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Optimal Design of Reinforced Concrete Beams and Frames
Dimensionnement optimal des poutres et portiques en béton armé

Optimale Bemessung der Stahlbetonbalken und -rahmen

M.Z. COHN D.E. GRIERSON
Professor of Civil Engineering and Lecturer in Civil Engineering
University of Waterloo, Waterloo, Ontario, Canada

The following optimization problem is solved in the paper:
design a structure of given geometry for maximum efficiency vs.
elastic design, so that under any possible load combination
certain specified minimum load factors be guaranteed against
both the collapse of the structure and the first yield of its
critical sections.

By linearizing the merit function and developing a method
to generate all limit equilibrium constraints the problem is
solved with the help of linear programming and computer techniques.

The principles involved and corresponding optimal solutions
are illustrated by the examples of a reinforced concrete con-
tinuous beam and frame.

INTRODUCTION

In the last few years, limit design (as opposed to limit analysis) methods
have been developed enabling limit equilibrium and serviceability conditions to
be explicitly used in the mathematical formulation of the problem.

Such methods, called "serviceability' (as opposed to "compatibility")
methods, have been exiensively applied to reinforced concrete continuous beams
(1], (2], [3) and [4]*. More recently the validity of these methods has been

% Figures within brackets refer to the list of references at the end of the
paper.
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investigated for a variety of basic assumptions and design criteria [5] and their
extension was developed for frame design [6], [7]. A comprehensive discussion of
the features of serviceability vs. compatibility methods has been presented by
reference to their use in building structures [8].

The possibility of considering a variety of design criteria was earlier
recognized [1], [5] and suggestions for optimizing relevant merit functions have

subsequently been given [6], [7].

The problem of optimal design for reinforced concrete frames has been for-
mulated in [6], but two major difficulties have been recognized in the actual
solution of the problem: 1) the explicit expression of suitable merit functions
and 2) the formulation of the limit equilibrium constraints for all possible
modes of structural collapse.

Some views on the first problem are offered in papers by MASSONNET and SAVE
[9] and by ANDERHEGGEN and THURLIMANN [10], in which the total cost or the steel
volume are suggested as merit functions, respectively. The authors tested, with
favorable results, the use of an "efficiency index" (defined as the ratio of the
steel consumption by limit vs. elastic designs, v = VO/VE) as merit function [7].

The second problem has been amply investigated [11] and a systematic pro-
cedure has been developed for generating all possible modes of collapse and pre-

dicting the most critical combinations [12].

As a result, by using mathematical programming techniques, it is now
possible, and this paper illustrates how, to produce direct designs of reinforced
concrete beams and frames such that 1) optimum, 2) limit equilibrium and
3) serviceability criteria be satisfied simultaneously.

It should be noted that an optimal solution verifying the three conditions
above would still have to be checked for compatibility. While it is possible to
add the compatibility conditions to those already considered and to attempt the
solution of the more general programming problem of optimization with compat-
ibility constraints, this will be left for a separate investigation.

THE OPTIMAL DESIGN PROBLEM

Consider a reinforced concrete beam or frame with given geometry and moments
of inertia, to resist a system of known loads varying between prescribed limits.

It will be assumed that:

1) Reinforced concrete can be idealized as an elasto-plastic material with
limited ductility;

2) All possible loading conditions are considered;

3) Limit equilibrium and serviceability are basic design criteria, with
compatibility to be separately investigated;

4) The optimum criterion is to accomplish the minimum volume of longitudinal
reinforcement.

It will also be assumed that bending action prevails, that shear and axial
forces are negligible and that inelastic rotations are concentrated at critical

sections as in the simple plastic theory.
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Let j =1, 2, ... s be the critical sections of the structure and M f, M
PlJ PJ

its corresponding positive and negative plastic moments, as in general,rein-
forced concrete sections may have unequal flexural resistance in the two bending
directions.

A design solution is found when a set of M ; and M ; is derived for all
P

critical sections of the structure such that the following conditions are
satisfied:

1) Optimum: the design will provide the minimum volume of flexural
reinforcing steel.

2) Limit Equilibrium: the structure will resist any loading combination
of an intensity less than the prescribed ultimate load Wu and may collapse
plastically for any load W > W,.

3) Serviceability: the critical sections of the structure will remain well
within the elastic range for any combination of working loads and hence will have
a safety against yield not less than a prescribed minimum value, xl. It can be

shown that provision of adequate yield safety will ensure satisfactory service-
ability, i.e. acceptable cracking, stresses and deflections.

