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Aus geraden Staben erzeugte windschiefe Regelflachen als Tragwerke
Warped Ruled Surfaces Formed by Straight Members Serving as Structures

Réalisation de charpentes a surfaces réglées déjetées & |'aide de barres
rectilignes

H. EGGER
Dr. techn.
Oesterreichischer Stahlbauverband
Wien, Qesterreich

F. RESINGER
o.Prof. Dr. techn.
Technische Hochschule
Graz, Qesterreich

1. ALLGEMETINES

Zu den windschiefen Regelflachen gehoren u.a. Rotationshyper-
boloide und hyperbolische Paraboloide. Beide konnen aus zwei Scha-
ren sich kreuzender Geraden gebildet (Bild 1) und daher durch ge-
rade Stabe zu Tragwerken realisiert werden.

Fiir die praktische Ausfiihrung ist es zweckmdfig, die Stabe
der beiden Scharen ochne Unterbrechung durchzufiihren, wodurch sie
in zwei verschiedenen benachbarten Fldchen zu liegen kommen. An
den Kreuzungsstellen werden die Stdbe durch aufgeklemmte Schellen
miteinander verbunden. In diese Knoten werden in der Regel alle
Bauwerkslasten eingeleitet. Die Stadbe beider Scharen enden meist
in Randgliedern, die beim Rotationshyperboloid z.B. durch einen
oberen Dachring und einen unteren Basisring, beim hyperbolischen
Paraboloid durch gerade oder auch durch gekriimmte Randtrager ge-
bildet werden konnen. Diese Randglieder kodnnen beliebig gelagert
sein.

Hinsichtlich der Lastabtragung sind diese Tragsysteme keine
Schalen, sondern vielmehr hochgradig statisch unbestimmte raumli-
che Rahmentragwerke, deren biege- und torsionssteife Stabe in
den Knoten schubfest und gewdhnlich auch verdrehfest verbunden
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sind. Bei beliebiger Belastung erhalten die Knoten radumliche Ver-
formungen, und zwar im allgemeinen Verschiebungen in drei Achs-
richtungen und Verdrehungen um diese Achsen. Uber das Tragverhalten
solcher Systeme so0ll im folgenden berichtet werden.

2. ROTATIONSHYPERBOLOTID

2.1, ﬁberlegungen zur Tragwirkung
Bei rotationssymmetrischer Belastung tritt in
”IF/ /'/I jedem Knoten eine Last auf, die fiir das zuge-
%i . hdrige Triagerkreuz (Bild 2) ebenfalls nur sym-
73 . | metrisch wirken kann. Bei Zerlegung dieser
' : Last in eine Komponente in der Tragerkreuzebene
I und eine normal dazu erfolgt die Abtragung der
, ersten Lastkomponente vorwiegend durch Normal-

; krafte in den gekreuzten Staben, die Aufnahme
® ‘L d it Lastk te d n vorwi nd
/ PN der zweiten Lastkomponen agege orwiege
o < iiber Biegung des Tragerkreuzes.
"/_ N Sind die Stdbe torsionssteif und auch in
\\! Bild 2 den Knoten verdrehfest verbunden, so wird die
5 ' Lastabtragung nicht nur auf Biegung und Nor-

malkradfte, sondern auch auf Torsion erfolgen.
Die verschiedenen Tragwirkungen lassen sich an den verein=-
fachten Systemen nach Bild 3 veranschaulichen:

I
|
3

Bild 3

)

Wahrend man das gelenkige System (Bild 3a) widerstandslos
nach innen stilpen kann, leistet das System mit in den Knoten voll
verbundenen Stdben (Bild 3b) Widerstand gegen eine solche Ver-
formung, und zwar durch die mobilisierte Biege-~ und Torsions-
steifigkeit der Stidbe. Dasselbe gilt auch fiir das Gesamtsystem
nach Bild 1a. Die biege~ und drehsteife Verbindung der Stabe fiihrt
daher zu einer Reduktion der Biegemomente auf Kosten von Torsions-
momenten.

Die gilinstigste Kraftaufnahme kann jedoch durch ein System
nach Bild 3¢ erfolgen, bei dem fiir rotationssymmetrische Belastung
die Abtragung der Krafte nur durch Normalkrafte erfolgt. Auf das
Gesamtsystem nach Bild 1a iibertragen, widren zur Erzielung dieser
Lastabtragungsart horizontale St&dbe zur Verbindung aller Kreu-
zungspunkte einzufiihren. Es ergibt sich hiermit ein raumliches
Fachwerk ("Stabschale'"), das auch bei gelenkiger Verbindung aller
Stdbe in den Knoten tragfahig ist. Dasselbe gilt fiir lotrechte
Verbindungsstadbe zwischen allen Kreuzungspunkten.

Ordnet man neben dem Basisring und dem oberen Abschlufiring
nur einzelne horizontale Zwischenringe an, so ergeben auch diese
bereits eine wirksame Stiitzung der sich kreuzenden Stabe zwischen
dem oberen und dem unteren Randring. Die fiktive, auf Biegung
abtragende Stiitzweite der Trdger wird hierdurch wesentlich reduziert.
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Durch zweckm&@Bige Anordnung nur weniger Zwischenringe besteht da-
her die Moglichkeit, die einzelnen fiir die Ausfiihrung maBlgebenden
Schnittkrafte entsprechend zu regulieren.

Bei dem an der Basis gestiitzten Rotationshyperboloid werden
durch die lotrechten Lasten in den Stdben Druckkrafte erzeugt, die
wegen der auftretenden Biegeverformungen der Stdbe zusdtzliche
Biegemomente zur Folge haben. Es ist daher wichtig, bei solchen
Systemen diesen Einflufl der Theorie II. Ordnung fiir die Bemessung
zu bericksichtigen.

2.2. Anwendungsbeispiel

2.2.1 Angaben und Annahmen

Fiir einen Ausstellungspavillon war das Stabsystem eines an
der Basis gestiitzten Rotationshyperboloides aus Aluminiumrohren
g 80/8 wund mit den geometrischen Abmessungen nach Bild 4 zu be-

rechnen. 4@27 ben I
rq I i

Bild 4 = Dachring b in s A

Zwischenringe 0
Ny
Q

I Gestiitzter Basisring

9|
3
| Oy ¥
37, i5O . ,_1

Die hier besprochene Schnittkraft- und Forménderungsermift-

lung fiir die rotationssymmetrische Belastung "Eigengewicht + Schnee"
erfolgte fiir folgende Randbedingungen:

Basisring mit vorgegebenem Querschnitt und in der Meridian-
tangente verschieblich;

Dachring mit vorgegebenem Querschnitt und rotationssymme-
trisch verschieblich;

Stadbe im Basisring und im Dachring frei drehbar gelagert.

2.2.2 Durchfihrung der Berechnung

Die Programmierung des Problems erfolgte in Zusammenarbeit
mit dem Rechenzentrum Graz durch Dipl.-Ing. Glanzer. Die Berech-
nung wurde auf einer Rechenanlage der Type UNIVAC 494 durchgefiihrt.
Grundlage des Berechnungsverfahrens war die Deformationsmethode.
Ermittelt wurden alle Schnittkr&dfte und Verformungen sowohl nach
Theorie I. als auch II. Ordnung, insbesondere auch die Schermomente
in den Schellen zur Ermittlung der erforderlichen Klemmkrafte fur
die Verbindung der Stabe.

Die Untersuchung fiir die Theorie II. Ordnung wurde mit einem
Laststeigerungsfaktor von 1,5 durchgefiihrt.
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2.2.3. Hauptergebnisse

ohne mit zwei mit drei
Zwischenringe Zwischenringen Zwischenringen
Theorie I I 1T I IT

Z. 20,27 23,413 24,66 23,44 oL, 67
D - -8,71 -11,04 -8,82 -11,18
MB 1,20 0,19 0,34 0,19 0,34
N ~2,49 -1,16 -1,24 -1,16 -1,24
M 0,055 0,009 0,016 0,008 0,015
o, - - 0,280 - 0,036
v, 0,835 0,088 0,148 0,087 0,147
v, 0,493 0,025 0,061 0,025 0,060
Dimensionen der Angaben : Mp, m
Z ... Zugkraft im Basisring,
D ... Normalkraft im unteren Zwischenring,
MB... grofBtes Biegemoment in den Staben,
N ... zugehorige Normalkraft,
MT"' zugehodriges Torsionsmoment,
MS... Schermoment in der Verbindungsschelle,

(wurde nur fiir Theorie II. Ordnung ermittelt)

R groBte lotrechte Knotenverschiebung,

Ve zugehdrige Radialverschiebung (nach innen) .

Fiir das Stabwerk ohne Zwischenringe wurden die Werte fiir die
Theorie II, Ordnung zwar ermittelt, jedoch liefern sie keine
brauchbare Aussage, da die Normalkrafte schon iiber der Knicklast
des Stabes liegen. Bereits die Ergebnisse der Theorie I. Ordnung
zeigen mit den zu groBen Biegemomenten und Verformungen die Un-
brauchbarkeit dieser Losung.

Mit der Anordnung von zwei Zwischenringen ergeben sich Schnitt-
krafte, die mit der gewdhlten Rohrabmessung bereits aufnehmbar sind.
Jedoch war im oberen Bereich das im Knoten auftretende Schermoment
fiir die gewahlten Schellen zu grof3.

Der dritte Zwischenring andert die maBigebenden Schnittkréafte
und Verformungen, die im Bereich zwischen dem Basisring und dem
ersten Zwischenring liegen, zwar nicht mehr, jedoch wird hiermit
auch im oberen Bereich das Schermoment fiir die Ausfiihrung in brauch-
baren Grenzen gehalten.

Der Einflufl der Theorie II. Ordnung ist, wie die Gegeniiber-
stellung zeigt, beachtenswert.

2.2.4 Stabilitat der Zwischenringe

Die Zwischenringe werden fiir den Lastfall "Eigengewicht
+ Schnee'" auf Druck beansprucht, weshalb eine gesonderte Stabili-
tatsberechnung des in den Stdben radial elastisch gebetteten Ringes
durchzufiihren war.

