nonlinear fundamental states, the equation for the

critical load is
det|K' (q0 (X))| =0 (3.5)

where [K'(q0 (X))] is the incremental stiffness matrix corresponding

to the fundamental state {q0 (X)} which, in turn, depends on

the. load parameter X.

In spite of great achievements of the classical theory of
stability, there are certain areas which require more general
approaches or, at least, refinements of the existing methods.

The fallacy of the static methods in the case of nonconservative
Systems has been discovered long ago. A comprehensive review of
this question and of recent contributions has been given by
G. Herrmann [62]. Another area of practical interest is the

stability, or buckling, under dynamic loading. Also, it has been

pointed out (R. T. Shield and A. E. Green [63] R. J. Knops and

E. W. Wilkes [64]), that, in general, the uniqueness of a path of
equilibrium and the energy and the dynamic criteria not necessarily
assure boundedness of the displacements, velocities, and strains.

An important step in answering certain fundamental questions
is the development of the theory of stability of continuous media

(A. A. Movchan [68], [69], [70] and Ref. [64]) along the lines of
Liapunov's general theory of stability of motion [65] (Modern

accounts of this theory can be found in the books by N. G. Chetaev
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[66] and W. Hahn [67]). The major points of this work are: precise

definitions of "initial perturbations", rational measures of
the magnitudes of the initial perturbations and the ensuing per-
turbed motions, rigorous definitions of stability, and derivation
of the corresponding stability criteria. It has been shown, in-
cidentally, that the classical energy criterion corresponds to the

stability, or boundedness, in the mean square value of the

displacements (but not to the boundedness of the maxima of the

displacements)

Further studies on the foundations of the theory of stability
are presented in Refs. [71] to [83]

A relatively new and important problem of the theory of

stability (and in the post-critical buckling) is the effect of
initial imperfections. It has been investigated originally to
explain the discrepancies between the theoretical predictions and

the experimental data in buckling of Shells (L. H. Donneil and

CC. Wan [83], W. H. Horton and S. C. Durham [84]); recently, it
became a part of more general studies on structural stability
(W. T. Koiter [71], J. M. T. Thompson [85], [87], J. Roorda [86];
also the survey paper [76] by B. Budiansky and J. W. Hutchinson).
The effect of initial imperfection may be one of the following:
(a) The equilibrium paths and the critical points are essentially
of the same type as in the perfect structure, with the displacements

and the critical loads slightly influenced by the initial
imperfections. (b) The bifurcation point vanishes; the pre-

(a)

perfect
structure

©/
/ V^imperfect

structure

p perfect

sf structure

//1/
\^_ imperfect

structure

U

Fig. 3.
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buckling and the postbuckling states form a continuous path
(Fig. 3a). (c) The bifurcation point vanishes and a limit point
appears, usually at much smaller magnitudes of the loadings
(Fig. 3b).

The essential factor in the analysis of the effects of
initial imperfections is their shape and size. It is, of course,
possible to assume some unfavorable configuration of the initial
imperfections and to determine the corresponding buckling load
and the postbuckling behavior. Sometimes, conceivably, specific
information concerning the initial imperfections in a structure
may be available. Basically, however, the initial imperfections
are errors of fabrication, of random magnitude and random distribution

over the structure. Accordingly, the Statistical methods

appear to be the most rational approach. The analyses of buckling
of various structures with random imperfections are presented in
the works by V. V. Bolotin [88] and [89], W. E. Boyce [90],
J. M. T. Thompson [91], B. Budiansky and W. B. Fräser [92], J. C.

Amazigo [93], and J. Roorda [94], There is a close relation
between the Statistical approach to the buckling loads and the

Statistical methods in structural safety.

4. METHODS OF ANALYSIS OF POST-CRITICAL STATES

The primary objective of the analysis is the determination of
a stable State (or states) of equilibrium of the structure for a

given system of loadings exceeding the lowest critical level. In
the case of non-unique solutions, the accessibility of each State
via a realistic path (history) of loading should be evaluated.
The determination of the ultimate loading capacity of the structure
is also an important part of the problem. Frequently, the complete

path (or paths) of equilibrium from zero to the ultimate loading
capacity is required.

