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1. ALLGEMEINES
Zu den windschiefen Regelflächen gehören u.a. Rotationshyperboloide

und hyperbolische Paraboloide. Beide können aus zwei Scharen

sich kreuzender Geraden gebildet (Bild l) und daher durch
gerade Stäbe zu Tragwerken realisiert werden.

K

Ob)ex)

Bild 1

Für die praktische Ausführung ist es zweckmäßig, die Stäbe
der beiden Scharen ohne Unterbrechung durchzuführen, wodurch sie
in zwei verschiedenen benachbarten Flächen zu liegen kommen. An
den Kreuzungsstellen werden die Stäbe durch aufgeklemmte Schellen
miteinander verbunden. In diese Knoten werden in der Regel alle
Bauwerkslasten eingeleitet. Die Stäbe beider Scharen enden meist
in Randgliedern, die beim Rotationshyperboloid z.B. durch einen
oberen Dachring und einen unteren Basisring, beim hyperbolischen
Paraboloid durch gerade oder auch durch gekrümmte Randträger
gebildet werden können. Diese Randglieder können beliebig gelagert
sein.

Hinsichtlich der Lastabtragung sind diese Tragsysteme keine
Schalen, sondern vielmehr hochgradig statisch unbestimmte räumliche

Rahmentragwerke, deren biege- und torsionssteife Stäbe in
den Knoten schubfest und gewöhnlich auch verdrehfest verbunden
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sind. Bei beliebiger Belastung erhalten die Knoten räumliche
Verformungen, und zwar im allgemeinen Verschiebungen in drei
Achsrichtungen und Verdrehungen um diese Achsen. Über das Tragverhalten
solcher Systeme soll im folgenden berichtet werden.

ROTATIONSHYPERBOLOID
2.1. Überlegungen zur Tragwirkung

Bei rotationssymmetrischer Belastung tritt in
jedem Knoten eine Last auf, die für das
zugehörige Trägerkreuz (Bild 2) ebenfalls nur
symmetrisch wirken kann. Bei Zerlegung dieser
Last in eine Komponente in der Trägerkreuzebene
und eine normal dazu erfolgt die Abtragung der
ersten Lastkomponente vorwiegend durch Normalkräfte

in den gekreuzten Stäben, die Aufnahme
der zweiten Lastkomponente dagegen vorwiegend
über Biegung des Trägerkreuzes.

Sind die Stäbe torsionssteif und auch in
den Knoten verdrehfest verbunden, so wird die
Lastabtragung nicht nur auf Biegung und
Normalkräfte, sondern auch auf Torsion erfolgen.

Die verschiedenen Tragwirkungen lassen sich an den
vereinfachten Systemen nach Bild 3 veranschaulichen:

1
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Bild 3

Während man das gelenkige System (Bild 3a) widerstandslos
nach innen stülpen kann, leistet das System mit in den Knoten voll
verbundenen Stäben (Bild 3b) Widerstand gegen eine solche
Verformung, und zwar durch «Sie mobilisierte Biege- und Torsions-
steifigkeit der Stäbe. Dasselbe gilt auch fflr das Gesamtsystem
nach Bild la. Die biege- und drehsteife Verbindung der Stäbe führt
daher zu einer Reduktion der Biegemomente auf Kosten von Torsionsmomenten.

Die günstigste Kraftaufnahme kann jedoch durch ein System
nach Bild 3c erfolgen, bei dem für rotationssymmetrische Belastung
die Abtragung der Kräfte nur durch Normalkräfte erfolgt. Auf das
Gesamtsystem nach Bild la übertragen, wären zur Erzielung dieser
Lastabtragungsart horizontale Stäbe zur Verbindung aller
Kreuzungspunkte einzuführen. Es ergibt sich hiermit ein räumliches
Fachwerk ("Stabschale"), das auch bei gelenkiger Verbindung aller
Stäbe in den Knoten tragfähig ist. Dasselbe gilt für lotrechte
Verbindungsstäbe zwischen allen Kreuzungspunkten.

Ordnet man neben dem Basisring und dem oberen Abschlußring
nur einzelne horizontale Zwischenringe an, so ergeben auch diese
bereits eine wirksame Stützung der sich kreuzenden Stäbe zwischen
dem oberen und dem unteren Randring. Die fiktive, auf Biegung
abtragende Stützweite der Träger wird hierdurch wesentlich reduziert.
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Durch zweckmäßige Anordnung nur weniger Zwischenringe besteht
daher die Möglichkeit, die einzelnen für die Ausführung maßgebenden
Schnittkräfte entsprechend zu regulieren.

Bei dem an der Basis gestützten Rotationshyperboloid werden
durch die lotrechten Lasten in den Stäben Druckkräfte erzeugt, die
wegen der auftretenden Biegeverformungen der Stäbe zusätzliche
Biegemomente zur Folge haben. Es ist daher wichtig, bei solchen
Systemen diesen Einfluß der Theorie II. Ordnung für die Bemessung
zu berücksichtigen.

2.2. Anwendungsbeispiel
2.2.1 Angaben und Annahmen

Für einen Ausstellungspavillon war das Stabsystem eines an
der Basis gestützten Rotationshyperboloides aus Aluminiumrohren
0 80/8 und mit den geometrischen Abmessungen nach Bild 4 zu
berechnen. -10-21 rm.

Bild Dachring

-0wischenrxnge 4-2
0v0 1

<>

<2l f
Gestützter Basisring

3"/*,l30^>.r Die hier besprochene Schnittkraft- und Formänderungsermittlung
für die rotationssymmetrische Belastung "Eigengewicht + Schnee"

erfolgte für folgende Randbedingungen:
Basisring mit vorgegebenem Querschnitt und in der Meridiantangente

verschieblich;
Dachring mit vorgegebenem Querschnitt und rotationssymmetrisch

verschieblich;
Stäbe im Basisring und im Dachring frei drehbar gelagert.

2.2.2 Durchführung der Berechnung
Die Programmierung des Problems erfolgte in Zusammenarbeit

mit dem Rechenzentrum Graz durch Dipl.-Ing. Glänzer. Die Berechnung
wurde auf einer Rechenanlage der Type UNIVAC k<)k durchgeführt.

Grundlage des Berechnungsverfahrens war die Deformationsmethode.
Ermittelt wurden alle Schnittkräfte und Verformungen sowohl nach
Theorie I. als auch II. Ordnung, insbesondere auch die Schermomente
in den Schellen zur Ermittlung der erforderlichen Klemmkräfte für
die Verbindung der Stäbe.

Die Untersuchung für die Theorie II. Ordnung wurde mit einem
Laststeigerungsfaktor von 1,5 durchgeführt.
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2.2.3* Hauptergebnisse

ohne mit zwei mit d rei
Zwischenringe Zwischenringen Zwischenringen

Theorie I I II I II
Z 20,27 23,43 24,66 23,44 24,67
D - -8,71 -11,04 -8,82 -11,18
MB 1, 20 0,19 0,34 0,19 0,34
N -2,49 -1,16 -1,24 -1,16 -1,24
MT 0,055 0,009 0,0i6 0,008 0,015
Ms - - 0,280 - 0,036
V 0,835 0,088 0,148 0,087 0, 147

Vr 0,493 0,025 0,061 0,025 0,060

Dimensionen der Angaben : Mp,
Z
D

ÜB'
N
M
m'

Zugkraft im Basisring,
Normalkraft im unteren Zwischenring,
größtes Biegemoment in den Stäben,
zugehörige Normalkraft,
zugehöriges Torsionsmoment,
Schermoment in der Verbindungsschelle,
(wurde nur für Theorie II. Ordnung ermittelt)
größte lotrechte Knotenverschiebung,
zugehörige Radialverschiebung (nach innen).

Für das Stabwerk ohne Zwischenringe wurden die Werte für die
Theorie II. Ordnung zwar ermittelt, jedoch liefern sie keine
brauchbare Aussage, da die Normalkräfte schon über der Knicklast
des Stabes liegen. Bereits die Ergebnisse der Theorie I. Ordnung
zeigen mit den zu großen Biegemomenten und Verformungen die Un-
brauchbarkeit dieser Lösung.

Mit der Anordnung von zwei Zwischenringen ergeben sich Schnittkräfte,

die mit der gewählten Rohrabmessung bereits aufnehmbar sind.
Jedoch war im oberen Bereich das im Knoten auftretende Schermoment
für die gewählten Schellen zu groß.

Der dritte Zwischenring ändert die maßgebenden Schnittkräfte
und Verformungen, die im Bereich zwischen dem Basisring und dem
ersten Zwischenring liegen,zwar nicht mehr, jedoch wird hiermit
auch im oberen Bereich das Schermoment für die Ausführung in brauchbaren

Grenzen gehalten.
Der Einfluß der Theorie II. Ordnung ist, wie die Gegenüberstellung

zeigt, beachtenswert.

2.2.4 Stabilität der Zwischenringe
Die Zwischenringe werden für den Lastfall "Eigengewicht

+ Schnee" auf Druck beansprucht, weshalb eine gesonderte
Stabilitätsberechnung des in den Stäben radial elastisch gebetteten Ringes
durchzuführen war.

2.2.5 Näherungsberechnung
Auf Grund der in Abschnitt 2.1. geführten Überlegungen zur

Tragwirkung ist eine Näherungsberechnung möglich, und zwar für die
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Normalkräfte auf Grund einer Gleichgewichtsbetrachtung mit der
oberhalb der betrachteten Stelle vorhandenen Gesamtlast und der
gegebenen Flächenneigung, für das maßgebende Biegemoment des Stabes

auf Grund der Betrachtung eines Durchlaufträgers über den
Rand-» und Zwischenringen. Dabei sind allerdings nur bei Anordnung
von Zwischenringen brauchbare Werte zu erwarten, während diese
Betrachtung für die Ausführung ohne Zwischenringe (frei aufliegende
Träger zwischen den Randringen) zu große Werte liefert. Der Einfluß

der Theorie II. Ordnung läßt sich mit den zuerst errechneten
Normalkräften abschätzen. Für die Torsions- und Schermomente sind
keine Anhaltspunkte für eine Näherung gegeben.

