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Free Vibrations of Cable Networks Utilizing Analogous Membranes

Oscillisations libres de constructions en cables par utilisation de
membranes analogues

Freie Schwingungen von Kabelnetzwerken unter Anwendung
analoger Membranen
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Philadelphia, Pennsylvania, USA

BHASKAR CHAUDHARI
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1. Introduction

The application of membrane theory for the static response of cable roof
Systems has been demonstrated by Shore and Bathish (1) and Schleyer (2). This
paper considers an analogous membrane technique to study the free Vibration of a

certain class of cable Systems. The major objective of this study is to present a

simplified and accurate technique for predicting the natural frequencies of flat cable
networks by utilizing an appropriate analogous membrane to mathematically model
the discrete or cable system.

2. Assumptions and Limltations

The following assumptions are made: (1) the cables and the membrane obey
Hooke's Law, (2) the cables and membrane have only extensional stiffness, (3)

linear strain-displacement relationships only will be considered, (4) Poisson's
effect in the membrane is neglected, (5) the cable and membrane tension every-
where is always greater than zero, (6) the mass of the cable system is concentrated
at the nodes, (7) damping is negligible.

The following limltations apply to this study: (1) the cable system 5t t 0 is
flat and an orthogonal network with the cable intersections connected; (2) the
boundary planform is rectangular; (3) only linear, free vibrations normal to the
network are considered.

3. Governing Equations of Motion

A. Membrane:
The equations of motion for a flat, prestressed, homogeneous membrane of

thickness, h, are (3)

Ehuxx + Fx(t) phü (1)

Ehvyy + Fy(t) Phv (2)

Eh [uxxwx + vyywy + (u* + US wxx + (vy + vy} wyy]
+ Fz(t) phw (3)
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where all symbols are defined in Section 7. Since the major interest is the free
transverse vibrations of the system, then for the assumptions and limltations noted
in Section 2, it is permissible to neglect in-plane displacements and inertia terms.
Thus, equations (1),(2), and (3) reduce to the following Single equation of free
Vibration:

uxwxx + vywyy Ew (4)

The following displacement function will be chosen to describe the free Vibration
of a rectangular membrane (see Figure 1):

mn xW(x'y't} 1=1 nE=l AmnfW sin "V* sln nn y (5)
a —" b

Note that the displacement function satisfies the boundary conditions at the edges
of a rectangular membrane, that is,

w(o,y,t) w(a,y,t) w(x,o,t) w(x,b,t) 0

The initial conditions are taken as

w(x,y,o) w(x,y), wCx,y,o) 0

(6)

(7)

IZ.laJ

9
1/
t-h

Substituting equation (5) into equation (4)
leads to the well known equation of simple
harmonic motion

.2f (t) + c- f(t) 0
mn

(8)

Cable Directions

where u> represents the frequency of free
Vibration in the mn-th mode written explicit-
ly as

,m,2 n,2ftCU^+V^] (9)

Ehu^ and V Ehv° the initial
le

Figure 1

where U
membrane tensions per unit length.
B. Discrete Cable Network

For a prestressed cable network, the
equations of motion of a typical Joint based
on the assumptions of Section 2 are (3)

Tjq^_l
Vxj

t _xl±
Jq Xq"XJ

i + T jr
V?i

+ T
ir~Z

Vxj
nr-Ti4

r xj

jq
^q~^j + t
Xq"XJ

Cr-C

+ T
§s-5-

3S ys-Vi
+ T.jt Vi

yt~yj
I + F^ (t) mj?

+ T1fiür^ + Tjt _^ül + fJ w a™

jr Vxj
j + T cs-c

js
ys-yj

j + T Ct-C
jt yt-y

L + Fi (t) m.C
r ° J

(10)

(11)

(12)

If the same assumptions and limltations are imposed on the cable network as for
the membrane, then the equations of free Vibration reduce to one per node. Therefore,

if there are N nodes in the network the governing equations of free transverse
vibrations are (See Figure 2)

N
maC (13)la<h V"*

Xq"XJ

Cs-C.I T.,._vr/j T,,. XXLl + Tjt ^t-Cj
Ljs

ys_yj yt-y£ X
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If the network is flat, Tjq T^ X, T. Tjt Y; for equally spaced cables in the
x-direction (Xg-Xa) (xr-Xj) dx; for equally spaced cables in the y-direction,
(xs-Xj) (Xj-x.) d Now equation (8) can be written in the following simpli-
fied matrix form

ÜM3Ü'] + [k]{§3 o (14)

where
[M] m, 0

•lm„'2.
'mJ.

