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Optimum Design for Structural Safety
Dimensionnement optimal pour |a sécurité d'une construction

Optimierung fur die Bausicherheit

FRED MOSES
Assistant Professor of Engineering
Case Western Reserve University
Cleveland, Ohio U.S.A.

BACKGROUND

In recent years there have been developments in the area of optimum desian
of structures which concerned the sizinqg and proportioning of members for
minimum weight or cost. The utilization of digital computers and advances in
allied fields of Mathematical Programming and Operations Research led to the
formulation of structural optimization as a problem in Mathematical Proaramming.
Given a set of design variables such as depth, thickness, area, moment of inertia
all denoted by a vector Xi the design problem becomes:

Minimize f(X;i) (1)
such that gJ.(Xi) > 0 j=1,2,.., Number of constraints (2)

f(Xj) is a function of weight or cost to be minimized while a(X;) are the
design limitations on stress,stability and deflection or any practical
fabrication or construction restrictions. It is necessary to be able to
compute for any set of design variables X; the stresses, deflections and
stability associated with this design. Recent papers in the structural
enqineering literature have presented efficient optimum desion techniques for

a wide class of problems including plate girders, trusses, frames, stiffened
plates and cylinders.! These works have used Mathematical Programming
techniques such as linear programming, dynamic programming, aradient methods
and unconstrained minimization.2 The Mathematical Programming approach to
design may be limited in that unlike Professor Courbon's paper entitled,
"Optimization of Structures" it does not consider creative changes in design or
even large deviations from an initial prescribed design geometry and
topology. 3 Nevertheless, it has led to important economies in structural design
and has been used in practice particularly for conventional type structures
such as plate girder bridges and frames.

This paper considers the problem of optimization within the context of
safety. It has been proposed by Professor Freudenthal that a rational approach
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to safety must be based on reliability or probahility of failure.* This leads
to a new formulation of an optimum design problem which is:

Minimize f(Xj) (3)
such that Pg(X5) < P allowable (8)

P¢ allowable is the minimum failure probability acceptable for the design and
is assumed in this study as given. Pg(X;) is a function which aives the overall
failure probability of the structure as a function of the desiaon variables to
be determined. This constraint on P¢(X;) is the only constraint used on
structural behavior although other constraints may be based on construction or
other requirements. Several methods for computing P¢(X;) and utilizing it in
an optimum design procedure are presented. Some factors which have motivated
this approach to optimization include the follewing points:

a) Safety as expressed in terms of probahility of survival may actually be
impaired in current deterministic optimum design programs. This is because
existing design codes and safety factors are used to provide protection against
stress, deflection and stability-type failure modes. These safety factors were
developed over a period of time in practice and were not associated with
structures which were optimized. Most mathematical programming optimum desians
end up with a larger number of constraints on stress and deflection against
their 1imit than an unoptimized design. It should be expected, therefore, that
the probability of failure which is the probability that any failure mode occurs
will be higher for an optimized design. An optimization procedure which uses
overall structural failure probability as the behavior constraint should
produce more balanced designs consistant with the development of rational
safety.

b) In order to reach more significant levels of structural optimization it is
necessary to compare optimized structures of different configuration, material
and geometry. Within this decision context a rational comparison is possible
only if the structures have the same level of safety as expressed in terms of
probability of failure.

c) The use of new materials such as brittle composites with greater scatter in
strength tests and new structural applications in environments vith greater un-
certainty suggest that there will be more emphasis in the future on designing for
probability levels rather than using preassiqgned safety factors. 1It, therefore,
seems appropriate to formulate the design optimization problem as in equations

3 and 4.

d) Reliability based optimum design may actually facilitate the mathematical
optimization problem by replacing the numerous limitations (on member stress
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and deflections) in a deterministic design by a single constraint on overall
structural failure. The mathematical and computational complexity, however,

has been transformed from the minimization aspect to the analysis of failure
probability. The problem of minimizina the weight subject to only one constraint
as illustrated in Figure 1 with two variables can be handled by several techniques
including linear programming approximations and useable feasible gradient moves.
Figure 1 illustrates an algorithm for minimization by use of the gradients or
normal vectors to the weight function and the reliability constraint. From an
arbitrary starting point the design is changed in steps in the direction of

the gradient to the weight until the reliability constraint is encountered.
Subsequent changes in the design variables are made in a direction Sq which bhoth
reduces weight and avoids violatina the reliability constraint, This is a
useable feasible direction and methods for determining this direction are well
known,5 The design changes are continued until the constraint gradient and
reliability gradient are colinear.

