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Creep Failure of Nonlinear Rotational Shells

Rupture par fluage de voiles minces axisymetriques non-lineaires

Kriechbruch nichtlinearer Rotationsschalen

W. OLSZAK
Prof.Dr., Dr.h.c.

Z. BYCHAWSKI
Assoc.Prof.Dr.

Poland

1.Introduction
The authors have established [l] a criterion of the attain-

ment of critical states in linear viscoelastic bodies. The idea
of the criterion can also be extended to the ränge of nonlinear
viscoelastic behavior, if the phenomenon of failure is considered

as a critical state.
The criterion is founded on an energetical basis and for

a certain group of nonlinear viscoelastic materials it states
that such a critical state as, for example, creep rupture
depends in general on a function of the accumulated energy and the
dissipated power accompanying the deformation process. Thus, if
Wg Stands for the accumulated energy and W-r, is the dissipated
power, the condition of creep rupture is stated as follows:

{(W..WJ const. (1.1)

In some cases, however, the accumulated part of energy may
be neglectfully small. Moreover, there are materials which are
not able to accumulate energy at all as, for example, the pure
creeping ones. In these cases it seems reasonable to represent
the criterion (l.l) in the following different form:

f (Wß) const (1.2)

where Wr> is the deviatoric dissipated energy per unit volume of
the body. It follows from the condition (1.2) that the dissipated
energy is considered as a certain measure of the attainment of
the critical state. The correct form of this condition should be
founded on experimental results.

The problem of attainment of a critical state as, for example,

creep rupture may turn out to be essential when analysing
the conditions occurring for thin-walled metallic structures un-
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der high pressure, especially, high temperature Containers,
pneumatic structures, etc.

Por such problems, we apply the criterion (l.2) to geomet-
rically nonlinear rotational shells in the membrane state under
internal pressure in order to evaluate the critical time of
failure as a consequence of the creep process. Accordingly, we
assume that the material of Shells exhibits pure creep only.

2.Physical and geometrical equations

In general, we assume that an isotropic incompressible material
of shells creeps according to the integral law \_2~\

where e•^ Stands for the creep strain tensor, 8jj is the stress
deviator and N denotes a nonlinear integral Operator of the
form

Ns::y--f siiCt)aTH[t,'C>6fx)]dt (2.2)

Here, H is the generalized creep function depending on the
effective stress

sCO=f[s:jCt)^(t)] (2.3)

t standing for time, t0 being the initial instant and dx d/oV.
As shown in [2] the generalized creep function H Covers both the
linear and nolinear ränge of creep. However, in the present
paper we use only its nonlinear representation.

In particular, the creep function may be assumed in such
a form as to satisfy the following condition:

atH[t/c,*(t)] »r[i(t)]atcct-t) (2.^
where P is a nonlinear magnifying factor and C the creep factor.
The last representation of the creep function is very useful
when considering the non-steady states of creep in which the
deformation stabilizes after an infinite period of time.

Por the state of creep of metallic materials, the derivative
of the creep factor becomes a constant, i.e., C is a linear function

of time

C(t-X) c(t-t) (2.5)

where c is a constant. In the last case, Eq.(2.2) takes the form
t

N°Ä4 =j njWF0 [>(*)] dt (2.6)

As it is seen from Eq.(2.6),we assume that the state of stress is
variable with time. We shall show later that in the case of creep



W. OLSZAK - Z. BYCHAWSKI 111

of nonlinear shells in membrane state, the stress state is always
ä non-steady one in the presence of a constant internal pressure.
The stresses are found to drop to zero in an infinite period of
time.

According to Eqs.(2.2) and (2.6), the initial conditions
at t equal t0 are assumed to be of zero value, i.e., there are
no deformations at the initial instant. However, these conditions
may not be zero, if we consider a creep process at T > tQ In
this case there is an initial deformation state expressed instan-
taneously by the values of integrals within the limits tQ t

The equations (2.1) and (2.6) can be written in terms of
strain rates as follows:

*5j Nsij e - N06Lj, (2.7)

where the dots over the Operators are syinbolic. Por example, in
the case of the second relation (2.7) we find

N0A-j 5:j(t)F0[i>(t)] • (2.8)
We apply the physical equations (2.1) or (2.6) in order to

investigate the critical states of rotational membranes of small
and constant thickness which deform under constant internal pressure.