The difficulties connected with the nonlinear equations of
the post-critical behavior necessitate the use of approximate and

numerical methods. The presently available solutions are usually
based on one or a combination of the following methods: perturba-
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tion methods, successive approximations, Ritz' method, Galerkin's
method, finite differences and finite element method. The

perturbation methods and the methods of successive approximations
reduce the Solution of the original nonlinear differential equations

to repeated solutions of linear differential equations. The

Ritz, Galerkin, finite difference, and finite element methods

result in a System of nonlinear algebraic equations.
There is an extensive literature on the approximate and numerical

methods; see, for example, Refs. [96], [97], [98], [99],
[100]. The Solution of the nonlinear algebraic equations connected

with some of these methods is a formidable task in itself (Refs.

[101] and [102]). The numerical treatment of the eigenvalue problems,

which arise in the course of this analysis, is described in
Refs. [103], [104], and [105].

K. O. Friedrichs and J. J. Stoker [106] analyse a supported

circular plate subjected to radial aedge compression p, and

described by von Karman's equations. For this problem, they develope

and appraise three methods suitable for three ranges of the ratio
P/p (where p is the lowest buckling load): a perturbation
method for ^p/p <2.5, a power series Solution for 2.5<p/p <2 5,

an asymptotic Solution for p/p -°= with a perturbation method for
very large values of p/p

W. T. Koiter ([45] and [71]) discusses the energy method

for the analysis of the initial post-buckling behavior of an

arbitrary elastic structure. The determination of the critical points
and buckling modes is accomplished with the aid of a stability
criterion. The initial post-buckling deflections in the vicinity
of a bifurcation point result from the minimizing of the energy
increment functional. The stability at the critical point and the

stability of the post-buckling states is investigated in terms of
the asymptotic expansion of the energy in the vicinity of the

critical point. Koiter's work includes also the effect of initial
imperfections.

An extension of the well-known Newton's method for calculat-
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ing roots of algebraic equations to the differential equations of
nonlinear mechanics has been presented by G. A. Thurston [107],
[108].

In general, the problem of determination of stable states of
postbuckling equilibrium is not an easy one. The difficulties of
the analysis beyond the first bifurcation or limit points exist
even if the task is reduced to a System of nonlinear algebraic
equations or a discrete system is dealt with, such as in the finite
element method. The works by A. H. Chilver [109], M. J. Sewell
[110], and J. M. T. Thompson [111], [112] contain further research
on the methods of analysis.

The difficulties in the tests of stability and in the search

for critical points make the linearization of the pre-buckling
states an extremely tempting step. The consequences of this
linearization are discussed in a paper by A. D. Kerr and M. T.

Soifer [113].

5. APPLICATIONS

Trusses and Frames

For certain types of statically indeterminate, pin-jointed
plane or space trusses, the post-buckling behavior can be determined

in a relatively elementary manner, with the assumptions that
the bars in their pre-buckling states are linearly elastic, the
compressive forces in buckled bars remain constant, and the changes

of the geometry of the truss are negligible. If successive buck-

lings of individual bars occur at the load levels \^,...\ the1' n
load-deflection history is as

shown in Fig. 4. E. F. Masur

[114] has derived the lower and

upper bounds for the ultimate
loads of redundant trusses in
post-critical states. There is
an analogy between this phenomenon

and the elastic-plastic
Fig. 4. behavior of certain frames.

Ulf

(Per) X

\„--
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The assumptions listed above are not always satisfied; in
numerous structural Systems the changes of geometry influence the

pre-buckling and post-buckling behavior, which become strongly
nonlinear. A typical example is the truss shown in Fig. 5, with

similar conditions existing in
shallow reticulated Shells.
Large deflections cause also

non-negligible secondary bend-

moments; consequently, a truss
must be analyzed as a frame

Fig.5. (unless, of course, pin joints
are actually constructed).

