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Optimisation des structures par la considération des états limites plastiques
Optimierung der Tragwerke unter Berlcksichtigung der plastischen Grenzzustande

Optimisation of Structures on the Basis of the Plastic Behaviour of Material

PAUL ALBERT LORIN
Ingénieur-Conseil
Professeur a |'Ecole Nationale des Ponts et Chaussées
France

Une structure peut €tre considérée comme optimisée lorsque, congue pour
assurer correctement les services qui lui sont demandés, son exécution peut
€tre effectuée pour le moindre prix.

La recherche d'une structure optimale est nécessairement fort complexe,
compte tenu de toutes les données techniques et économiques.

Le poids de matiére employée est un élément du prix de revient, mais la
recherche du poids minimal n'est certainement pas la voie qui conduit au moindre
prix.

L'optimisation dans la conception et le dimensionnement conduira d la
recherche de la distribution la plus judicieuse de la matiére.

Dans cette recherche fort complexe nous ne considérerons ici qu'un seul
aspect : sécurité de la structure par rapport 3 la ruine par affaissement.

Cette étude laisse donc de cdté tout ce qui concerne les problémes de
rupture fragile ou d'instabilité de forme ; il ne faut pas se dissimuler 1'im-
portance de ces problémes d'instabilité lorsque l'on tient compte de la plasti-
fication de certains éléments.

Nous laissons également de cdté la prise en compte de toutes les incertitu-
des concernant l'action des charges et le comportement de la matiére. Il s'agit
13 d'un autre probléme ; on peut cependant remarquer que la méthode la plus
générale pour faire un contrdle en sécurité, s'appliquant tant dans le domaine
€lastique que dans le domaine plastique, est celle qui consiste d frapper les
diverses sollicitations de coefficients de pondération (méthode préconisée par
la Convention Européenne de la Construction Métallique).

Enfin 1l'étude se borne d 1'équilibre statique. On suppose donc que 1'appli-
cation des charges se fait progressivement, et que la structure en se déformant

sous l'action des charges est d tout instant en équilibre.

Traditionnellement les calculs de 1'équilibre de la structure se font en
supposant que la matiére est parfaitement élastique.

2. Bg. Schlussbericht
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I1 faut cependant signaler que de tout temps on a eu conscience de 1l'impor-
tance des qualités-plastiques en ce qui concerne la sécurité. Les plus anciens
cahiers des charges ont toujours exigé un important allongement plastique pour
les aciers de construction.

La ruine se produisant par affaissement, certains éléments sont nécessaire-
ment entrés en phase plastique. Le calcul élastique ne correspond donc pas au
comportcment réel de la matiére en état limite.

Une premiére conséquence est que le calcul élastique ne conduit pas a une
sécurité homogéne.

Une section soumise d flexion posséde une réserve de sécurité d'autant plus
grande que le moment de saturation plastique est plus différent du moment de
limite élastique. Plus une section est loin de l'optimisation élastique, plus
grande est la réserve de capacité de flexion par plastification.

Une structure hyperstatique calculée élastiquement posséde du fait des
plastifications possibles une réserve de capacité de résistance que ne posséde
pas une structure isostatique calculée avec les mémes critéres.

Ces deux faits 3 eux seuls justifient dejd la prise en compte des &tats
limites plastiques.

Mais le probléme que nous voulons aborder est celui-ci : "La considération
des états limites plastiques conduit-elle d une distribution plus judicieuse de
la matiére ?"

Nous simplifierons le probléme en supposant :

a) que la matiére est un corps élasto-plastique parfait (l'image corres-
pond assez bien & l'acier de construction)

b) que les sections fléchies sont optimisées élastiquement, c'est-3-dire
que toutes les fibres atteignent simultanément la limite élastique. Le moment
de limite élastique est alors égal au moment de saturation plastique.

Nous considérerons des systémes hyperstatiques.

Nous ferons souvent appel aux polygones d'écoulement (en employant la mé-
thode de RJANITSYN pour les systémes de poutres).