In deriving the geometrical relations for such membranes we
assume that in the time-interval considered, the strain tensor
and strain rate tensor are small quantities, the rotation angles
being also small; the normal component of displacement is suppos-
ed to have a finite value. Further, we assume that the undeformed
surface is generated by the revolution of a plane curve which
does not imply any singularities. In order to simplify the
equations we restrict ourselves to shallow rotational membranes. Por
such membranes we obtain a set of two equations of equilibrium [2]

where ffy and CT^ are the stresses in the directions of the main
curvatures k-j and k2 respectively, w is the displacement normal
to the surface, p the constant internal pressure, h the thickness

of the membrane and P denotes the surface coordinate. The
symbol do represents the derivative d/do

To the set of Eqs. (2.9) and (2.10) we now join the equation
of compatibility of deformations [2]

?c^ea H-ea-e,--^(cl?w)Z4.d<?(«?üiw)-^w (2.11)

where e.. eii» eo e22 are the main strains.
Further, we introduce the following substitutions:

-&\p 1 Z i^ 1 ösf ' 3-£ '
(2.12)

w-^, k^Rk, k2=Ru2
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where R is the value of the larger radius of main curvatures.
On the basis of Eq.(2.12), the stress deviator components

expressed by stress components become

»,- s«= icsv*«o ^(H^-jfi •
o-14)

By introducing the quantities of Eq.(2.12), we satisfy Eq.(2.9)
and Eq.(2.10) takes the form

^[kr^v7d/^dfw)] + (2dfz- fXKa- 2gdTw) A. (2.15)

If -fri*€ use of the physical relations (2.1) is made, then the
main strains become

e( Ns,= N[yD(3f -2d,z)], e2* Naa-N[4fD(*idfx-3f)|. (2.16)

and the condition of compatibility may be written as follows fsee
Eq.(2.1l)]:

2VFd, (/7N52)-N61 -29^WTw)S2g/rdf0fk2w)-gk1w (2.17)

The set of equations (2.15) and (2.17) is a system determining
two unknown functions: the non-dimensional stress function z and
the non-dimensional deflection w Thus, the Solution of the above
system of equations gives the Solution of the problem of creeping
nonlinear membranes.

In the particular case of physical relations (2.6), we put in
Eq.(2.17) N0 instead of N. In this very case the condition of
compatibility may be presented in terms of strain rates and the relations

(2.8) applied.

3.Concept of analogy

It has been found [2] that in the case of purely creeping
nonlinear rotational membranes it is possible to obtain the creep
Solution by seoarating the variables r and t in the fundamental set
of Eqs.(2.15) and (2.17). Then the time-independent set of equations

is analogous to the corresponding system of the instantaneous
problem, if only the nonlinear functions of deviatoric stress

intensity are of similar forms in both cases. The time-dependent
set of equations can be solved in a closed form. It follows from
the last Solution that the creep process of nonlinear membranes is
always unsteady. If the form of the generalized creep function is
assumed according to Eq. (2.4) where the creep factor is expressed
by exponential functions, then the Solution describes a stabilizing
process of creep. On the other hand, if the particular case of
Eq. (2.6) is considered and creep is unlimited, a complete relaxation

of stresses occurs after an infinite period of time and strains
become infinite. From the physical point of view such a state of
the membrane cannot occur and at a certain finite time-instant the
creep rupture takes place. We assume as a measure of reaching this
point the value of dissipated energy during the creep process. Thus,
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if a certain critical value of energy is dissipated through creep
resistance, the membrane is considered as collapsed. From an
appropriate condition of the form (1.2) it is then possible to find the
critical time of creep failure.

4. Shallow spherical membrane

We shall consider in detail a shallow spherical membrane with
the radius of curvature R For such a membrane we obtain the
following system of equations

tr<(k-d*w)t cra(k-4;d.w) «£ » k=./R, (4.1)

.4
?dse* + ea-ei -y(d?^) +d?(okw)- kw (4.2)

and Eq. (2.9)
The equation (4.1) may be at once integrated by using Eq.(2.9),

the constant of integration being equal zero. Thus, instead of
Eq. (4.1) ,we obtain

V=S(k-£-,V (4.3)

Further, we introduce the following notations:

t-(l)\ *-£«; > D-pf^)1, w--| (4.4)

k VR R R/h 5= W/1

where "1 is the maximum value of the variable 9 (*or 1» "t 1)•
With the above notations,the streBS deviator components have

the form of Eqs.(2.13) and (2.14), and the strains are given by the
formula (2.16).

Considering the radius of curvature R as time dependent, we dif-
ferentiate Eq.(4.2) with respect to time and thus obtain

9ds€a +V®i =-clsÄdsw + d,(<$kw) + d?(<jk*)-kw-kw (4.5)

Finally, by using the second of Eqs.(2.7) and introducing the
notations (4.4), we represent Eqs. (4.3) and (4.5) in the following
form:

«,»-*!•-*' (4.0

+ 2r[dTvv(29a-dTw-U) + ^-dvw]S:0

Here the Operator N0 is given by Eq. (2.8).
It is seen from the set of Eqs. (4.6) and (4.7) that the

displacement w can be easily eliminated from the second equation by
means of the first one.