The classical works (Bleich [50]) in the area of stability of
frames reduce the problem to a system of equations which are

linear with respect to the Joint displacements and rotations and

Joint forces and moments. The coefficients of these equations are
known functions of the load parameter \. While this approach has

been successful in predicting the critical loads in many practical
applications, it is inadequate for dealing with the post-critical
behavior or for the cases when the pre-buckling behavior is
nonlinear.

The analysis of the post-critical behavior and the fundamental

states, and the determination of the critical loading conditions of
a plane or space frameworks should take into aecount the following
effects: (a) The influence of the axial forces acting in the

individual bars on their stiffness characteristics. (b) The non-

linearities of the force-displacement relations in the bars (the
effect of bending curvature on the relative axial displacement of
the ends, large bending deformations, material nonlinearities, etc.)
(c) The effect of the changes of geometry on the equations of
equilibrium. An extensive discussion of the nonlinear effects in
the frame behavior may be found in the works by R. K. Livesly [115],
M. R. Hörne [116], [117], S. J. Britvec and A.H. Chilver [118],
S. A. Saafan [119], R. W. Williams [120], J. H. Argyris [33], and
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R. H. Mallett and P. V. Marcal [39] ; Th. V. Galambos, G. C.

Driscoll, and L.-W. Lu report some related experimental research

[121].
The results of the analysis which takes the above effects into

aecount differ considerably from the stability problem of pin-joint
trusses of linearized rigid-joint frames, not only quantitatively
but also qualitatively. For example, the presence of primary and

secondary bending moments will remove at least some of the bifurcation
points in the equilibrium path (such as in Fig.4)and the behavior

up to the ultimate load may consist of the fundamental path only.
The absence, however, of the bifurcation points should not be

assumed in advance. (To this effect, see H. L. Schreyerand E. F.

Masur [122]). Also, a nonlinear analysis may reveal the existence

of snap-buckling at certain load levels (Fig. lb), which is entirely
beyond any linearized theory.

Under certain circumstances, some of the effects listed above

may be disregarded. For example, J. H. Argyris [33] proposes a

method of analysis which neglects the influence of axial forces on

the element stiffness. Accordingly, the buckling phenomena within
individual elements cannot be predicted with this theory. If,
however, the elements are relatively Short and stiff, and the problem

is such that the buckling "waves" extend over several elements,
the analysis should yield satisfactory results, with considerable

simplification of the numerical work. The theories presented by

R. K. Livesley [175], J. D. Renton [122], S. J. Britvec and A. H.

Chilver [118], R. J. Aguilar and T.-A. Huang [124], S. J. Britvec
[125], S. S. Tezcan and B. Ovunc [126], J. J. Connor, R. D. Logeher,
and S.-C. Chan [127] assume flexible elements to which the linearized

theory of bending with axial loading is applicable. The

stiffness coefficients of these elements contain trigonometric or

hyperbolic functions of the axial forces. With the equilibrium
equations written in the deformed configuration, the problems of
local buckling, overall buckling (including snap-buckling), and

postbuckling behavior are analyzed. The Systems of nonlinear equations
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of these theories are solved by either iterative or incremental
schemes. The analyses presented by G. Lobel [128], F. W. Williams
[120], C. N. Kerr [129], S. -L. Lee, F. S. Manuel, and E. C.

Rossow [130] utilize the nonlinear bending theory of beams. They

are capable to deal with the problems in which the post-buckling
deflections are of the order of the column or girder lengths.

Some of the problems discussed in this report occur in the

analysis of tall buildings and have been reviewed in the preliminary

report by Professors Steinhardt and Beer [131] (8th Congress,
1968), which contains a very extensive list of references.

Plates
The papers by A. van der Neut [132], G. Winter[2], and Ch.

