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L'influence du fluage linéaire sur I'équilibre des
systémes hyperstatiques en béton précontraint

Einfluld des geradlinigen Kriechens auf das Gleich-
gewicht der statisch unbestimmten Spannbetonsysteme

Influence of Linear Creep on the Equilibrium
of Prestressed Indeterminate Systems

J. COURBON
Professeur a I'Ecole Nationale des Ponts et Chaussées
France

PREMIERE PARTIE - LES LOIS de FLUAGE etde RELAXATION du BETON

I -10I de DEFORMATION du BETON

Imposons a un prisme de béton une contrainte de compression constante &

3 partir de 1'dge 4, . Si la contrainte o n'est pas trop grande, inférieure
par exemple au tiers de la contrainte de rupture, l'expérience montre que le
raccourcissement unitaire du béton £(¢) i 1l'age 4 > 4, est proportionnel

a la contrainte g ; donc :

(1) g(t) = Z

E(t, t)
Le module de déformation du béton est donc une fonction des deux

variables ’to et £ . Pour C= £, , nous obtenons le module instantané
E(’to) , et pour £ =0 , le module différé K(fo)

(2) Elt)= Elt,4),  K(h)= E(4)

La relation (1) peut également s'écrire ;

_ o t £ . Fle t)="1 _ — A
(3) £(t) = =5 —+ o F( °, ) avec : (0, ) [__{{D/f) E[[o,fo)

La déformation apparait ainsi comme la somme de la déformation
élastique instantanée et de la déformation différée G /—'[Q} {) . proportionnelle

a la contrainte et croissant avec le temps, appelée fluage linéaire, On notera

que F(fojfo) est nul .,

Seule l'expérience permet de connaitre la fonction E[-Q}i") .
Diverses expressions analytiques ont été proposées pour la représenter,
La plus simple est

~B(L-to)
(4) ! = +[ ! —--;%]-!:4-—6 J
El4,t) ~ Elt) K(t,)  El4

IB caractérise la vitesse de fluage.
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Lorsque le béton n'est chargé qu'a un dge assez grand, on peut admettre
que E[,{:a) et K'({ ) sont des constantes £ et K , de sorte que :

4 4 g4 AN 4 e A
(5) —— = L+ (- Z
E(4,%) &
E(’ﬁ;} ‘f) ne dépend alors que de la variable ‘Z-—’f—o
Lorsque la contrainte o (/) appliquée au béton dans l'intervalle de temps

(t‘,,w) est variable, on trouve, en appliquant la loi (1) que le raccourcis-
sement £ (L) a pour expression:

TlLo) +/IM
<

(6) ) = 273 E(€ L)

II - LOI de RELAXATION du BETON

L'expérience montre que si l'on impose a un prisme de béton un
raccourcissement unitaire g a partir de l'dge IT,; , la contrainte de

compression initialement égale a o(t,)) — & E(’fd"f:,) décroitdans
le temps et reste proportionnelle 3 & ; donc:
(7) ot)= £ R (£, ¢) avec: R(t, t,)= E(L,1,)

La formule ( 7 ) peut également se mettre sous la forme :
(8) oft)= ald ) — & G(to/ £)ave (;—([0/ f}: R(.fo}-[‘,)_-ﬁ_’[-[:jf')

qui met en évidence la diminution de contrainte ou relaxation

Lorsque le raccourcissement Z(¢) imposéau béton dans l'intervalle
de temps ({0 9(_)) est variable, on trouve, en appliquant la loi ( 7 ) que la
)

contrainte o (£) a pour expression :

.
(9) o(t)= &(4) Rt t) +/[ £/(E) R(E E)dE

IIl - 1LLOI de RELAXATION DEDUITE de la 1.OI de FLUAGE

Sil'on se donne &(€) , la contrainte = (£) , solution del'équation

intégrale (6) est donnde par l'expression (9) . Cette solution est donc connue si
'on sait déterminer la fonction (/4 ) connaissant la fonction E[—f:,/ t)

Nous désignerons par .C.z ([u, ¢) l'unique solutiondel'équationintégrale
“ ’
(10) / _re)at ki = F([u/ ¢)
Lo E(E/ {)

qui s'annule pour € =.f, . L'équation (10) peutse ramener adune équation de
VOLTERRA ,

Dans le cas général, le calcul des valeurs de la fonction & [{—‘,} f)
s'effectue sans difficulté par intégration numérique .,
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L'intégration formelle est possible dans le cas de la loi de déformation
(5) ot I'on trouve :