Pour un systéme de charges donné 1'état limite nous permettra de détermi-
ner 1l'état d'autocontrainte.

Le probléme pour les charges variables sera de savoir si cet état d'auto-
contrainte est définitif (structure adaptée) dans le cas contraire on aura
cumul de déformations sous mises en charges successives.

Nous aurons donc a considérer :

1) des systémes de charge invariables dans le temps (poids propre)

2) des systémes de charge variables en intensité ou en position.

1) SYSTEMES DE CHARGE INVARTABLES

Dans une structure isostatique les moments de flexion et efforts tran-
chants en tous points sont déterminés par le systéme de charge, et sont indé-
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pendants de la distribution de la matiére. L'optimisation élastique conduit

” 1] - . - . N . . . - s N '/
nécessairement au poids minimal de matiére. Si la distribution de matiere s'écar-
te de celle obtenue par optimisation élastique la plasticité n'apporte aucune
réserve de capacité.

Dans une structure hyperstatique les moments et efforts tranchants en tous
points dépendent non seulement du systéme de charge mais également des réactions

hyperstatiques et donc de la distribution de la matiére.

11 n'est donc pas évident que l'optimisation élastique qui impose un choix
des réactions hyperstatiques conduise au poids minimal.

Nous considérerons deux types de structure

a) un systéme réticulé

b) un systéme de poutres.

a) systéme réticulé.-

Nous supposons que toutes les barres sont rigoureusement centrées et que
nous pouvons négliger la rigidité des attaches

La barre d'indice i est soumise & un effort normal Ni fonction de n
inconnues hyperstatiques Ro""""Rn
Le potentiel élastique est 2, -
w='f2 Z Nl

' OESL

Si la structure est optimisée élastiquement, on a :
Nifs; = e
wz's £ Hilioo
b E

les n inconnues hyperstatiques sont définies par

MW - W
/an:o""‘ 4&1"
soit .
SNl ... . sl (4
{ 5pg *° ¢ 3hn )

Supposons que nous cherchions une autre distribution de matiére avec
n réactions Ré......R' obtenues par adaptation plastique et conduisant 3 l'em-
ploi du volumé minimal de matiére

La structure adaptée devra &tre optimale élastique pour avoir le volume
minimal

Les N. seront fonction de R'......R'
i o n
On aura ; e
N "/s,-, ="e

Le volume sera o1 ' .
V.-.'SE- b= /U'ész"L"

L'optimisation correspond aux n inconnues Ré ...... ...RA satisfaisant a
WL, 0., Y/
/JR"O"O .....'D/aﬂh__o
d'ou :
LA F .= W0 2
T R T 2]
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Le systéme (2) est identique au systéme (1), et donc les n valeurs optima-
les sont bien les n valeurs R ...... R_  correspondant 3 la distribution de

o]
matiére déterminée par optimisation eEasthue.

Pour le systéme réticulé l'optimisation élastique correspond au volume
minimal de matiére.

b) systéme de poutres.-

Nous supposons un systéme ol seuls les moments de flexion sont d prendre
en considération.

Le moment de flexion en un point d'abscisse s est fonction de n moments
hyperstatiques Mo........Mn , ce moment sera

M (s,Mo..........Mn)

Le potentiel élastique est

2
W.-:'/z M (s Ho...Mn) do
EI (A)
Les n moments Mo""""Mn sont obtenus par :

3
W/an.""’o""' 2:’" o ()

L'optimisation élastique pour la poutre de demi-hauteur v(s) conduit &

HV/I.:‘l_'v"‘

Dans la structure optimisée &lastiquement :
]
w=|/ ?'_zf I(A) dn (4)
2% Jg vn

L'optimisation élastique conduit ainsi & distribuer la matiére compte
tenu des n inconnues déterminées par le systéme (3).

Est-il possible d'avoir n valeurs M' ....... M' obtenues par adaption
plastique et conduisant @ une distributiSn de matiére donnant un volume minimal

pour les membrures ?