Massonnet [4] contain comprehensive reviews of previous works on

the post-critical behavior of plates. There are also two recent
books on thin-walled structures (Refs. [133] and [134]), where the

papers by W. J. Supple and A. H. Chilver [13 5], A. C. Walker [136],
J. B. Dwight and A. T. Ractliffe [137], T. R. Graves Smith [138],
and others, deal with plates in post-critical states.

Among most recent contributions, J. W. Dwight and K. E. Moxham

[139] describe their research on welded steel plates in compression.
The work reported by them is obviously a necessary step without
which a füll practical utilization of the post-buckling strength
of plates would not be acceptable. K. R. Rushton [140] analyzes
the post-critical state of tapered plates. The problem of a plate
with three edges simply supported and one edge attached to a

stiffener has been investigated by K. Klöppel and B. Unger [141],
the analysis is based on the von Kärmän equations and the energy
method. The computed deflections agree very well with the results
of a test program. An analysis of the post-critical behavior of
thin plates, employing the finite element method has been presented
by D. W. Murray and E. L. Wilson [142], [143]. The effect of creep
deformation on the post-critical behavior of compressed plates has

been investigated by I. M. Levi and N. J. Hoff [144].
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Shells
The problems of post-critical behavior become probably most

interesting and difficult in the theory of Shells. They have

received ample attention from many researchers, and a list of
publications in this field could easily reach a few hundred
positions. A review of the research on shell buckling has been made

by Y. C. Fung and E. E. Sechler in 1960 [145]. The book by A. S.

Volmir [54] contains numerous Russian contributions.
The load-displacement behavior of cylindrical shells under

axial compression has been analyzed by Th. von Kärmän and H. S.

Tsien [146], W. T. Koiter [147], B. 0. Almroth [148], N. J. Hoff,
W. A. Madsen, and J. Mayers [149], R. L. de Neufville and J. J.
Connor [150],and others (see also N. J. Hoff [151]). The load-
displacement relations are of the type in Fig. lb, with strong
imperfection-sensitivity at the critical point A. The ultimate
shape of the buckled shell (Fig. 6) is referred to as Yoshimura

pattern [152]. (This shape, together with considerable loading
capacity of a buckled cylinder,
prompted K. Miura's Suggestion
of a shell structure resembling
Yoshimura's pattern [153]).
The problem of stiffened and

Fiq 6. ,© x © © ©
1 '"A N 7/ ' barreled Shells is analyzed by

J. W. Hutchinson and J. C.

Frauenthal [154].
The nonlinear buckling problem ana the initial post-buckling

behavior of a complete spherical shell has been analyzed by W. T.

Koiter [155], who also gives a review and assessment of previous
work in this area. The papers by J. R. Fitch [156] and J. R.

Fitch and B. Budiansky [157] deal with a similar problem for
spherical caps. Ref. [157] clarifies, in particular, the effect
of the load distribution, and of the shell thickness, on the type
of buckling (bifurcation or snap-through)and on the post-buckling
load carrying capacity.
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An analysis of the initial post-buckling behavior of the
toroidal shell segments has been given by J. W. Hutchinson [158].
The paper by G. A. Greenbaum and D. C. Conroy [159] contains an

example of an efficient numerical analysis of a conical shell.
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SUMMARY

This report reviews the problems related to the analysis of

post-critical behavior of structures, including formulation of the

basic equations, methods of their Solution, and criteria of
stability. Recent applications to trusses, frames, plates and Shells
are outlined.

RESUME

Ce rapport traite de l'analyse du comportement post-critique
des structures, avec formulation des equations fondamentales, les
methodes de leur resolution et les cryteres de stabilite. On

presente aussi les applications recentes aux treillis, aux cadres,
aux plaques et aux voiles.

ZUSAMMENFASSUNG

Dieser Bericht bahandelt die Probleme der Berechnung des

überkritischen Verhaltens von Tragwerken, einschliesslich die
Formulierung von Grundgleichungen, der Methode ihrer Lösung, und der

Stabilitätskriterien. Neue Anwendungen auf Stabwerke, Platten und

Schalen sind beschrieben.
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