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DISCUSSION PREPAREE / VORBEREITETE DISKUSSION / PREPARED DISCUSSION

Creep Failure of Nonlinear Rotational Shells
Rupture par fluage de voiles minces axisymétriques non-linéaires

Kriechbruch nichtlinearer Rotationsschalen

W. OLSZAK Z. BYCHAWSKI
Prof.Dr., Dr.h.c. Assoc.Prof.Dr.
Poland

1.Introduction

The authors have established [1] a criterion of the attain-
ment of critical states in linear viscoelastic bodies. The idea
of the criterion can also be extended to the range of nonlinear
viscoelastic behavior, if the phenomenon of failure is consider-
ed as a critical state.

The criterion is founded on an energetical basis and for
a certain group of nonlinear viscoelastic materials it states
that such a critical state as, for example, creep rupture de-
pends in general on a function of the accumulated energy and the
dissipated power accompanying the deformation process. Thus, if
W stands for the accumulated energy and W is the disgsipated
power, the condition of creep rupture is sTated as follows:

{(WE,WD) = const. (1.1)

In some cases, however, the accumulated part of energy may
be neglectfully small. lloreover, there are materials which are
not able to accumulate energy at all ag, for example, the pure
creeping ones. In these cases it seems reasonable to represent
the criterion (1.1) in the following different form:

f(VJﬁ) = const. (1.2)

where W igs the deviatoric dissipated energy per unit volume of
the body. It follows from the condition (1.2) that the dissipated
energy is considered as a certain measure of the attainment of
the critical state. The correct form of this condition should be
founded on experimental results.

The problem of attainment of a critical state as, for exam-
ple, creep rupture may turn out to be essential when analysing
the conditions occurring for thin-walled metallic structures un-
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der high pressure, especially, high temperature containers,
pneumatic structures, etc.

For such problems, we apply the criterion (3.2) to geomet-
rically nonlinear rotational shells in the membrane state under
internal pressure in order to evaluate the critical time of
failure as a consequence of the creep process. Accordingly, we
assume that the material of shells exhibits pure creep only.

2.Physical and geometrical equations

In general, we assume that an isotropic incompresgible mate-
rial of shells creeps according to the integral law |2

ey = Ns Y (2'1)

stands for the creep strain tensor, sy is the stress

where eij j
deviator and N denotes a nonlinear integral operator of the

form

NSy =-Jts;3ct)a,c H[t,t,b(t)}dt , (2.2)

o]
Here, H is the generalized creep function depending on the ef-
fective stress

s(1=2[sysy®] (2.3)

t standing for time, t, being the initial instant and at==6V3T.
As shown in {2] the generalized creep function H covers both the
linear and nolinear range of creep. However, in the present pa-
per we use only its nonlinear representation.

In particular, the creep function may be assumed in such
a form as to satisfy the following condition:

A H[t.T,s0)] = Fsm]a  C(t-n) (2.4)

where F is a nonlinear magnifying factor and C the creep factor.
The last representation of the creep function is very useful
when considering the non-steady states of creep in which the de-
formation stabilizes after an infinite period of time.

For the state of creep of metallic materials, the derivative
of the creep factor becomes a constant, i.e., C is a linear func-
tion of time

C(t-t) = c(t-T) , (2.5)

where ¢ is a constant. In the last case, Eq.(2.2) takes the form
t

Ngs =Jt 5 (MF, [sm] de (2.6)

As it is seen from Eq.(2.6),we assume that the state of stress is
variable with time. We shall show later that in the case of creep
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of nonlinear shells in membrane state, the stress state is always
a non-steady one in the presence of a constant internal pressure.
%pe stresses are found to drop to zero in an infinite period of
ime.

According to Eqs.(2.2) and (2.6), the initial conditions
at t equal t, are assumed to be of zero value, i.e., there are
no deformations at the initial instant. However, these conditions
may not be zero, if we consider a creep process at t > t, . In
this case there is an initial deformation state expresse8 instan-
taneously by the values of integrals within the limits t,,t .