_yplt-£) -
(11) ¢[’€;T): (’7—“2}5—)[4"6 4 ])avec: f:ﬁ-:%

et dans le cas de la loi de déformation ( 4 ) o l'on trouve

<
y 4 < e £ln)
02 P68 = [ = | [E0 T e yitizg | T

Ceci posé, pour déterminer la fonction (£, £) donnons 3 &(¢)
/

la valeur constante §& dans la relation (6) ; nous obtenons ainsi ;
£ ,

o(4.) o (4s) /‘ al(8)cll

—_— = S . e S

El4,t,) Els,¢) S TECEC)

(-3

de sorte que la diminution de contrainte ou relaxation ?[‘f’) = a'/[,,) -O'/’f)
est la solution de 1'équation intégrale :

C pue Al _ o) Flt ¢)
<, Elf]/f)

qui s'annule pour 4 =, . Donc:

plt) = F(t,) ® (£, ¢)

et par suite :

o(t)= alts) [1-B(4,¢)] = & E(talto)[/; ~ $(4,1)]

En comparant avec la formule (7), nous voyons donec que

(13) Rt t) = E(, t,) [1-P(t,,t))]

Ainsi, dans le cas de la loide déformation (5), nous obtenons :
—y (&-C5) £
(14) R(t,t)= E - (E-K) (1-e77 ) (Y:/f ,_/\_)

Le cocfficient ¥° caractérise la vitesse de relaxation ; ce coefficientest
environ trois fois plus grand que le coefficient /B3 qui caractérise lavitesse
de fluage., La relaxation est donc plus rapide que le fluage.

I1 est également possible de déduire la fonction E([a, t) de la

fonction R[{‘,/z{") par une méthode analogue 2 celle qui vient d'étre

exposée .
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DEUXIEME PARTIE - APPLICATION aux SYSTEMES HYPERSTATIQUES

I - EQUILIBRE sous 1'ACTION d'un SYSTEME de FORCES DONNiEES

Considérons un systeme . fois hyperstatique (2) et désignons par X.,'

les m composantes des forces appliquées aux points /‘}“ et par RJ'

les . composantes des réactions hyperstatiques appliquées aux points BJ
Associons au systéme (2) le systeme isostatique (Z’) obtenu en supprimant
les liaisons surabondantes correspondant aux réactions RJ' . Si, au temps ’l:
on applique au systeme (E’) un ensemble de forces constantes X/_- et EJ’
aux points /94_‘ et Ba,- , le déplacement fl)é du point BE dans

la direction de la force Ré aura pour valeur au temps 7 > ¢, , dans

1I'hypothese du fluage linéaire :

£) = ) a ,X + [)dl
(15) fvﬁ( ) E{toj‘t) Z ﬁ Z

& = A
i L9 P - P
C(/& et A étant des constantes caractéristiques du systeme étudié
Il en résulte que les réactions hyperstatiques Ed‘ sont données par

le systeme : ,
L #
(16) a, X. + b5, B, = 0O
IR

dans lequel le déterminant I L'Z l n'est pas nul (configuration non critique) ,

Donc, dans l'hypoth®se du fluage linéaire, 1'équilibre d'un systeme
hyperstatique, soumis a des forces extérieures données constantes dans le
temps, est indépendant du temps et identique & 1'équilibre élastique déterminé
avec un module de déformation constant,

Si les forces appliquées X‘. [1‘) et ﬂ:}[t.") au systeme isostatique
associé (Z’) dépendent du temps, le déplacement ‘U‘é (£) au temps T

postérieur au temps L, début de 1'application des forces a pour expression :

e DRI TR LMC{[ZM/!/Q o)
ou, en intégrant par parties :
08 we)= [Zﬂ X{f)J,ZAJ}?[é)] /[Za X/€)+Z )wbéﬂf/p

4

e

(17) Vg lt) =
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Il en résulte que les réactions hyperstatiques 7‘_-;1' sont données par
le systeme : P J s
(19) E a’ X[{') —+ E é)'} 7?/:5):’:0
£ " % = A d
&= -

Donc, dans l'hypothése du fluage linéaire, 1'équilibre d'un systeéme
hyperstatique, soumis 2 des forces variables dans le temps, se confond 2 tout
moment avec 1'équilibre élastique déterminé avec un module de déformation
constant .