RELIABILITY ANALYSIS AND OPTI"MUM DESIGN

Most work in failure probability has concentrated on a problem in
which all the strength variability was included in one member and all the load
variability was included in one load., Freudenthal presented the probability
of failure of this one member one load structure often called the fundamental
case of structural reliability including the effect of frequency distributions,
standard deviations for load and strength and the safety factor or ratio of mean
values.® In considering the design or proportionina of members in multi-memher
multi-load structures, a model is needed to show the effect on failure probability
of each of the individual members of the structure and their interaction with all
load conditions. Two reliability applications of importance are presented herein,
The first is multi-member "veakest 1ink" structures discussed by Professor
Freudenthal in which the structure fails if any single element fails under any
load condition.* The second application is "redundant" structures such as
1imit designed frames in which failure is the occumenc2 of any collapse mode each
involving more than one element yielding. In both cases loads and strenqths are
random variables described by known frequency distrihutions. The reliability
analysis computes for a gijven design the overall failure probability of the
structure. The optimum design problem is to proportion member sizes to have
minimum weight or cost for a specified allowable failure probability.

"HEAKEST LINK" STRUCTURES

The failure probability of a single member of strenath R under a single
load condition S can be determined from the following equation:®

P = jw Pr {S>t} Pr {R=t} dt = fw [1-Fs(x)] fp(t) dn (5)
0 0

Pr should be read "probability that". F (t) is the distribution function
and f (1) the density function. In extensions to multi-member structures under
one Toad condition it has often been proposed that the overall failure probability
could be obtained from the following equation:7:83
N
Pe=1 -1 [(1-Pc.)] N=Number of members (6)
i=1

Pgj 1s the failure probability of the ith member and P¢ the overall failure
probab1]ity. If the individual Pfj are small as is usually the case, then
equation 6 becomes:

N

Pe =1 Py (7)

i=]
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Equation 6 ignores, however, the fact that the events corresponding to
member failures are statistically correlated since the stresses in each member
are completely correlated since they arise from the same loadina. The member
failures are not 100% correlated since the strengths are independent random
variables. The consideration of correlation loads to a lower value of Pf. If
there is only one load condition and N members or element strengths, then it is
easy to verify that the equation that gives the failure probability is:

Pf =1 - J‘: !|‘I=] [1-FR1.(a1.'r)] fp(r) dt (8)

The constant aj relates the forces or stress levels in member i to the
load value of P=¢, Equation 8 is valid for "weakest-1ink" structures which fail
if any member fails., This includes determinate structures and those indeterminate
structures with little "fail-safe" probability of survival available after the
first member has yielded. This is true for structures with brittle members which
can't carry any load after reaching yield load and for all structures for which the
load variability greatly exceeds the strength variability. If the structure is
subjected to M repeated application of the same loadina condition then Pf can be
computed by integrating on the density function of the worst load which is:

M-
Fomay (V)M [Fp ()17 £, (0) (9)
The failure probability is then:
Pe=1- [‘” 8 [1-Fgq (35 )] oy, (1) o (10)
0

If all loads are not of the same load condition hut represent distinct load
conditions applied at different times then an exact solution for Pf requires an
evaluation of a multiple inteqral based on the joint distribution function of the
load conditions. Various bounds have been presented on the failure probability
based on evaluating integrals which reflect the importance of statistical
dependence between failure modes due to a single load condition on multiple
members or a single member acted on by distinct load conditions.10,11

An important factor in reliability design of "weakest 1ink" structures is
whether the design constraint is based on equation 10 which is exact for the case
shown or equation 6 which is an upper bound on P¢ and ignores the statistical
correlation between failure modes. A previous study showed that this correlation
significantly affects the reliability analysis if the variability of the load
random variable exceeds that of the strength as in structures designed to resist
as their major loading wind and earthquakes.!! In such instances, a lower bound
on Pf which is the largest member failure probability may be used as the design
constraint.