1 1
On aura M (s,Mo......Mn )

En tous points My [ pAw)
M? E.c-'z
12~ ¢
Si S est la section des 2 membrures au point d'abscisse s
I=Avt
Et le volume total sera : V=f Sdas
S
V=t L(2) da (5)
s Vs
Les n moments Mé ......... M' seront définis par :
o . N0 (é)

DMy W
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On voit en vertu de (4) et (5) que ce systéme (6) est identique au
systéme (3) donc : M= M'o ceeenes M= M'n

Comme dans le cas du systéme réticulé, L'optimisation &lastique conduit
au volume minimal de matiére.

En définitive donc, que le systéme soit isostatique ou hyperstatique, la
distribution de matiére déterminée par optimisation élastique conduit au volume
minimal de matiére. L'optimisation absolue n'est d'ailleurs pas réalisable.
Mais, contrairement & ce qui se passe pour les systémes isostatiques, si une
structure hyperstatique n'est pas optimisée élastiquement, l'adaptation plas-
tique permet une augmentation de la charge ultime d'autant plus importante
que la distribution de matiére est plus éloignée de celle déterminée par opti-
misation élastique. C'est-d-dire que, de méme que l'adaptation plastique amé-
liore d'autant plus le rendement d'une section en flexion que cette section est
plus mal conditionnée pour la flexion (écart entre le moment de limite élastique
et le moment de saturation plastique), de méme l'adaptation plastique d'une
structure hyperstatique améliore d'autant mieux la limite d'une charge de
distribution donnée que la répartition de la matiére s'écarte davantage de celle
obtenue par optimisation élastique.

Nous prendrons a titre d'a2xemple le cas d'une poutre continue 3 deux tra-
vées égales sous l'action d'une charge uniforme.

Soit p 1la charge par unité de longueur. Dans tout ce qui suit nous

prendrons une convention de signe trés couramment utilisée dans 1'&tude des
poutres : les moments seront comptés positifs dans le sens inverse des axes.

a) Poutre optimisée élastiquement

I1 est facile de voir que la distribution de matiere avec optimisation
€lastique conduit 3 un volume de membrures

Vb: XZLLL.Jﬂ?

b) Poutre & inertie constante 6v2 veg

En calcul élastique le volume de ces membrures est
v, -\, _6VZ -2
ez'fs = Y = 256V

En calcul plastique (formation d'une 2éme rotule en travée)
V. =(3.2VZkEYZ V, = 176 Y,
P Vz -1 1
On voit ainsi sur cet exemple 1l'intérdt de la prise en compte de la
plastification pour une poutre non optimisée élastiquement.

Sur l'exemple choisi on a d'aiilleurs une adaptation plastique assez impor-
tante, ainsi que l'on peut s'en rendre compte en cherchant 1l'ctat d'auto-
contrainte qui resterait dans la poutre si on la déchargeait.

En considérant le polygone d'écoulement on voit (en posant x = tl) que
le moment d'autocontrainte sur l'appui B est positif et égal & :

_8t.3
Ma=L5=-Ho
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L'adaptation se limitant au moment de la formation d'une deuxiéme rotule
plastique dans la section t = ¥Z .1 on trouve
= + O0,u56 M
My > 0
On voit ainsi pour une structure hyperstatique tout 1'intér@t pour la re-
cherche d'une optimisation économique de s'écarter de l'optimisation élastique
en simplifiant la structure d condition de tenir compte de 1l'adaptation plasti-
que sous l'action de charges permanentes.

2) CHARGES MOBILES

Le cas de charges mobiles est plus complexe tant en ce qui con:zerne l'opti-
misation élastique que l'adaptation plastique définitive, c'est-d-dire celle
qui rend le systéme adapté rigoureusement élastique sous l'action des charges
mobiles et qui assure donc qu'il n'y aura pas de cumul de déformations sous le
passage des charges mobiles.

Pour trouver la distribution de matiére conduisant 3 l'optimisation élas-
tique, il faudra chercher la courbe enveloppe des moments fléchissants maximaux
dans chaque section d'abscisse s.

