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Optimisation des structures par la consideration des etats limites plastiques

Optimierung der Tragwerke unter Berücksichtigung der plastischen Grenzzustände

Optimisation of Structures on the Basis of the Plastic Behaviour of Material

PAUL ALBERT LORIN
Ingenieur-Conseil

Professeur ä l'Ecole Nationale des Ponts et Chaussees
France

Une structure peut etre consideree comme optimisee lorsque, concue pour
assurer correctement les Services qui lui sont demandes, son execution peut
etre effectuee pour le moindre prix.

La recherche d'une structure optimale est necessairement fort complexe,
compte tenu de toutes les donnees techniques et economiques.

Le poids de matiere employee est un element du prix de revient, mais la
recherche du poids minimal n'est certainement pas la voie qui conduit au moindre
prix.

L'optimisation dans la conception et le dimensionnement conduira ä la
recherche. de la distribution la plus judicieuse de la matiere.

Dans cette recherche fort complexe nous ne considererons ici au'un seul
aspect : securite de la structure par rapport ä la ruine par affaissement.

Cette etude laisse done de cote tout ce qui concerne les problemes de

rupture fragile ou d'instabilite de forme ; il ne faut pas se dissimuler
1'importance de ces problemes d'instabilite lorsque l'on tient compte de la
plastification de certains eiements.

Nous laissons egalement de cote la prise en compte de toutes les incertitu-
des concernant l'action des charges et le comportement de la matiere. II s'agit
lä d'un autre probleme ; on peut cependant remarquer que la methode la plus
generale pour faire un contröle en securite, s'appliquant tant dans le domaine
elastique que dans le domaine plastique, est celle qui consiste ä frapper les
diverses sollicitations de coefficients de ponderation (methode preconisee par
la Convention Europeenne de la Construction Metallique).

Enfin l'etude se borne ä l'equilibre statique. On suppose done que 1'application
des charges se fait progressivement, et que la structure en se deformant

sous l'action des charges est ä tout instant en equilibre.

Traditionnellenent les calculs de l'equilibre de la structure se fönt en
supposant que la matiere est parfaitement elastique.

>. Bg. Schlussbericht
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II faut cependant signaler que de tout temps on a eu conscience de 1'importance

des qualites-plastiques en ce qui concerne la securite. Les plus anciens
cahiers des charges ont toujours exige un important allongement plastique pour
les aciers de construction.

La ruine se produisant par affaissement, certains eiements sont necessairement

entres en phase plastique. Le calcul elastique ne correspond done pas au
comportement reel de la matiere en etat limite.

Une premiere consequence est que le calcul elastique ne conduit pas ä une
securite homogene.

Une section soumise ä flexion possede une reserve de securite d'autant plus
grande que le moment de Saturation plastique est plus different du moment de

limite elastique. Plus une section est loin de 1'optimisation elastique, plus
grande est la reserve de capacite de flexion par plastification.

Une structure hyperstatique calculee elastiquement possede du fait des

plastifications possibles une reserve de capacite de resistance que ne possede
pas une structure isostatique calculee avec les memes criteres.

Ces deux faits ä eux seuls justifient dejä la prise en compte des etats
limites plastiques.

Mais le probleme que nous voulons aborder est celui-ci : "La consideration
des etats limites plastiques conduit-elle a une distribution plus judicieuse de

la matiere ?"

Nous simplifierons le probleme en supposant :

a) que la matiere est un corps elasto-plastique parfait (l'image correspond

assez bien ä l'acier de construction)

b) que les sections flechies sont optimisees elastiquement, c'est-ä-dire
que toutes les fibres atteignent simultanement la limite elastique. Le moment
de limite elastique est alors egal au moment de Saturation plastique.

Nous considererons des systemes hyperstatiques.

Nous ferons souvent appel aux polygones d'ecoulement (en employant la
methode de RJANITSYN pour les systemes de poutres).

Pour un Systeme de charges donne l'etat limite nous permettra de determiner

l'etat d'autocontrainte.

Le probleme pour les charges variables sera de savoir si cet etat
d'autocontrainte est definitif (structure adaptee) dans le cas contraire on aura
cumul de deformations sous mises en charges successives.

Nous aurons done ä considerer :

1) des systemes de Charge invariables dans le temps (poids propre)
2) des systemes de charge variables en intensite ou en position.