Die auf diese Weise für das System mit drei Zwischenringen
und für den Lastfall "Eigengewicht + Schnee" durchgeführte
Näherungsberechnung ergab folgende Werte:

Zug im Basisring: 25,7 Mp,
Druck im 1. Zwischenring: 12,5 Mp,
Größtes Biegemoment der Stäbe: 0,19 Mpm(l) und 0,40 Mpm(ll),
Zugehörige Druckkraft: 1,90 Mp.

Es kann daher gesagt werden, daß eine so durchgeführte
Näherungsberechnung für die Vorbemessung brauchbare Werte liefert.

3. HYPERBOLISCHES PARABOLOID
3.1. Überlegungen zur Tragwirkung

Beim ebenen Rost mit biege- und torsionssteifer Knotenausbildung

erfolgt die Abtragung von Lasten über Biegung und Torsion.
Beim räumlichen, zur Hyparfläche verwundenen Rost erfolgt

diese über räumliche Biegung, Torsion und Normalkraftbeanspruchung
der Stäbe. Die Reduktion einer Schnittbelastung auf Kosten einer
anderen ist hier durch die Biege-, Torsions- und Dehnsteifigkeit
gegeben. Das Reduktionsmaß, z.B. der Biegemomente auf Kosten der
Torsionsmomente und Normalkräfte, richtet sich, sieht man von der
Art der Lagerung an den Rändern und der Schellenausbildung ab, nach
dem Verhältnis der Biege- zur Torsionssteifigkeit der Stäbe und
nach dem Verwindungsgrad des Hyparrostes. Die Schere im Stabknoten
kann entsprechend der konstruktiven Durchbildung der Schelle frei
drehbar oder fest sein; dennoch überträgt sie Biege- und Torsionsmomente

sowie Normalkräfte. Über diesen Einfluß wird gesondert
berichtet.

Auch hier ist, wie beim Rotationshyperboloid, wegen der
auftretenden Druckkräfte in den Stäben der Einfluß der Theorie II.
Ordnung bei der Schnittkraftermittlung zu berücksichtigen.

Bei den in der Praxis vorkommenden Verwindungsmaßen sind die
Biegeanteile und damit die Verformungen der Stäbe groß. Es ist
daher naheliegend, die Stäbe durch Spannseile in Richtung der
Hauptkrümmungen zusätzlich zu stützen.

3-2. Konstruktionsvorschlag mit Stäben und Seilen
Ein Hyparrost aus geraden Stäben in Richtung der Erzeugenden

und mit Seilen in Richtung der Hauptkrümmungen nach Bild 5 läßt
sich, im Gegensatz zu einer möglichen Ausführung mit gespannten
Seilen in Richtung der Erzeugenden, vorspannen, ohne daß das Randglied

auf Biegung beansprucht wird, da die Spannkräfte als Druck
direkt in die Stäbe eingeleitet werden. Durch die Verbindung der
Stäbe mit den sich in den Knoten kreuzenden Seilen sind die
gedrückten Stäbe in den Knoten gestützt und gegen Ausknicken gehalten.
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Bild 5

Bei diesem mit Spannseilen gestützten
Hyparrost werden die Knotenlasten vorwiegend
durch das gespannte Seilwerk abgetragen und
auch in die Randglieder als Normalkräfte ein-

v| geleitet. Dabei ist der Einfluß der Theorie
II. Ordnung wegen der kleineren Verformungen
wesentlich geringer. Bei der konstruktiven
Durchbildung eines solchen Tragwerkes brauchen

bei symmetrischer Ausführung und für
symmetrische Belastung die Seile in den Knoten

nicht geklemmt zu werden; jedoch bietet
auch die bei Unsymmetrie notwendige Klemmung
keine konstruktiven Schwierigkeiten.

ZUSAMMENFASSUNG
Rotationshyperboloide und hyperbolische Paraboloide können

aus geraden Stäben realisiert werden. Die Ausbildung der Knoten und
die Anordnung zusätzlicher Stützelemente (Zwischenringe, Spannseile)
beeinflussen die Verteilung der Schnittkräfte. Für ein konkretes
Anwendungsbeispiel eines Hyperboloides werden die Schnittkräfte und
Verformungen elektronisch berechnet. Die Ergebnisse zeigen die
Notwendigkeit der Theorie II. Ordnung auf. Eine Näherungsberechnung
ergibt brauchbare Werte für eine Vordimensionierung.
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I - INTRODUCTION ET DESCRIPTION DE LA STKPCTIJRE

Les structures spatiales en forme de coupole sont de plus en plus souvent utili-
sees dians l'architecture moderne, car elles permettent de couvrir le mmrimum de volume
avec le mini mim de surface, tout en assurant une bonne repartition des efforts dans
l'espace (faibles moments flechiseants) et un <agr<iable aspect esthetique. Ce type de
structure a 6t6 adopte pour le projet de la patinoire a RENNES (Fr«9nce) et doit §tre,
par la suite, fabrique" en serie pour d'scutres destlnations (piscines, salles des
sports, salle de spectacles, etc..

Les «itudes realis^s par l'au-
teur avec la collaboration de l'Alu-
miiiiuin Fran9ais, ont ete menees dans
trois directions :
- Recherche du Systeme de la couver-

ture (optaque et translucide),
- Recherche des noeuds d'assemblages,
- Mise au point des programmes de

calculs älectroniques permettant de
raccourcir le d«£Ltsi de l'etude et
de diminuer son prii.

La coupole spherique, d'un ra«yon
de 51 »87 metres, couvre un haxagone
de 33,223 metres de cöte" d'une port«j|e
mairitiiale de 66,225 metres. Elle est
constitu«£e d'une nappe trxdirection-
nelle k treillis TaUbulaire en .aluini-

nium, renforctSe axx. extränlt6a j>ex des poutres de retombee ä trois membrures formant,
en m«?me temps, le cheheau (voir photo de la maquette fig. 1).

Les tubes seront assembles sur le chantier par soudures, a l'aide d'Clements
Bph^riquee qui permettront le räglage de la longueur des barres (voir fig. 2).

Les calculs de la coupole ont et<3 men«is de la facon suivante :

- Determination des efforts dans la nappe ä treillis par la thöorie de membrane et
prödimensionnement des sections.

- Etüde de la g£om£trie de la structure k l'aide du Programme GEO.

- Determination des composantes (Px, iy, Pz) des efforts de la neige et du vent ä
l'tiide du Programme FOCOU.

j*SÄ**¦*«m&e a^ivX"?«??Ä;/SHC SS*?J£<m. ^a«*WJ&£ ^*Sfi WS* **&. SSS*¥£?£.WJS Wm¥&8251&^ *ä«sWM *».?££&&££££. '«*$ SS«£*» *>&&& w&££&Si '§».5&M. &4S,¦sv. 7AWA& *« 33ti5m & &

Fxg. 1. Photo de la maquette
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- Calcul des deformations, des reactions sur appuis, des
efforts, des contraintes compte tenu du flambement, combinai-
sons des cas de charges, recherches des valeurs extremes
des efforts et des contraintes, calcul du poids de la
structure a l'aide du Programme STROP.

- Etüde de la stabilite des parois.
Les programmes de calcul electronique mis au point par

le C.E.R.E.T. (B.E.T. de l'auteur) permettent d'arriver ä une
veritable automatisation des etudes. EL est, en effet, possible

k un Ingenieur d'etablir la note de calcul compiete dans
la journee : predimensionnement, redactions des bordereaux,
Perforation des cartes, verification des resultats & 6 heures
- calcul sur CD 6600, 120 secondes -
II

T\ —

Fig.2.Noeud d'assem-
blage - Brevet A.F.

DESCRIPTION DES PROGRAMMES GEO ET FOC0Ü

Le Programme GEO permet, en partant du rayon de courbure,

de la portee et du nombre de modules, de numeroter
automatiquement les noeuds de la structure, calculer leurs coordonnees x, y, z,
(pour la moitie de la structure), calculer les longueurs des barres, perforer les
cartes des noeuds et des barres utilisables directement par le Programme STROP.

Le Programme F0C0U calcule les composantes des forces Px, Py, Pz appliquees aux
noeuds sous 1'effet de la neige, du vent (portance et traf nee) et perfore les cartes
correspondantes»

Jan vertu du reglement francais NV 65, les efforts du vent peuvent Stre decompo—
ses en : une force de renversement T (repartie «üssymetriquement sur les parois), une
force de soulevement U (repartie uniformiament sur les parois), une pression ou depres-
sion interieure (voir fig. 3).

En calculant les composantes T et U

d*apres les regles NV 65» nous pou-
vons en döduire les pressions uni-
taires :
Trainee : wT sn y cos IT

TRiUNEE
T

i/'
Vi

R21T
I

Pig.3. Pressions unitaires du vent sur
la calotte spherique.

3
Portance
V2

[2-cos^ (sn2^ +2)]

WF" ^Tfi
et les composantes Px, Py, Pz.