¦ mr

CK]

w

i2X 2Y X/4.A. 4.1 \ 1 A \
dx Qy Qx

(-£) i^iX)2Y
«Sr

(15)

m

Figure 2

If simple harmonic Vibration of the cable
network is assumed, the k-th mode response
is C4j,= Z., sin (Oji + a). Placing this function

into equation (14) leads to the charac-
teristic value problem of determining the
eigenvalues or frequencies O.X and the
corresponding eigenvectors or mode shapes
[Q]r) of the following matrix

[CMr^K] -0| [I]] =0 (16)

4. Membrane Analogy

Equation (9) represents the frequency
equation of free Vibration of a flat rectangular

membrane of thickness h, uniform mass
distribution, and initial pretensions TJ and V;

equation (16) represents the matrix whose eigenvalues are the frequencies of free
Vibration of a flat cable network with cable spacings of dx and dy and initial cable
tensions X and Y, and concentrated masses at the network nodes. Thus, for this
study the discrete cable network is completely defined once the appropriate nodal
masses are determined. Although it.is recongized that the nodal mass can be
frequently dependent, it is assumed that they are determined on the basis of tributary
lencjths or areas of cables and/or network coverings (with extensional stiffness
only).

To determine the membrane parameters to replace the discrete network, the
following equivalences are made:

(17)

(18)

(19)

(20)

To demonstrate the usefulness of an analogous membrane to predict the
frequencies of free Vibration of discrete cable networks, consider a 120" x 240"
rectangular cable system. The data pertaining to the cable system, as well as
the analogous membrane parameters, are shown in Fig. 3. Note that the parameters

aC ~ aM " a; bC bM b

PC=PM= p

PC (Axa+Ayb) PMabh; h
ß a

5. Example
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relating to the membrane do not change and equation (9) is used to predict as many
frequencies as is desired. The total cable areas and weight, and total pretensions

in the x and y directions remain constant but the span to cable spacing ratio,
R, is varied as the number of cables is varied. Thus, the magnitude of each nodal
mass, each cable area, and each cable tension vary with R. For each R value, the
appropriate £m1 and [K] matrix is calculated and the eigenvalues, Q, obtained on
the basis of equation (16) using an IBM 360/65 Computer. Table 1 summarizes the
results of these calculations for R 3 ,4, 5, 6, that is, two, three, four and five
cables in both the x and y directions.

— V

AU Cables,/) 0.75ftp)'3 \b^Mr& -^ ^BoandaY-u

ßoundarij;

b=240

Membvune PavcMnetevs:

a= iWms,b= 240 ins-

f= 0.75(lo)ib-se^/in4-

h«Ä-± -
1

Z<to'l'l.tO " 60 '""

u

x- direction:
Total le!TL4ioifL\«a all
Cables 300,000 Ibs

X 5, 000 Ibs

A* 2-0 m2-

V-direction:
Total Tension in all
Cables ISO.ooo Ibs

Y - 2,500 ibs

Ay i.0 ir?"

300,000,1250 1Mb.
240

v=150,000=1250|b/,-h
I20

Figure 3

From the results shown in Table 1, errors in the form (uj - 0)/uj as a function of R

are plotted in Fig. 4. Note that the extrapolations in this figure used a least
Square polynomial approximation.

4001—n 1 1 1 1 1 1 1 1 1 1 1 Since the percentage error
for a particular span to spacing
ratio increases for higher modes
or natural frequencies, and the
cable networks used in practice
are expected to have span to
spacing ratios of more than 10,
a plot of percentage error against
the frequency numbers in ascend-
ing order for a span to spacing
ratio of 10 is shown in Fig. 5.

Since the errors in the
natural frequencies, using a

membrane obtained by uniformly
distributing the mass of the
cables over the area of the
network, are known, it is now

300

2 200

10.0

L\ Com.fuiei. Maines

— Ext«"<)-pol«aJ<3Q
Values.

\:\
:bs.

2^4

43 10.0 1202-0 60 8.0

Spar«, to Sf»r£in.<r Ratio

Figure 4
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TABLE 1

Frequency
No.