2.2.5 Ndherungsberechnung .
Auf Grund der in Abschnitt 2.1. gefiihrten Uberlegungen zur
Tragwirkung ist eine Ndherungsberechnung méglich, und zwar fur die
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Normalkradfte auf Grund einer Gleichgewichtsbetrachtung mit der
oberhalb der betrachteten Stelle vorhandenen Gesamtlast und der
gegebenen Flidchenneigung, flir das maBgebende Biegemoment des Sta-
bes auf Grund der Betrachtung eines Durchlauftrégers iiber den
Rand-= und Zwischenringen. Dabei sind allerdings nur bei Anordnung
von Zwischenringen brauchbare Werte zu erwarten, wdhrend diese
Betrachtung fiir die Ausfiihrung ohne Zwischenringe (frei aufliegende
Trager zwischen den Randringen) zu grofie Werte liefert. Der Bin-
fluB der Theorie II. Ordnung 1aBt sich mit den zuerst errechneten
Normalkraften abschadtzen. Fiir die Torsions- und Schermomente sind
keine Anhaltspunkte fiir eine Naherung gegeben.

Die auf diese Weise fiir das System mit drei Zwischenringen
und fiir den Lastfall "Eigengewicht + Schnee'" durchgefiihrte Nahe-~
rungsberechnung ergab folgende Werte:

Zug im Basisring: 25,7 Mp,
Druck im 1. Zwischenring: 12,5 Mp,
GroBtes Biegemoment der Stdbe: 0,19 Mpm(I) und 0,40 Mpm(II),
Zugehorige Druckkraft: 1,90 Mp.

Es kann daher gesagt werden, daBl eine so durchgefiihrte
Ndherungsberechnung filir die Vorbemessung brauchbare Werte liefert.

3. HYPERBOLISCHES PARABOLUOTID

3.1. Uberlegungen zur Tragwirkung

Beim ebenen Rost mit biege- und torsionsstéifer Knotenaus-
bildung erfolgt die Abtragung von Lasten iiber Biegung und Torsion.
Beim rdumlichen, zur Hyparfldche verwundenen Rost erfolgt
diese iiber raumliche Biegung, Torsion und Normalkraftbeanspruchung

der Stidbe. Die Reduktion einer Schnittbelastung auf Kosten einer
anderen ist hier durch die Biege-, Torsions~ und Dehnsteifigkeit
gegeben. Das Reduktionsmafi, z.B. der Biegemomente auf Kosten der
Torsionsmomente und Normalkréafte, richtet sich, sieht man von der
Art der Lagerung an den Réndern und der Schellenausbildung ab, nach
dem Verh#dltnis der Biege-~ zur Torsionssteifigkeit der Stdbe und
nach dem Verwindungsgrad des Hyparrostes. Die Schere im Stabknoten
kann entsprechend der konstruktiven Durchbildung der Schelle frei
drehbar oder fest seinj dennoch iibertréagt sie Biege- und Torsions-
momente sowie Normalkrifte. Uber diesen EinfluB wird gesondert
berichtet.

Auch hier ist, wie beim Rotationshyperboloid, wegen der auf-
tretenden Druckkradfte in den Stdben der EinfluB der Theorie II.
Ordnung bei der Schnittkraftermittlung zu berlcksichtigen.

Bei den in der Praxis vorkommenden VerwindungsmafBen sind die
Biegeanteile und damit die Verformungen der Stadbe grofl. Es ist
daher naheliegend, die Stdbe durch Spannseile in Richtung der
Hauptkriimmungen zusatzlich zu stitzen.

3.2. Konstruktionsvorschlag mit Staben und Seilen

Ein Hyparrost aus geraden Stdben in Richtung der Erzeugenden
und mit Seilen in Richtung der Hauptkriimmungen nach Bild 5 lafnt
sich, im Gegensatz zu einer moglichen Ausfiihrung mit gespannten
Seilen in Richtung der Erzeugenden, vorspannen, ohne dafl das Rand-
glied auf Biegung beansprucht wird, da die Spannkrafte als Druck
direkt in die Stdbe eingeleitet werden. Durch die Verbindung der
Stdbe mit den sich in den Knoten kreuzenden Seilen sind die ge-
driickten Stabe in den Knoten gestiitzt und gegen Ausknicken gehalten.
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Bei diesem mit Spannseilen gestiitzten
Hyparrost werden die Knotenlasten vorwiegend
durch das gespannte Seilwerk abgetragen und
auch in die Randglieder als Normalkrafte ein-
geleitet. Dabei ist der Einflull der Theorie
II. Ordnung wegen der kleineren Verformungen
wesentlich geringer. Bei der konstruktiven
Durchbildung eines solchen Tragwerkes brau-
chen bei symmetrischer Ausfiihrung und fir
symmetrische Belastung die Seile in den Kno-
ten nicht geklemmt zu werden; jedoch bietet
auch die bei Unsymmetrie notwendige Klemmung
keine konstruktiven Schwierigkeiten.

ZUSAMMENFASSTUNG

Rotationshyperboloide und hyperbolische Paraboloide konnen
aus geraden Stidben realisiert werden. Die Ausbildung der Knoten und
die Anordnung zusadtzlicher Stiitzelemente (Zwischenringe, Spannseile)
beeinflussen die Verteilung der Schnittkradfte. Flir ein konkretes
Anwendungsbeispiel eines Hyperboloides werden die Schnittkrafte und
Verformungen elektronisch berechnet. Die Ergebnisse zeigen die Not-
wendigkeit der Theorie II. Ordnung auf. Eine Ndherungsberechnung
ergibt brauchbare Werte fiir eine Vordimensionierung.
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Etude d‘une coupole en aluminium a une nappe a treillis avec des
poutres de retombée

Untersuchung einschichtiger Aluminiumschalen

Study of a Single Layer Shell of Aluminium
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Docteur-Ingénieur
Ingénieur-Conseil CICF
Architecte DPLG
France

I - INTRODUCTION ET DESCRTPTION DE LA STRUCTURE

Les structures spatiales en forme de coupole sont de plus en plus souvent utili-
sées dans l'architecture moderne, car elles permettent de couvrir le maximum de volume
avec le minimum de surface, tout en assurant une bonne répartition des efforts dans
1'espace (faibles moments fléchissants) et un agréable aspect esthétique. Ce type de
structure a été adopté pour le projet de la patinoire & RENNES (France) et doit &tre,
par la suite, fabriqué en série pour d'autres destinations (piscines, salles des
sports, salle de spectacles, etC... )

Les études réalisées par 1l'au-
teur avec la collaboration de 1'Alu-
minium Frangais, ont été menées dans
trois directions 3
- Recherche du systéme de la couver—

ture (opaque et translucide),
- Recherche des noeuds d'assemblages,
- Mise au point des programmes de
calculs électroniques permettant de
raccourcir le délai de 1l'étude et
de diminuer son prix.
La coupole sphérique, d'un rayon
de 51,87 métres, couvre un hexagone
de 33,223 métres de c8té d'une portée
maximele de 66,225 metres. Elle est
L. ——— constituée d'une nappe tridirection-
Fig. 1. Photo de la maguette e . e ——
nium, renforcée aux extrémités par des poutres de retombée & trois membrures formant,
en méme temps, le chénesu (voir photo de la maquette fig. 1)

Les tubes seront assemblés sur le chantier par soudures, & l'aide d'éléments
sphériques qui permettront le réglage de la longueur des barres (voir fig. 2).

Les calculs de la coupole ont été menés de la fagon suivante :

- Détermination des efforts dans la nappe & treillis par la théorie de membrane et
prédimensionnement des sections.

~ Etude de la géométrie de la structure & 1'aide du programme GEO.

- Détermination des composantes (Px, Py, Pz) des efforts de la neige et du vent &
1l'aide du progremme FOCOU,
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- Calcul des déformations, des réactions sur appuis, des ef-
forts, des contraintes compte tenu du flambement, combingi-
sons des cas de charges, recherches des valeurs extrémes
des efforts et des contraintes, calcul du poids de 1la
structure & 1'aide du programme STROP.

-~ Btude de la stabilité des parois.

Les programmes de calcul électronique mis au point par
le C.E.R.E.T. (B.E.T. de l'auteur) permettent d'arriver & une
véritable automatisation des études. Il est, en effet, possi-
ble & un Ingénieur d'établir la note de calcul compléte dans
la journée : prédimensionnement, rédactions des bordereaux,
perforation des cartes, vérification des résultats 2 6 heures
= calcul sur CD 6600, 120 secondes =

II - DESCRIPTION DES PROGRAMMES GEO ET FOCOU Fig.2.Noeud 4'assem—
Le programme GEQ permet, en partant du rayon de cour- blage - Brevet A.F.

bure, de la portée et du nombre de modules, de numéroter

automatiquement les noeuds de la structure, calculer leurs coordonnées x, y, 2z,
(pour la moitié de la structure), calculer les longueurs des barres, perforer les
cartes des noeuds et des barres utilisables directement par le programme STROP,

Le programme FOCOU calcule les composantes des forces Px, Py, Pz appliquées aux
noeuds sous 1l'effet de la neige, du vent (portance et trainées et perfore les cartes
correspondantes,

En vertu du rdglement frangais NV 65, les efforts du vent peuvent &tre décompo=—
sés en : wne force de renversement T (répartie dissymétriquement sur les parois), une
force de souldvement U (répartie uniformément sur les parois), une pression ou dépres—
sion intérieure (voir fig. 3).

En calculant les composantes T et U
TRAI:JEE PORTASCE DEPRESSION SURPRESSION d'aprés les régles NV 65, nous pou=

- “ ' " vons en déduire les pressions uni-

Sy S, oy, $OEy, taires
' )

Trainée 3

s vy = 5 T sny cos U~
il 7 R - "
| 3 [2 cos X', (sn' Y1 +2):|
Fig.3. Pressions unitaires du vent sur ioffance $
la calotte sphérique. > = 'ITRZ snzr ;

et les composantes Px, Py, Pz.
Les efforts dans les barres dus & la pression et & la dépression intérieures,
peuvent &tre déterminés directement en majorant les efforts calculés sous l'effet de
la portance par le coefficient dépendant du rapport V3/Vé ou V@/Vé.