Les efforts dans les barres dus ä la pression et k la depression interieures,
peuvent Itre determines directement en majorant les efforts calcuies sous 1'effet de
la portance par le coefficient dependant du rapport V3/V0 ou 7<i/V2 *

III - DESCRIPTION DU PROGRAMME DU CALCUL DES STRUCTURES STROP.
Le Programme STROP est compose de 3 sous-programmes : treillis, portiques, gril-

lages. Cette division a ete effectude afin de diminuer le temps et le prix du calcul
ainsi que de simplifier la redaction des bordereaux des donnees pour les structures
ne necessitant pas le calcul par le Programme spatial. Resultats fournis par le
Programme : deformations, efforts, contraintes compte tenu du flambement, combinaisons
des differents cas de charges, extrema des efforts et des contr«aintes, optimisation
des barres, dessins de la structure en axonometrie, diagramme des efforts. Un langage
special d*introduction des donnees a ete mis au point afin de faciliter et de diminuer

le temps de la redaction des bordereaux (voir fig«, 4).
Le progr«amme est base sur la methode des deformations.
En fonction du sous-programme utilise, differentes formules (pour le calcul des

eiements de la matiice de rigidite et pour le calcul des efforts dans les barres) ont
ete utilisees.

La matrice de rigidite, qui est une matrice bände symetrique,a ete decomposee en
produit de deux matrices trianguläres : superieure S et inferieure L, done faciles k
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inverser.
K A L S A

Les eiements u-y des matrices L et S sont calcules a p«artir des eiements aij de
la matrice de rigidite K (dont on stocke la partie triangulaire superieure) en les
mettant dans les cases de la matrice Kx (les eiements aij ainsi effaces ne servent
pas pour le calcul des eiements uij suivants). Les eiements aij et uij sont Stockes
en memoire de faeon compacte (sous foiroe d'une table) et adresses par un indice uni-
que. Un vecteur MK, conserve en permanence en memoire centrale et contenant des nom-
bres entiers, permet de calculer l'adresse effective en memoire centrale d'un element
aij quelconque appartenant a la bände.

i
ilillT PartlquaiB CriUiffiB

r~
X

I

I

3 C
Ctrt-»J> X

1 c
H-

CatrtJa CltuV Z

Appula

[ncnm I

c>»ru«' fiajhl« •— »ttadtiOt O«rt0B

I

L_

| WOTIT ~
j

11$ loi (bou* pro«. 6m ita«»in)

CairtOl, DCMUd«

c hau «uff,

] C Btmi ]

^r
C«rUi <Upl.
d'«pfUl»

m
Pai» prOf
(taaaUUa)

I

I

I

IM-

Cc»binaii Bona

Ca«rt«a

r^ _Mam_

Dans le cas oü la matrice K trop
encombrante ne tient pas entiere-
ment en memoire centrale, on peut
alors utiliser des memoires peri-
pheriques pour le transit des
eiements de IC (ou u) en memoire
centrale.

Le nombre C des places de memoire
centrale disponible pour y stocker
des tranches de la matrice K doit
toutefois satisfaire a

C>oC+ 2 d2

i - j etant la largeur de
bände.

lig.1

d max
la matrice

2dlig

lig.d
lig. d + 1

lig. d + h
lxg. d + h + 1

s \ZI representent respec-
zones de memoires de

oü ZS, ZC,
tivement 3

travail : _

Superieure (d memoires)
Centrale (dl. memoires h lignes)
Inferieure (d^ memoires)

Pig.4. Resume du langage d'introduction
des donnees du Programme STROP.

Phases de calcul
1. Calcul et ecriture sur fichier des tr«anches ZS, ZC et ZI de la matrice K

Premat

SUBAT
ecriture .0—| TAPE 32

matrice K

stockage de la matrice K

par tranches lorsque celle-
ci ne tient pas en memoire
centrale.

2. Ecriture sur fichier et mise ä zero des lignes et des colonnes correspondant ä des
appuis
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INVMAT
lecture

F2

PUI

TAPE 32

»| TAPE 31 1

matrice K*II stockage des lignes et des
Tju?E l2 I colonnes de la matrice K

correspondant ä des appuis.
3. Calcul par tranches dans la m«imoire centrale des eiements Uij des matrices trian-

gulaires L et S, et ecriture par tranches sur fichier.
INVMAT -W2)-* 1 TAPE 31 |

-MF1

matrice K*

-*>| 1APE 32

uii »ii -S±fn-i Urr M*
matrices L et S (u^j)

"«"Ü3I [^^i./rr^ri^rjj
4. Resolution p«ar tranches du systiane LI P

1

7± Pi - YZ
r i - 1

uri ^r en commenjant p<ar

5. Resolution par tranches du systkae S A I
n

r i~r+ 1Ai=~ [V Ujj. Uri Ar en commen5«ant par
7nAn
Unn

En connfiissant pour chaque cas de charges les deplacements des noeuds, nous pou-
vons en deduire les forces dans les barres ä l'aide des equations intrinseques d'une
barre i-j et par la suite les contraintes.

Differentes formules du coefficient de flambement sont utilisees en fonction du
reglement du calcul et du materiau utilise.

Pour le calcul de la coupole en aluminium, nous avons utilise les formules du
D.T.U., pour : „ 4 r

K (0,5 + 0,5 ±1 + -1/(0,5 + 0,5 -|± )2 - 0,8 ll(5k V 5k ffk
ou 6 e - limite eiastique CS k - contrainte critique d'Euler

Pour les structures met<alliques, le progr«amme calcule le coefficient K par les
formules de la Convention Europeenne de CM en fonction du type de profil (courbes de
flambement n° 1, 2 et 3).

En fin de calcul, on obtient un tableau de resultats indiquant pour chaque barre
ij les efforts mini et maxi, les profus choisis, des sections brutes et nettes, le
rayon de giration, la longueur de la barre, le coefficient de la longueur de flambement,

le coefficient de securite, le coefficient de flambement, la contrainte extr&ne
et le poids de la barre (voir fig. 5).

• I J rfFOnTS ii\ ¦UMES > L • CODE • N «HO K • CCNlftMKTES •

50» bb 2*61.2 11 15825.7 U 6.67 13«.. 97 7.33 TU876E2 .90 2.59 1.07 «.«.7 2373 2*.00 *
• i,q- bi * -«.325.9 9 3010.7 12 * 3.9". l7<t. 11 5.63 * -1 • IUÜWEJ • .90 1.39 1.39 • -2079 7tk 2-.00 •
• *>a- 52 • -5398.3 11 2733.1 lc • <*. 1*. 17«..11 5.91 • 0 • TUJ1.9E2 • .90 1.61 1.58 • -2056 661 21.00 *
• 51- bl • -1090.<t 1? 2261. 1 12 • 1.78 U2.99 2. 09 • -6 * TUB26E2 • .70 .87 1.9* ¦ -1189 1272 2-.00 •
• 50- bl • -2285.». 10 -1112.i 12 • 2.38 1<*2.99 2.79 • -5 • TU926E3 • .70 .85 2.03 • -1$*.9 -91.9 2«.0O •
• 51- bb • 2Q..0.9 11 t.196. 3 12 • 1.78 11.2.99 2.09 • -6 • TUB26E2 • .70 .87 1.91* • u-va 2360 2*t00 •
• 50- 5« * -«i369.2 ; 773.9 12 • 3.07 11.2.99 3.59 • -3 • TU833E3 • .70 1. 08 l.*9 • -2119 25*» 2«.00 •
• 53- 55 • -1891.1 n 27<t<t.O 12 • 1.78 110.Od 1.60 " -b • TUB26E2 • .70 .87 l.*»2 • -1512 1S*.3 2-.00 •
• 52- Sk • -1737.47 9 3399.5 12 • 1.78 110.00 1.60 • -6 • (U026F.2 * .70 .87 1.42 • -1389 1912 2-.00 *
• 53- br • -1500.8 r 709.2 12 • 1.78 93.01 1.36 • -O • TU826E2 • .70 .87 1.25 • -1057 399 21.00 •
• 52- bb • 757.2 8 1505.1 12 " 1.78 93.01 1.3b • -6 * TUB26E2 • .70 .97 1.25 • 1.26 8»i7 2%00 •

Pig.5. Exemple de resultats de calcul d'optimisation.
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Pig. 6. jSfforts «ians les barres de la structure sous 1'effet de la chaarge perma¬
nente (a) et du vent normal portance.(b).

«*£

Pig. 7. Efforts dans les barres de la structure sous 1'effet du vent normal
trainee.

lg. 30 Vorbericht
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IV - RESULTATS DE CALCUL

Cinq differents cas de chiarges ont ete etudies :
1. Charge permanente (fig. 6 a)
2. neige
3. vent normal portance (fig. 6b)
4. vent normaal trainöe (fig. 7
5. temperature

Les combinaisons des cas n° 3 et n° 4 ont peimis de trouver les efforts sous
1'effet du vent total normal / ¦,, \(port«ance + triainee + depression;

(portance + trainee + surpression)
le vent total extreme etant egal ä 1,75 fois le vent normal.

La verification de la resistance des barres a ete effectuee en considerant les
combinaisons les plus defavorables des charges et surcharges majorees (suivant le re-
glement de calcul des constructions en aluminium DTü)

1,7 Neige normale + 1,5 (ch<arge permanente ± temperature)
1,7 Vent normal, depression + 1,5 (charge permanente £ temperature)
1,7 Vent normal, surpression + 1,5 (charge permanente ± temperature)
1,1 (Neige extr&ne + Charge permanente -t temperature)
1,1 (Vent extr&ae depression + chaarge peimaanente + temperature)
1,1 (Vent extrilme surpression + Charge permanente i temperature)

,5 .Neige extreme + vent extr&ne + chaarge permanente - temperature)
,5 .Neige normale + vent normal depression ± temperature).