1) SYSTEMES DE CHARGE INVARIABLES

Dans une structure isostatique les moments de flexion et efforts
tranchants en tous points sont determines par le Systeme de charge, et sont inde-
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pendants de la distribution de la matiere. L'optimisation elastique conduit
necessairement au poids minimal de matiere. Si la distribution de matiere s'ecar-
te de celle obtenue par optimisation elastique la plasticite n'apporte aucune
reserve de capacite.

Dans une structure hyperstatique les moments et efforts tranchants en tous
points dependent non seulement du Systeme de charge mais egalement des reactions
hyperstatiques et done de la distribution de la matiere.

II n'est done pas evident que 1'optimisation elastique qui impose un choix
des reactions hyperstatiques conduise au poids minimal.

Nous considererons deux types de structure :

a) un Systeme reticule
b) un Systeme de poutres.

a) Systeme reticule.-

Nous supposons que toutes les barres sont rigoureusement centrees et que
nous pouvons negliger la rigidite des attaches

La barre d'indice i est soumise ä un effort normal N. fonction de n
inconnues hyperstatiques R R

Le potentiel elastique est : »

' l esc

Si la structure est optimisee elastiquement, on a :

Mü/5- cre

W='/i£ rUUora
V E

les n inconnues hyperstatiques sont definies par

V °th«fl
soit : « ». • *

Supposons que nous cherchions une autre distribution de matiere avec
n reactions R' R' obtenues par adaptation plastique et conduisant ä l'em-
ploi du volume minimal de matiere

La structure adaptee devra etre optimale elastique pour avoir le volume
minimal

Les N. seront fonction de R' R'l o n

On aura ri iL °~^

Le volume sera :

L'optimisation correspond aux n inconnues R' R1 satisfaisant ä
o n

V=E. SiLi-l/ eh;i;l «rj It

aux n inconnues R'.

'Vr0 wL«ö
d'oü :

r^fli U*o rz.wüt-^o [z)
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Le Systeme (2) est identique au Systeme (1), et done les n valeurs optimales

sont bien les n valeurs R R correspondant ä la distribution de
.o sex

matiere determinee par optimisation elastique.

Pour le Systeme reticule 1'optimisation elastique correspond au volume
minimal de matiere.

b) Systeme de poutres.-

Nous supposons un Systeme oü seuls les moments de flexion sont ä prendre
en consideration.

Le moment de flexion en un point d'abscisse s est fonction de n moments

hyperstatiques M M ce moment sera

M<s>Mo V
Le potentiel elastique est r

Les n moments M M sont obtenus par :
o n

DM/ ^ö "LW 0 (*)

L'optimisation elastique pour la poutre de demi-hauteur v(s) conduit ä

Hv/j t^
Dans la structure optimisee elastiquement :

n E ¦>£. V(A)

L'optimisation elastique conduit ainsi ä distribuer la matiere compte
tenu des n inconnues determinees par le Systeme (3).

Est-il possible d'avoir n valeurs M' M' obtenues par adaption
plastique et conduisant ä une distribution de matiere donnant un volume minimal
pour les membrures

On aura M (s ,M' M'
o n

En tous points MyL ri^e
?Üyl er2

Si S est la section des 2 membrures au point d'abscisse s

I=pivl
Et le volume total sera : Vrf S^-4

V-f££±>^ (5)

Les n moments M1 M' seront definis par :
o n e

21.0 H-o (6J
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On voit en vertu de (4) et (5) que ce Systeme (6) est identique au
Systeme (3) done : M =M' M =M'

o o n n

Comme dans le cas du Systeme reticule, 1'optimisation elastique conduit
au volume minimal de matiere.

En definitive done, que le Systeme soit isostatique ou hyperstatique, la
distribution de matiere determinee par optimisation elastique conduit au volume
minimal de matiere. L'optimisation absolue n'est d'ailleurs pas realisable.
Mais, contrairement ä ce qui se passe pour les systemes isostatiques, si une
structure hyperstatique n'est pas optimisee elastiquement, l'adaptation
plastique permet une augmentation de la charge ultime d'autant plus importante
que la distribution de matiere est plus eloignee de celle determinee par
optimisation elastique. C'est-ä-dire que, de meme que l'adaptation plastique ame-
liore d'autant plus le rendement d'une section en flexion que cette section est
plus mal conditionnee pour la flexion (ecart entre le moment de limite elastique
et le moment de Saturation plastique), de mSme l'adaptation plastique d'une
structure hyperstatique ameliore d'autant mieux la limite d'une charge de
distribution donnee que la repartition de la matiere s'ecarte davantage de celle
obtenue par optimisation elastique.