En particulier, les résultats précédents s'appliquent aux calculs des
réactions hyperstatiques dues a la précontrainte, puisque la précontrainte est
équivalente a l'application d'un systeme de forces données : forces concentrées
aux ancrages des armatures et forces réparties provoquées par la courbure des
armatures,

II - EQUILIBRE sous I'EFFET de DEFORMATIONS IMPOSEES

A - Compensation des systemes hyperstatiques

Pour diminuer les contraintes d'un systeme hyperstatique, on impose
souvent a ce systeme des déformations maintenues par les liaisons surabon-
dantes (par exemple : dénivellation des appuis d'une poutre continue} , On
introduit ainsi dans le systeme des efforts dits de compensation quis'opposent
aux efforts provoqués par les forces données, Le probleme qui se pose est de
savoir comment les efforts de compensation évoluent dans le temps.

En imposant a 1'dge ft'o des déplacements VE aux points d'application

Bk dans la direction des réacticns /?,5_ , on introduit dans le systeme

des réactions compensatrices E/@ (4) qui sont des fonctions du temps,

Au temps 'z_o , les valeurs /’5 [J.‘o) sont données par le systéeme
e -~ Z)J R ([)
i = 2.5 Gt
Elt,t) £ %k

Au temps A, les valeurs & -{f) vérifient les équations intégrales :

,U-o 7 /F)
% EmHZgﬁﬁ’ﬂ)"—Z / [/,,at)

La comparaison des deux equatlons precedentes donne :

> [ = - 2 )
J <o

ou, puisque le déterminant ] E,é , est différent de zéro :
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£ 4, 1]

f _RIBAE _  Rilh,) Fl4e)
. £o E(éj'é)

Il en résulte que les diminutions 5;["): @'{{o)" @(t) des

réactions compensatrices sont les solutions des équations intégrales :

< _
/ Sd/.(gjzlé’ _ 75 /'J—o) f_['to, ,t)
4

E(8¢)
Donc : %[f)': f?j[“o) %({},} '{) et par suite :
(20) Ry(€) = Ro(t,) [+~ P(4, )]

Les réactions: hyperstatiques introduites par la compensation a l'dge

ffo diminuent donc dans le temps. A l'dge .£> -1, les efforts de

compensation (moments fléchissants, contraintes, etc. .) sont égaux aux

efforts de compensation a 1'4ge /7:0 multipliés par le coefficient de

réduction 4 — @ (‘Qlf) . Cecoefficientde réduction ne dépend que

des propriétés du béton et non des caractéristiques du systeme hyperstatique,
I1 peut étre calculé une fois pour toutes pour un béton donné,

Dans le cas particulier de la loi de déformation ( 5 ), la formule ( 20 )

devient :
K K\ -rft-t)
(21) RJ{I)Z R{/{fa) [—[—:—- -+ (’f~ E) < J

Faisons tendre Z vers l'infini, nous obtenons *
K ¢
k@) o (%)

Dans ce cas, les efforts de compensation initiaux sont réduits a la longue
dans le rapport du module de déformation différée au module de déformation
instantanée,

B - Effet de déformations imposées dans le cas général

Imposons aux an points /3 du systeme 7L fois hyperstatique (2)

des déplacements donnés dans la direction des forces X . Ceci revient
a introduire dans le systéme(ZJ are  liaisons supplémentaires, donc a le
transformer en un systeme (5_21) nn + 7 fois hyperstatique, Il est méme

possible que le systeme @) soit isostatique ; dans ce cas le systéme (Z,,)

est M fois hyperstatique ,
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En appliquant les résultats obtenus ci-dessus pour la compensation au
systeme hyperstatique (2‘9) que nous supposons ne pas €tre a configuration

critique, nous voyons que les efforts, provoqués dans un systeéme isostatique
ou hyperstatique par des déformations imposées 2 l'age %, , diminuent dans

le temps . Au temps 4 >€, , les efforts sont égaux aux efforts initiaux

multipliés par un coefficient de réduction égal & 1 — @(to){)