Apres la recherche de la ccmbinaison la plus defavorable determinee p<ar le
Programme, nous avons obtenu le tableau de resultats präsente de la meme facon que celui
de la figure 5.

L'examen des contraintes extremes d«ans les barres et l'etude de la stabilite
eiastique des parois ont peimis de choisir deux sortes de tubes : <f> 200, epaisseur
5 mm et $ 200, epaisseur 4 mm repartis en fonction de la distribution des contr«aintes.
V - ETÜDE DE LA STABILITE ELASTIftUE

La stabilite eiastique des parois a ete etudiee d'apres les formules de K.P.
BUCHERT (l) exposees «dans sa contribution.

1,1 (o,;
1,6 (0,1

Clx«arge critique -
Per 0,366 E —

L R.
Epaisseur equivalente de membrure t^

tB
tm

3/2

2 A
¦fcm — A, L, I representent respectivement

a/Tl la section, la longueur et l'inertie
des barres.

Epaisseur equiv<alente de flexion
I 1 1/3

tB »yßi]
L'etude des coupoles de ce type a permis de tirer les conclusions suivantes :

- Pour lesrayons de spheres inferieurs k environ 55 m, les dimensions des b«arres d«e-

pendent essentiellement des efforts extremes.
- Pour les rayons superieurs ia 55 m, les barres sont «ümensionnees en fonction de la

stabilite eiastique.
VI - BIBLIOGRAPHIE

K.P. BUCHERT - Bucskling considerations in the design and construction of doubly
curved space structures - Publication "Space Structures", editee p<ar R.M. DAVIES en
1966.

VII - RESUME

La presente contribution donne la description de la methode de calcul et des
programmes de calcul eiectronique utilises, pour l'etude d'une structure spatiale en
forme de coupole k une nappe0
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Raumsysteme der Stahlkonstruktionen

Space Systems of the Steel Structures

Systemes spatiaux des constructions en acier

FERDINAND LEDERER
Prof. Ing. Dr. Sc.

Brno, CSSR

Jede Baukonstruktion ist ein räumliches System, das^ fähig
sein mu3 eine Belastung aller drei Richtungen im Raum zu übertragen.

Oft aber, wenn es möglich ist, die Tragsysteme der Bauten
zerlegt man in ebene Teilsysteme, und man löst diese für die
Belastungsteile, welche in ihren Ebenen wirken.

JSin Representant der Art von aus Ein-
zelkorper zusammengesetzten Raumsystemen
ist die mehrgelenkige Kuppel, hier mit
minimaler Zahl, also mit drei Korpern, wel -
che in Abb.l veranschaulicht ist. Diese
Kuppel ist also viergelenkug, wobei das
Scheitelgelenk zweifach ist, da dieses
zweimal drei Freiheitsgrade im Räume be-
schrenkt. Dabei ist es notig auf die
Ausnahmsfälle der Raumsysteme Acht zu geben.

Auf dem Gebiet der Raumfachwerksysteme,
welche aus durch Pendelstäbe innerlich

verbundenen Hassenpunkten zusammengesetzt
sind, stellt die Schwedlerkuppel einen Abb.l
klassischen Fall vor. Die Knotenpunkte liegen auf einer Rotationsflache

mit einer lotrechten Achse Z (Abb.2) und das System ist

C X

xT/

—

sU-Yj, «7,-71 ju QJ29 V**A

„ V

EEE3E iE3

*J
CJ

Abb. 2
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durch die in der Meridian- und Parallelenrichtung liegenden^Stä-
be gekennzeichnet. Dieses System ist dann das Grundsystem für
viele Konstruktionen von Masten und Türmen, Gasbehältern und
Kühlungstürmen, usw. (Abb. 2a, b, c). Das dreiwandige System eines
Mastes nach Abb.3 weist die in gleicher Richtung laufenden
Diagonalstäbe auf.

T\

T TT T

k

\

Abb.3 Abb.4
Eine andere Kuppelart ist die Foppelkuppel (Abb.4). In»

allgemeinen genommen, sind diese Systeme über einem Paarpolygon
Ausnahmsfälle und sind für eine Konstruktion nicht geeignet; die^Sy-
steme über einem Unpaarpolygon sind starr und geeignet. Die
Foppelkuppel gekennzeichnet sich dadurch, da3 die Knotenpunkte in
einem oberen Stockwerke gegen die in unterem Stockwerke um eine
halbe Knotenentfernung versetzt sind. Das Stabnetz ist dann aus
Dreiecken zusammengesetzt, wobei keines von diesen Dreiecken in
derselben Ebene liegt /l/. Noch andere Kuppelarten werden hier
nicht beschrieben werden.

Es ist zu bemerken, da3 die Stabilität gegen den Durchschlag
eines Knotenpunktes ins Innere der Kuppel durch die Beschränkung
des Grundri3polygone8 höchstens auf Zehneck (Neuneck) gegeben
ist. Sonst ist es möglich diese Sicherheit gegen den Durchschlag
zum Beispiel nach der Literatur /2/ prüfen.

Als wir vor 13 Jahren die Kuppel von der Art einer einschichtigen
Gitterschale entwickelt haben (Abb^5),haben wir diese mit

Hilfe eines Schalenkontinuums gelost. Später haben wir festge -
stellt, da3 sich, was die Knotenpunktelage anbelangt, diese Kuppel

an den Typ der F6ppellcuppel knüpft^, was eine interessante
Parallele bietet. Daher auch unsere spatere statische Lösung /3/.
Dazu gehört eine sehr wichtige Frage der Stabilität gegen Beu -
lung der Gitterfläche. /4/, /5/o

Ein weiterer Typ von Raumfachwerksystemen ist von
Kristallpolyedern abgeleitet. Zu diesen kann man die wohlbekannte geodätische

Kuppeln von R.B. FÜLLER zählen. Eine Obersicht über die
Formen und konstruktive Gestaltung gibt unter anderem die Lite -
ratur /6/.
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Abb.5
Eine andere Parallele können

wir im Vergleich des Föppel-
schen Tonnenflechtwerkes (Abb.6)
mit einer Tonnenschale sehen
besonders, wenn diese mit Bogen-
rippen ausgesteift ist. Da man
bei dem Flechtwerk eine gelenkige

Knotenverbindung der Stäbe
vorausgesetzt, können wir dessen

Kraftespiel mit dem Mem -
branspannungszustande vergleichen.

Bei dem Tonnenflechtwerk
können die Gleitlager an Fu3-
geraden beliebig schief sein;

die Lösung der Innenspannkräfte ist auch in dem Fall möglich,wenn
die Gleitlagerebenen senkrecht liegen, und die dazugehörenden
Auflagerkräfte waagrecht sind. Wenn man diese entfernt, entsteht
das freie Tonnenflechtwerk, welches nur an Sirn- oder Giebelbo -
genwänden gelagert ist. Bei diesen ist der Membranzustand nicht
mehr möglich, und das System kann nur dann als eine Konstruktion

dienen, wenn die Meridian- oder Bogenstäbe nicht gelenkig
sondern durchlaufend biegstarr sind. Diese Bogenstäbe kann man
als Aussteifungsrippen betrachten und nach Auslockerung vom ganzen

System lösen. Auf eine als im Raum freie Bogenrippe greifen
dann die Au3enlasten P, die Querkräfte Q als Diagonalenkräftekom-
ponenten und schlie3lTch die waagrechten Auflagerkräfte den ent-

'W l ' 1 \ ' i f \ \ f i: f<; 't> y s,s /\\ / / //
i > i } \ * « / r T \

^U ' i ' \ i \ ' •[jH ' i • ' '

< "s y ^y

\ / /l lju.ljlju. §§
SSe li iiii!\i\i\i ;nn i

*e

X

Abb.6 Abb. 7
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fernten lotrechten (nun fiktiven) Auflagern an. Die Biegungsmomente
und Schubkräfte sind dann auf solchen im Raum im Gleichgewicht
ruhenden Zustand leicht zu bestimmen /!/.

Weitere, in dieser Zeit sehr häufig verfolgte Konstruktions-
systeme sind sogenannte Fachwerk- und Rostplatten. In Abb.8 ist
eine zweiläufige Fachwerkplatte, in Abb.9 ist eine zweiläufige
Rostplatte veranschaulicht.

Abb.8 Abb. 9

H + ¦** 9,It T-,f*
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Abb.11

Abb.12

1 I I T l/T i
I l\f I I im; i

1^—i—t^—i—i—ie-i^—Hh—r^—i^—I—i^—i—ifa.

Si TiT i <l i T i i iläiAbb.10
Die statische Lösung in strenger Form

v-erfolgt das in die Verformungsform
überführte Knotenpunktverfaren, welches für
Digitalrechner programiert worden ist o-
der sonst nach derjfiethode der Kontinuums-
"analogie durch Benützung der Theorie der
dünnen Platte und durch Anwendung der Netas-
methode /8/. Es folgen nun die Beispiele
der Applikationen und Realisationen dieser
Systeme. Als erste Realisation in der ÖSSR

wurde das Dach des Winterstadions in Brno
aufgebaut. Die grö3te von diesen zweiläufigen

Fachwerkplatten mit quadratischem
Konstruktionsnetz, welche aus Stahlrohr -
Profilen mit Hohlkugelknoten konstruiert worden sind, ist die
berdachung des Winterstadions in glomouc; die Grundn3ausma3e
sind 68.100 m, die Konstruktionshohe (Dicke) beträgt 4 m_(Abb.
/9/. Weitere Realisation stellt eine durchlaufende zweiläufige

Abb.13
0-

10),
in
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8 diskreten Punkten gestützte Fachwerkglatte vor (Abb.11). Quer
über den Stützpunkten laufen die Verstarkungsstreifen, welche
blo3 aus verstärkten Gurt- und Diagonalstäben bestehen, ohne da3
die Struktur des Systems irgendwie geändert wurde. Eine weitere
uberdachungskonstruktion dieser Art ist über dem Schwimmstadion
in Brno (Architektonische Lösung des Baukomplexes O.OPLATEK aus
Brno) erbaut, hier aber als eine Fachwerkplatte mit veränderli -
eher Konstruktionshöhe und mit ungleichen Rohrprofilen, so da3
die Biegsteifigkeit des Ersatzkontinuums veränderlich ist. Ein
zweiläufiges Rhombusnetz für eine Fachwerkplatte über einem Grund-
ri3 von einem gleichseitigen Dreieck, mit Einzelrandstutzen ist
in Abb.12 veranschaulicht. In Abb.13 ißt noch eine Fachwerkplatte

mit quadratischem Diagonalnetz gegeben. Andere Konstruktionen
dieser Art wurden auch aus WinlftLprofilen oder U-Profilen mit
räumlichen Knotenblechen konstruiert.