III - DESCRIPTION DU PROGRAMME DE CALCUL DES STRUCTURES STROP.
Le programme STROP est composé de 3 sous-programmes : treillis, portiques, gril-

lages, Cette division a été effectuée afin de diminuer le temps et le prix du calcul
ainsi que de simplifier la rédaction des bordereaux des données pour les structures
ne nécessitant pas le calcul par le programme spatial. Résultats fournis par le pro-
gramme : déformations, efforts, contraintes compte termu du flambement, combinaisons
des différents cas de charges, extrfma des efforts et des contraintes, optimisation
des barres, dessins de la structure en axonométrie, diagramme des efforts, Un langage
spécial d'introduction des données a été mis au point afin de faciliter et de dimi-
nuer le temps de la rédaction des borderesux (voir fig. 4).

Le programme est basé sur la méthode des déformations.

En fonction du sous-programme utilisé, différentes formules (pour le calcul des
éléments de la matrice de rigidité et pour le calcul des efforts dans les barres) ont
été utilisées.

La matrice de rigidité, qui est une matrice bande symétrique,a été décomposée en
produit de deux matrices triangulaires : supérieure S et inférieure L, donc faciles &




inverser,
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Les éléments ujj des matrices L et S sont calculés & partir des éléments ajj de
la matrice de rigidité K (dont on stocke la partie triangulaire supérieure) en les
mettant dans les cases de la matrice Ky (les éléments ajj ainsi effacés ne servent
pas pour le calcul des éléments uij suivants). Les &léments aij et ujj sont stockés
en mémoire de fagon compacte (sous forme d'une table) et adressés par un indice uni-
que. Un vecteur MK, conservé en permanence en mémoire centrale et contenant des nom=-
bres entiers, permet de calculer 1l'adresse effective en mémoire centrale d‘un élément
aij quelconque appartenant & la bande.

=STioP

RESUNE DU LANGAGE D' IN=
TREDUCTION DES DONNEES.

: | Titre
|
lf [ rnulu.a ] [Tortiqms | [_EH{W
| ]
| r————————-
| [ T |
| ‘L [ Woouwn ] I ] [~ ] [z
I | Clri:on N Cmai X ClrtJln Y Clrhlh 4
| L o = i{
[ Appuls
i Cu.r‘ua_ appuis
: attantior cartes
| _ e
| BARRES
I F"I;:l T
? ? Cartes |barres @E\'
II e f—————@—— A3 1a1 (sous prog. de dessin)
FORCES
I iI'_l=—_____[____'::=__—_._—. 1 I
| | | | Foeuds | [ Berree ] [ 1. ] ! &
| | cartel nosuds Cartel barres Cartds dépl. Poils
| 4% o abarepes Soppts (atis
Lo —_______|:Ai:1_._
T —
| E—
: i
I | rc_—.- binaisons
| 3
{ -2z
|
(.

Fig.4. Résumé du langage d'introduction

des données du programme STROP,

Dans le cas ol la matrice K trop
encombrante ne tient pas entiére-
ment en mémoire centrale, on peut
alors utiliser des mémoires péri-
phériques pour le transit des élé-
ments de K (ou U) en mémoire cen=
trale.

Le nombre C des places de mémoire
centrale disponible pour y stocker
des tranches de la matrice K doit
toutefois satisfaire &

c)&+2¥

d=max 1i-=j étant la largeur de
la matrice bande.

lig.

~,
ou ZS, 2C, ZI représen};ent respec—
tivement 3 zones de mémoires de
travail : 2
Supérieure (d° mémoires)
Centrale (< mémoires h lignes)
Inférieure (d2 mémoires

Phases de calcul _
1. Calcul et écriture sur fichier des tranches ZS, ZC et ZI de la matrice K
Premat
v .
doriture - stockage de la matrice K
SUBAT > ®_’ TAPE 32 par tranches lorsque celle-
matrice K ¢i ne tient pas en mémoire

centrale.

2. Ecriture sur fichier et mise & zéro des lignes et des colonnes correspondant & des

appuls
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INVMAT |«

stockage des lignes et des
colonnes de la matrice K
correspondant & des appuis.

3. Calcul par tranches dans la mémoire centrale des éléments ujj des matrices trian-
gulaires L et S, et écriture par tranches sur fichier.

INVMAT |« (72)

matr:l.ce K*

> ()—> [z= 52

matrices L et S (uij)

2 1 1
uij = a4 - ﬁ urp () § = oo [ai' - Upp Upj Urj
F =i~ M T g g r=Zi-1
4, Résolution par tranches du systéme L Y =
1
=P - 2 uri Yr en commengant par :
= Y 1 = P4

5. Résolution par tranches du systéme SA =

1 n
Iy i = [yi - )2 Uy Uri AI] en commengant par 3
ii r=1+1 Yn

An =—
Unn
En connsaissant pour chaque cas de charges les déplacements des noeuds, nous pou-
vone en déduire les forces dans les barres & 1l'aide des équations intrinséques d'une
barre i=~j et par la suite les contraintes.
Différentes formules du coefficient de flembement sont utilisées en fonction du
ré¢glement du calcul et du matérieu utilisé.
Pour le calcul de la coupole en sgluminium, nous gvons utilisé les formules du
D.T.U.’ pour 3 ( 6 e ) ( 5 6_ 5 )2 G P
= (0 + 0 + (0] + - 0,887
)5 + 0,5 22 \/ )5+ 0,5 22 882

ou Ge -~ limite élastique 0 k — contrainte critique d'Euler

Pour les structures métalliques, le programme calcule le coefficient K par les
formules de la Convention Européenne de CM en fonction du type de profil (courbes de
flambement n® 1, 2 et 3).

En fin de calcul, on obtient un tableau de résultats indiquant pour chaque barre
ij les efforts mini et maxi, les profils choisis, des sections brutes et nettes, le
reyon de giration, la longueur de la barre, le coefficient de la longueur de flambe-
ment, le coefficient de sécurité, le coefficient de flambement, la contrainte extrfme
et le poids de la barre (voir fig. 5).

Sssasnseasesas L N N R P R R Y Y )

sssesscesccncns Sl sssesssssrsteanssssesnsssacnsstrrsesnsnnas
. I 40" [FFORTS LAl REMES . 3 L P . CODE . n RHO K * CCNTRAINTES L
L T T R Y P T Y PR T L L Py
* 50+ 56 ° 258142 11 1582547 12 ¢ 6.67 134.97 7.38 ¢ 4 * TuB76EZ - +«90 2.59 1.07 * 447 2373 2400 *
* 49+ 53 ¢ -4325.9 9 3010.7 12 * 3494 174011 5.3 * -1 * TUuB42ES ¥ +90 1.39 1.89 ¢+ -2079 7€4 2400 *
* h8- 52 % -5398.3 11 2733.0L 1¢ * 4elk. 174,11 5.91 * 0 * TUuduBE2 A +90 1.61 1.58 * -2056 6€E1 2400 *
* 51= 53 ¢ =1090.4 12 2261.1 12 * 1478 162.99 2.08 * -6 * TUBRGEZ ks «70 «87 1.9 * -1189 1272 2400 *
* 50 52 * =-2285.4 L0 =-1112.€ 12 * 2,38 162,99 2.79 * =5 * TUB26GE3 ® 70 «85 2.03 ¢ -1%49 =949 2400 *
* 51- 55 ¢ 2040.9 11 4196.3 12 * 1.78 142499 2.08 * -6 * TuB26ER . 70 «87 1.96 * 1148 23€0 2400 *
® 50- S& * ~4369.2 7 773.9 12 * 3.07 182.99 3.59 * =3 * TUB33E3 2 70 1.08 1.49 * -2119 254 2400 *
® 53- 55 % =1891.1 11 2T44.0 12 * 1.78 110.04d 1.60 = -6 * TuB26E2 b «70 87 1s42 * =1512 1543 2400 *
¢ 52- 56 % =1737.7 9 3399.5 12 * 1.78 110.00 1.60 * =6 * Tud2eE2 . «70 87 1,42 ¢ -1389 1912 2400 *
¢ 53 57 % -1500.8 7 709.2 12 * 1.78 93.01 136 * =6 *® TUB26EZ . <70 -87 1.25 * ~-1057 359 2400 *
* 52- 56 * 757.2 8 1505.1 12 * 1.78 93.01 1.36 * =6 * TuB26E2 ¥ 70 87 1.25 * 426 as87 2400 *

Fig.5. Exemple de résultats de calcul d'optimisation.
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IV -~ RESULTATS DE CALCUL

Cing différents cas de charges ont été étudiés :
1. charge permanente  (fig. 6 a)
2. neige
3. vent normal portance 2fig. 6 bg
4, vent normal trainée (fig. 7
5. température
Les combinaisons des cas n° 3 et n® 4 ont permis de trouver les efforts sous

1
1'effet du vent total normal éportance + trainde + dépression)

portance + trainée + surpression)
le vent total extréme étant égal & 1,75 fois le vent normal.

La vérification de la résistance des barres a été effectude en considérant les
combinaisons les plus défavorables des charges et surcharges majordes (suivant le ro-—
glement de calcul des constructions en aluminium DTU)

1,7 Neige normale + 1,5 (charge permanente * température)

1,7 Vent normal, dépression + 1,5 (charge permanente & température)

1,7 Vent normal, surpression + 1,5 (charge permanente ¥ température)

1,1 (Neige extr8me + charge permancnte ¥ température)

1,1 (Vent extr&me dépression + charge permanente ¥ température)

1,1 (Vent extrdme surpression + charge permanente ¥ température)

1,1 20,5 «Neige extréme + vent extréme + charge permanente ¥ température)
1,6 (0,5 « Neige normale + vent normal dépression ¥ température).