Schlussbericht



114 Ib - CREEP FAILURE OF NONLINEAR ROTATIONAL SHELLS

Now, let us assume that the nonlinear function of effective
stress appearing in Eq. (2.8) is a power function of the form

Fo[»W]*f-Ban"1(*0 i (4.8)
where B and n are physical constants, the last being an odd natural

number.
According to Eq.(2.3) and Eqs. (2.13) (2-14) the effective

stress is expressed as follows

sa(r,t) *D4£(<\t) (4.9)

where

ß(T,t)*ftC*)«<i(dtz)*-6dfz.£ +3(-fr)a • (4.10)

Introducing Eq. (4.8) together with Eqs. (4.9) and (4.10) and
eliminating the displacement in Eq. (4.7) we finally obtain

a*Cn-iY8fidS+cnMXpd,Iofjd,s]==iT[f(#ffS)^r4.iii

where p
** =BD1RT1 '

(4.12)

The method of Solution of the problem for a creeping membrane
is founded on the basis of an analogy as stated above. We assume
the Solution of Eq.(4.1l) in the form

z(f,t) z°(r) <pCt) (4-13)

and put 0
kW-k/M-W •

C4.u)

If we introduce the Solution (4.13) into Eq. (4.11) then after
separating the variables we find

o r Z °

p O 0 9
where

Äcfr) =^0(z^) -i(dTzT-6dTz0^ +3(7-)", (4.16)

A being a constant.
The time-independent part of Eq.(4.15) is analogous to the

equation for an instantaneous problem, if only the physical equation

is of a form analogous to Eq. (4.8) Thus, if the Solution of
the instantaneous problem is known, we are able to obtain the creep
Solution in a formal way. The time-independent Solution is obtained

by representing the stress function in the form of power series.
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On the other hand, the time-dependent part of Eq.(4.15) maybe written as follows:

^(t)+^[cp(t)]n+3 0. (4.17)

The variables in .Eq.(4.17) are separable and the Solution is given
by the formula

(-—)
<pft)«%I>Y*<Po Cn^2)(i-b)] (4.18)

where the constant of integration H>. "fCt") According to the
Solution (4.18) we consider as initial instant of the observed creep
process a certain intermediate time-point at which the past creepeffects are taken into account instantaneously.

In order to obtain the appropriate Solution for the displacement
w, we assume the last in the form

W(r.t) - wV)fCt) (4.19)

and by putting it into Eq.(4.6) we obtain

[4 k r-i f"° A

-T-gi-70] *,w =^Ki)- /, ' (4-2°)

Prom the last result- we obtain the relation between the two
time functions i|/ and 1p

+ Cfc) [<fCt)] (4.21)

As may be seen from Eq.(4.18) the function tf tends to zero
with time tending to infinity. This means that the stresses fsee
Eq. (4.13)] drop to zero and their relaxation is complete after an
infinite period of time. On the other hand, the function 41

increases infinitely with time and thus the displacement w £see Eq.
(4.19)J becomes infinite.

5. Critical time of failure
In order to find the critical time of failure we use the

criterion for the critical creep state in the form (1.2) where the
function f is assumed as a linear one. Thus, we obtain the condition

WD con&t. K2, > (5.1)
p

where K is the critical value of dissipated energy through the
creep resistance.

The power of dissipation is given by the relation containing
the stress components and strain rate components

WD= o-t. Cf,t)6cj(r,t) (5.2)

and the condition takes the form
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wd j °ry (x)^ Cc) dt K1
(5#3)

Here, by t we denote the time-instant at which the creep rupture
takes place. Evidently, the initial instant £ should also be
considered as a certain critical time-point as, for example, the
instant of reaching the stage at which the elastic effects can be
neglected. In this case, the value of dissipated energy WD(t)= W
characterizes the process up to this stage.

In the particular case of a spherical membrane, the condition
(5.3) takes the form

i*
WI> J[c;(r,x)e1(rlr)+crlCrlx)£a(r^)]dt; K2\ f5-4)

where a<(r,t) £zWt), Sz(t^J>{ldrZ0(^~^Cr)]^

£,C*.tWV)Lo[iDC^°-2dTz0)], Vf,t>-ffOLT>iD('*dr^.^*§).

In the Eq.(5.5) L0 is related to the Operator L as follows

L«*n"W (5.6)

On the basis of Eqs.(5.4) and (5.5) the condition (5.4) may
now be written

t*
WD W°(OJ [pfWl^dk -Kfc, (5.7)

t
e-

the value of which can easily be evaluated on the basis of Eqs.
where W° Stands for a time-independent energetical coefficient
the value of whic
(5.4) and (5.5).