Soit VZ[A cette loi de la courbe enveloppe. En optimisation élastique
on devra avoir si I(s) et v(s) sont l'inertie et la demi-hauteur de la

section définie par s
__Hls)v(d)
T

L)

Pour chaque position de la charge on aura une loi des moments M(s,M....M )

ol M ++...M_sont les moments sur appuis du systéme hyperstatique, définfs
si f est 18 potentiel élastique avec la loi M(S,M0 ..... Mn) par
?-.!,—-0-.......'.3_".\/-—0
VMo~ DM, T

La loi () dépend ainsi de la distribution de la matidre. L'optimisa-
tion élastique est possible par itération en partant par exemple d'une loi
I(s) = Cte.

Mais il n'est plus possible de démontrer simplement que l'optimisation
élastique dans le cas de charges mobiles conduit au poids minimal de matiére.

Nous allons étudier l'optimisation élastique, et l'adaptation plastique
d'une poutre non optimisée élastiquement sur le cas simple déja envisagé plus
haut d'une poutre continue d deux travées égales sous le passage d'une charge
mobile unique.

a) Poutre optimisée €lastiquement

Soit la charge mobile P agissant dans la section d'abscisse x =& 1,
la section courante étant x = tl R
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4 FIé 7
lP
A ! t5 4
TT_:“’LZ_L i | :
Y - .
-y )

Le moment sur appuJ. B pour la charge P en X, = &1 sera:

i f(»l—d.)t.“_t +jdt(4 L-)‘”'
M =z -

B
2 f bt
3e)

Pour faire un calcul numérique nous divisons la poutre de A & B en n par-

ties égales, chacun de ces n trongons ayant une inertie Il’ I2......In

t)

Nous plagons la charge successivement d l'extrémité d'un trongon (le q°)
soit ™ =q/n

h=n

A-d.)Z 1 N-p+lf +=AZ [("H)P = 3"”]
¥ -( ( 3) X(_e_{
B= p=n 2 B
EAR/NCEIEY

Ceci permet de calculer le moment en chaque trongon noté p pour une char-
ge placée en g, on obtient

q
r1p = KPL
Pour chaque valeur de p on désignera par vff la valeur maximale
de M3 et on écrira
P
=Apy
“e

En partant d'une loi I_ = Cte on peut par approximations successives trou-
ver les valeurs optimales Paer

Le calcul a été fait au Centre de calcul de 1l'Institut Frangais du Pétrole.
On a pris n = 10, 3 la 6° approximation la correction était de 1l'ordre

de 1074

Les inerties Ip qui ont été déterminées sont

I o éPLv

P
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Les valeurs de A optimisées sont les suivantes :

D 1 2 3 4 5
A 0,088467 0,1514082 0,197291 0,218701 0,219136
p 6 7 8 9 10

A 0,199769 0,162440 0,110592 0,053356 0,067942

On a alors le volume V_des membrures d'une poutre optimisée élastiquement:

2 )
v == 25.L_PlY ZA_ o.1471 L£t*

o q v 1o Lr | VGE

b) Poutre 3 inertie constante

En période élastique le moment maximal en valeur absolue se produit toujours
au point d'application de la charge P point noté Xy =« 1

Ce moment est :

- d(l-o&)(‘;’,-ﬂll«kd))pb

Si M_ est le moment de limite élastique égal par hypothése au moment de sa-
turation “plastique, la charge admissible au point défini par & sera

- 4 My
Q) (4-o(1+)) T

La poutre étant & inertie constante on aura

P =

- ISe_ 25yc;
MO—T.. S\le

La charge admissible pour toute position sera celle donnée par la valeur
de ¢! rendant maximale 1'expression
qfd-e)[y-a(i+a)]

Soit pour & = 0,43
Ce qui donne la valeur maximale de P
P = u,819 Mo

Le volume Ve des membrures d'une poutre de portée 1 sera

pe’
v = 28] =T - = 0.20}5 ——
e Vg 4.8 veog N Gg
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Nous allons chercher le comportement plastique de cette poutre & inertie
constante sous le passage de la charge P.