Es wurden auch dreiläufige Rostplatten mit einem von
gleichseitigen Dreiecken realisiert, welche ohne weiteres auch als sine
Scheibe wirken können.

Die Fachwerk- und Rostplatten weisen verhältnismä3ig geringes
Stahlgewicht auf, jenach der Gro3e der Konstruktion und der

Belastung; bei Dachkonstruktionen beträgt der Stahlverbrauch 20
bis 60 kg/ffl2

\Htim XX\\_\/X
^"

s...
7-i

^4

i izX^

:¦-

Abb.14 Abb.15
Manche von diese, aus Winkel- und andere Profilen konstru -

ierten Systeme, können als Tragteil eines Raumsystems dienen. Als
Beispiel für diese Ausnützung führen wir die Tragstahlkonstruktionen

des Festivalskino in Karlovy Vary (Architektonische Lösung
des Baukomplexes V. und. MACHONINS aus Praha) an, von welchen der
gro3e Ovalsaal 40,620 m lang und 34,290 m breit ist und auf die
Länge von 23,760 m ausgekr^t ist. Die Konstruktionshöhe beträgt
16,651 m (Abb.14). Blick auf die Montage dieser Konstruktion

gibt Abb. 15.
Diese Aufzählung von Raumkonstruktionen beschliOen wir mit

einer Rohrkonstruktion^von konaolartiger Gestaltung, welche als
Überdachung einer Tribüne des Fu3ballstadions in TMnec dient
(Architektonische Lösung des Sportanlagekomplexes KPU in Hradec
Kr<41ovö). (Abb.16). Es ist eine gemischte Rohr- und Profilekonstruktion,

am Boden in Montageblocke 12.18 m vollgeschweist und
mit leichten Autokranen montiert. Blick auf die zusammenmontierte

Konstruktion gibt Abb.17.
Zum Schlu3 ist zu bemerken, da3, au3er weiteren solchen
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Raumsystemen, welche projektiert und realisiert worden sind und
andere auch in der Weltliteratur beschrieben sind, zum Beispiel
wieder in /6/, von anderen Autoren in der ÖSSR, andere als aus
vorgefertigten, unifizierten Teilen konstruierte Fachwerk - und
Rostplatten entworfen und realisiert wurden. Wir haben nur die
Möglichkeit hier im Kurzen einige Prinzipien und Typen der Raum-
systeme anzuführen.

18,0 m
S,0r *,s 13,5

»as
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Abb.16 Abb.17
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ZUSAIMMENFASSUNG

Es sind einige für Stahlkonstruktionen geeignete Grundtypen
der konstruktiven Raumsysteme angeführt. Ferner wird auf einige
Parallelen mit neu entwickelten Konstruktionssystemen hingewiesen
und es wird eine Reihe von Realisationen der Raumkonstruktionen
ven verschiedener Form und Benützung angeführt.
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Experimentelle und theoretische Untersuchung des Trag- und
Stabilitätsverhaltens einschaliger räumlicher Gelenknetzwerke
im elastischen Bereich

Experimental and Theoretical Investigation of the Behaviour
of Capacity and Stability of Single Shell Articulated Networks
in the Elastic Range

Etüde experimentale et theorique du comportement en Charge
et de la stabilite de treillis spaciaux articules en regime eiastique

W. MATTHEES P. WEGENER
Bundesanstalt für Materialprüfung (BAM)

Berlin, BRD

1. EINLEITUNG

Für die theoretische Untersuchung des Tragverhaltens einschaliger
räumlicher Netzwerke wird vereinfachend angenommen, daß alle Stäbe
gelenkig miteinander verbunden sind, da/3 das Netzsystem kinematisch
stabil ist, (d.h. also alle Knoten unverschieblich gehalten sind,
solange die Stäbe als längsstarr vorausgesetzt werden) und daß
Belastungen nur als Einzellasten in den Knoten angreifen.

Zur Bestimmung der Stabkräfte und Verformungen wird außerdem
angenommen, daß die entstehenden Knotenwege klein im Vergleich zu
den Stablängen sind (.Theorie 1. Ordnung). Das statische Verhalten
hängt dann ausschließlich von den Stablängssteifigkeiten ab.

Für die Stabilitätsuntersuchung wird die Berechnung des
verformten Systems näherungsweise ersetzt durch das iterative
Verfahren der fiktiven Kräfte [3].

Durch Vergleich der rechnerischen Lösung mit experimentellen
Untersuchungsergebnissen an Netzwerken, die die obengenannten
Voraussetzungen nicht ideal erfüllen, wird die Anwendbarkeit der
vereinfachenden Rechenannahmen auf solche Systeme kontrolliert.
2. AUFBAU UND GEOMETRIE DER UNTERSUCHTEN NETZWERKE

Die einschaligen Netzwerke bestehen aus dünnwandigen Stahlrohren
(EF 4«10 kp, EW 4-10 kp.cm), die in den Knotenpunkten durch
besondere Knotenstücke zentrisch miteinander verschraubt sind.
Beide Netzsysteme sind hochgradig statisch unbestimmt.

NETZSYSTEM I ist eine kinematisch stabile Kuppel, deren 73
Knoten auf der Oberfläche einer Halbkugel liegen [6]. Die 192
Stabelemente erzeugen ein ungleich-schenkliges Dreiecksnetz, dessen

Maschen um jeden Knoten räumliche Sechsecke bilden (Fig. 2).
Da weder bevorzugte Stabrichtungen noch wesentliche Steifigkeits-
unterschiede im Netz bestehen, könnte das statische Verhalten aus
dem Membranspannungszustand einer als Ersatzsystem gedachten Schale



474 lllb - EXPERIMENTELLE UND THEORETISCHE UNTERSUCHUNG DER GELENKNETZWERKE

abgeleitet werden [4]. Dies geschieht nachfolgend jedoch nicht.
NETZSYSTEM II bildet einen zeltförmigen Pyramidenstumpf aus

69 Knoten und 180 Stäben. Das Netz wird aus Dreiecken und Rechtecken

erzeugt (Fig. 4 u. 5). Einige unbelastete "Nebenknoten" sind
senkrecht zur Netzoberfläche kinematisch instabil, was jedoch auf
die Stabilität des Haupttragsystems ohne Einfluß ist.
3. STATISCHE BERECHNUNG

Es ist Aufgabe der Elastizitätstheorie,Verschiebungen und Spannungen
eines elastischen Systems infolge einer Belastung zu ermitteln

[2]. Zur Verfügung stehen die Gleichgewichtsbedingungen am verformten
System, das Elastizitätsgesetz und der geometrische Zusammenhang

zwischen den Verschiebungs- und Verzerrungsgrößen. Während
das Elastizitätsgesetz für metallische Werkstoffe ausreichend
genau linear (Hooke) ist, sind die Verzerrungs- und Verschiebungsbeziehungen

nicht linear. Deshalb braucht zwischen Belastung und
Verschiebung grundsätzlich kein linearer Zusammenhang zu bestehen
[1]

Im Falle kleiner Verformungen linearisiert die klassische
Elastizitätstheorie die nichtlinearen Beziehungen. Sie erfüllt die
Gleichgewichtsbedingungen am unverformten System (Theorie 1.
Ordnung) Zur Bestimmung der Stabkräfte und Verformungen wird dieser
Weg auch hier unter Anwendung des Prinzips der virtuellen Verrük-
kungen und der damit verbundenen Energiebetrachtung nach der
Deformationsmethode für infinitesimale Knotenwege als ausreichend
genau beschritten.

Die Anwendung der Energiemethode für finitesimale Knotenwege
bei der Untersuchung der Stabilität zur Ermittlung einer exakten
Lösung stößt auf bislang ungelöste Schwierigkeiten, da bei der
Integration des inneren elastischen Potentials von Knotenwegen
abhängige, veränderliche Integrationsgrenzen entstehen. Die Stabili-
tätszustände können nur durch Näherungsverfahren, wie z.B. durch
das wiederholte Anwenden der Energiemethode für infinitesimale
Zustände iterativ ermittelt werden.

Hier soll aufbauend auf der einmalig infinitesimalen
angewandten Energiemethode durch das iterative Verfahren der fiktiven
Kräfte [3] eine Näherungslösung ermittelt werden.