Aprés la recherche de la combinaison la plus défavorable déterminde par le pro-
gramme, nous avons obtenu le tableau de résultats présenté de la méme fagon que celui

de la figure 5,
L'examen des contraintes extr8mes dans les barres et 1'étude de la stabilité

élastique des parois ont permis de choisir deux sortes de tubes : @ 200, épaisseur
5 mn et § 200, épaisseur 4 mm répartis en fonction de la distribution des contraintes.

V - ETUDE DE LA STABILITE ELASTIQUE

La stabilité élastique des parois a été étudide d'aprés les formules de K,P.
BUCHERT (1) exposées dans sa contribution.

Charge critique =

2 3/2
Por = 0,366 E [_;EJ [%’:]

Epaisseur équivalente de membrure ip
tg = 24 A, L, I représentent respectivement
\/3 L la section, la longueur et l'inertie
des barres.

Epaisseur équivalente de flexion

4 = [9\/-3 %]1/3

L'étude des coupoles de ce type a permis de tirer les conclusions suiventes &
~ Pour lesrayons de sphéres inférieurs & environ 55 m, les dimensions des barres dé-
pendent . essentiellement des efforts extrémes.
= Pour les rayons supérieurs & 55 m, les barres sont dimensionnées en fonction de la
stabilité élastique,

VI - BIBLIOGRAPHIE
K.P, BUCHERT ~ Buckling considerations in the design and construction of doubly

curved space structures - Publication "Space Structures", éditée par R.M. DAVIES en
1966,
VII - RESUME

La présente contribution donne la description de la méthode de calcul et des
programmes de calcul électronique utilisés, pour 1l'étude d'une structure spatiale en
forme de coupole & une nappe.
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Raumsysteme der Stahlkonstruktionen
Space Systems of the Steel Structures

Systemes spatiaux des constructions en acier

FERDINAND LEDERER
Prof. Ing. Dr. Sc.
Brno, CSSR

Jede Baukonstruktion ist ein raumliches System, das_ fahig
sein mu3 eine Belastung aller drei Richtungen im Raum zu ubertra-
gen, Oft aber, wenn es moglich ist, die Tragsysteme der Bauten
zerlegt man in ebene Teilsysteme, und man 16st diese fur die Bela-
stungsteile, welche in ihren Ebenen wirken.

_Ein Representant der Art von aus Ein-
zelkorper zusammengesetzten Raumsystemen
ist die mehrgelenkige Kuppel, hier mit mi-
nimaler Zahl, also mit drei Korpern, wel -
che in Abb.l veransachaulicht ist. Diese
Kuppel ist also viergelenkug, wobei das
Scheitelgelenk zweifach ist, da dieses
zweimal drei Freiheitsgrade im Raume be-
schrenkt. Dabei ist es notig auf die Aus-
nahmsfalle der Raumsysteme Acht zu geben.

Auf dem Gebiet der Raumfachwerksyste-
me, welche aus durch Pendelstabe innerlich
verbundenen Massenpunkten zusammengesetzt
sind, stellt die Schwedlerkuppel einen Abb.1l
klassischen Fall vor. Die Knotenpunkte liegen auf einer Rotations-
flache mit einer lotrechten Achse Z (Abb.2) und das System ist
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durch die in der Meridian- und Parallelenrichtung liegenden Sta-
be gekennzeichnet. Dieses System ist dann das Grundsystem fur
viele Konstruktionen von Masten und Turmen, Gasbehaltern und Kuh-
lungstirmen, usw. (Abb. 2a, b, c). Das dreiwandige System eines
Mastes nach Abb.3 weist die in gleicher Richtung laufenden Diago-

nelstabe auf.

Abb.3 Abb.4

Eine andere Kuppelart ist die Foppelkuppel (Abb.4). Im allge-
meinen genommen, sind diese Systeme Uber einem Paarpolygon Aus-
nahmsfélle und sind fir eine Konstruktion nicht geeignet; die Sy-
steme uber einem Unpaarpolygon sind starr und geeignet. D1e Fop-
pelkuppel gekennzeichnet sich dadurch, da3 die Knotenpunkte in
einem oberen Stockwerke gegen die in unterem Stockwerke um eine
halbe Knotenentfernung versetzt sind. Das Stabnetz ist dann aus
Dreiecken zusammengesetzt, wobei keines von diesen Dreiecken in
derselben Ebene liegt /1/. Noch andere Kuppelarten werden hier
nicht beschrieben werden.

Es ist zu bemerken, da3 die Stabilitat gegen den Durchsgchlag
eines Knotenpunktes ins Innere der Kuppel durch die Beschrankung
des Grundrinolygones hGchstens auf Zehneck (Neuneck) gegeben
ist. Sonst ist es mogllch diese Sicherheit gegen den Durchschlag
zum Beispiel nach der Literatur /2/ priifen.

Als wir vor 13 Jahren die Kuppel von der Art einer einschich-
tigen Gitterschale entwickelt haben (Abb, 5) heben wir diese mit
Hilfe eines Schalenkontinuums geldst. Spater haben wir festge -
stellt, da3 sich, was die Knotenpunktelage anbelangt, diese Kup-
pel an den Typ der Féppelkuppel knupft& was eine 1nteressante
Parallele bietet. Daher auch unsere spatere statischelosung /3/.
Dazu gehdrt eihe sehr wichtige Frage der Stabilitat gegen Beu =
lung der Gitterfldche. /4/, /5/.

Ein weiterer Typ von Raumfachwerksystemen ist von Kristall-
polyedern abgeleitet. Zu diesen kann man die wohlbekannte geoda-
tische Kuppeln von R.B. FULLER zahlen. Eine Ubersicht uber die
Formen und konstruktive Gestaltung gibt unter anderem die Lite -

ratur /6/.
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Eine andere Parallele kon-
nen wir im Vergleich des Foppel-
schen Tonnenflechtwerkes (Abb.6)
mit einer Tonnenschale sehen ,
besonders, wenn diese mit Bogen~
rigpen ausgesteift ist. Da man
bei dem Flechtwerk eine gelenki-
ge Knotenverbindung der Stabe
vorausgesetzt, konnen wir des-
sen Kraftespiel mit dem Mem -
branspannungszustande verglei-
chen. Bei dem Tonnenflechtwerk
konnen die Gleitlager an Fu3-

. . geraden beliebig schief sein;
die Losung der Innenspannkrafte ist auch in dem Fall méglich,wemn
die Gleitlagerebenen senkrecht liegen, und die dazugehoOrenden
Auflagerkrafte waagrecht sind. Wenn man diese entfernt, entsteht
das freie Tonnenflechtwerk, welches nur an Sirn- oder Giebelbo -
genwanden gelagert ist. Bel diesen ist der Membranzustand nicht
mehr moglich, und das System kann nur dann als eine Konstrukti-
on dienen, wenn die Meridian- oder Bogenstabe nicht gelenkig ,
sopdern durchlaufend biegstarr sind. Diese Bogenstabe kann man
als Aussteifungsrippen betrachten und nach Auslockerung vom gan-
zen System losen. Auf eine als im Raum freie Bogenrippe greifen
dann die Aujenlasten P, die Querkrafte Q als Diagonalenkraftekom-
ponenten und schlie3lich die waagrechten Auflagerkrafte den ent-

L

Abb .6 Abb.7
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fernten lotrechten (nun fiktiven) Auflagern an. Die Biegungsmo-
mente und Schubkré&fte sind dann auf solchen im Raum im Gleichge-
wicht ruhenden Zustand leicht zu bestimmen /7/.

Weitere, in dieser Zeit sehr haufig verfolgte Konstruktions-
systeme sind sogenannte Fachwerk- und Rostplatten. In Abb.8 ist
eine zweilaufige Fachwerkplatte, in Abb.9 ist eine zweilaufige
Rostplatte veranschaulicht.
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Abb.10

Die statische Losung in strenger Form
verfolgt das in die Verformungsform liber-
fuhrte Knotenpunktverfaren, welches fur
Digitalrechner programiert worden ist , o-
der sonst nach der Methode der Kontinuums-
‘analogie durch Benutzung der Theorie der B
dinnen Platte und durch Anwendung der Netz- E:¥
methode /8/. Es folgen nun die Beispiele '
der Applikationen und Realisationen dieser
Systeme. Als erste Realisation in der (SSR
wurde das Dach deg Winterstadions in Brno
aufgebaut. Die gro3te von diesen zweilau- Bk
figen Fachwerkplatten mit quadratischem Abb.13
Konstruktionsnetz, welche aus Stahlrohr -
profilen mit Hohlkugelknoten konstruiert worden sind, ist die U-
berdachung des Winterstadions in Qlomouc; die Grundri3ausma3le
sind 68.100 m, die Konstruktionshohe (Dicke) betragt 4 m (Abb.10),
/9/. Weitere Realisation stellt eine durchlaufende zweilaufige in
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8 diskreten Punkten gestutzte Fachwerkplatte vor (Abb.11). Quer
uber dén Stutzgunkten laufen die Verstarkungsstreifen, welche
blo3 aus verstarkten Gurt- und Dlagonalstaben bestehen, ohne daj
die Struktur des Systems irgendwie geandert wurde. Eine weitere
Oberdachungskonstruktion dieser Art ist Gber dem Schwimmstadion
in Brno (Architektonische Losung des Baukomplexes O.OPLATEK aus
Brno) erbaut, hier aber als eine Fachwerkplatte mit veranderli -
cher Konstrukt1onshohe und mit ungleichen Rohrprofilen, so daj
die Biegsteifigkeit des Ersatzkontinuums veranderlich ist. Ein
zwellauflges Rhombusnetz fur eine Fachwerkplatte uber einem Grund-
r13 von einem gle1chee1tlgen Dreieck, mit Einzelrandstutzen ist
in Abb.12 veranschaulicht. Ia Abb. 13 ist noch eine Fachwerkplat-
te mit quadratischem Diagonalnetz gegeben. Andere Konstruktionen
d1eser Art wurden auch aus W1nhﬂprof11en oder U-Profilen mit
raumlichen Knotenblechen konstruiert.

Es wurden auch dreilaufige Rostplatten mit einem von gleich-
seltlgen Dreiecken realisiert, welche ohne weitares auch als cine
Scheibe wirken konnen.