Pour étudier la plastification de la poutre nous considérerons les polygo-
nes d'écoulement pour chaque position X, = 1 de la charge P, en utilisant la
méthode de Rjanitsyn.

D'aprés les calculs indiqués précédemment (dans la recherche de 1l'optimisa-
tion élastique) le moment élastique sur 1l'appui B pour une charge P placée en
x = o 1 sera:

o)
M = - Pe d‘v{_dz
B /4' )

Si M' désigne le moment en phase élastique on a :
ogt £t Mz PL(I-d)E-P «(1-a?)L

otz Mzptafi-t)-Plg(i-al)t

| <tsg2 'z Pl A (1-at) (2-F)

Nous désignerons toujours par M le moment de limite élastique ou de satu-
ration plastique

uo= %2 Yy

Nous supposerons aprés adaptation plastique qu'il y a en B un moment d'au-
tocontrainte

74,

Les moments M dans la poutre sont alors :
o<kg| H;NlpHd
1<t<2  MzMtp Mo(2-t)

Nous poserons P At o
} caractérise l'état de charge et q 1'autocontrainte

ogbsd Ms[(2__Ztant]Mo

dgbe) M= [(Z0-8)-t)§4qt]to
tetsr M=[-(2-8)8 #n(2-E)] Mo

Supposant <{ donné (charge P en X - f ) la condition limite de plas-
ticité s'écrit en tout point :

~H°<M<+‘Mo

Pour cette charge P en % le diagramme des moments de flexion est toujours
le suivant :
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C'est-a-dire pour les limites :

(& -s)3+etq-t=0 (tza)

[ 4ot
~&4n+i=0 (b=1)

=

0.622
/s

\(<
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On a ainsi une famille de polygones d'écoulement en fonction de « délimi-
tés par les 2 droites d'équations ci-dessus pour t = & et t =1

La droite (t =& ) coupe l axe O § en un point a, ce point varie de
a ( g = 0,25 pourt = 0) 4 (é 1 pourd = 1).

Cette droite (t =%) coupe la droite (t = 1) en un point b variant de

b0 (pour ¥ = 0) & b, (pourd = 1).

Appliquant P au point X =l et partant d'un état naturel en faisant
croitre P depuis la valeur 0° 1le point représentatif se déplace sur l'axe O&
Lorsque ce point arrive & a (intersection de la droite t =& avec 0§ ) P
atteint la charge limite élastique qui correspond a

SRNEL
4-(1+d)
La charge limite élastique P_ (el) est alors : P( d)= t!.?
e d(u-.:)m (1)) L

Si P continue & croitre g augmente il y a plastificatlon dans la section
X, = al , e po;mt représentatif décrit la droite t =« & partir de a. Lors-
que ce p01nt arrive en b (intersection des droites t =% et t = 1) on atteint
le moment limite en B, & cette valeur de Q correspond la charge ultime plasti-

que P (), on a alors
g -~ (_l‘{"‘)”
4

d'ol :
P (d): 14l Mo
B K(1-a) L

Si on déchargeait alors la poutre il y aurait en B un moment d'autocon-
trainte

MB = —(" -(L;.—dp) Mo

Si 1l'on cherche la charge mobile ultime P _, cette charge doit &tre la plus
petite valeur de Pu (o0), variant de 0 a 1.

Ce minimum se produit pour

d ls+d
AL w(i-a)~
Soit : ol=Vz.-I
On a alors :
P = S' 828 No/b

u
(RJANITSYN a donné le méme résultat obtenu par une autre méthode).
Si cette charge P_ arrivée au point x =(fi-1)  on supprimait cette charge

u
on aurait en B un moment d'autocontrainte déterminée par l'ordonnée du point b
c'est-d-dire ?]:—05

Mg = = 0,5 M

Si la charge P, va au-deld de x :(JI-\)E s é continue d croltre,
car ¢ est donné par :

“/Mo 5; L (1-%2) = .46 (1-u?)
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passe donc par un maximum pour la valeur maximale de ﬂ(l-txz)
ce qui se produit pour & = yug

&
On a alcrs §= Lgelx L x Z_- o0.562
V8 3
Le point représentatif s'est déplacé sur la droite t = 1 (plastification
sur l'appui B) de bl ac.