3.1. BERECHNUNG NACH DER THEORIE 1. ORDNUNG

Nach [5] lautet das elastische Potential der äußeren Knotenlasten
T T

T
na - - v p= -p v (l)

wobei v der transponierte Verschiebungsvektor und p der Belastungsvektor
für alle Knoten ist. Das Elastizitätsgesetz lautet

s= 04 (2)
wobei s der Stabkraftvektor und a der Stablängenänderungsvektor
ist. Die quadratische Stabsteifigkeitsmatrix D enthält entsprechend

der in a gewählten Anordnung alle Stabsteifigkeiten EF/1
(E Elastizitätsmodul, F Fläche, 1 Länge). Die Matrix B

ist entsprechend dem Ordnungsschema von a und v aus den
Stabeinheitsvektoren aufgebaut und stellt für kleine Verformungen den
geometrischen Zusammenhang her

•a B v (3)
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Das elastische Potential der inneren Kräfte lautet
1 Te

i 2

daraus folgt mit (2) und (3)

IT ITTni IA Da jv B 0 Bv

ni lvT Kv (4) "

TDie symmetrische Systemsteifigkeitsmatrix K =B OB läßt sich
durch Minimierung der Knotennummerndifferenzen benachbarter Knoten
als Bandmatrix darstellen. Nach dem Prinzip der virtuellen Verrük-
kungen ist ein System dann im Gleichgewicht, wenn die erste Variation

des Gesamtpotentials ein Minimum wird:
6n 6 (n + n.) S (-vTp + ^vT Kv o (5)

a X m ^

Mit SU — 6v= 0 und -— I wobei I die Einheitsmatrix dar-
a V oV

stellt folgt aus (5)

0 -lp +2. _1_ CvTKv) - p +Kv
Z

3V

p =K V

V K"1 p (6)
Aus (2) und (3) folgen die Stabkräfte

s D B v (7)
Aus den Gleichungen (6) und (7), die mittels Computer ausgewertet
werden, können die Knotenverschiebungen und Stabkräfte ermittelt
werden.

Im SYSTEM II sind einige Knoten kinematisch instabil, was für
die numerische Behandlung zur Folge hat, daß die Determinante der
infinitesimalen hergeleiteten Formänderungsmatrix zu 0 wird.
Betrachtet man dagegen das verformte System, verschwindet diese Un-
stetigkeitsstelle mit wachsender Belastung.

3.2. VERFAHREN DER FIKTIVEN KRÄFTE

Die Methode der fiktiven Kräfte hat gegenüber anderen Iterationsverfahren
den Vorteil, eine Steifigkeitsmatrix nur einmal aufstellen

und auflösen zu müssen. Zur näherungsweisen Ermittlung der vollständigen
Stabkräfte (Theorie 2. Ordnung) werden dann in den anschließenden

Iterationszyklen, unter Beachtung der Maßgabe, daß nach wie vor
die Steifigkeitsmatrix des unverformten Systems benutzt wird,
diejenigen Kräfte dem System als äußere fiktive Belastung aufgeprägt,
die zur Erzeugung des Gleichgewichts aus den Stabkräften des
Ausgangssystems am finitesimal ausgelenkten System notwendig sind.

In Fig. 1 wird das durch die fiktiven Kräfte entstehende, in
diesem Fall rückdrehende Kräftepaar für einen Zugstab dargestellt.
Die Iteration ist gegebenenfalls durch Relaxation zu beschleunigen.
Iterationsende wird erreicht bei

N N-l)($ - $ e, wobei e eine gewählte Fehlerschranke ist.max
Vergleichswerte können näherungsweise bei Untersuchung eines

Teilsystems als Durchschlagproblem nach [4] gefunden werden,
vergleiche Kurve a in Fig. 3 und Fig. 6.
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7v .'

\ p-,

i S "4" [

all" i

Fig. 1 Finitesimaler Verschiebungs¬
zustand mit fiktivem
Gleichgewichtszustand im I.
Iterationszyklus für einen Zugstab
(S > 0)

4. EXPERIMENTELLE UNTERSUCHUNG

In jedes Netzsystem waren 23 bzw. 34 "geeichte", mit je 4

Dehnungsmeßstreifen versehene Meßstäbe eingebaut, so daß an ausgezeichneten
Stellen die Stabdehnungen, Stabkräfte und Stabendmomente sowie der
örtliche Fließbeginn infolge der Belastung bestimmt werden konnten.
An jeweils 8 Knoten wurden die Knotenverschiebungen in 3 senkrecht
zueinander stehenden Richtungen mit Hilfe von Potentiometerweggebern

ermittelt. Die Belastung wurde durch hydraulische Zugpressen
erzeugt, und über Zuggehänge senkrecht bzw. waagerecht zentrisch
in die Knoten eingeleitet. Die Größe der Kräfte wurde durch
Kraftmeßdosen gemessen. Alle Meßwerte wurden mit einer Vielstellenmeßan-
lage, die jede Meßstelle selbsttätig anwählte, auf Lochstreifen
registriert und auf einer elektronischen Rechenanlage ausgewertet.

5. ERGEBNISSE

5.1. STABKRÄFTE UND VERFORMUNGEN

Die nach Gleichung (6) und (7) errechneten Stabkräfte und
Knotenverschiebungen sind für einen "Einheitslastfall" am Netzsystem I
in Fig. 2 und am Netzsystem II in Fig. 4 und Fig. 5 eingetragen.
Die für denselben Lastfall im Versuch ermittelten Meßwerte sind
den Rechenwerten in den gleichen Figuren gegenübergestellt. Wegen
der rechnerisch nicht erfaßbaren geringen Nachgiebigkeiten in den
Knotenverschraubungen sind die gemessenen Knotenwege etwas größer
als die errechneten.

Die statisch interessierenden Lastfälle werden aus den
Einheitslastfällen superponiert. Im Versuch wurde mit Hilfe von
Lastgruppen die Zulässigkeit des Superpositionsverfahrens und damit die
zugrundeliegende Annahme des linearen Zusammenhanges zwischen Last
und Verformung kontrolliert. Eine Untersuchung des Zwängungszustan-
des infolge der Montage der Kuppel I ergab, daß die größte Stabkraft
etwa bei 10% der rechnerisch zulässigen Stabkraft und die größte
Randspannung bei etwa 40% der zulässigen Spannung lag.
5.2. TRAGVERHALTEN UND STABILITÄT

Zur Untersuchung des Tragverhaltens wurde Kuppel I in Punkt B durch
eine senkrechte Einzellast und Kuppel II in Punkt K durch eine
waagerechte Einzellast (Fig. 5 bis zum Bruch beansprucht. Die gemessenen

Bruchlasten sind in Fig. 3 und Fig. 6 eingetragen. In beiden
Fällen trat der Bruch schlagartig durch Einzelstabknicken ein. Die
Bruchlasten der Netzstäbe lagen dabei etwas höher als die in
Vorversuchen an entsprechenden gelenkig gelagerten Einzelstäben
gemessenen Knicklasten (Eulerfall 2).
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Fig. 4

Errechnete und gemessene Knotenwege

\

NETZSYSTEM M

NETZSYSTEM I

Knotenwege in mm
infolge einer senkrechten
Einzellast von 2100 kp
in Knoten C

Schnitt A-D

Knotenwege in mm
infolge einer waagerechten
Einzellast von 2100 kp
in Knoten K il Versuch)

Schnitt D-L

sdy—ifCStabkraft* ^-f ^i.
in/0/9* tmtr Er-ztllatt von 2100 kpm Punkt

2 /^^C/\ iMe»^
/JIM

m--¥rmi^B *
F'i ?\ t% i \/ l
xx.-*xX^( ~-X*/

Rechnun

:y

^a.

IÖASX2

U_ZIßfl
K kp

m.

Sl-t-irvOt fi kp flUgttiner Emthsl mn

i& ¦& ?tOOkp<r,Pi1n.lQ.

Fig. 2 Errechnete und gemessene
Knotenwege (oben)
und Stabkräfte (unten)

NETZSYSTEM I
Kraft-Wegdiagramm des Zenitknotens B
in doppelt-logarithmischer Darstellung
o)als Durchschlagproblem nach [4\
b) rechnerisches System (Theorie I.Ordnung)

c) Versuch

d)rechnerisches System (Verfahren der fiktiven Kräfte)

2Wtp

**\a

t x

16,09 Mp (Durchschlag)

Pknl =5,00Mp
(Einzels lab Stabilität)

PMt* 4,5 Mp
(Versuch)

senkrechter Weg des Knotens B in mm

Fig. 3 Ergebnisse der
Stabilitätsuntersuchung im Bereich des
Knotens B

Fig. 6

Ergebnisse der Stabilitätsuntersuchung
im Bereich des

Knotens K

Fig. 5 Errechnete und gemessene
Stabkräfte infolge einer
senkrechten Einzellast in Punkt C

bzw. infolge einer waagerechten
Einzellast in Punkt K (Schnitt)

NETZSYSTEM U

Kraft-Wegdiagramm des Knotens K
in doppclt-iogarithmischer Darstellung
a)als Ourchschtogproblem nach [4]
b)rechnerisches System (Theorie I.Ordnung)
c) Versuch (zwei Versuche am gleichen Knoten)
d)rechnerisches System (Verfahren der fiktiven Kräfte)

=111,6Mp (Durchschlag)

%uch)

_Pkntv2,3Mp
• (Einzelstob

Stabilität)

tm
waagerechter Weg des Knotens K in mm
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Der Vergleich der rechnerischen Stabilitätsuntersuchung nach
der Methode der fiktiven Kräfte ist als Kurve d und die
Durchschlaguntersuchung nach [4] als Kurve a in Fig. 3 und Fig. 6
eingezeichnet. Es wird deutlich, daß bei den vorhandenen Steifigkeiten

in jedem Fall Instabilität in Form von Einzelstabknicken und
nicht als System-Instabilität auftritt. Durchschlagen als System-
Instabilität würde erst bei sehr viel kleineren Steifigkeiten
eintreten.
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Foundamental Design Stage

Jnput: Geometrical condition
Trust Type
Loads
Used Matertals
Unit CostsI

1. Introduction
The analysis and optimum design of two types of simply supported, double

layered space trusses, which are called Takenaka-truss in Japan, is reported
herein. The design of the space trusses is usually carried out through the
process shown in Figure 1. 1. The design procedure developed here corresponds to
the foundamental design stage, and this can be utilized to determine the optimum
grid layout and the truss depth for the final design stage. Consequently, the
accurate analysis and design procedure should
be followed.