In studying optimum design of "weakest-link" structures two factors were
under observation. One was the effect of statistical correlation between failure
modes on the overall structural weight and the second is the influence of unequal
individual member failure probabilities. It should be noted that all previous
studies on reliability based optimums have used equation 6 as the basis for
computing the failure probability and thus have ignored the correlation.7,8,3,

To study the effect of correlation, a design is found for a truss with one load
condition. A1l members are assumed to have equal mean loads and, therefore, have
the same optimum area, The consideration of the exact value of the P¢ constraint
in equation 8 including statistical correlation allows each member to be designed
for a higher individual failure probability than if equation 6 were used as the
constraint and correlation ignored. The higher individual failure probability
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means a lower weight and the ratio of the two optimum weights based on equation 8
and equation 6 is plotted in Figure 2. With a normal frequency distribution of
load and strength for the coefficients of variation shown the maximum weight
saving reaches 7.3% for case 1 in a 50 member structure.

OPTIMUM - EQ. 8
T8¢ EFFECT OF CORRELATION
ON_OPTIMUM WEIGHT
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Figure 2

Another indication of the correlation factor becomes evident when the
overall failure probability is written as:

= +
Pe=ay P ¥ Pe +ibag PeytoLibay Py (11)

Pgi is the failure probability of the ith member and a;j is the percentage
of its }ailure probability that this member contributes to the overall
probability. The aj shown in Figure 3 are computed either by sequentially
integrating equation 8 for increasing number of members or by another technique
discussed elsewhere.ll If there were no statistical correlation all aj would
equal 1.0. If there was complete correlation between failure modes and the
members were ordered with member 1 having the highest failure probability then
a1 would be 1.0 and all other a's equal zero.

3 STATISTICAL CORRELATION OF FAILURE MONES

P Allowabla = 0.01
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1.0

0.8
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Figure 3 shows the potential weight saving with other frequency distributions
and members with unequal lengths and mean applied loads since it indicates the
correlation effect and the error introduced into the overall probability ex-
pression as the number of members in a structure increases. The magnitude of
the weight saving can be obtained from plots of member failure probability vs.
member size (or equivalently its safety factor) and is available from the work



168 lc — OPTIMUM DESIGN FOR STRUCTURAL SAFETY

on the single member single load fundamental case.® It is seen from Fiqure 3
that the correlation factor becomes more siagnificant when the load variability
exceeds the strength variability as in structures subject to wind and earthquake
loading.

The second factor mentioned above for study is "weakest-1link" structures
with members of unequal mean loads. An optimum desian in this case has unequal
safety factor and failure probability for each member. In general minimum
weight results if heavier members have higher than the average failure probability
and lighter member with lower mean applied loads or stresses have less than one
average member failure probability. It has been proposed that the following
equation applies to an optimum design.®

Weight of member i _ Pfi (12)
Total weight Pf allowable

This equation was derived and is applicable to cases where equation 7 for Pf
is used as the design constraint. Furthermore, it implies that the element Pfi
depends only on the size of the ith element, or:

aP eP_.
nxf - .xf'l (]3)
7 <%

In general, for a statically indeterminate structure this last equation is

not applicable and: N
CPf _ Z (pfk 14
> T kel X (14)
j

That is the change in any member affects the force distribution and,
therefore, the failure probability of every indeterminate member of the structure.
It should be noted that the simplicity that equation 7 introduces into the
optimization procedure is not lost when the correlation is included in the
computation of the failure probability. This simplicity is needed since most
optimization methods need the gradient to the constraint, Using equation 11,
the components of the gradient of the reliahility constraint can be computed as:

€Ay k=1 o

It has been found from experience that the ay which accounts for the
correlation does not change much in a small region in which the gradient is
determined from the partial derivatives usina a finite difference technique.
Thus the gradient based on N computations of the form shovm in equation 15 need
not be obtained from finite difference perturbations of equation 8 of N memhers
and one load but rather from equation 5 which is for one member and one load.
The computation time saved in this manner may be significant.

To illustrate an optimum design for a structure with unequal member sizes
Table 1 is presented for a determinate truss with 10 members. The formulation of
the design problem as a minimum weight design with a failure probahility constraint
as indicated in equations 3 and 4 was used. Equation 12 can be seen not to he
valid at the optimum due to correlation between failure modes not considered in
its derivation. Also shown in Table 1 is a desian based on equal safety factor
for each member such that the overall failure probabilitv of the structure based
on equation 7 is equal to the allowable value. The difference between the weight
of the optimum design and the equal safety factor design is partly due to
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the correlation factor but principally due to the Mathematical Programming
technique discussed above which proportions the members in an optimum manner
using only the single overall failure probability constraint.