L'ordonnée de c¢ sur cette droite t = 1 est
-1+0,562 = - 0,438

Lorsque la charge mobile P se déplace 3 partir de l'appui A, il y a plas-
tification dans la section C ( “&=(fZ-1)E ) au moment ol la charge arrive en C
et le moment d' autocontralnie en B est alors -0,5 M ; lorsque cette charge
arrive en D ( %=z /fs } i1 y a plastification sur 1' appu1 B et le moment d'au-
tocontrainte en B n'est plus alors que - 0,438 M_ ; si la charge continue vers
A' de D'( ®= (2-Yy; - tyacr (»= D% Vi l){] ) iloy a plastification des sec-
tions de D' & C' et le moment d'autocontrainte en B remonte 3- 0,5 M .

A Y iD '8 lv’ic’ A’
Fiﬂ?ili_' | | |
| I
| x=z (2-Y)
e s B —— - 4
| za(alEe J

Chaque passage de la charge P sur toute la poutre provoque de nouvelles
déformations permanentes, il y a cumul de déformations.

La charge P, n'est admissible que si elle n'est susceptible d'étre appli-
quée qu'un nombre trés limité de fois au cours de la vie de 1l'ouvrage.

La charge ultime PT admissible pour un nombre illimité de passages est
inférieur 3 P_. On peut déterminer cette charge en imposant la condition que
le moment d'autocontrainte en B atteigne une valeur définitive aprés un premier
passage.

On trouve le qo maximal constant

'|°= ~0.448

correspondant d une charge ultime

pr = §342 Mo P _5.828 Mo
u 1 ¢ <'a ;
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Si 1'on veut maintenant comparer 1l'économie de volume des membrures d'une
travée de portée 1 pour une charge mobile P on écrira :

Mo = 0% xﬂy
I=.25V2

et le volume des membrures pour une travée de portée 1 sera

V:ZSL: N"Aq_,a,a.
Avec la charge ultime P! = 5,742 f4%@

On a le volume :
. 0 _ o321 PRE

¥, = o= =

p S5.342 VO vog

Ainsi pour le cas de la charge mobile P on peut comparer les résultats
obtenus pour le volume des membrures

2
- poutre optimisée élastiquement V_ = OJU?ljﬂl.
o VGe
- pour une poutre d'inertie constante e
calculée élastiquement V. =0,2036 PL = L4uve
e Vig
- pour une poutre d inertie constante pe?
calculde plastiquement V. =0, 1FHT == 1134V,
P Vo,

On voit ainsi pour la charge mobile, comme pour le cas de la charge perma-
nente, que si l'optimisation élastique conduit au volume minimal, il y a un
gain considérable ,lorsque la distribution de matiére est loin de celle détermi-
née par optimisation élastiqug’é prendre en compte 1'état limite plastique.

Combinaison de la charge permanente et de la charge mobile.-

On pourra reprendre l'étude en considérant d nouveau les frontiéres d'écou-
lement sous l'effet d'une charge permanente p par unité de longueur et d'une
charge mobile P,

On posera :

pl = KP

On aura pour chaque valeur de K des familles de frontiéres d'écoulement
en fonction de ®

Le développement de cette discussion est trop long pour trouver sa place
ici.

On peut pour chaque valeur de K déterminer la charge ultime admissible par
la recherche du moment d'autocontrainte donnant une adaptation définitive.

Voici quelques résultats

- pour K = 0,1 (charge mobile égale 3 10 fois le poids permanent)
Ho = - 0,409
- pour K = 1 (charge mobile égale au poids permanent)

']o = = 0,15
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- pour K = 10 (charge mobile égale au dixiéme du poids permanent)

N + 0,318

Lorsque la charge mobile est faible il y a adaptation plastique sur 1'appui
central et le moment d'autocontrainte sur appui est positif.

Si 1'on fait croitre la valeur de la charge mobile par rapport au poids
permanent, le moment d'autocontrainte sous la charge ultime diminue.