The equations (2.1) and 2.6) can be written in terms of
strain rates as follows:

é’i.j =Nsg, e = No-"i.j ’ (2.7)

where the dots over the operators are symbolic. For example, in
the case of the second relation (2.7) we find

Nosy = 558 Fo[s(1)] - (2.8)

We apply the physical equations (2.1) or (2.6) in order to
investigate the critical states of rotational membranes of small
and constant thickness which deform under constant internal press-
ure. In deriving the geometrical relations for such membranes we
agsume that in the time-interval considered, the strain tensor
and strain rate tensor are small quantities, the rotation angles
being also small; the normal component of displacement is suppos-
ed to have a finite value. Further, we assume that the undeformed
surface is generated by the revolution of a plane curve which
does not imply any singularities. In order to simplify the equa-
tions we restrict ourselves to shallow rotational membranes. For
such membranes we obtain a set of two equations of equilibrium [2]

d?(gcn) = 6, (2.9)
o;(R,—d;Q) + o'z(Rz—%clgW):% ; (2.10)

where & and @, are the stresses in the directions of the main
curvatures kq and k, , respectively, W is the displacement normal
to the surface, [ the constant internal pressure, h  the thick-
ness of the membrane and denotes the surface coordinate. The
symbol d represents the derivative d/d¢ .

To fthe set of Eqs.(2.9) and (2.10) we now join the equation
of compatibility of deformations 2]

4 -2 - - - a
?dgez +€,-€, =-3"(di) + dg(?u')_\"’)— k4w ) (2-11)
where ey = e11, e, = €,, are the main strains.
Further, we introduce the following substitutions:

T _ P _h
2=p% P=g TR (2.12)
k
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wnere R is the value of the larger radius of main curvatures.
On the basis of Eq.(2.12), the stress deviator components ex-
pressed by stress components become

$,= 5, = —45—(30'1—20'2) = -;—D(b—?- -2d.z) , (2.13)
— & = = 4 .
5,= S5, = -%- (3¢0,-20) = zD(4dz=3 %) . (2.14)

By introducing the quantities of Eg.(2.12), we satisfy Eq.(2.9)
and Eq.(2.10) takes the form

%[k,—ﬁg\ﬁ'-d‘,({Fc\'w)] +(2d,z- 2Xk, - 2qc,w) = 4. (2.15)

If the use of the physical relations (2.1) is made, then the
main strains become

e,=Ns, = N[‘%‘D(S%-Zd,z)] , e,=Ns,=N %D(‘ld,z-S-f.—)], (2.16)

and(the ffndition of compatibility may be written as follows fsee
Eq.(2.11)] :

2W d, (\WNs,) - Ns1=-232r(d,w)2+ 20VF d, (Fkyw) - gk, w . (2.17)

The set of equations (2.15) and (2.17) is a system determining
two unknown functions: the non-dimensional stress function z and
the non-dimensional deflection w . Thus, the solution of the above
system of equations gives the solution of the problem of creeping
nonlinear membranes.

In the particular case of physical relations (2.6), we put in
Eq.(2.17) Ny instead of N. In this very case the condition of com-
patibility may be presented in terms of strain rates and the rela-
tions (2.8) applied.

3.Concept of analogy

It has been found [2] that in the case of purely creeping non-
linear rotational membranes it is possible to obtain the creep so-
lution by separating the variables r and t in the fundamental set
of Eqs.(g.15 and (2.17). Then the time-independent set of equa-
tions is analogous to the corresponding system of the instantane-
ous problem, if only the nonlinear functions of deviatoric stress
intensity are of similar forms in both cases. The time-dependent
gset of equations can be solved in a closed form. It follows from
the last solution that the creep process of nonlinear membranes is
always unsteady. If the form of the generalized creep function is
assumed according to Eq.(2.4), where the creep factor is expressed
by exponential functions, then the solution describes a stabilizing
process_of creep. On the other hand, if the particular case of
Eq.(2.6) is considered and creep is unlimited, a complete relaxa-
tion of stresses occurs after an infinite period of time and strains
become infinite. From the physical point of view such a state of
the membrane cannot occur and at a certain finite time-instant the
creep rupture takes place. We assume as a measure of reaching this
point the value of dissipated energy during the creep process. Thus,
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if a certain critical value of energy is dissipated through creep
resistance, the membrane is considered as collapsed. From an appro-
priate condition of the form (1.2) it is then possible to find the
critical time of creep failure.

4. Shallow spherical membrane
We shall consider in detail a shallow spherical membrane with

the radius of curvature R . For such a membrane we obtain the fol-
lowing system of equations

a;(fi-d""gwh O'z(R‘jg'sdi)=l‘:,' »  k=4/R, (4.1)
2 T T -
gc:ige*z+e,‘,-e1 =--"é-(d?v‘?:) +d9(9kv'v)- kw , (4.2)

and Eq.(2.9) .