TABLE 1 - 10 Member Examp1ea

Equal Safetv Factor Optimum Desian
Mean Load Area Pfi Area Pfi
Member Value in?2 in2
1 0.1P 0.274 0.0001 n.297 n.519x10-*
2 0.2P N.547 0.0001 0.554  0.604x10-"
3 0.3P 0.817 0.0001 0.818  0.958x10-*
4 0.4P 1.09 0.0001 1.09 n.991x10-*
5 0.5P 1.37 0.0Q01 1.35 1.23 x10-4
6 0.6P 1.64 0.0001 1.61 1.61 x10-*
7 n.7P 1.92 0. 0001 1.86 2.08 x10-“
8 0.8P 2.19 0.0001 2.11 2.65 x10="
9 0.9P 2.46 0. 0001 2,35 3.25 x10-"
10 1.0P 2.74 0.0001 2.59 3.91 x10-*

a Mean Load, P=60,000 1b.; C.V.(P) = 20% Weight based on equal safety
Mean Yield stress, 5y=40’000 psi; CsVs (oy) = 5% design factor = 255.6 1b.
Density = 0.283 1b/in.3; Weight based on optimum
Length L;=60" for all members. design = 243.6 1b.

Both P and qy have normal distributions Pf allowable is 0.001

"REDUNDANT" STRUCTURES

In many structures particularly those designed by limit or ultimate design
methods several members or elements must simultaneously reach their capacity before
the structure is failed. This is the case with some indeterminate trusses and
also beams and frames in which mechanisms form at failure. It is assumed that each
element strength is an independent random variable. 12

A failure mechanism occurs if the contribution of load elements exceeds the
strength elements for any particular collapse mode. If the contributions are
linear this leads to an equation for reserve strength Zj in a mode j of:

n L
Z. =7 a. M, -) b, P i=1, .., n - Critical Elements
ol U g R ke L L - Loads (16)
Jj=1, «ey» m = Collapse Modes

Equation 16 would for example govern a frame against the formation of a
collapse mechanism. The overall failure probability of the structure is the
probability that any Zj is less than zero and can be written as:

Pe = Pr {Z] < 0} + Pr {22 % 1 Z] > 0} + Pr{Z3,5 0, Z, > 0 Iy 0}+... (17)

A method presented elsewhere has been developed to compute the probability
that each Z; is less than zero, including the effect of statistical correlation
between Zj Bresent because somz load and strength terms appear in more than one
collapse equation.13-
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As an example of an optimum redundant design consider a single bent
frame with design variables corresponding to the plastic moment capacity of the
beam and column. Figure 4 shows the deterministic constraints based on a safety
factor approach and the constraint based on failure probability as expressed in
equation 17. The weight function used which is shown linearized in Fiqure 4 is:

R
W=K §=] (Mi) 2 ’ (18)

Mi is the plastic moment capacity,Ll; the length of the member, R the
number of members and K is a constant.

2 _
f=1.5kK {RP=0-5k DETERMINISTIC CONSTRAINTS - - -
A e 25— 3 1. Zf%L - (42 Mgt 1)
I ' 4 4 . .
o | 7;5. 2. Zp7Hh = (M MyF gt "y)
| 3. Zy=PL + Hh- (142 '1y4 My+2 M)
9l : JEIGHT OBJECTIVE 33
FUNCTIONN
st i RELIABILITY CONSTRAINT
; | Pr(z, < 0] + Pr{Z, < 0, Z; > 0]
I DETERMINISTI +Pr(z, <0, 2y >0, Z, >] <4.80x107°
6r OPTIMUM
5t Mc=7 Mp=5 DETERMINISTIC SAFETY FACTOR=2.0

C.V. (LOAD)= C.V. (MOMENT CAPACITY)= 20%
>~ MORMAL DISTRIBUTION
S

PELIABILITY
GASED OPTIMUM

2 1 1 1 1 L 1 1 1

5 6 7 8 9 10 11 12 13 14
Figure 4  DESIGH SPACE FOR BENT FRAME

The allowable failure probability was set at 4.80 x 10-> and was chosen
based on a failure probability analysis of the optimum design obtained using
the deterministic or nonstatistical constraints. Optimum design methods for
frames to resist plastic collapse in the deterministic case are well known and
since all constraints are linear, a linear programming technique is applicable.
A result of a deterministic optimum design is that a theorem for this case shows
that the number of collapse modes designed up against their 1limit in the optimum
design equals the number of design variables which is the number of unknown
member plastic moment capacities.!* Although this is acceptable from a
deterministic viewpoint and does not violate conventional safety factors, it
must be viewed as unsafe from a reliability design viewpoint, The fact that
an optimum design with a Targe number of design variables has an equally large
number of failure modes designed to their limit must indicate that the failure
probability is increased over a conventional unoptimized safety factor limited
design. Consequentially, the replacement of the deterministic constraints by a
single reliability constraint should lead to a more balanced optimum and also
allows the failure probability to be specified in the constraint. An added
benefit that may be seen from Figure 4 is that the design optimized with
respect to failure probability is lower in weight than the deterministic
optimum with the same failure probability. Further examples of optimum single
story frames showed the optimum weight increased as both the allowable failure