Nous prendrons ä titre d'exemple le cas d'une poutre continue ä deux travees

egales sous l'action d'une charge uniforme.

Soit p la charge par unite de longueur. Dans tout ce qui suit nous
prendrons une Convention de signe tres couramment utilisee dans lletude des
poutres : les moments seront comptes positifs dans le sens inverse des axes.

a) Poutre optimisee elastiquement

II est facile de voir que la distribution de matiere avec optimisation
elastique conduit ä un volume de membrures

b) Poutre ä inertie constante ^2 Vea

En calcul elastique le volume de ces membrures est

En calcul plastique (formation d'une 2eme rotule en travee)
V -(3_2V2}*iVi:V0= IfSv«,

V5-I ^ '
On voit ainsi sur cet exemple l'interet de la prise en compte de la

plastification pour une poutre non optimisee elastiquement.

Sur 1'exemple choisi on a d'ailleurs une adaptation plastique assez importante,

ainsi que l'on peut s'en rendre compte en cherchant l'«tat d'auto-
contrainte qui resterait dans la poutre si on la dechargeait.

En considerant le polygone d'ecoulement on voit (en posant x tl) que
le moment d'autocontrainte sur l'sppui B est positif et egal ä :

M,3=.JJlJlNo
4t2
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L'adaptation se limitant au moment de la formation d'une deuxieme rotule
plastique dans la section t -i2 - I on trouve :

M + 0,456 M„
a 0

On voit ainsi pour une structure hyperstatique tout l'interet pour la
recherche d'une optimisation economique de s'ecarter de 1'optimisation elastique
en simplifiant la structure ä condition de tenir compte de l'adaptation plastique

sous l'action de charges permanentes.

2) CHARGES MOBILES

Le cas de charges mobiles est plus complexe tant en ce qui concerne
1'optimisation elastique que l'adaptation plastique definitive, c'est-ä-dire celle
qui rend le Systeme adapte rigoureusement elastique sous l'action des charges
mobiles et qui assure done qu'il n'y aura pas de cumul de deformations sous le
passage des charges mobiles.

Pour trouver la distribution de matiere conduisant ä 1'optimisation
elastique, il faudra chercher la courbe enveloppe des moments flechissants maximaux
dans chaque section d'abscisse s.

Soit ^x^-d) cette loi de la courbe enveloppe. En optimisation elastique
on devra avoir si I(s) et v(s) sont l'inertie et la demi-hauteur de la
section definie par s :

Xi»~-
o~de

Pour chaque position de la charge on aura une loi des moments M(s,M....M
oü M M sont les moments sur appuis du Systeme hyperstatique, definis
si w est le potentiel elastique avec la loi M(s,M M par :

™=o. ™=0«Mo "oMn

La loi t/oC1*) depend ainsi de la distribution de la matiere. L'optimisation
elastique est possible par iteration en partant par exemple d'une loi

I(s) Cte.

Mais il n'est plus possible de demontrer simplement que 1'optimisation
elastique dans le cas de charges mobiles conduit au poids minimal de matiere.

Nous allons etudier 1'optimisation elastique, et l'adaptation plastique
d'une poutre non optimisee elastiquement sur le cas simple dejä envisage plus
haut d'une poutre continue ä deux travees egales sous le passage d'une Charge
mobile unique.

a) Poutre optimisee elastiquement

Soit la charge mobile P agissant dans la section d'abscisse x - << 1,
la section courante etant x tl
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Ff<k 1

Xu i i L 0-

Le moment sur appui B pour la charge P en x OC 1 sera :

M - PI. A l££? TJ< ifU
B " 7*

2 k*ih

Pour faire un calcul numerique nous divisons la poutre de A ä B en n parties

egales, chacun de ces n troncons ayant une inertie I I„ I

Nous placons la charge successiver.ient ä l'extremite d'un troncon (le q°)
soit -M=<\/n

t> 1 h=n

Ma
|>S| W J/ h^ + l b

_
ft V^'A)

K£)

Ceci permet de calculer le moment en chaque troncon note p pour une Charge

placee en q, on obtient

mJ,= k pi
Pour chaque valeur de p on designera par t/Ca la valeur maximale

de AA? et on ecrira

En partant d'une loi I Cte on peut par approximations successives trou-
ver les valeurs optimales de I

Le calcul a ete fait au Centre de calcul de 1'Institut Francais du Petrole.