Die Fachwerk- und Rostplatten weisen verhaltnismalig gerin-
ges Stahlgewicht auf, jenach der Gro3e der Konstruktion und der
Belastung; bei Dachkonstruktionen betrégt der Stahlverbrauch 20

bis 60 kg/ 2 ,

Abb.14 Abb.15

Manche von diese, aus Winkel- und andere Profilen konstru -
ierten Systeme, konnanals Tragteil eines Raumsystems dienen. Als
Belsplel fur diese Ausnutzung fuhren wir die Tragstahlkonstruk-
tionen des Festivalskino in Karlovy Vary (Architektonische Losung
des Baukomplexes V. und. MACHONINS aus Praha) an, von welchen der
gro3e Ovalsaal 40,620 m lang und 34,280 m breit {st und auf die
Lange von 23,760 m ausgekragt ist. Die Konstruktionshohe betragt

16,651 m (Abb.14). Blick auf die Montage dieser Kongtruktion
glbt Abb.15.

Diese Aufzahlung von Raumkonstruktionen beschlieien wir mit
einer Rohrkonstruktion von konsolartiger Gestaltung, welche als
Uberdachung einer Tribune des Fu3ballstadions in Trinec dient .
(Architektonische Losung des Sportanlagekomplexes in Hradec
Krdlové). (Abb,16). Es ist eine gemischte Rohr- und Profilekon-
struktion, am Boden in Montageblocke 12.18 m vollgeschweist und
mit leichten Autokranen montiert. Blick auf die zusammenmontier-
te Konstruktion gibt Abb.1l7.

Zum Schlu3 ist zu bemerken, da3, auler weiteren solchen
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Raumsystemen, welche projektiert und realisiert worden sind und
sndere auch in der Weltliteratur beschrieben sind, gum Beispiel
wieder in /6/, von anderen Autoren in der (SSR, andere als aus
vorgefertigten, unifizierten Teilen konstruierte Fachwerk - und
Rostplatten entworfen und realisiert wurden. Wir haben nur die
Moglichkeit hier im Kurzen einige Prinzipien und Typen der Raum-
systeme anzufuhren.

18,0 m

1‘_.' 45 13,5

™~
-4

Abb.16
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ZUSAMMENFASSUNG

Es sind einige fur Stahlkonstruktionen geeignete Grundtypen
der konstruktiven Raumsysteme angefuhrt. Ferner wird auf einige
Parallelen mit neu entwickelten Konstruktionssystemen hingewiesen
und es wird eine Reihe von Realisationen der Raumkonstruktionen
ven verschiedener Form und Benutzung angefuhrt.
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Experimentelle und theoretische Untersuchung des Trag- und
Stabilititsverhaltens einschaliger raumlicher Gelenknetzwerke
im elastischen Bereich

Experimental and Theoretical Investigation of the Behaviour
of Capacity and Stability of Single Shell Articulated Networks
in the Elastic Range

Etude expérimentale et théorique du comportement en charge
et de la stabilité de treillis spaciaux articulés en régime élastique

W. MATTHEES P. WEGENER
Bundesanstalt fiir Materialprifung (BAM)
Berlin, BRD

1. EINLEITUNG

Flir die theoretische Untersuchung des Tragverhaltens einschaliger
rdumlicher Netzwerke wird vereinfachend angenommen, daf alle Stédbe
gelenkig miteinander verbunden sind, daB das Netzsystem kinematisch
stabil ist, (d.h. also alle Knoten unverschieblich gehalten sind,
solange die Stdbe als langsstarr vorausgesetzt werden) und daB Be-
lastungen nur als Einzellasten in den Knoten angreifen.

Zur Bestimmung der Stabkrdfte und Verformungen wird auBerdem
angenommen, daf die entstehenden Knotenwege klein im Vergleich zu
den Stabldngen sind (Theorie 1. Ordnung). Das statische Verhalten
hdngt dann ausschlieBflich von den Stabldngssteifigkeiten ab.

Fir die Stabilitdtsuntersuchung wird die Berechnung des ver-
formten Systems ndherungsweise ersetzt durch das iterative Ver-
fahren der fiktiven Krdfte (3].

Durch Vergleich der rechnerischen LOsung mit experimentellen
Untersuchungsergebnissen an Netzwerken, die die obengenannten
Voraussetzungen nicht ideal erfiillen, wird die Anwendbarkeit der
vereinfachenden Rechenannahmen auf solche Systeme kontrolliert.

2. AUFBAU UND GEOMETRIE DER UNTERSUCHTEN NETZWERKE

Die einschaligen Netzwerke bestehen aus dlinnwandigen Stahlrohren

(EF = 4-106 kp, EW = 4-106 kp.cm) , die in den Knotenpunkten durch

besondere Knotenstlicke zentrisch miteinander wverschraubt sind.
Beide Netzsysteme sind hochgradig statisch unbestimmt.

NETZSYSTEM I ist eine kinematisch stabile Kuppel, deren 73
Knoten auf der Oberflidche einer Halbkugel liegen [6]). Die 192
Stabelemente erzeugen ein ungleich-schenkliges Dreiecksnetz, des-
sen Maschen um jeden Knoten rdumliche Sechsecke bilden (Fig. 2).

Da weder bevorzugte Stabrichtungen moch wesentliche Steifigkeits-
unterschiede im Netz bestehen, kdnnte das statische Verhalten aus
dem Membranspannungszustand einer als Ersatzsystem gedachten Schale



474 Illb — EXPERIMENTELLE UND THEORETISCHE UNTERSUCHUNG DER GELENKNETZWERKE

abgeleitet werden [4]. Dies geschieht nachfolgend jedoch nicht.

NETZSYSTEM II bildet einen zeltfdrmigen Pyramidenstumpf aus
69 Knoten und 180 Stdben. Das Netz wird aus Dreiecken und Recht-
ecken erzeugt (Fig. 4 u. 5). Einige unbelastete "Nebenknoten" sind
senkrecht zur Netzoberfldche kinematisch instabil, was jedoch auf
die Stabilitdt des Haupttragsystems ohne EinfluB ist.

3. STATISCHE BERECHNUNG

Es ist Aufgabe der Elastizitdtstheorie,Verschiebungen und Spannun-
gen eines elastischen Systems infolge einer Belastung zu ermitteln
[2] . Zur Verfligung stehen die Gleichgewichtsbedingungen am verform-
ten System, das Elastizitdtsgesetz und der geometrische Zusammen-
hang zwischen den Verschiebungs- und Verzerrungsgrdfen. Wdhrend

das Elastizitdtsgesetz flir metallische Werkstoffe ausreichend ge-
nau linear (Hooke) ist, sind die Verzerrungs- und Verschiebungsbe-
ziehungen nicht linear. Deshalb braucht zwischen Belastung und
Verschiebung grundsédtzlich kein linearer Zusammenhang zu bestehen
[1)

Im Falle kleiner Verformungen linearisiert die klassische
Elastizitdtstheorie die nichtlinearen Beziehungen. Sie erfiillt die
Gleichgewichtsbedingungen am unverformten System (Theorie 1. Ord-
nung) . Zur Bestimmung der Stabkrédfte und Verformungen wird dieser
Weg auch hier unter Anwendung des Prinzips der virtuellen Verrik-
kungen und der damit verbundenen Energiebetrachtung nach der De-
formationsmethode flir infinitesimale Knotenwege als ausreichend ge-
nau beschritten.

Die Anwendung der Energiemethode fiir finitesimale Knotenwege
bei der Untersuchung der Stabilitdt zur Ermittlung einer exakten
L6sung st&B8t auf bislang ungeldste Schwierigkeiten, da bei der In-
tegration des inneren elastischen Potentials von Knotenwegen ab-
hdngige, verdnderliche Integrationsgrenzen entstehen. Die Stabili-
tdtszustdnde konnen nur durch Ndherungsverfahren, wie z.B. durch
das wiederholte Anwenden der Energiemethode filir infinitesimale
Zustdnde iterativ ermittelt werden.

Hier soll aufbauend auf der einmalig infinitesimalen ange-
wandten Energiemethode durch das iterative Verfahren der fiktiven
Krdfte [3] eine Ndherungsldsung ermittelt werden.

3.1. BERECHNUNG NACH DER THEORIE 1. ORDNUNG
Nach [5] lautet das elastische Potential der &duBeren Knotenlasten
3 T T
Ha--—v p= ~“p Vv (1)
. T ; i

wobei v~ der transponierte Verschiebungsvektor und p der Belastungs-
vektor fir alle Knoten ist. Das Elastizitdtsgesetz lautet

' s =Da (2)

wobei s der Stabkraftvektor und s der Stabldngendnderungsvektor
ist. Die quadratische Stabsteifigkeitsmatrix D enthdlt entspre-
chend der in A gewdhlten Anordnung alle Stabsteifigkeiten EF/1
(E = Elastizitdtsmodul, F = Fldche, 1 = Linge). Die Matrix B

ist entsprechend dem Ordnungsschema von & und v aus den Stabein-
heitsvektoren aufgebaut und stellt filir kleine Verformungen den
geometrischen Zusammenhang her

A =By (3)
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Das elastische Potential der inneren Kridfte lautet

_ 1.7
y =34 8
daraus folgt mit (2) und (3)
o LT L iTE
“i_iA DA~2vBOBv
m, = =vT Ky (4).
i 2

Die symmetrische Systemsteifigkeitsmatrix K = BTWJBléBt sich
durch Minimierung der Knotennummerndifferenzen benachbarter Knoten
als Bandmatrix darstellen. Nach dem Prinzip der virtuellen Verrik-
kungen ist ein System dann im Gleichgewicht, wenn die erste Varia-
tion des Gesamtpotentials ein Minimum wird:

§n = §(n_ + I,) = § (—va + lvTKv) = 0 (5)
a 1%m 2
Mit 61 = %% dy= O und %&— =], wobei | die Einheitsmatrix dar-
stellt folgt aus (5)
0=-Ip +2 -2 (WTKv) = - p +Kv
Vv
p=Kv
-1
v=K T p (6)
Aus (2) und (3) folgen die Stabkridfte
s=D Bv (7)

Aus den Gleichungen (6) und (7), die mittels Computer ausgewertet
werden, k&nnen die Knotenverschiebungen und Stabkrifte ermittelt
werden.