IIT - INFLUENCE du MODEde CONSTRUCTION - DEFORMATIONS DIFFEREES

Supposons que pour construire le systeme hyperstatique (2)
on exécute d'abord un systéme isostatique associé <S)) et qu'on
réalise ensuite a 1'4dge ’—Co les liaisons surabondantes au moyen d'armatures de
précontrainte., Ce cas se rencontre en particulier dans la construction en encor-
bellement, et également lorsqu'on réalise une poutre continue a partir de poutres

préfabriquées posées d'abord sur appuis simples,

A - Calculdes réactions hyperstatiques dues ala réalisation des liaisons

Nous désignons par )(4,_- les forces appliquées en permanence (ycompris
éventuellement les forces dues 2 la précontrainte isostatique) a partir de
l'instant 4, . Nous pouvons faire abs‘raction des forces appliquéas postérizun-

rement 2 ’to , car nous savons que les réactions hyperstatiques correspondantes

sont celles que 1'on calcule en supposant le module de déformation constant., Si

l'on avait construit d'emblée le systéme hyperstatique, par exemple en l'exécutant
. . . +* P,

sur cintre, les réactions hyperstatiques auraient eu les valeurs /’L; données par

les équations .
. < S *
(22) >, a5 X, + 2,5 R =0
; Jd
<

Supposons d'abord que les liaisons surabondantes sont réalisé€es par
précontrainte concordante, donc que les réactions hyperstatiques /"Cc;-[{) sont

nulles pour = 'to

Avant la réalisation des liaisons surabondantes, les déplacements des

/ ~
points B,é du systeme isostatique associé (E ) ont pour valeurs a
1'instant /fo , en supposant , pour simplifier 1'exposé que les forces
-z,

sont appliquées a partir de 1l'instant -t, :

4 E ' c X
Wy == a
A= Frt) £ kT

Ces déplacements ne varient plus lorsque les liaisons surabondantes sont

réalisées ; nous avons donc a l'instant a
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R/ (6)db
. zz X + /
Yk = Fe, 0 4 Z’ 5 . El6E)

Eliminons %% entre les deux equatlons précédentes ; nous obtenons, en
tant compte de la relaxation ( 22 ) :

g s ¥
2 b, / W = Rz ) b7
. J .
soit, puisque le déterminant IA},; l est différent de zéro :
£ _ :
JE) d E x
23) / O REF4, )
£ (1)
Les équations ( 23 ) sont des équations intégrales du type ( 10 ) ; donc :
*
(24) @,(rj = 76:/. Flt, £)
Dans le cas particulier de la loi de déformation (5), nous avons

(25) @_{U: }5* (4“%)[4_8—;{4—5)]

Nous voyons donc que les réactions hyperstatiques varient constamment
dans le mé&me sens depuis les valeurs initiales ﬁJ {{J) = O

jusqu'aux valeurs limites :
* K
r, = o, (’f - —‘)

Ainsi les valeurs limites des réactions hyperstatiques peuvent atteindre
les deux tiers des valeurs correspondant a la réalisation directe du systéme
hyperstatique,

‘v

Le cas olu la précontrainte de liaison n'est pas concordante se rambene
immédiatement au cas précédent, puisque la précontrainte peut étre considérée
comme un systeme de forces extérieures appliquées a l'instant 4, . Nous

aurons donc pour valeurs des réactions hyperstatiques dues a la réalisation des
liaisons surabondantes :

%) =
F() = S+ Fy(t)

les valeurs 6(‘*) étant données par (24 )

1'instant 'éo

[Vl

(26)
l'instant £ > [;

[\

B - Etude des déformations différées

Le déplacement d'un point /7 *du systeme hyperstatique (2) sous l'effet
des forces X, et de la précontrainte (supposées, pour simplifier 1'exposé,

appliquées 2 partir de l'instant Io) est égal au déplacement du point M du
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}
systeme isostatique associé (2 ) sous l'effet des forces X‘L- , de la

précontrainte et des réactions hyperstatiques @(‘t—) dues a laréalisation

des liaisons surabondantes. A l'instant £ > Lo, ce déplacement aura donc

une expression de la forme :

[V +Zoz X +Z/M08{~*)] +Zﬂm RS

(27) v [f)a /ﬁ,z‘)

Y

lot)

¢ §
(-4 m et ﬂi étant des constantes et le déplacement provoqué par

la précontrainte,

Le déplacement différé au temps e est :

(28) 0, (£) = ©, (4] — %, (%)

Dans le cas d'un systeme isostatique, les réactions @('&) sont

identiquement nulles, et l'on déduit de (27) et (28) :
E(‘{_ {0) [L/UJ ]
t)= | S0 %00 73 g N
J/\w[) £ (4 4) 1]%[ I IS s

A la limite, la déformation différée peut donc étre le double de la
déformation instantanée.