The approximate analysis is applied
here to treat the following optimum design
problem in a mathematically simplified
form. And the results obtained by this
method are verified, being compared with
the accurate results by the stiffness matrix

method.
The variables of the optimum design

are not only section properties of members

of space trusses, but also the depth
of the trusses and the spacing. The ob-
jective function to be optimized is the cost
of the space trusses. Which consists of
the costs of members, joints and purlines.
The applied design specification is the
steel structural Standard of Japan (1970)
and the deflection limitations. The se-
quential unconstrained minimization
technique is applied to the optimization
technique.

Evaluation of Membor Forces «nd
Disolacenients

IL
Determination of Ofstimu«
Design usinp- 5UMTIOutput Grid Layout

Truss Depth
Member properties

Final Design Stage

Jnput: Design parameters (Truss
Depth, Grid Layout) are set

X
Accurate Analysis of Member
Forces and Displacements
Member property modifications,
if any

[Output: Final resultsT"

Figure 1. 1 Design Process Flow Chart
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2. Configulation of the Space Trusses
The two types of double layer grid trusses in this study are, Square Pyra-

mid Truss (S. P. Truss) and Star Element Truss (S. E. Truss), which are quite
similar each other. S. P. Truss has been utilized often recently, however, S. E.
Truss has newly been developed. Both space trusses have diagonal top layer
grids and normal lower layer grids, but the relative locations of top and lower
chord are different, and the direction of latticed members are also different.

S.P. Truss is composed by arranging the inverted Square pyramid
elements as a chequered pattern and connecting the neighbouring pyramid apexes
with lower layer members (see Figure 2. 1). On the other hand, S.E. Truss
is composed by star elements (see Figure 2. 2).

Square Pyramid Unit
Figure 2.1 S.P. Truss

Star Element Unit

Figure 2.2 S.E. Truss

3. Evaluation of Displacements and Member Forces
The rigorous Solutions for the axial forces of members and deflections of

joints of space trusses under the imposed loading conditions may be obtained by
deflection method using an electronic digital Computer. In this optimization
study, however, much simpler analysing methods are necessarily needed which
lead to good approximate Solutions and require Short time and small core size
in computation. One of the most successful ways which seems to satisfy these
requirements is to find the equivalent solid plate that has nearly the same force
and stiffness distributions.

The S. P. Truss has very small twisting rigidity around x and y axies
(Figure 3. 1), that is,

Mxk*o <3-D

From the wellknown equilibrium equation of solid plate and Equation (3.1) the
following equation can be obtained.

a^+ dp D (32)

where w shows the vertical displacement, P the load per unit area and D the
rigidity per unit width of the plate. Solving the Equation (3. 2) under the simple
support boundary condition by using
Fourier series, the displacement is

UJ H I

«n=<JJfr«1^J» .*»»(-#-?-fr)
srn tmc*

a. srn UJÜL
(3.3)
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^j
¦C-

Figure 3.1
Co-ordinate Systems

On the contrary to the S. P. Truss, the S. E. Truss has small twisting
rigidity around x1 and y' axies,

M*y=-o (3-4)

Equation (3. 4) is rewritten as
9+tü _ P ,3 5)

The rigidity of plate D is expressed as

where n is a number of blocks along the y direction. Au and AI are average
sectional areas of upper and lower chords members respectively. Member
forces are given in Table 3. 1. The comparisons between rigorous Solutions
and plate Solutions are shown in Figure 3. 2 and 3.3.

In order to minimize the total cost of the space trusses exactly, each
member and
Joint costs Table 3. 1 Member Forces
are individual-
ly to be taken
into account,
however, this
is not practical

actually
to treat whole
members and
joints as
variables of the
objective function.

Therefore

some
members and
joints are to be
chosen to
represent the
structure.
Two members
for each
upper, lower and latticed chord members, and one joint are selected in this study.

Member -Sectional

area

Direction S. P. Truss S. E. Truss j
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_ b a b ^o —n + (— + i n 1
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Lower Chord Upper Chord

Figure 3.2
Comparison of Bending Moments Comparison

o Rigorous Solutions
Plate Solutions
Figure 3.3

of Shearing Forces
3g. 31 Vorbericht
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4. Optimum Design of Space Frames

4. 1 Mathematical Model
Design variables are the sectional areas of members, Aue, Aue, Ale,

Ale, Awep, Awem, Awc, the number of blocks, n, and the truss depth, h, which
are described in the previous section.
The objeetive function f of the structure to be minimized is the total cost of steel
skeltons.

f — ZL CnfAml + JiCmp/Api + Cj N (4.1)

where Cm, Cmp, Cj are the unit cost of members, purlins and joints; m, n, N
are the number of members, purlines and joints, respectively.

Tubulär sections and wide flange sections are used for the members of
trusses, and purlines respectively. Empirical relationships between section
properties are obtained by plotting section properties commercially provided.
(i) For steel tubes

I — 0.625 A )"*" (4.2)
(ii) For wide flange sections

A — o.se i"*~ (4.3)

Z- 0.58 1* (44)
The diameter of the spherical Joint is assumed three times of the diameter
of the largest members and the thickness is assumed twice of that of the largest
members.

Therefore, the objeetive function f of the structure for S. P. Truss,

j p [{2^fTna-f-Auc+2\iTna^-/\uc + (2na-f--2a)A4e

-r 2Tia^- Alc-r na JM^SE"- \- C Awep +A weM

+ (3T,a + 2T.).C5-/A4c'6 Ci J (4.5)

where lp is the spacing of purlines (cm), C5 is the coefficients obtained by the
relationship between member properties of tubulär sections.

4.2 Sequential Unconstrained Minimization Technique
The optimum problem, mentioned in the previous section, may be obtained

by several mathematical techniques. Here, the sequential unconstrained
minimization technique developed by Davidon is adapted. The objeetive function

to be minimized is converted to the following equation F,

F= f + RK ^ ,_ g-f (4.6)
therefore, the optimum design problem with constraints is changed to the
unconstrained optimum design problem. The macro flow Chart is shown in Fig.
4. 1.

4.3 Parametric Study
Using the developed programming, a parametric study was carried out.

The observed results teil the interesting behaviors of the optimum designs.
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(i) Parameter: Span
Constants given:

P« 200 Ktf/m«
F= 2.4- Vcm*
E» 2.1 * 10' kj/cw»
Cj — 3o8,ooo fn Qf.ooo dolUrs)
Cm- 123.ooo<j*n 4-00 do/ftrs)
lp— 180 cm

At the optimum design, all stresses of
members are fully constrained, however,
the deflection limitation p a/300 does
not dominate at all. The cost per unit
area increases almost linearly with the

span length of the whole structure. Span
per depth is scattered between almost
8-12, which is coincident to the usually

adapted value in the actual design.
Moveover, the optimum number of blocks
seems to be obtained so that the angle
of the diagonal member is almost 45°
(actually 42°-49°).
(ii) Parameter: Loading

Constant given:
Span length 72 meters, F, E,
Cj, Cm, lp are same as 4. 1.

The cost per unit area increases almost linearly with loading amount.
The optimum designs of the S. E. Truss were almost same as those of the

S.P. Truss when Cj 0, that is, the weight is minimized, the results show
almost same tendency. Moreover, almost the same results were obtained for
the change to the purline spacing, too.

Inp.it a. E. o 8. 0, i.

Äasunption of Initial Design /

| Calculation of Behavior g*. S

,Is Uesifrn in Bodification
of k. h. naaslble Hegion
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iX 3£
¦W) / 9J(,

Jeriva
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SX-JX4-H ./|£,

aeeto

Determination of Optimum Uodiflcatlon Length J\
X=X+A SX

«rea
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Figure 4.1

Flow Chart of S.U.M.T.
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Figure 4.2 Results of Parametric Study
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5. Conclusions
Through this study, the following conclusions have been atained.

(1) Comparisons with the results obtained by the stiffness matrix method con-
firm the theoretical analysis presented.

(2) The sequential unconstrained minimization technique works very effectively
in the optimum design of the double layered space trusses, and shows good
convergence. Computer time for one case is approximately two minutes
using IBM 360/65.

(3) Through a parametric study, structural characteristics of the Takenaka-
truss have been obtained. The cost per unit area is almost proportional to
the span.
The optimum ratio of the truss depth to the span is approximately 8-12.
At the optimum design, the angle of the latticed members are approximately

45°. The results for S. P. Trusses and S. E. Trusses are almost same.
The optimum design with truss depth limitation, and the rectangular plan

can be readily developed in the future.
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Summary
The analysis and optimum design of simply supported, double layered

space trusses is presented here. The approximate analysis using a transforma-
tion method to a continuous equivalent plate is good enough for design use.
The optimum design by a sequential unconstrained minimization technique
insures good convergence. Through a parametric study of approximately twenty
cases, the structural characteristics of the Takenaka-truss have been studied.
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deflection
f.P,

figure 1

-£ -P,

INTRODUCTION

In this paper an answer is sought to the question "How does the
admissable load of a double-layer grid change, when it contains a

certain percentage of 'inferior'
members"? In this context, lpad _ load
'inferior' means that for the
load-deflection relation of the
member concerned the valid
Situation is that of figure 1b,
and not that of figure 1a.
It is assumed that such inferior
members retain their stiffness,
do not break and are distributed
over the entire construction in
a random manner.
In the research project, two apporaches were used: (a) a Monte Carlo
Simulation programme based on the displacement method; (b) a theoretical
approach based on probability calculus.