The equation (4.1) may be at once integrated by using Eq.(2.9) g
the constant of integration being equal zero. Thus, instead of
Eq. (4.1) ,we obtain

7 = o(k-L-).
dgW = 3(k 2ho, (4.3)
Further, we introduce the following notations:
T (1) » Z D 6—4 2 D P(2h) )y W= n 4 (4.4)
k=4R , R=R/h |, 3-_-h/4

where 4 is the maximum value of the variable ¢ (for e=1, *+= 1).
With the above notations,the stress deviator components have
the form of Egs.(2.13) and (2.14), and the strains are given by the

formula (2.16) .
Consideri the radius of curvature R as time dependent, we dif-
ferentiate Eq.(4.2) with respect to time and thus obtain

g g6, + &, &, = ~d d i + d g (gkim) + dg(gki)-Rw-kw  (1.5)

Finally, by using the second of Eqs.(2.7 and introducing the
notations (i.@ , we represent Egs.(4.3) and (4.5) in the following

form: 1 K .
dfw=-2-'§'2-“z' ) (4.6)

2vd N, [£D(4d,2-3 2)] + No[$D(4el 23 3] - N, [D(5F -24,2) (4-7)
: K
+ zr[dTw(Zga- d,w-k) + " d‘,w]= g .

Here the operator N, is given by Eq. 22.83 .
It is seen froz% the set of Eqs. (4.6) and (4.7) that the dis-
placement w can be easily eliminated from the second equation by

means of the first one.

Bg. Schlussbericht
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Now, let us assume that the nonlinear function of effective
stress appearing in Eq.(2.8) is a power function of the form

Fls0]=28s""(v) (4.8)

where B and n are physical constants, the last being an odd natu-

ral number,
According to Eq.(2.3) and Egs. (2.13) 5 (2.14) , the effective
stress is expressed as follows

s(v,t) =D'R(r,1) , (4.9)

where

RELH=Q() = 4(d,2)-6d z = + 3(%_—)2 © (4.10)

Introducing Eq. (4.8) together with Eqs. (4.9) and (4.10) and
eliminating the displacement in Eq. (4.7), we finally obtain

-3 . _
ot )[Sﬁd:z + (n-1)(4d,2-3%)d,Q] = 21‘[%(-})2-(3-;,9-‘3)"]%(4-11)

where P
T “gp™ - (4.12)

The method of solution of the problem for a creeping membrane
is founded on the basis of an analogy as stated above. We assume
the solution of Eq.(4.11) in the form

z(r,t) = z° () @(t) , (4.13)

and put &
k(t)=k/"P('t) . (4.14)

If we introduce the solution (4.13) into Eq. (4.11), then after
separating the variables we find

DKZ , T .2 SR (L 2 o o . 2°
%[(3-5—)—(;3)_] Q, (8Q.d, 2% (m-(4d,2°- 3% )0, Q,l= (4.15)

- .2 P (&)
o —
[et] ™

where
2

(v =Szo(z°)=q(d,z°)2-6d,z°-§ +3(—f.:) ) (s.16)

A Dbeing a constant.

The time-independent part of Eq.(4.15) is analogous to the
equation for an instantaneous problem, if only the physical equa-
tion is of a form analogous to Eq. (4.8 . Thus, if the solution of
the instantaneous problem is known, we are able to obtain the creep
solution in a formal way. The time-independent solution is obtain-
ed by representing the stress function in the form of power series.
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On the other hand, the time-dependent part of Eq. (4.
be written as follows: ? P q-(4.15) may

. n+3
e +4 o] = 0. (4.17)
The variables in‘Eq.(4.17) are separable and the solution is given
by the formula 1
4 N+4 - G-EIE)
@)= P [1+ TAY,  (n+2)(t-T)] ; (4.18)

where the constant of integration Y. = ¢ L), According to the so-
lution (4.18) we consider as initial instant of the observed creep
process a certain intermediate time-point at which the past creep
effects are taken into account instantaneously.

In order to obtain the appropriate solution for the displace-
ment w, we assume the last in the form

w(nt) = wl(ne(t) (4.19)
and by putting it into Eq.(4.6) we obtain
1)
4k _ T e 4 _
g =] dw= oy = (4.20)

From the last result we obtain the relation between the two
time functions Yy and

MORIHO] e . (4.21)

As may be seen from Eq.(4.18), the function @ tends to zero
with time tending to infinity. This means that the stiresses [see
Eq. (4.13)] drop to zero and their relaxation is complete after an
infinite period of time. On the other hand, the function Yy in-
creases infinitely with time and thus the displacement w [see Eq.
(4.19)] becomes infinite.