Let W,o W and Xo be the ultimate load, the service load and the overall load

factor, respectively, when proportional loading is assumed, i.e. Wu = how. Let
M £ be the maximum (minimum) elastic envelope moment at section j, and denote le

as the yield load factor of section j, i.e. a plastic hinge will occur at this
section under some particular scheme of loading at a load level Kljw'

It can be shown [4] that the design plastic moment for section j is pro-
portional to the corresponding elastic envelope moment for the ultimate load:
M. = x, M, (1)
PJ J Mo J
The scale factor x. is called the yield safety parameter [3] and is defined
by the ratio of yield td ultimate load factors:

X, = xlj/xo (2)

It is noted that high x, values correspond to superior serviceability and
low x; values correspond to Jsuperior economy. An optimal solution will de-
termifie x, values that accomplish the largest overall steel savings consistent

with adequate serviceability. This is taken to mean that for any section, under
any loading condition,the yield load factor Klj is not smaller than a specified
lower bound kl = 1 (the case xl = 1 corresponds to the formation of a plastic
hinge at service loads). For a section to become a plastic hinge in some possible
mechanism it is necessary that llj < A,+ Therefore the serviceability constraints
become:

xl/ko < xj < 1 (i=1, 2, ... s) (3)

A limit equilibrium condition is associated with each possible mode of
plastic collapse (i) of the structure. This expresses the relationship between
the energy dissipated in the plastic hinge rotations U. and the external work

» ’ : e A .
Ei of the ultimate load in displacements corresponding to the mode of collapse 1i:

4
Ui > Ei (4)
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Relation (4) indicates that the structure collapses in the ith mechanism
at either the prescribed load factor A if U, = Ei or at a larger load factor
A2 A if U > E;. =

Assuming p possible mechanisms exist and expressing Ui in terms of the
plastic moments (1) and Ei in terms of the specified ultimate load, the

equilibrium constraints become after simplificatioms:
s
ng 1% 2% (i=1, 2, ... p) (5)

where aij and ci are some non-negative constants.
As the optimal solution corresponds by definition to the minimum steel
volume V, the merit function is:

M . ds
I _Eéf__ = I -2 M X, ds = min ! (6)

where the integral is extended over the entire length of the structure and K,
is a constant depending on the section geometry and materials properties.

In summary the optimal design problem consists of determining the x values
for s critical sections of the structure so that the optimum criterion (6),
the limit equilibrium constraints (5) and the serviceability constraints (3) be
satisfied.

This is easily identified as a typical programming problem to which the
standard algorithms of mathematical programming are applicable.

MERIT FUNCTION, CONSTRAINTS AND OPTIMAL SOLUTION

Merit Function. The concrete sizes being fixed, the amount of steel reinforce-
ment on which the design plastic moments depend is the only variable in the
feasible design solutions. In current detailing practice the reinforcement pro-
vided at critical sections is maintained constant over certain lengths of the
members before it is bent or terminated to conform with bond, anchorage and/or
shear requirements. As a result the resisting moments provided follow a step-
wise diagram, which can be idealized by a set of rectangles of depth M , and of

length Ej, the distance over which ij is maintained constant 8], [10].

With these assumptions and notations the steel volume associated with each
plastic moment can be expressed as:

V., = .4, = M .. /K 7
J ASJ J Pl EJ/ ] 7)

Therefore the merit function (6) expressing the total steel volume is linearized
in the form:

- _ 3
where Yj are the known ratios of moments of inertia for sections j to a

reference moment of inertia for the structure.
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Constraints. A major difficulty of the plastic analysis and design of highly
indeterminate frames consists of writing explicitly the equilibrium conditions
(5) representing the limit equilibrium constraints of the optimization problem.
In the paper this is done by an extension of the theory of '"combination of
mechanisms" due to Neal and Symonds [13], which is fully developed elsewhere

[11], [12].

The procedure is based on the fact that in the derivation of the optimal
solution only a limited number, m, of equilibrium conditions (collapse modes)
need be considered, which is called the critical or active set of equilibrium

constraints.

The active set of constraints is identified by the fact that 1) it contains
m = s - n collapse mechanisms, (n is the degree of statical indeterminacy of the
structure) 2) which are linearly independent, 3) have only one degree of free-
dom, and 4) correspond to the lowest load factors of any possible mechanism.
A computer programme which generates automatically all relevant combinations of
mechanisms (COMECH) and which identifies the critical set of constraints based
on the above mentioned criteria has been developed [11], [12]. A flow-diagram
of the COMECH programme is shown in Fig. 1.