Pour une certaine valeur de KHh= 0, il n'y a pas d'adaptation, pour cette
valeur de K la poutre 3 inertie constante est optimale élastiquement.

Si la valeur de la charge mobile croit encore par rapport au poids perma-
nent, l'adaptation plastique se produit sous la charge ultime en travée, et le
moment d'autocontrainte sur appui central est négatif.

Enfin 3 partir d'une certaine valeur de K il y a risque de cumul de défor-
mations plastiques.

Conclusion

On voit en définitive que quels que soient les systémes de charges, perma-
nentes ou variables, pour une structure constituée en matériau pouvant, tel que
1'acier doux, &tre considéré comme élasto-plastique, la distribution de matiére
déterminée par optimisation élastique conduit toujours au poids minimal.

L'optimisation élastique rigoureuse est souvent irréalisable, en outre elle
conduit trés généralement & une structure onéreuse (sauf cas exceptionnels ol
la structure simple est en méme temps optimale élastiquement, comme on a vu que
c'était le cas pour une poutre continue @ 2 travées égales pour un certain rap-
port entre la charge et la charge permanente).

Lorsque la structure s'écarte de l'optimal élastique elle a, si elle est
hyperstatique, une réserve de capacité pour la charge ultime d'affaissement en
calcul élastique que n'a pas la structure isostatique.

On doit donc tendre 3 réaliser des systéme hyperstatiques 3 condition de
baser la sécurité sur la charge ultime plastique, ce qui permet de simplifier
la structure avec une majoration de poids relativement faible, et donc d'opti-
miser la structure sur le critére de l'économie de réalisation.

Dans le cas de charges mobiles non exceptionnelles le calcul plastique
peut conduire au danger du cumul des déformations.

Le critére alors 3 considérer est 1'état d'autocontrainte qui doit &tre
constant dans toutes les situationms.

On peut donc établir une programmation sur la base du calcul élastique pour
chercher la distribution de matiére la plus éconcmique.

L'état d'autocontrainte peut €tre déterminé sans tracer de diagrammes par
des calculs élastiques.

L'état d'autocontrainte est un critére d la fois pour l'optimisation et
pour la vérification du non cumul de déformations.
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RESUME

Pour un matériau élasto-plastique, la distribution de matiére
déterminée par optimisation élastique conduit, pour les charges per-
manentes et variables, au poids minimal que la structure soit iso-
statique ou hyperstatique.

L'avantage de la structure hyperstatique, si on envisage 1l'état
limite plastique, est de pouvoir réaliser économiquement en simpli-
fiant et s'écartant de 1l'optimal élastique.

On détermine, par des calculs élastiques, 1l'état d'auto-con-
trainte qui sera un critére d'optimisation et de vérification de
non cumul des déformations.

ZUSAMMENFASSUNG

Flir einen elastisch-plastischen Werkstoff fihrt die durch
elastische Optimierung erhaltene Materialverteilung sowochl unter
stdndiger Last als auch bei veré@nderlichen Lasten zum minimalen
Gewicht, gleichwohl ob das Tragwerk statisch bestimmt oder unbe-
stimmt ist.

Statisch unbestimmte Tragwerke bieten den Vorteil, dass sie
bei Beriicksichtigung des plastischen Grenzzustandes durch Ver-
einfachung und unter Abweichung vom elastischen Optimum wirt-
schaftlich ausgefiihrt werden konnen.

Es wird durch elastische Berechnung der Eigenspannungszustand
ermittelt, welcher als Kriterium der Optimierung und der Nicht-
iberlagerung der Verformungen dient.

SUMMARY

For an ideal elastic-plastic material, the optimisation based
on elastic calculations of a statically determined or indetermined
structure provides the minimum weight material distribution.

When computing a statically indetermined structure on the
basis of plastic behaviour, it is possible to simplify the op-
timum elastic material distribution in a more economical way.

The residual stresses remaining in the structure after un-
loading is a criteria of optimisation and a test against increas-

ing permanent deformations with every loading cycle.
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