Im SYSTEM II sind einige Knoten kinematisch instabil, was fir
die numerische Behandlung zur Folge hat, daB die Determinante der
infinitesimalen hergeleiteten Formdnderungsmatrix zu O wird. Be-
trachtet man dagegen das verformte System, verschwindet diese Un-
stetigkeitsstelle mit wachsender Belastung.

3.2. VERFAHREN DER FIKTIVEN KRAFTE

Die Methcde der fiktiven Krdfte hat gegeniliber anderen Iterationsver-
fahren den Vorteil, eine Steifigkeitsmatrix nur einmal aufstellen

und aufldsen zu miissen. Zur ndherungsweisen Ermittlung der vollst&n-
digen Stabkrdfte (Theorie 2. Ordnung) werden dann in den anschliefen-
den Iterationszyklen, unter Beachtung der MaBgabe, daf nach wie vor
die Steifigkeitsmatrix des unverformten Systems benutzt wird, die-
jenigen Krdfte dem System als &duBere fiktive Belastung aufgeprigt,
die zur Erzeugung des Gleichgewichts aus den Stabkriften des Aus-
gangssystems am finitesimal ausgelenkten System notwendig sind.

In Fig. 1 wird das durch die fiktiven Krdfte entstehende, in
diesem Fall riickdrehende Kr&dftepaar fiir einen Zugstab dargestellt.
Die Iteration ist gegebenenfalls durch Relaxation zu beschleunigen.
Iterationsende wird erreicht bei
(%N - SN—l)max = ¢, wobei ¢ eine gewdhlte Fehlerschranke ist.

Vergleichswerte kdnnen n&herungsweise bei Untersuchung eines
Teilsystems als Durchschlagproblem nach (4] gefunden werden, ver-

gleiche Kurve a in Fig. 3 und Fig. 6.
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Fig. 1 Finitesimaler Verschiebungs-
zustand mit fiktivem Gleich-
gewichtszustand im I. Itera-
tionszyklus flir einen Zugstab
(8 > 0)

4. EXPERIMENTELLE UNTERSUCHUNG

In jedes Netzsystem waren 23 bzw. 34 "geeichte", mit je 4 Dehnungs-
meBstreifen versehene MeBstdbe eingebaut, so daBf an ausgezeichneten
Stellen die Stabdehnungen, Stabkrdfte und Stabendmomente sowie der
O6rtliche FlieBbeginn infolge der Belastung bestimmt werden konnten.
An jeweils 8 Knoten wurden die Knotenverschiebungen in 3 senkrecht
zueinander stehenden Richtungen mit Hilfe von Potentiometerwegge-
bern ermittelt. Die Belastung wurde durch hydraulische Zugpressen
erzeugt, und Uber Zuggehdnge senkrecht bzw. waagerecht zentrisch

in die Knoten eingeleitet. Die GroBe der Krdfte wurde durch Kraft-
meRdosen gemessen. Alle Mefwerte wurden mit einer VielstellenmeBan-
lage, die jede MeRstelle selbsttdatig anwdhlte, auf Lochstreifen re-
gistriert und auf einer elektronischen Rechenanlage ausgewertet.

5. ERGEBNISSE
5.1. STABKRAFTE UND VERFORMUNGEN

Die nach Gleichung (6) und (7) errechneten Stabkrdfte und Knoten-
verschiebungen sind flir einen "Einheitslastfall" am Netzsystem I
in Fig. 2 und am Netzsystem II in Fig. 4 und Fig. 5 eingetragen.
Die fiir denselben Lastfall im Versuch ermittelten MeBwerte sind
den Rechenwerten in den gleichen Figuren gegeniibergestellt. Wegen
der rechnerisch nicht erfafbaren geringen Nachgiebigkeiten in den
Knotenverschraubungen sind die gemessenen Knotenwege etwas gréBer
als die errechneten.

Die statisch interessierenden Lastfdlle werden aus den Ein-
heitslastfdllen superponiert. Im Versuch wurde mit Hilfe von Last-
gruppen die Zul&dssigkeit des Superpositionsverfahrens und damit die
zugrundeliegende Annahme des linearen Zusammenhanges zwischen Last
und Verformung kontrolliert. Eine Untersuchung des Zwdngungszustan-
des infolge der Montage der Kuppel I ergab, daBf die groBte Stabkraft
etwa bei 10% der rechnerisch zuld@ssigen Stabkraft und die groste
Randspannung bei etwa 40% der zuldssigen Spannung lag.

5.2. TRAGVERHALTEN UND STABILITAT

Zur Untersuchung des Tragverhaltens wurde Kuppel I in Punkt B durch
eine senkrechte Einzellast und Kuppel II in Punkt K durch eine waa-
gerechte Einzellast (Fig.5 ) bis zum Bruch beansprucht. Die gemes-
senen Bruchlasten sind in Fig. 3 und Fig. § eingetragen. In beiden
Fdllen trat der Bruch schlagartig durch Einzelstabknicken ein. Die
Bruchlasten der Netzstdbe lagen dabei etwas hdher als die in Vor-
versuchen an entsprechenden gelenkig gelagerten Einzelstdben ge-
messenen Knicklasten (Eulerfall 2).
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Fig. 4

Errechnete und gemessene Knoten-

wege

f > Knotenwege ‘
3 in mm ‘
/ P ‘infolge einer Einzellost \
I oL von2I00kp in Knoten A
NN
l N

7 O O P
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| J 4
nl;e einer Einzellast von 2100 kp in }:unkm

TN rZugkratt
3 Druckderafe

Fig. 2 Errechnete und gemessene
Knotenwege (oben)
und Stabkrdfte (unten)

NETZSYSTEM I

Kraft-Wegdiagramm des Zenitknotens B
in doppelt-logarithmischer Darstellung
ojols Durchschicgproblem nach (4]

bl rechnerisches System (Theorie 10rdnung)

¢c) Versuch
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Fig. 3 Ergebnisse der Stabili-
tdtsuntersuchung im Bereich des
Knotens B

Fig. 6
Ergebnisse der Stabilitdtsun-
tersuchung im Bereich des
Knotens K

NETZSYSTEM I
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Fig. 5 Errechnete und gemessene
Stabkrdfte infolge einer senk-
rechten Einzellast in Punkt C
bzw. infolge einer waagerechten
Einzellast in Punkt K (Schnitt)

NETZSYSTEM IT

Kraft-Wegdiagramm des Knotens K

in doppeit-logarithmischer Darstellung
aJals Durchschlagproblem nach [4)

blrechnerisches System (Theorie 1.Ordnung)
c)Versuch (zwei Versuche am gleichen Knolen)
d)rechnerisches System (Verfahren der [ikiiven Kraite)
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Der Vergleich der rechnerischen Stabilitdtsuntersuchung nach
der Methode der fiktiven Krdfte ist als Kurve d und die Durch-
schlaguntersuchung nach [4] als Kurve a in Fig. 3 und Fig. 6 ein-
gezeichnet. Es wird deutlich, daB bei den vorhandenen Steifigkei-
ten in jedem Fall Instabilitdt in Form von Einzelstabknicken und
nicht als System-Instabilitdt auftritt. Durchschlagen als System-
Instabilitdt wirde erst bei sehr viel kleineren Steifigkeiten ein-
treten.
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1. Introduction
The analysis and optimum design of two types of simply supported, double
layered space trusses, which are called Takenaka-truss in Japan, is reported
herein. The design of the space trusses is usually carried out through the pro-
cess shown in Figure 1. 1. The design procedure developed here corresponds to
the foundamental design stage, and this can be utilized to determine the optimum
grid layout and the truss depth for the final design stage. Consequently, the ac-
curate analysis and design procedure should

be followed. F}undamemal Design Stage

The apprOXimate analysis is applied Input: Geometrical cendition
here to treat the following optimum design Iru:t Type

. . . o e Oa

problem in a mathematically simplified UsedsMa,e,.ia,s
form. And the results obtained by this Unit Colsls
method are verified, being compared with Evaluation of Member Forces and
the accurate results by the stiffness mat- Disolacememsl
rix method. ) Determination of Optimum

The variables of the optimum design Design usinp -SlUMT
are not only section properties of mem- Dutpat. Erid Lagaus
bers of space trusses, but also the depth Truss Depth
of the trusses and the spacing. The ob- Memb‘?r Rropoities
jective function to be optimized is the cost Final Design Stage
of the space trusses. Wh'lch consists .of Input: Design paremeters (Truss
the costs of members, joints and purlines. Depth, Grid Layout) are set

. . s e - . _I
The applied design specification is the eeTiE ARl ois 5T Maber
steel structural standard of Japan (1970) Forces and Displacements
and the deflection limitations. The se- "_”;9::‘;" property madifications,
quential unconstrained minimization tech-
[Output: Final results. |

nique is applied to the optimization tech-
nique.

Figure 1.1 Design Process Flow Chart
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2. Configulation of the Space Trusses
The two types of double layer grid trusses in this study are, Square Pyra-
mid Truss (S.P. Truss) and Star Element Truss (S. E. Truss), which are quite
similar each other. S.P. Truss has been utilized often recently, however, S.E.
Truss has newly been developed. Both space trusses have diagonal top layer
grids and normal lower layer grids, but the relative locations of top and lower
chord are different, and the direction of latticed members are also different.
S.P. Truss is composed by arranging the inverted square pyramid ele-
ments as a chequered pattern and connecting the neighbouring pyramid apexes
with lower layer members (see Figure 2.1). On the other hand, S.E. Truss
is composed by star elements (see Figure 2. 2).