On a pris n 10, ä la 6° approximation la correction etait de 1'ordre
de 10-4

Les inerties I qui ont ete determinees sont
P

I - APiv
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Les valeurs de A optimisees sont les suivantes

P 1 2 3 4 5

A 0,088467 0,154082 0,197291 0,218701 0,219136

P 6 7 8 9 10

A 0,199769 0,162440 0,110592 0,053356 0,067942

On a alors le volume V des membrures d'une poutre optimisee elastiquement:

v =s:25hIsPLv r.A= o.l+flli*
° -\ F 1° <rc i vo£

b) Poutre ä inertie constante

En periode elastique le moment maximal en valeur absolue se produit toujours
au point d'application de la charge P point note x =<H 1

M

Ce moment est :

«fl-tp^-«(Hot)) PL
4

Si M est le moment de limite elastique egal par hypothese au moment de
Saturation plastique, la Charge admissible au point defini par ot sera

Mv

La poutre etant ä inertie constante on aura

M *2*=.2r$vö£
o v

La charge admissible pour toute position sera celle donnee par la valeur
de c^ rendant maximale 1'expression

ol(.{-el)[n..oi(l + ot)]

Soit pour d =0,43

Ce qui donne la valeur maximale de P

P 4,819 tlf

Le volume V des membrures d'une poutre de portee 1 sera

V =281= ^i-~L- J±S 0.2OX6 £!*
e v«^ 4.g,i(j vo£ v^e
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Nous allons chercher le comportement plastique de cette poutre ä inertie
constante sous le passage de la charge P.

Pour etudier la plastification de la poutre nous considererons les polygo-
nes d'ecoulement pour chaque position x « 1 de la charge P, en utilisant la
methode de Rjanitsyn.

D'apres les calculs indiques precedemment (dans la recherche de 1'optimisation
elastique) le moment elastique sur 1'appui B pour une charge P placee en

x 0( 1 sera :

Si M' designe le moment en phase elastique on a

\£t£2 ^'=-P^ri(i-^)(2-b)
Nous designerons toujours par M le moment de limite elastique ou de

Saturation plastique

mo <£ yv
Nous supposerons apres adaptation plastique qu'il y a en B un moment d'au-

tocontrainte

•?Mo

Les moments M dans la poutre sont alors :

O^t^l hfsM+^Mot
I £t£2 rl M'+9 M0(2_t)

Nous poserons p^ ^ A -<t j _ y ^
caracterise l'etat de charge et H l'autocontrainte

^t£| M= [C^fi-t)-tJI+ltjMc

Supposant c(, donne (charge P en x =«*t la condition limite de plas-
ticite s'ecrit en tout point :

- M0 er M <+ Mo

Pour cette Charge P en x le diagramme des moments de flexion est toujours
le suivant :



186 lc - OPTIMISATION DES STRUCTURES

F/G.B
P

sA\

OC-cxl
-Y-

¦K-

II suffit done d'ecrire les conditions :

M(X.)s+Me
Mrb= - H0

C'est-ä-dire pour les limites : /.

-4+rj+laO ft-|)

K^a01 \a 33\/ +1

b}\
\9-

\ /

0.378
>Z /7f.3-0.U18

r /C
-O.TO

\*
Vä 3\
\-

s.
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On a ainsi une famille de polygones d'ecoulement en fonction de <* delimi-
tes par les 2 droites d'equations ci-dessus pour t - «t et t 1

La droite (t =c^ coupe l'axe 0 £ en un point a, ce point varie de

a t - 0,25 pour ot 0) ä a (| 1 pour«4 1).

Cette droite (t ** coupe la droite (t 1) en un point b variant de

b (pour «=0) ä b„ (pour«t 1).
O o

Appliquant P au point x -^l et partant d'un etat naturel en faisant
croitre P depuis la valeur 0 le point representatif se deplace sur l'axe o£
Lorsque ce point arrive ä a (intersection de la droite t °t avec 0^ P

atteint la charge limite elastique qui correspond ä

' 4-«Ci+<¦ W'
La charge limite elastique P (ct. est alors : if(d\- UlfB e e dfi^)M('W)] l
Si P continue ä croitre £ augmente il y a plastification dans la section

x dl le point representatif decrit la droite t =*t ä partir de a. Lorsque

ce point arrive en b (intersection des droites t °t et t 1) on atteint
le moment limite en B, ä cette valeur de i- correspond la charge ultime plastique

P («=<), on a alors
-] cW

-4

d'oü :

p u\ LAs* - H°_u' ' «O-«) L

Si on dechargea.it alors la poutre il y aurait en B un moment d'autocon-
trainte

_^
'B ^ 4

M - -(>f -(11*^) Mo

Si l'on cherche la charge mobile ultime P cette charge doit etre la plus
petite valeur de P (<t et variant de 0 ä 1.