(a)
P?

deflection

(b)

2. MONTE CARLO SIMULATION

Whereas for the double-layer grid not only the probability of
collapse had to be determined but the probability distribution of
collapse loads had also to be found, in order to compare it subsequently
with the probability distribution obtained theoretically, it was decided
to perform an analogous Simulation. The variable was the location of
inferior members (random), and our assumptions related to their number
and degree of inferiority factor f in figure 1b). It was furthermore
assumed that in respect of all the members f be equal.
To enable this analogous Simulation to be performed, we designed a
Computer programme, based on the displacement method, which programme
calculates the collapse load of a three-dimensional pin-jointed truss
by an incremental method.
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To make this programme useful for practice, i.e. to keep the calculation
time for each collapse load low, we derived a modification algorithm
which, with regard to a yielding or a buckling member, permitted the
pertinent absence of stiffness to be accounted for in the load vector as
an imaginary extra load (figure 2), and not in the stiffness matrix.
This extra load, Aic, may be calculated from:

AS ,-1 Ak v (1)
m*iB

where:
AS

k+ ...J
Ak^

-,7

-v- *>?.

figure 2

change in stiffness matrix
because of yielding or
buckling of a member
(stiffness of the member)

S ¦ terms of original stiffness
matrix belonging with
collapsed member

y_ previous displacement vector
m number of collapsed members.

From eq (1), we could easily find Ale, because [AS - S ] represents a

Symmetrie matrix (Maxwell). We only had to add one extra column to the
matrix for each subsequent member collapsed.
For inversion of the new matrix, the inverse of the preceding one was
used (bordering method [1]). Based on this algorithm [2], a very rapid
Computer programme was evolved. A double-layer grid with 682 elements
and 211 Kjnots (about 600 equations with a half-bandwidth of 39) called
for about one minute of calculation time on a CDC 6600 Computer for
each collapse load calculated (about 50 collapsed members), this is
hardly more than a normal elastic calculation.
With the aid of this programme, we made calculations for some types of
double-layer grids of various sizes, with various percentages of
inferior members and different factors of weakening. The results have
inter alia been used to verify whether a Statistical approach of the
problem was valid.

3. THEORETICAL DERIVATTON

It was found possible to approach the problem theoretically, when
the structure has one or more clearly discernible mechanisms of collapse
in the very state of collapse. In the double-layer grid of figure 3j we
distinguish two shear mechanisms and one yield mechanism. We assume that
the members do not break and that their connections are stronger than
the members themselves.
We now schematize the structure in its State of collapse as is shown in
figure 4- The elements in a collapse mechanism we call "critical"
elements. For each collapse mechanism, the probability g, that k
critical, inferior members (or that k inferior, critical elements) are
concerned is found from:

e(k)
il)XJ

(N
\S

X
(2)
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where N is the number of elements, S the number of inferior, K that of
critical elements, and (X (K _ k); » k,
With each value cf k belongs a collapse load, so that the pertinent
probability distribution, i.e. the hypergeometric distribution, is at
the same time the probability distribution of the collapse load. of the
mechanism considered.
When the number of critical members is small, over against the number
of inferior ones, eq. may be approximated through a binominal

Kdistribution

gKk) - (i

with P tt we then find:N

l) (P)k (1 - P)S " k (3)

When (N - K) > 50 and P< 0.2, the binomial distribution changes to a
Poisson distribution:

eW
S.K\k
JL

k!

S.K
N

(4)

And when P > 0.1 and P(1 - P) K >
to the normal distribution:

8, the binomial distribution changes

|i
S.K

N
and fp(l P)K (5)

When, over against tho number of critical members, that of the inferior
ones is small, we find the same equations except that S and K change
places.
Of these latter two distributions (4) and (5), the summated probabilities
g(1) + g(2) + + g(k) may be read from a table.
The procedure for calculating the sought probability of collapse may be
itemised, with reference to figure 3i as follows:
1. For each individual mechanism of collapse, determine the collapse

load; this load will then be in equilibrium with the total load
bearing capacity of the critical members.

>325XK \ZJN>^ \l/\NJ£\/ \/7\7
=/£,

V Vv:
-> x

Ts

B //V/-X

sU4-

---II

yyyyyyy^t^^

3
figure 5

load
figure 4

•-I

¦-!'

II
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2. For each individual collapse mechanism, the lower bound of the
probability distribution of the collapse load; all the inferior
members are in the mechanism concerned (LB(l) and LB(2) in fig. 5)*
Primarily we had assumed the factor of weakening, f, to be equal for
all the members. If for each collapse mechanism, in other words: for
each type of member, this factor is the same then only the lower
bound of the distribution is subject to change.

3. From the results found in 2, calculate the number of members that
should be inferior, at least, in order to enable the finding of a

contribution towards a probability of collapse, i.e. the number of
intervals between B and B (B =-load) when the distance

collapse use x

between B and the lower bound is apportioned into as manycollapse
intervals as there are members in the mechanism.

4. Calculate the probability of collapse for each individual mechanism.
Figure 5 presents an elucidation. Beside the load-deflection diagram
for the structure, it shows the probability distribution of the
collapse load of the two mechanisms sketched. For each mechanism,
the probability distribution equals the shaded area of the curve
indicating the part of probability distribution that lies below the
permissible load. The probabilities that either mechanism I or
mechanism I' (cf figure 4) occurs are summated to P/.y

We now know the
probabilities of
occurrence for the
individual mechanisms.
We will next find the
collapse probability,
of the entire
structure, if we may
assume that the
mechanisms do not
affect one another,
i.e. are stochastically
independent, with the
aid of:

Br •»load öoir?;

fcolM)

LB(T)ise
2DtLB(2)

11

+ P/(collapse) *(1) + r(2) " r(l)

defl.
figure 5

5(2) (6)

where:
P/..', the collapse probability of mechanism 1;
P/„< the collapse probability of mechanism 2;

(iyP)oi ^e probabijj.i'ty that mechanisms 1 and 2 o
' simultaneously.

ccur

When the number of inferior members is about equal to the number of
members in each mechanism, the probability of simultaneous occurrence
of several mechanisms is nil. Accordingly, P/•,'«,• 4°Co "v will be larger or
smaller in dependence upon N, K and S. \ \

It should be noted that eq. (6) applies to uncorrelated mechanisms
only. However, different forms of correlation are possible. In fact,
members may belong to several mechanisms of collapse at the same time;
deformations arising from the collapse of members in one mechanism may
affect anolher mechanism; members from adjacent mechanisms may
influence each other, and so on. Of Lhese forms of correlation we
shall here discuss the last-mentioned one only.
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figure 6

When (cf figure 6) a member from mechanism I has collapsed, the adjacent
member from mechanism I' is relieved and this remains whole.
For this structure, figure 7 then applies. The probability of collapse
may be determined for the "complex" mechanism, cf I and I' in figure 7-
For the example in figure 6, the collapse load of the non-weakened
mechanism is 323 kgf/m-. The permissible load is assumed to be 175
kgf/ra The number of members N 448, K 16 and; when we take f 0.5
and S 200, we find:
1. for the number of strings of members that must be inferior:

f ¦ x + 8 - x
_ 525 1?8 go that x 0

o
2. for the probability that there are 8,9 ...i...l6 inferior members in

the mechanism:

;*) : 9
at(i)

3. for the probability that 8 inferior strings of members occur for iinferior members:
\ (16 - i)

h(i) %).?

KT)
1 - i"As a result, we find for the collapse probability of mechanism

Py \ S6 g(i) • h(i) 0.052\collapse) 1 _ o

For a shear mechanism we thus find that at least eleven elements must
be inferior: g(ll) + e(l2) + + g(l6) 0.042
Assuming that the two shear mechanisms are independent, we find for the
probability of collapse:

0.042 + 0.042 - 0.042 0.042 0.082

I' and II II' yields:
(collapse)

Analogously, the combination of mechanisms I
P/ v 0.130(.collapse)

Using the Monte Carlo Simulation programme, we found a collapse
probability of 0. 139, which - considering that only the major mechanisms
had been concerned in the calculation - indicates that we found an
acceptable answer.
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figure 8

For this trial structure, we finally
calculated the collapse probabilities,
as a function of the number of
inferior members (cf figure 8), with
regard to several factors of weakening.
To yield a reasonably high probability
of collapse, either the number of
inferior members must be large or tho
factor of weakness very low; this is
clear from the curve.
Whereas:
1. At a constant percentage of

inferior and critical members, the
probability of collapse considerably

lapse) reduces when the structure grows in
1.0 size;

2. In practice, this type of grids is
usually supported on four sides, so

that the number of critical members goes up and, consequently, the
probability of collapse diminishes, we suggest that the following
conclusion is appropriate.

4- CONCLUSION

Members with, for example, welding defects affect the safety of the
investigated multiple staticaly indeterminate double-layer grids very
slightly.
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SUMMARY

Using an analogous Monte Carlo Simulation programme that is based on
the displacement method it is shown that a statistic prediction can be
made about the probability that double-layer grids in which "inferior"
members occur, for example due to welding defects, may collapse. For a

trial structure is next calculated the probability of collapse with regard
to several factors of weakening as a function of the number of inferior
members used. It is found that, to yield a reasonably high probability of
collapse, either the number of inferior members should be very large or
the members very bad indeed.
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