Square Pyramid Unit
Figure 2.1 S.P. Truss

Star Element Unit

Figure 2.2 S.E. Truss

3. Evaluation of Displacements and Member Forces

The rigorous solutions for the axial forces of members and deflections of
joints of space trusses under the imposed loading conditions may be obtained by
deflection method using an electronic digital computer. In this optimization
study, however, much simpler analysing methods are necessarily needed which
lead to good approximate solutions and require short time and small core size
in computation. One of the most successful ways which seems to satisfy these
requirements is to find the equivalent solid plate that has nearly the same force
and stiffness distributions.

The S.P. Truss has very small twisting rigidity around x and y axies
(Figure 3. 1), that is,

Mxy=0 . (3.1)
From the wellknown equilibrium equation of solid plate and Equation (3. 1) the
following equation can be obtained.

40 25

where w shows the vertical displacement, P the load per unit area and D the
rigidity per unit width of the plate. Solving the Equation (3. 2) under the simple
support boundary condition by using

Fourier series, the displacement is

6 |
OO T, L e () e o (3.9)

me{35-N=425- F
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On the contrary to the S. P. Truss, the S. E. Truss has small twisting
rigidity around x' and y' axies,

[
Maxy =0 . (3.4)
Equation (3. 4) is rewritten as 35 5 <
__aigL,_ — (3.5) i l
2Xx*24 4D -
The rigidity of plate D is expressed as Y \ b |
=__D_EAE_AL_ Eh* (3.6) Figure 3.?
b 0 V2 AutAlL ? Co-ordinate Systems

where n is a number of blocks along the y direction. Au and Al are average
sectional areas of upper and lower chords members respectively. Member
forces are given in Table 3. 1. The comparisons between rigorous solutions
and plate solutions are shown in Figure 3.2 and 3. 3.

In order to minimize the total cost of the space trusses exactly, each
member and

joint costs Table 3.1 Member Forces
are individual-

ly to be taken - i - P
. SIS ion: Vi bt S, P, Trus S, E. Truss
into account, Member |Sectional Virect un; 1russ |
however, this r— 1 Yeaher Hember Member iMemher
is not practi- 1 forge .. llength [  force ___ [length |
Ix! ' i
cal actually Upper Aue x' Mx' = My' = M| 1a :%_'%L;:— | 1a
- | 42 n tl2an
to treat whole | chord \ . 4 a 1 a My ;
members and | member ue ¥ E nn Znh
. i A
JCk))ll.l'ltS afst;arl Lower Ale x = 'il“i a Mx =My = M a
ables O e ) = S
¢hord n n
objective func-| member Alc y :_,!'::_
. ' »_—’_- —-»-—-v' - = Pl e
Elan. Th | Latticed| Awep | x —i—ijJd- At | i = ,/ !
e- ‘ e
: er ¢ member | v 2 qy o2 "lh TS i
e ! i Tt
ore ]S;om 4 ' o n 4nth o |
members an ! ;
s : — a DU
joints are to be.| x| 1 ;Qx’._|/ ool [T o
i Awe : ] b h+ .
chosen to re- | v | 2 gy, [T cn
A
present the } - | whl
structure. L Number of joints 3'-“%11‘ + (%1» 1)n .')'%nz + (—2 +1)n+ 1
Two members —

for each up-
per, lower and latticed chord members, and one joint are selected in this study.

< . x

X

Lower Chord Upper Chord o Rigorous Solutions
Plate Solutions
Figure 3.2 Figure 3.3

Comparison of Bending Moments Comparison of Shearing Forces

3g. 31 Vorbericht
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4. Optimum Design of Space Frames

4.1 Mathematical Model
Design variables are the sectional areas of members, Aue, Auc, Ale,

Alc, Awep, Awem, Awc, the number of blocks, n, and the truss depth, h, which
are described in the previous section.
The objective function f of the structure to be minimized is the total cost of steel

skeltons. -
‘f“‘?:;.. CmpPAm +£|_\Cmpprt + Ci'N , (4. 1)

where Cm, Cmp, Cj are the unit cost of members, purlins and joints; m, n, N
are the number of members, purlines and joints, respectively.

Tubular sections and wide flange sections are used for the members of
trusses, and purlines respectively. Empirical relationships between section
properties are obtained by plotting section properties commercially provided.
(i) For steel tubes '

19
I=—(o0625A)% , (4.2)
(ii) For wide flange sections
F
A=o0581% |, (4.3)
2
Z = 058 1%,

The diameter of the spherical joint is assumed three times of the diameter
of the largest members and the thickness is assumed twice of that of the largest
members.

Therefore, the objective function f of the structure for S. P. Truss,

§=p[{22nag Aue +2vTnad Auc + (2na3--2a) Age

‘|’2na$‘_ Alc+na«H’—i'x'E-Ei%'(AweF+AweN)
Y A 2 = 4
v2na| 1+35E. B Ayclom + 0587 (4 )T(Tﬁz‘;’,f-; JEN® Cmp
27
+(3M*+2n)-Cs Age'® - C ] ’ (4.5)

where lp is the spacing of purlines (em), Cg is the coefficients obtained by the
relationship between member properties of tubular sections.

(4.4)

4.2 Sequential Unconstrained Minimization Technique

The optimum problem, mentioned in the previous section, may be obtain-
ed by several mathematical techniques. Here, the sequential unconstrained
minimization technique developed by Davidon is adapted. The objective func-
tion to be minimized is converted to the following equation F,

l
F:f."—RR;‘I"U} y) (4. 86)

therefore, the optimum design problem with constraints is changed to the un-
constrained optimum design problem. The macro flow chart is shown in Fig.
4. lo

4,3 Parametric Study
Using the developed programming, a parametric study was carried out.
The observed results tell the interesting behaviors of the optimum designs.
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(i) Parameter: Span [frrot a8 7 o o cp Rl oo

Constants given: l
[Assunptjon of Initial Design A, h, n]

P = 200 K:/"‘lla &alculation of Behavior ¢, §

F= 24 t/cm ' i
E= 2.1x10% Ki/cm® )\

CJ- 308,000 ch ({.aaa dﬂl/‘f‘) LIs Design in 10 | Modification

Peasible Hegion? of A, h, n
Cm= {23,000 4Yen ( 4Loo dollers)
lp- 180 em b

[Calculatlon of Cost function "]

At the optimum design, all stresses of
members are fully constrained, however, Compersency? ; <
the deflection limitation p = a/300 does q\(

not dominate at all. The cost per unit Galeulstion of Derivatives
area increases almost linearly with the > s B
span length of the whole structure. Span ’
per depth is scattered between almost lMl"i?f';ff,.'}:f’?éffm" Yeeror
8 - 12, which is coincident to the usual- ¥
ly adapted value in the actual design. Determination of Optimum Moaification Length A
Moveover, the optimum number of blocks X=XtA-$X
seems to be obtained so that the angle .
of the diagonal member is almost 45° g
(actually 409459 vas
(ii) Parameter: Loading

Constant given: Figure 4.1

Span length 72 meters, F, E,
Cj, Cm, lp are same as 4. 1,
The cost per unit area increases almost linearly with loading amount.
The optimum designs of the S, E, Truss were almost same as those of the
S.P. Truss when Cj = 0, that is, the weight is minimized, the results show al-
most same tendency. Moreover, almost the same results were obtained for
the change to the purline spacing, too.

Macro Flow Chart of S.U.M.T.

| J |
© ‘ . ‘ QT —
g g /
3 |
g 2 |
= o
3 4 z | |
« / SPAN LENGTH 72 METERS
| @
P ! Yo, NSNS NN S
% / l e | | ;‘
S 3 | !
| ‘ S
+ L r .
0 100 150 20 am &0
SPAN (M) —————— LOAD  (KG/W')
m = SPAN / DEPTH n - Number of Blocks
1 ; 1]
. A\ R
g | : | ‘ & | P . 200 KG/M
| ‘ ! ! Cle1cD  $/1
‘ ' Cm+ 400 §/t
=0 ") % - ) 10 150
— SPAN (M) SPAN (M)

Figure 4.2 Results of Parametric Study
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5. Conclusions
Through this study, the following conclusions have been atained.

(1) Comparisons with the results obtained by the stiffness matrix method con-
firm the theoretical analysis presented.

(2) The sequential unconstrained minimization technique works very effectively
in the optimum design of the double layered space trusses, and shows good
convergence. Computer time for one case is approximately two minutes
using IBM 360/65.

(3) Through a parametric study, structural characteristics of the Takenaka-
truss have been obtained. The cost per unit area is almost proportional to
the span.

The optimum ratio of the truss depth to the span is approximately 8 - 12.
At the optimum design, the angle of the latticed members are approximate-
ly 45°. The results for S.P. Trusses and S. E. Trusses are almost same.
The optimum design with truss depth limitation, and the rectangular plan
can be readily developed in the future.
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Summary

The analysis and optimum design of simply supported, double layered
space trusses is presented here. The approximate analysis using a transforma-
tion method to a continuous equivalent plate is good enough for design use.
The optimum design by a sequential unconstrained minimization technique
insures good convergence. Through a parametric study of approximately twenty
cases, the structural characteristics of the Takenaka-truss have been studied.
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Einfluss der Qualitét der Bauelemente auf die Sicherheit von Raumfachwerken

Ir. F.P. TOLMAN Ir. F.C. DE WITTE
Institute TNO for Buidling Materials and Building Structures
Rijswijk (Z.H.), Netherlands

INTRODUCTION

In this paper an answer is sought to the question "How does the
admissable load of a double-layer grid change, when it contains a
certain percentage of 'inferior'
members"? In this context, lpad . load
‘inferior' means that for the 1 TooTT
load-deflection relation of the f'P1
member concerned the wvalid
situation is that of figure 1b,
and not that of figure 1a.

It is assumed that such inferior (a) f.P (b)
members retain their stiffness, s 'S s ssEs

do not break and are distributed
over the entire constructiion in
a random manner.

In the research project, two apporaches were used: (a) a Monte Carlo
simulation programme based on the displacement method; (b) a theoretical
approach based on probability calculus.

deflection deflectim

figure 1

MONTE CARLO SIMULATION

Whereas for the double-layer grid not only the probability of
collapse had to be determined but the probability distribution of
collapse loads had also to be found, in order to compare it subsequently
with the probability distribution obtained theoretically, it was decided
to perform an analogous simulation. The variable was the location of
inferior members (random), and our assumptions related to their number
and degree of inferiority (= factor f in figure 1b). It was furthermore
assumed that in respect of all the members f be equal.