5. Critical time of failure

In order to find the critical time of failure we use the cri
terion for the critical creep state in the form (1.2) where the
function f is assumed as a linear one. Thus, we obtain the condi-

tion
W, = comst, =K* (5.1)

where K2 is the critical value of dissipated energy through the

creep resistance.
The power of dissipation is given by the relation containing

the stress components and strain rate components
Wy = o, (hh e (), (5.2)

and the condition takes the form
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- - 2
Wy J oy (Wey (Tde =K (5.3)
t
Here, by t we denote the time-instant at which the creep rupture
takes place. Evidently, the initial instant ¥ should also be
considered as a certain critical time-point as, for example, the
instant of reaching the stage at which the elastic effects can be
neglected. In this case, the value of dissipated energy Wj(t)=

characterizes the process up to this stage.
In the particular case of a spherical membrane, the condition

(5.3) takes the form
L™
Wp =J[°’4('-'°)é. (re)+a,(rv) éz(r\t)]dt =K* (5.4)

where t o (rt) = 22 M9(), 6, (r)=Dad, M-z )¢

e

E(rt)= ¢ (t)L[ﬁ'D(’ﬁ---ch %) &,(0t) = PWI[FD(ud, -3 2],

In the Eq. (5 5) 1L° is related to the operator L as follows
L=¢™ @l (5.6)

On the basis of Eqs.(5.4) and (5.5), the condition (5.4) may

now be written
L*

n*i 2
W, = w°(r)J Ly (] =K | (5.7)
t
where W° stands for a time- -independent energetical coefficient

t(he value of which can easily be evaluated on the basis of Egs.

and (5.5).
In order to obtain the critical time of creep rupture, we

calculate the value of the integral

¥ 5
n+4 K
j_[u;('c)] dn = vl (5.8)
t
by substituting the function @ according to the solution (4.18).
Denoting by
ne A n+2

=4+ '%7\'?0 (n+2)(z-¥) , A= 7 MY (n+2) > (5.9)

we obtain, instead of Eq.(5.8),
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N+{ i

P [ S K

T\gjx“dx"v?” (5.10)
4

*
where x = x(t*) a
Carrying out the integration in Eq.(5.10), we finally obtain

t= E*‘%—{[H‘?A“Po \_;SJMZ__G (5.11)

It is seen from the result obtained that, if the criterion
(5.3) is applied, we are able to predict the critical time of
creep rupture and thus bound the unlimited creep process predict-
ed by the creep solution. Since only dissipation is involved dur-
ing the process, it seems reasonable to found the prediction of
creep rupture on the basis of the amount of dissipated energy
wgicg zhus constitutes a certain measure of reaching this critic-
al state.

D] Z.Bychawski, W.0Olszak, Energetic interpretation of critical
states in viscoelastic bodies (in Polish), IBTP Reports, No.2,
Warsaw, 1967.

[2] Z.Bychawski, W.0lszak, Rheological states of geometrically
nonlinear rotational membranes, The Second IUTAM Symposium
on the Theory of Thin Shells, Copenhagen, 1967.

SUMMARY

On the basis of the authors criterion of attainment of crit-
ical states in viscoelastic bodies, the problem of creep failure
of nonlinear rotational shells is investigated. For a spherical
membrane the critical time of failure is found by introducing the
dissipated energy through creep resistance as a measure of attain-
ment of this state.

RESUME

En se basant sur la condition des etats critiques proposee
par les auteurs, on considere le probleme de la rupture par fluage
pour les voiles minces nonlineaires. Pour une membrane, le temps,
critique de rupture est calculé en introduisant 1’energie disaipee

ar la résistance de fluage comme une mesure pour atteindre cet

tat.
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ZUSAMMENFASSUNG

Die Verfasser haben ein Kriterium f#ir das Erreichen des
kritischen Zustandes infolge Kriecherscheinungen formuliert und
dasselbe zur Analyse des Problems des Kriechbruches von nicht-
linearen Schalen im Membranzustand angewandt. Als Resultat findet
man die kritische Zeit, in welcher Kriechbrucherscheinungen in
einer sph¥rischen Membran eintreten. Als entsprechendes Mass wird
dabei voraussetzungsgemBss die durch den Kriechwiderstand zer-
streute (dissipierte) Energie eingefthrt.
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