READ PROBLEM DIMENSIONS
s,m,n

READ ROTATION COEFFICIENTS AND EXTERNAL
WORK CONSTANTS FOR THE INITIAL SET OF
LINEARLY INDEPENDENT MECHANISMS

GENERATE A COMBINED MECHANISM BY ADOING
NE INITIAL MECHANISM TO EITHER ANOTHER
INITIAL MECHANISM OR TO A PREVIOUSLY

Gl M
BEGIN A NEW ENERATED COMBINED MECHANISM

COMBINATION
CHAIN ‘

MECHANISM HAS ONE DEGREE OF FREEDOM p

{YES

| MECHANISM IS LINEARLY INDEPENDENT OF ALL
THE MECHANISMS ALREADY IN OUTPUT
STORAGE THAT HAVE SMALLER COLLAPSE
LOAD FACTORS ?

YES \ NO
PLACE MECHANISM IN OUTPUT RETAIN MECHANISM ONLY
-z STORAGE AND ALSO RETAIN FOR FUTURE COMBINATIONS —
FOR FUTURE CCMBINATIONS

OUTPUT STORAGE . LINEARLY INDEPENDENT
| MECHANISMS RANKED ACCORDING TO THE
MAGNITUDE OF THEIR COLLAPSE LOAD FACTORS

|

NO | HAVE ALL POSSIBLE COMBINATIONS BEEN
INVESTIGATED ?

YES

OUTPUT ©m LINEARLY INDEPENDENT MECHA-
NISMS HAVING ONE DEGREE OF FREEDOM AND
THE SMALLEST COLLAPSE LOAD FACTORS

sSTOP

FIG. 1
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Optimal Solution.

With the linear merit function (8), the serviceability con-

straints (5) and the equilibrium constraints determined by COMECH, the simplex
algorithm can be used to solve the resulting linear programming problem of

optimal design [14].
is used to solve this prcblem.

A standard computer programme for the simplex algorithm

The coefficients of the variables, the external work constants and the

bounds on the variables are given as input
as output:

and the following data are obtained

1) The optimal design plastic moments for all critical sections;
2) The efficiency index of the optimal design, v, and
3) The effective ultimate safety of the active collapse modes.

EXAMPLES

Example 1.
wL
Wo 'S
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03
(0-377) (0.377)

FIG. 2

Given is the five-span continuous beam with the geometry and loading

in Fig. 2a. Live loads are 2.5
times higher than the dead loads
and can be applied to any or all
of the spans. Dead and live

load factors of 1.5 and 1.8
respectively are assumed, con-
forming to the American practice.
An overall load factor ko = 1.715

is implied. A minimum yield
load factor kl = 1.2 is specified

and therefore the minimum xj
value permitted is xj = kllko =
1.2/1.715 = 0.7.

With the conventional
arrangement of the reinforcement
as in Fig. 2b, the elastic mom-
ent envelope coefficients in
Fig. 2c¢ and assuming Kj =K =

const., the merit function is
given by expression (9).

All possible modes of
collapse are indicated in Fig. 2d
and are labelled by (a), (b) and
(c). The corresponding limit
equilibrium conditions are given
by expressions (10).

The serviceability con-
straints are given by expression

(11).

Therefore the problem
statcment is:
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minimize:
Kv = £ 0.526 + L 0.610 x_, + 2 0.398 x_ + 1 0.538 x, + = 0.445 x (9)
3 UeDE0 Xy T g VDAY Ry T g HeIIR R W g MR R T 3 Y s
subject to:
1.052 X, + 0.610 x2 > 1.4 (10a)
0.610 x2 + 0.796 x3 + 0.538 x4 > 1.4 (10b)
1.076 x4 + 0.890 x5 > 1.4 (10c)
and: i
0.7 < xj <1 (i=1, 2, ... 5) (11)

The set of xj values corresponding to the optimal design is given in the

last column of Table 1.

It is to be noted that the optimal solution corresponds to conditions (10)
becoming equalities, i.e. to mechanisms (a), (b) or (c) occuring at the pre-
scribed load factor A = 1.715. Therefore this is a full redistribution design.
The corresponding bending moment diagram is illustrated by the full lines in
Fig. 2e.

For the sake of comparison the elastic solution and three additional limit
design solutions are provided as follows:

- a full redistribution design (FRD) based on [3], column 5 in Table 1 and
bending moment diagram in dotted lines, Fig. Ze.

~ two limited redistribution designs (LRD) labelled A and B respectively, with
equal design moments at a number of sections for convenience of steel
placing. These solutions are given in Table 1, columns 3 and 4, and the
corresponding bending moments are illustrated in Fig. 2f.