Ce minimum se produit pour
ei U* _ 0fii tt(l-d)

Soit : 0(-vT_|

On a alors :

P r. 5,62 8 IM»/
u "

(RJANITSYN a donne le meme resultat obtenu par une autre methode).

Si cette Charge P arrivee au point x (fi.-l)t on supprimait cette charge
on aurait en B un moment d'autocontrainte determinee par l'ordonnee du point b.
c'est-ä-dire h - 0,5

M„ - - 0,5 M
B ' o

Si la charge P va au-delä de x =fvt-UI. £ continue ä croitre,
> o. A ' ucar £ est donne par :

V fl cl(i-*J) 1-461 ctO-^J
'Mo 4



lc - OPTIMISATION DES STRUCTURES

£ passe done par un maximum pour la valeur maximale de *<(l — o(zj
ce qui se produit pour i\ „ '/.—

On a alors I 1.461 xJL * £.- O.S62

Le point representatif s'est deplace sur la droite t 1 (plastification
sur l1appui B) de b. ä c.

L'ordonnee de c sur cette droite t 1 est

- 1 + 0,562 - 0,438

Lorsque la charge mobile P se deplace ä partir de 1'appui A, il y a

plastification dans la section C X=(H-<)t au moment oü la Charge arrive en C

et le moment d'autocontrainte en B est alors -0,5 M ; lorsque cette charge
arrive en D *• ^/fb il y a plastification sur 1'appui B et le moment
d'autocontrainte en B n'est plus alors que - 0,438 M ; si la charge continue vers
A',de D'( x f2.-l/vj-t ä C (Xr;[?.(vl-i) {] ii°y a plastification des
sections de D' ä C et le moment d'autocontrainte en B remonte ä-0,5 M

^-/ß—1 I F/f,4-
^HzSL^ll J

|

L_ _ **l>tfcL'±i J

Chaque passage de la charge P sur toute la poutre provoque de nouvelles
deformations permanentes, il y a cumul de deformations.

La charge P n'est admissible que si eile n'est susceptible d'etre appli-
quee qu'un nombre tres limite de fois au cours de la vie de l'ouvrage.

La charge ultime P' admissible pour un nombre illimite de passages est
inferieur ä P On peut determiner cette charge en imposant la condition que
le moment d'autocontrainte en B atteigne une valeur definitive apres un premier
passage.

On trouve le f]0 maximal constant
0.44 81-

correspondant ä une charge ultime

p' -. S,}42. Mf <- P„- S.828 Mo
u ¦' e e
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Si l'on veut maintenant comparer l'economie de volume des membrures d'une
travee de portee 1 pour une charge mobile P on ecrira :

I P-.2SV*

et le volume des membrures pour une travee de portee 1 sera

V.aSlr Mo/^.t.
Avec la charge ultime P' 5,742 Mo/,

On a le volume :

v sJ-jg-o..?WÄ
p S.-^Al V07- so-;

Ainsi pour le cas de la charge mobile P on peut comparer les resultats
obtenus pour le volume des membrures

- poutre optimisee elastiquement V O.lUflüh-

- pour une poutre d'inertie constante «

calculee elastiquement V =0.2o>6 rL _ l.^nYp

- pour une poutre ä inertie constante pnj
calculee plastiquement V O^Ul Li¦= I.l24-V0

On voit ainsi pour la Charge mobile, comme pour le cas de la charge permanente,

que si 1'optimisation elastique conduit au volume minimal, il y a un
gain considerable ;lorsque la distribution de matiere est loin de celle determinee

par optimisation elastique ä prendre en compte l'etat limite plastique.

Combinaison de la charge permanente et de la charge mobile.-

On pourra reprendre l'etude en considerant ä nouveau les frontieres d'ecoulement

sous l'effet d'une charge permanente p par unite de longueur et d'une
charge mobile P.

On posera :

pl KP

On aura pour chaque valeur de K des familles de frontieres d'ecoulement
en fonction de «l

Le developpement de cette discussion est trop long pour trouver sa place
ici.

On peut pour chaque valeur de K determiner la Charge ultime admissible par
la recherche du moment d'autocontrainte donnant une adaptation definitive.