1 11M
15 16 COLUMN
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probability was decreased and the coefficients of variation of load and
strength was increased, !5

To illustrate reliability based optimum design for larger redundant
structures the frame shown in Figure 5 with six design variables was studied.

15K
3.6K
12.5K e ;
30 10"
K e ke j;——'—
TWO_STORY_TWO BAY 1 2 3 Ly
OPTIMUM _DESIG]

TR AL .”FL

MEAN LOADS ARE SHOWN I - MEMBER NUMBER
Figure 5

The resulting design moment capacities for the frame in Figure 5 is shown
in Table 2 for designs with normal and log normal frequency distribution for load
and strength of different coefficients of variation. It is interesting to observe
as shown in Table 2 that at least for the examples studied one mode seems to
dominate in having a relatively larger failure probability than the other modes.!3

Table 2

Optimum Design Results of Two Story
Two Bay Frame Shown in Figure 4

Optimum c.V.
Design Mom. p
Example Moment Load f Weight  Freouency Individaul Collapse
No. Capacities % Allowable Function Distribution Mode Failure
K=-ft Probability in Urder
Members of Largest Value Firs
1 2 3 1 2 3
4 5 6 4 5
1 29.2 95.8 84.4 0.10 7.78(2)* 312.5 Normal 6.70(2) €.87(3) 4.50(3)
175.0 73.2 74.4 0.20 6.26(4) 3.16(4)
2 27.8 9.3 84.4 0.10 7.80(2) 310.9 Log 4.8552) 1.55¢2) 1.35(2)
173.8 72.077.9 0.20 Normal 2.21(3) 1.67(3)
3 28.0 78.7 71.0 0.20 7.72(2) 297.3 Normal 4,94(2) 1.22(2) 1.16(2)
170.9 69.4 74.9 0.10 2.81(3) 2.68(3)
4 27.3 78.3 71.3  0.20 7.16(2) 293.5 Log 4,19(2) 1.64(2) 1.09(2)
166.4 65.1 74.9 0.20 Normal 3.13(3) 2.25(3)
5 29.1 87.8 72.3 0.15 7.52(2) 300.6 Normal 5.39(2) 1.10(2) 9.89(3)
170.3 68.0 74.1 0.15 1.71(3) 1.69(3)

* Exponents of failure

probability are shown in
parenthesis (m) and should be read as 10-m
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DISCUSSION AND CONCLUSIONS

1] The results presented indicate the feasibility of using reliahility or
probability of failure constraints in solving for optimum multi-member

structural designs, By using Mathematical Programming methods to proportion
member sizes a design is obtained which has an overall failure probability

equal to an allowable value. This approach to design appears more rational

than many current optimum design methods which use conventional code safety
factors to restrict member dimensions bhased on stress and deflection limitations.
As a result such optimum designs end up with many element constraints active
which from a reliability viewpoint reduces its safety helow a conventionally
unoptimized design. Two examples presented include "weakest-1ink" structures
for which any member failure constitutes failure of the structure and “redundant”
structures which fail by forming collapse mechanisms after several members have
simultaneously yielded.

2] It is seen from the examples presented that a reliability based optirum
design does not have equal safety factor for all elements. In a "weakest-1ink"
structure the heavier members have higher failure probability values than

lighter members., This factor is influenced by the deqgree of statistical
correlation between member failures which depends on the ratio of the variability
or coefficient of variation of the load to the strenath. In an optimum "redundant"
structure such as a frame designed to resist formation of a collapse mechanism,
the same safety factor is not present for each mechanism at the optimum desinan.
Rather the Mathematical Programming method proportions each memher to achieve
minimum weight within the constraint of overall failure probability. For the
frames studied it was observed that one particular mechanism in an optimum

design dominates in its value of failure probability but it is not possible to
choose beforehand which mechanism this will be,