TABLE 1
EXAMPLE 1: DESIGN SOLUTIONS

x,. =M /A M

h] P} o]
Section ELASTIC OPTIMAL
€)) DESICN LRD:A LRD:B FRD DESIGN
1 1.000 0.887 0.887 0.916 0.889
2 1.000 0.763 0.763 0.712 0.760
3 1.000 0.946 0.781 0.732 0.700
4 1.000 0.700 0.866 0.712 0.700
5 1.000 0.848 0,700 0.712 0.726

Lower serviceability limit xj = 0.700

In Table 2 a summary is given of the effective safety against collapse for
the various designs. If K; is the actual load factor for a particular design

and collapse mode i the ratio xi/xo is indicative of the relative conservatism
of various solutions.

In the same table the efficiency index is given for all solutions studied.
As expected, it is noted that the larger is the relative safety against collapse
the less economical is the design. The optimal solution is evidently the most
efficient while providing exactly the required safety in all possible modes of
failure. Note that the full redistribution design (FRD)} is very close to the
efficiency of the optimal solution.
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TABLE 2

EXAMPLE l: STRUCTURAL SAFETY AND EFF1CIENCY

W

Mechanism ELASTIC OPTIMAL
(i) DESIGN LRD:A LRD:B FRD DESIGN
a 1.189 1.000 1.000 1.000 1.000
b 1.389 1.142 1.111 1.000 1.000
c 1.405 1.075 1.111 1.000 1.000

v = VO/VE 1.000 0.828 0.813 0.767 0.766

Example 2. The frame in Fig. 3a [13] is to be designed for any possible com-
bination of the applied live loads, assuming zero dead load. With an overall
load factor A\ = 1.8 and a minimum yield load factor kl = 1.2, the minimum per-
missible valud of x; = 1.2/1.8 = 0.667.

The reinforcing details are provided in Fig. 3b and the elastic moment
envelope is indicated in Fig. 3c. A merit function of the form (8) is obtained,
which is not reproduced here for the sake of brevity.

. o M1 T /77 SSS

2|7
}

T SN (77 IS (77
i E | -}_ {a) GEOMETRY &
i LOADING

o de i 7NN o possme
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T

NI
Loy

5271478 ] 281 |. 459
]

288
<650 |-
281

(b) LONGITUDNAL

LRD MOMENT
REINFORCE MENT (b)

ENVELOPE

LT

=
wl
I
r
1

305 -372 ‘428 458 -390 -30%8

312 g

(c) ELASTIC (C) OPTIMAL DESIGN
MOMENT ENVELOPE MOMENT ENVELOPE
335 a2 476 508 4% 339 (Mj/w L) e = wrme  (Mpj/AgW L)
FIG. 3 FIG. &4

Of all the potential collapse modes, the COMECH programme [11] identifies
the 10 mechanisms in Fig. 4a, which correspond to the critical or active set of
limit equilibrium constraints.
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By using the simplex computer programme the optimum solution is found and
the corresponding xt values are listed in the last columns of Table 3. Also

listed are the elastic solution (x* = const.) and a limited redistribution
design based on [7].

The B.M. diagrams associated with these designs are represented in Figs. 4b
and 4c, which are obtained by scaling down the bending moments in Fig. 3¢ with
the corresponding xj values in Table 3.

TABLE 3
EXAMPLE 2: DESIGN SOLUTIONS
x =M /xM
J pj ©]
ELASTIC LIM. RED. DESIGN OPT IMAL
Section DESIGN LRD DESIGN

(j) x+ X, x+ X, x+ X,

] J ] 3 j B
1 1.000 1.000 0.900 0.900 0.667 0.667
2 1.000 1.000 0.900 0.900 0.667 0.667
3 1.000 1.000 0.900 0.900 0.667 0.667
4 1.000 1.000 0.858 0.667 0.835 0.667
5 1.000 1.000 0.667 0.853 0.667 1.000
6 1.000 1.000 0.900 0.900 0.931 | 0.975
7 1.000 1.000 0.667 0.807 0.667 1,000
8 1.000 1.000 0.850 0.667 0.915 | 0.667
9 1.000 1.000 0.900 0.900 0.667 0.667
10 1.000 1.000 0.900 0.900 0.667 | 0.667
11 1.000 1.000 0.900 0.900 0.667 0.667
12 1.000 1.000 0.900 0.900 0.824 | 0.919

Lower serviceability limit xj = 0.667

The effective collapse safety of the elastic, LRD and optimal solutions is
indicated in Table 4, along with the corresponding efficiency indices. It should
be noted that the optimal design enables 8 modes of collapse at the prescribed
ultimate load with an overall steel reduction of about 20% vs. the elastic
solution. The limited redistribution design generates only 2 modes of failure

at A W with a steel saving of 14% vs. the elastic design.