Dans le cas d'un systeme hyperstatique (Z) obtenu par réalisation
des liaisons surabondantes dans le systeéme isostatique associé (z )) par

précontrainte concordante, la formule (27) devient :

wl= g [ e S 2 B

soit, compte tenu de la relation ( 23 ) :
29) vaid) =1 (v i >t x Fle. ) > 47 p”
&  Elt,t) MM e + g > Fm 'y

Nous obtenons donc pour valeur du déplacement différé :

59 )= Flay ) [V + S tn X+ 2 B |
4 v

expression que l'on peut également mettre sous la forme :
0 E'/fa £) d'. 7K
31 ¢ = d —1 v [ F(t, ¢ 7T
Y mt) (Ez:,x) P ) + FlL, )J- Fr &

Dans le cas ou la précontrainte de liaison n'est pas concordante, les

réactions "//(?;[f] sont données par ( 26 ), et l'on trouve sans difficulté que la
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formule ( 30 ) doit &tre remplacée par la formule :

(32) or;{é);_— Fl<, )[V +Z X *Z/M (R =) )]

la formule (31) demeurant valable,

En général, les termes entre crochets des formules (30)et (32) sont tres
petits, de sorte que les déformations différées des systemes hyperstatiques
sont faibles, Dans des cas pratiques, nous avons trouvé, et observé sur les
ouvrages, des déformations différées vingt fois moindres que celles del'ouvrage
isostatique associé.

IV-EFFET du RETRAIT, dela TEMPERATURE etdes TASSEMIENTS d'APPUIL

Dans le systeme isostatique associé (2 ) , le retrait, latempérature ou

des tassements d'appui, agissant a partir de l'instant ’fa , donnent des
déplacements des points 3’{,-. égaux a (7)
Considérons alors le systtme hyperstatique (2) , et supposons d'abord

le module de déformation constant et égal du module instantané ; dans cette

hypothese, on obtiendrait des réactions hyperstatiques %1('” données par

Z{:EJ”{H_mo

Nous connaissons donc les fonctions 72 ! (’T)

les équations :

(33) Vs (t)+

['[f <)

En réalité, Ie module de déformation n'est pas constant, et les réactions
hyperstatiques (() sont données par les équations intégrales :

5 R s[RI
f/fw“)dz £ Hdz 4, R

Vet

L'élimination de ”U/:; {t) entre les deux équations précédentes donne
les équations :
i g / '—"
< 4RI z )= > /f)
sl - — R
Z_J b/ﬁ J (8t E// £t t) £ )
~

v

équivalentes, puis le déterminant r A,;: est différent de zéro, auxéquations:

“ R ' e
Rt B B
iy E/‘Q)'t) E(’{aji‘J E([c/ a)

Les équations ( 34) sont des équations intégrales du type de 1'équation (6);
leurs solutions sont donc données par les formules :

(34)
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£
3 ) — A [re) RUE ¢ /ﬁ’% TlE ¢ 5/57
(35) @”;EW‘,)[JU B+ ) ) Rl ¢)

qu'une intégration par parties permet également d'écrire :
felE )
a J /é

P
i —_— // ¥ { ‘t- — t -K Y i
(36) @m,%w [RJ-[é)ff(f, S cE

(]

Dans le cas particulier de la loi de déformation ( 5 ), il est possible de
faire de nombreuses applications des résultats précédents,

RESUME

Lorsque le raccourcissement du béton sous contrainte constante est propor-
tionnel 4 la contrainte mais dépend de 1'dge du béton et de la durée du
chargement, 1'équilibre d'un systeme hyperstatique sous l'action de forces
données est 1'équilibre élastique. Par contre, 1'équilibre, sous 1l'effet de
déformations imposées dues au retrait, a la température ou au mode de cons-
truction évolue dans le temps et tend vers un équilibre limite,

SUMMARY

When the strain of concrete under constant stress is poportional to the stress,
but depends on the age of the concrete and the time the load is applied the
equilibrium resulting from the action of given forces is the elastic equilibrium,
But, under imposed deformations resulting from shrinkage, temperature or
mode of construction, the equilibrium evol-ves in time and tends toward a limit
equilibrium,

ZUSAMMENFASSUNG

Wenn die Verkiirzung des Betons unter sté@ndiger Spannung proportional
zur Spannung bleibt, aber vom Alter des Betons und von der Dauer der
Belastung abhédngt, ist das Gleichgewicht eines statisch unbestimmten
Systems bel gegebenen Kridften das elastische Gleichgewicht. Unter den
aufgezwungenen Verformungen des Schwindens, der Temperatur oder der
Bauart entwickelt sich hingegen das Gleichgewicht mit der Zeit zu einer
Grenzlage.
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