To enable this analogous simulation to te performed, we designed a
computer programre, based on the displacement method, which programme
calculates the collapse load of a three-dimensional pin-jointed truss
by an incremental method.
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To make this programme useful for practice, i.e. to keep the calculation
time for each collapse load low, we derived a modification algorithm
which, with regard to a yielding or a buckling member, permitted the
pertinent absence of stiffness to be accounted for in the load vector as
an imaginary extra load (figure 2), and not in the stiffness matrix.
This extra load, Ak, may be calculated from:

-
l:AS_1 - s"1}L . Ak = v veese (1)
-m¥m
where:
AS = change in stiffness matrix
because of yielding or
buckling of a memter
(stiffness of the member)
S = terms of original stiffness
matrix belonging with
collapsed member —
v = previous displacement vector
m = number of collapsed members. figure 2
1

From eq (1), we could easily find Ak, because [8S ' - 5"1] represents a
symmetric matrix (Maxwell). We only had to add one extra column to the
matrix for each subsequent member collapsed.

For inversion of the new matrix, the inverse of the preceding one was
used (tordering method [1]). Based on this algorithm [2], a very rapid
computer programme was evolved. A double-layer grid with 682 elements
and 211 Knots (about 600 equations with a half-bandwidth of 39) called
for about one minute of calculation time on a CDC 6600 computer for
each collapse load calculated (about 50 collapsed members), this is
hardly more than a normal elastic calculation.

With the aid of this programme, we made calculations for some types of
double-layer grids of various sizes, with various percentages of
inferior members and different factors of weakening. The results have
inter alia bteen used to verify whether a statistical approach of the
problem was valid.

THEORETICAL DERIVATION

It was found possible to approach the probtlem theoretically, when
the structure has one or more clearly discernible mechanisms of collapse
in the very state of collapse. In the double-layer grid of figure 3, we
distinguish two shear mechanisms and one yield mechanism. We assume that
the members do not break and that their connections are stronger than
the members themselves.

We now schematize the structure in its state of collapse as is shown in
figure 4. The elements in a collapse mechanism we call "critical"
elements. For each collapse mechanism, the probability g, that k
critical, inferior members (or that k inferior, critical elements) are
concerned is found from:

/K\ ‘N ~ K\\
g(k) = \k/ (S. N7 ceen (2)

N
s/
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where N is the number of elements, S the number of inferior, K that of
K!

k)! * k!

With each value c¢f k helongs a ccllapse load, so that the pertinent
probability distribution, i.e. the hypergeometric distribution, is at
the same time the protability distribution of the collapse load of the
mechanism considered.

K‘
S -
critical elements, and (k) 1€ =

When the number of critical members is small, over againsi the number
of inferior ones, eq. may be approximated through a binominal

distribution; with P = % we then find:

g) = (3) @F @ -p° kK ceee (3)

When (N - X) > 50 and P < 0.2, the binomial distribution changes to a
Poisson distribution:

g(k)=gs%—ffe_<sﬁ_x> emmwms B4

And when P > 0.1 and P(1 - P) K > 8, the binomial distribution changes
to the normal distribution:

b= §§K and o = Vf(l - P)K veres (5)

When, over against the number of critical members, that of the inferioxr

ones is small, we find the same equations except that S and K change
places.

0f these latter two distributions (4) and (5), the summated probabilities
g(1) + g(2) + ..... + g(k) may be read from a table.

The procedure for calculating the sought probatility of collapse may be
itemised, with reference to figure 3, as follows:

1. For each individual mechanism of collapse, determine the collapse
load; this load will then be in equilibrium with the total load
bearing capacity of the critical members.

— e = o e e —-—— = —— -

N ”<7\ z"\ N NN L LAl LA LS L L L Ll
(ZONY __'l—}ﬁéﬁ W o-- I
/1N \/“}é NZANZANANY
g /\/ -/\\/ / be b e e T s T R IO TS
\ :_{.2\,4_ /| E\[_._é% T
./\) £ NS eI
\KB AINANZININEIN . I
72 NN P N N N NN T s e e e s
AN IN SIS ] s a0
AN - BENEENEEE]
N4 N AR S O 0 1 N O A ) e
NN \/' Z _—— - -IT
INVZININLZ TN TN N
N\ i--/ \ <'17L(\\/ ,h.{m
N NS N NN S| - T q!
z_—-—:-“——‘é___-_./_\‘_/_.,'/____“__. load

figure 3 figure 4
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2. For each individual collapse mechanism, the lower bound of the
probability distritution of the collapse load; all the inferior
members are in the mechanism concerned (LB(1) and LB(2) in fig. 5).
Primarily we had assumed the factor of weakening, f, to be equal for
all the members. If for each collapse mechanism, in other words: for
each type of member, this factor is the same then only the lower
bound of the distribution is subjecti to change.

3, From the resuits found in 2, calculate the number of members that
should be inferior, at least, in order to enable the finding of a
contribution towards a probability of collapse, i.e. the number of

intervals between B and B (B =-load) when the distance
collapse use

between B and the lower bound is apportioned into as many

collapse
intervals as there are members in the mechanism.

4. Calculate the probability of collapse for each individual mechanism.
Figure 5 presents an elucidation. Beside the load-deflection diagram
for the structure, it shows the probability distribution of the
collapse load of the two mechanisms sketched. For each mechanism,
the protability distribution equals the shaded area of the curve
indicating the part of probability distribution that lies below the
permissible load. The protabilities that either mechanism I ox
mechanism I' (cf figure 4) occurs are summated to P(1).

We now know the

probabilities of load - BEei(s)]
occurrence for the i N '
individual mechanisms. Badi(ﬁj——'--;;h‘*#"“
We will next find the
collapse probability,
of the entire B j‘ I
structure, if we may TEse /T T AT T T TLB(A WP, L P(2)
assume that the - (1)LE(25
mechanisms do not
affect one another, 11
i.e. are stochastically I
independent, with the -
aid of: defl.
figure 5

P(co].lapse) = P(1) + P(Q) i P(1) . P(2) TR (6)

where:

P(1) = the collapse probability of mechanism 1;
P(2 the collapse probability of mechanism 2;
iy P
(1) (2

ihe probability that mechanisms 1 and 2 occur
simultaneously.,
When the number of inferior members is about equal to the number of
members in each mechanism, the protability of simultaneous occurrence
of several mechanisms is nil. Accordingly, P(1).P(2) will be larger or
smaller in dependence upon N, K and S.

n

It should be noted ithat eq. (6) applies ito uncorrelated mechanisms
only. However, different forms of correlation are possible. In fact,
members may telong to several mechanisms of collapse at ithe same time;
deformations arising from the collapse of members in one mechanism may
affect another mechanism; memters from adjaceni mecharisms may
influence each other, and so on. Of ihese forms of correlation we
shall here discuss the last-mentioned one only.
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figure 6

When (cf figure 6) a member from mechanism I has collapsed, the adjacent
member from mechanism I' is relieved and this remains whole.

For this structure, figure 7 then applies. The probability of collapse
may be determined for the "complex" mechanism, c¢f I and I' in figure 7.
For the example in figure 6, the collapse load of the non-weakened
mechagism is 323 kgf/mg. The permissible load is assumed to be 175
kgf/m‘. The number of members N = 448, K = 16 and; when we take f = 0.5
and S5 = 200, we find:

1. for the numbter of strings of members that must be inferior:

- x8+ fe . 323 = 178; so that x = 83

2. for the protability that there are 8,9 ...i...16 inferior members in
the mechanism:

BIGE
. i S -~ i
g(i) = )
S,
3. for the probatility that 8 inferior strings of members occur for i
inferior memters:
( 8 ) (16 - i)
h(i) - e 8/.?

16
i
As a result, we find for the collapse probability of mechanism: I - I':
16 . ) _
Pleollapse) ~ R g(i) . n(i) = 0.052

For a shear mechanism we thus find that at least eleven elements must
be inferior: g(11) + g(12) + ... + g(16) = 0.042
Assuming that the two shear mechanisms are independent, we find for the
probability of collapse:

P(collapse) = 0.042 + 0.042 - 0.042 . 0.042 = 0.082

Analogously, the combination of mechanisms 1 - I' and II - II' yields:

P(collapse) = 0 130
Using the Monte Carlo simulation programme, we found a collapse
probability of 0.139, which - considering that only the major mechanismns
had been concerned in the calculation - indicates that we found an
acceptable answer.
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=K = 16 For this trial structure, we finally
400 calculated the collapse probabilities,
» as a function of the number of
inferior members (cf figure 8), with
regard to several factors of weakening.

\

300
d To yield a reasonably high probability
of collapse, either the number of
inferior members must be large or the
factor of weakness very low; this is
clear from the curve.
L] Whereas:
100 1. At a constant percentage of
/// inferior and critical members, the
,// probability of collapse considerably
Pkoﬂﬁ@ﬁ}reduces when the structure grows in
0.2 0.4 0.6 0.8 1.0 size;
figure 8 2. In practice, this type of grids is
usually supported on four sides, so
that the number of critical members goes up and, consequently, the
probability of collapse diminishes, we suggest that the following
conclusion is appropriate.

\

200 ]

ANEAN

ANAVA
AL\
\

CONCLUSION

Members with, for example, welding defects affect the safety of the
investigated multiple staticaly indeterminate double-layer grids very
slightly.
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SUMMARY

Using an analogous Monte Carlo simulation programme that is based on
the displacement method it is shown that a statistic prediction can be
made about the probkability that double-layer grids in which "inferiox"
members occur, for example due to welding defects, may collapse. For a
trial structure is next calculated the protability of collapse with regard
to several factors of weakening as a function of the number of inferior
members used. It is found that, to yield a reasonably high probability of
collapse, either the number of inferior members should be very large or
the members very bad indeed.
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