TABLE 4

EXAMPLE 2: STRUCTURAL SAFETY AND EFFICIENCY

1
li/lo
Mechanism ELASTIC OPTIMAL
(i) DESIGN LRD DESIGN
1 1.46 1.26 1.26
2 1.42 1.20 1.28
3 1.31 1.18 1.00
[ 1.31 1.18 1.00
5 1.16 1.00 1.00
6 1.17 1.01 1.00
7 1.17 1.00 1.00
8 1.19 1.04 1.00
9 1.21 1.06 1.00
10 1.25 1.09 1.00
v VolvE 1.000 0.860 0.803
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CONCLUSTIONS

Optimal solutions can be derived for reinforced concrete beams and frames
for minimum steel consumption, with adequate safety against both the structural
collapse of structures and the first yield of their critical sections.

With the assumptions adopted in the paper the optimal design becomes a
linear programming problem, which can be solved by using digital computers.

Examples of optimal design presented indicate savings of 20 - 237 in steel
consumption vs. the elastic solutions based on the ultimate strength design for
the sections.

While the techniques described are straightforward when applied using a
digital computer, they appear prohibitive for hand calculation in design offices.

However standard optimal solutions may be computed and tabulated for typical
beams in the same way as in [4].

Data in Tables 2 and &4 confirm that the full redistribution design (FRD) is
nearly as efficient as the optimal design, a result which has been anticipated
in some previous studies [7], [8]. Because of this feature and of the relative
simplicity of serviceability methods it appears that approaching full redis-
tribution is a realistic and practical objective in the limit design of reinforced
concrete frames.
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NOTATION

35 s constants defining the internal and external work in the limit
equilibrium equations
Asj flexural reinforcement of section j
i index referring to the mode of collapse (mechanism)
j index referring to critical sections of the structure
Kj a constant which depends on the section geometry and materials
properties and defines the flexural reinforcement of section j.
Ej total distance over which ij prevails
m number of independent mechanisms
Mj elastic moment envelope value at section j
+ . . . <
ij design plastic moments at section j
n degree of statical indeterminacy of the structure
P total number of possible collapse modes (mechanisms)
s total number of critical sections of the structure
VE steel volume required by elastic design
VO steel volume required by optimal design
v = VO/VE efficiency index of the structural design

. Bg. Schlussbericht
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W service (dead + live) loads

WD, WL dead and live service loads, respectively

wu = Aow specified ultimate load

10 specified ultimate load factor

Rl specified yield load factor o

xi effective ultimate load factor in the i collapse mode
xlj minimum effective yield load factor of section j

xj = le/Ko yield safety parameter of section j

SUMMARY

Optimal solutions can be derived for reinforced concrete
beams and frames for minimum steel consumption, with adequate
safety against both the structural collapse of structures and
the first yield of their critical sections. With the assump-
tions adopted in the paper the optimal design becomes a linear
programming problem, which can be solved by using digital com-
puters.

While the techniques described are straightforward when
applied using a digital computer, they appear prohibitive for

hand calculation in design offices. However standard optimal
solutions may be computed and tabulated for typical beams in
the same way as in [4].

RESUME

I1 est possible d'arriver & un dimensionnement optimal
des poutres et portiques en béton armé pour un minimum d'arma-
ture, avec sécurité adéquate contre la ruine btale de la struc-
ture et la premiére rupture dans une section critique. L'éco-
nomie contre la méthode élastique est de l'ordre de 20-23 %.

La technique de calcul décrite est directe pour une cal-
culatrice électronique, main plutdét difficile pour le calcul
manuel. Cependant des solutions-standard pourraient é&tre pré-
parées en tabelles pour des poutres typiques, comme dans ['9].
D'ailleurs une méthode approchée (table 4) donne d'assez bons
résultats.

ZUSAMMENFASSUNG

Die optimale Bemessung der Stahlbetonbalken und -rahmen
ist bei gleicher Sicherheit gegen Traglast sowie erstem pla-
stischen Gelenk der gefdhrdeten Querschnitte fir ein Minimum
an Bewehrung moglich. Die Ersparnis gegeniiber der elastischen
Verfahren betrdgt 20-23 %.

Wdhrend die beschriebene Methode auf Digital-Computern
einfach anzuwenden ist, erscheint sie flir die Handrechnung
nicht empfehlenswert. Wie auch immer, die standardisierten
OptimumslGSsungen mogen in der gleichen Weise wie in [3] be-
rechnet und tabelliert werden. Im librigen ergibt ein N&he-
rungsverfahren (Tafel 4) hinreichend genaue Ergebnisse.
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