Voici quelques resultats :

- pour K 0,1 (charge mobile egale ä 10 fois le poids permanent)

!¦;«,= - 0,409

- pour K 1 (charge mobile egale au poids permanent)

l}0 " 0,15
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- pour K 10 (charge mobile egale au dixieme du poids permanent)

1D= + 0,318

Lorsque la charge mobile est faible il y a adaptation plastique sur 1'appui
central et le moment d'autocontrainte sur appui est positif.

Si l'on fait croitre la valeur de la charge mobile par rapport au poids
permanent, le moment d'autocontrainte sous la Charge ultime diminue.

Pour une certaine valeur de Ktj 0, il n'y a pas d'adaptation, pour cette
valeur de K la poutre ä inertie constante est optimale elastiquement.

Si la valeur de la charge mobile croit encore par rapport au poids permanent,

l'adaptation plastique se produit sous la charge ultime en travee, et le
moment d'autocontrainte sur appui central est negatif.

Enfin ä partir d'une certaine valeur de K il y a risque de cumul de
deformations plastiques.

Conclusion

On voit en definitive que quels que soient les systemes de charges,
permanentes ou variables, pour une structure constituee en materiau pouvant, tel que
l'acier doux, etre considere comme elasto-plastique, la distribution de matiere
determinee par optimisation elastique conduit toujours au poids minimal.

L'optimisation elastique rigoureuse est souvent irrealisable, en outre eile
conduit tres generalement ä une structure onereuse (sauf cas exceptionnels oü
la structure simple est en meme temps optimale elastiquement, comme on a vu que
c'etait le cas pour une poutre continue ä 2 travees egales pour un certain
rapport entre la charge et la charge permanente).

Lorsque la structure s'ecarte de l'optimal elastique eile a, si eile est
hyperstatique, une reserve de capacite pour la Charge ultime d'affaissement en
calcul elastique que n'a pas la structure isostatique.

On doit done tendre ä realiser des Systeme hyperstatiques ä condition de
baser la securite sur la Charge ultime plastique, ce qui permet de simplifier
la structure avec une majoration de poids relativement faible, et done d'opti-
miser la structure sur le critere de l'economie de realisation.

Dans le cas de charges mobiles non exceptionnelles le calcul plastique
peut conduire au danger du cumul des deformations.

Le critere alors ä considerer est l'etat d'autocontrainte qui doit etre
constant dans toutes les situations.

On peut done etablir une programmation sur la base du calcul elastique pour
chercher la distribution de matiere la plus econcmique.

L'etat d'autocontrainte peut etre determine sans tracer de diagrammes par
des calculs elustiques.

L'etat d'autocontrainte est un critere ä la fois pour l'optimisation et
pour la verification du non cumul de deformations.
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RESUME

Pour un materiau elasto-plastique, la distribution de matiere
determinee par optimisation elastique conduit, pour les charges
permanentes et variables, au poids minimal que la structure soit
isostatique ou hyperstatique.

L'avantage de la structure hyperstatique, si on envisage l'etat
limite plastique, est de pouvoir realiser economiquement en simpli-
fiant et s'ecartant de 1'optimal elastique.

On determine, par des calculs elastiques, l'etat d'auto-con-
trainte qui sera un critere d'optimisation et de verification de
non cumul des deformations.

ZUSAMMENFASSUNG

Für einen elastisch-plastischen Werkstoff führt die durch
elastische Optimierung erhaltene Materialverteilung sowohl unter
ständiger Last als auch bei veränderlichen Lasten zum minimalen
Gewicht, gleichwohl ob das Tragwerk statisch bestimmt oder
unbestimmt ist.

Statisch unbestimmte Tragwerke bieten den Vorteil, dass sie
bei Berücksichtigung des plastischen Grenzzustandes durch
Vereinfachung und unter Abweichung vom elastischen Optimum
wirtschaftlich ausgeführt werden können.

Es wird durch elastische Berechnung der Eigenspannungszustand
ermittelt, welcher als Kriterium der Optimierung und der
NichtÜberlagerung der Verformungen dient.

SUMMARY

For an ideal elastic-plastic material, the optimisation based
on elastic calculations of a statically determined or indetermined
structure provides the minimum weight material distribution.

When Computing a statically indetermined structure on the
basis of plastic behaviour, it is possible to simplify the
Optimum elastic material distribution in a more economical way.

The residual stresses remaining in the structure after
unloading is a criteria of optimisation and a test against increasing

permanent deformations with every loading cycle.
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