Mode Shape

m n

Frequency
CPS

Membrane

Discrete System •- Frequency CPS

2 Cables 3 Cables 4 Cables 5 Cables

"l 1 1 290.0 278.0 284.0 287.0 288.0
(u2 1 2 369.5 329.5 345.5 354.0 358.0
"3
»4
w5

2 1 537.5 448.0 486.5 505.0 513.5
2 2 584.5 482.5 524.5 546.0 556.0
1 3 470.0 398.0 422.5 436.0

w6
0)7
COg

3 1 794.0 62 6.0 685.0 715.0
2 3 653.0 560.0 593.5 609.0
3 2 826.0 656.0 715.0 745.0

CUg 3 3 875.0 686.0 751.5 785.0

"lO 1 4 584.0 471.0 501.0

"11
U)12

4 1 1050.0 800.5 870.0
2 4 739.0 627.0 658.0

'"IS 4 2 1075.0 827.0 897.5
u>14 3 4 941.0 779.0 82 5.0

'"is
¦°16
"17
"18
•"19

4 3 1115.0 858.0 930.0
4 4 1068.0 882.5 962.5
1 5 702.5 513.5
5 1 1310.0 970.0
2 5 835.0 691.0

w20
U)21

5 2 1330.0 986.0
3 5 1018.0 851.0

Cü22 5 3 1361.0 993.0
^23
^24
»25

4 5 1228.0 1022.0
5 4 1405.0 1052.0
5 5 1460.0 —. ___ ___ 1072.0

p

«¦o

6-0

R-IO

4-0 /
2.0 //
0 0
/
l > 5 * 5 1 15 < 1 O 1 1 2 13

v_ Fundamental
frz%ijLQriciL

?reajjencu Mumbav

Figure 5

possible to adjust the mass
distribution such that the error is
minimized. This is accomplished
by multiplying the natural
frequency of the membrane in which
the mass of cables is uniformly
distributed, by a factor called
the mass ratio, \i, For cable net-
works with span to spacing ratio
greater than 10, the mass ratio
for various frequencies is shown
in Fig. 6.
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7. Symbols
Length of rectangular boundary

parallel to x axis, in.
Total area of cables parallel
to x axis, in.
Total area of cables parallel
to y axis, in.*
in.b Length of rectangular boundary parallel to y axis,

dx Cable spacing parallel to x axis, in.
d,r Cable spacing parallel to y axis, in. „

Modulus of elasticity of membrane, lbs./in.
Time dependent function

F,(t) Time dependent forcing function (i x,y,z)
h Membrane thickness in.
[i] Identity matrix

Stiffness matrix of cable network defined in equation (15)
Concentrated mass at node j, Ib. see. /in.
Mass matrix of cable network defined in equation (15)
Ratio of network span to cable spacing (a/dx or b/cL)
Independent time variable
Tension in cable segment Jk, lbs.
Displacement of membrane parallel to x axis
Initial strain in membrane parallel to x axis
Membrane tension per unit of length parallel to x axis, lbs./in.
Displacement of membrane parallel to y axis
Initial strain in membrane parallel to y axis
Membrane tension per unit length parallel to y axis, lbs./in.
Displacement of membrane parallel to z axis

w(x,y) Initial shape of membrane at t 0

x,y,z Orthogonal cartesian coordinates
X Tension in cable parallel to x axis, lbs.
Y Tension in cable parallel to y axis, lbs.
u)mn Frequency of free Vibration of the membrane in the mn-th mode, eps
Q^ Frequency of free Vibration of cable network in the k-th mode, eps
P Mass density, lbs. sec./in.4
?,ri,£ Components of nodal displacements in the cable network parallel to the x,

y, and z axes respectively.
\i Ratio of mass of membrane obtained by uniform distribution of mass of cable

system to modified mass of membrane to be used.
Derivative with respect to time variable t.

E'
f(t)

[K]

Mvi3
R

t

u
„0
u
v
V0
yV

w
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Subscripts:
x,y Derivatives with respect to space variables x and y
C Cable network
M Membrane n „8. Summary

It has been shown that an appropriate flat membrane can be used to predict
the frequencies of free vibrations of a flat cable network. Thus, the much simpler
frequency equation of a membrane permits the accurate determination of the natural
frequencies for the cable network with span to spacing ratios greater than 10. This
simplified procedure eliminates the determination of eigenvalues of large order
matrices by relatively complex numerical methods or Computer computations.
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