3] An important factor influencing the magnitude of the optimum design as well

as its member sizes will be the choice of load and strength frequency distributions
and their parameters particularly the coefficients of variation. Curves of cost
vs. statistical parameters show choice of frequency distribution is not too
critical unless the distribution is highly skewed. Another important factor is

the choice of an allowable failure probability. This should depend on the

function of the structure as well as the failure consequences in social and
economic terms and is not considered herein.1®

4] The computation of failure probability for any frequency distribution as
presented herein and its incorporation in an optimum design procedure should
stimulate studies of random variables encountered in structural engineering to
improve their description. Empirical studies are needed to provide reasonable
frequency distributions for static strenath, fatioue 1ife, creep rate, floor
loading as well as stochastic theories for dynamic phenomena associated with
wind, highway and earthquake loading. The use of optimum design techniques
illustrated herein should be useful in assessing the importance of changes in
the parameters of these frequency distributions in terms of optimum cost or
weight rather than in terms of predicted failure probabilities. Failure
probabilities are usually expressed in quantities of 10-2 to 10-> and small
changes in frequency distribution may cause large changes in failure probability.
However, the change in optimum weight associated with this change in frequency
distribution may be of smaller magnitude.

5] A truly optimum design should consider the behavior of the structure over
various types of loading conditions as well as possible strenath deteriorations,
In a more extensive approach under study an optimum design is to be found which
considers all levels of failure including yielding, formation of cracks, large
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deflections, instability and collapse. Althouah for some "weakest-link"
structures yielding and collapse occur simultaneously, this is not true for most
structures.!? One approach to this problem would be to impose an allowable
failure probability which depends on the damaace for each failure Tevel and to
seek an optimum design which satisfies all probability of failure constraints.
Another approach is to combine the constraints into one reliability constraint
which would contain the probability of a level of failure occurrino multiplied
by a factor which includes the associated damage.

6] One question often raised in consideration of failure probability analysis
is the meaningfulness of a statement that the failure probability is N.001 since
not enough data could conceivably exist to support this claim. It is easy,
however, to see that a statement that Pf of structure A is 0.001 and of
structure B 0.00001 is meaningful.!® 1In the light of optimum desian the Pf
statements take on further meanina since they influence the overall structural
cost. Furthermore, in a single design it would be possible to use various
combinations of P¢ allowables, coefficients of variation of load and strenqth
to see how they influence the overall cost. The final structural cost would be
based on the best estimate of these parameters in the licht of previous
experience, empirical studies of existing structures and other economic
factors.
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SUMMARY

An optimization procedure is presented in which safety in terms of
reliability or probability of failure is used as the controlling design limitation
for finding minimum weight structures. Reljability analysis and optimum pro-
portioning in multimember structures is given for "weakest-link" and redundant
cases. Examples illustrate the effect on optimum weight of frequency dis-
tributions, coefficients of variation and allowable failure probability. Some
aspects of the reliability analysis problem are discussed.

RESUME

Le rapport présente un procédé d'optimation ou la sécurité, en
termes d'endurance et de probabilité de ruine, détermine le dimen-
sionnement minimal d'une construction. Dans les structures a élé-
ments multiples, l'analyse de la sécurité et le dimensionnement op-
timal sont déterminés par le membre le plus faible et par les con-
ditions extrémes exagérées. Des exemples expliquent 1l'effet de la
répartition des fréquences, des coefficients de variation et de la
probabilité de ruine acceptable sur le dimensionnement optimal.
Quelques aspects du probléme de l'analyse de la sécurité sont dis-
cutés.

ZUSAMMENFASSUNG

In diesem Beitrag wird ein Optimierungsverfahren vorgestellt,
in welchem der Sicherheitsbegriff in Zuverléssigkeits- oder Wahr-
scheinlichkeitsraten des Bruches zur Kontrollbegrenzung des mini-
malen Gewichtes gebraucht wird. Die Zuverléssigkeitsanalyse und
die Optimierung (vielst&dbiger) hochgradiger Bauwerke ist fiir das
schwédchste Glied und extreme F&lle durchgefihrt worden. Beispilele
zeigen die Wirkung der Haufigkeitsverteilungen, der Streuungsmasse
und der zulédssigen Bruchwahrscheinlichkeit auf das minimale Ge-
wicht. Einige Merkmale der Zuverléssigkeitsanalyse werden bespro-
chen.
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