In order to obtain the critical time of creep rupture, we
calculate the value of the integral

II
n+4 K

brf\ 6xmvP> ' (5.8)
i

by substituting the function vj? according to the Solution (4.18).
Denoting by

x-^iV**-«*4^ > A-^-M^Va)- (5.9)

we obtain, instead of Eq.(5-8),
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TT J * dx " W° ' (5.io)

where x x(t
Carrying out the integration in Eq.(5.10), we finally obtain

It is seen from the result obtained that, if the criterion
(5.3) is applied, we are able to predict the critical time of
creep rupture and thus bound the unlimited creep process predict-
ed by the creep Solution. Since only dissipation is involved during

the process, it seems reasonable to found the prediction of
creep rupture on the basis of the amount of dissipated energy
which thus constitutes a certain measure of reaching this critical

state.

\f\ Z.Bychawski, W.Olszak, Energetic Interpretation of critical
states in viscoelastic bodies (in Polish), IBTP Reports, Ho. 2,
Warsaw, 1967.

[23 Z.Bychawski, W.Olszak, Rheological states of geometrically
nonlinear rotational membranes, The Second IUTAM Symposium
on the Theory of Thin Shells, Copenhagen, 1967.

SUMMARY

On the basis of the authors criterion of attainment of critical
states in viscoelastic bodies, the problem of creep failure

of nonlinear rotational Shells is investigated. For a spherical
membrane the critical time of failure is found by introducing the
dissipated energy through creep resistance as a measure of attainment

of this state.

RESUME

En se basant sur la condition des etats critiques proposee
par les auteurs, on considere,le probleme de la rupture par fluage
pour les voiles minces nonlineaires. Pour une membrane, le temps,
critique de rupture est calcule en introduisant l'energie dissipee
fax la resistance de fluage comme une mesure pour atteindre cet
tat.
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ZUSAMMENFASSUNG

Die Verfasser haben ein Kriterium für das Erreichen des
kritischen Zustandes infolge Kriecherscheinungen formuliert und
dasselbe zur Analyse des Problems des Kriechbruches von
nichtlinearen Schalen im Membranzustand angewandt. Als Resultat findet
man die kritische Zeit, in welcher Kriechbrucherscheinungen in
einer sphärischen Membran eintreten. Als entsprechendes Mass wird
dabei voraussetzungsgemäss die durch den Kriechwiderstand
zerstreute (dissipierte) Energie eingeführt.
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Der Einfluß des zeitabhängigen Verhaltens bei Hänge- und Schrägseilbrückensystemen

Time-Dependent Response of Suspension and Cable-Stayed Bridges

L'influence du temps dans le comportement de ponts suspendus ou haubannes

KURT MOSER
Dipl.Ing. Dr.techn.; Zivilingenieur

Salzburg

Es ist allgemein bekannt, daß bei fast allen heute gebräuchlichen
Baustoffen - insbesondere unter Dauerbelastung - Formänderungen

auftreten. Der vorliegende Beitrag befaßt sich mit dem zeitabhängigen
Verhalten bei Hänge- und Schrägseilbrückensystemen, wobei speziell

der Einfluß des Kabelkriechens (auch Nachlängung der Tragkabel
genannt) betrachtet werden wird.

Diskussion über erfolgte Messungen
Zwei die zeitliche Deformation charakteristisch beschreibende

Darstellungen sind bei rheologischen Untersuchungen üblich geworden:
der Verlauf der Dehnung bei konstanter Last und der Verlauf der
Spannung bei konstanter Gesamtdehnung, beides in Abhängigkeit von
der Zeit bei konstant gehaltener Temperatur; man spricht bei dem
einen Verlauf vom "Kriechen" und bei der zweiten Punktion von der
"Relaxation". Wir werden uns hier mit dem ersten Phänomen befassen.
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In dankenswerter Weise hat ein
angesehenes deutsches Draht-und
Kabelwerk an einigen bekannten
Rheinbrücken Messungen vorgenommen,

womit es möglich geworden
ist, nunmehr auch an kompletten
Hänge-und Schrägseilbrückentrag-
werken zeitlich ablaufende
Deformationen zu studieren. Die
Fig.1 und Fig.2 zeigen die
aufgenommenen Kriechkurven für die
Tragkabel bei Hängebrücken; die
Fig.3 das gleiche bei einer
Schrägseilbrücke. Es handelt
sich im einzelnen um die
nachfolgend aufgezählten

Rheinbrücken im Räume von Köln in der Bundesrepublik Deutschland.
Hängebrücke. Köl_n-^Mülheim_j_ In der Fig.1 maßgebend ist erst der Kurvenzug

ab etwa 1,4 Jahren, nach erfolgten Ballastierungen,
Probebelastungen und endgültiger Fertigstellung. Spannung aus ständiger
Last im Tragkabel i.M. 33 kp/mm2; aus Verkehrslast pro Tag i.M. 5

bis 8 kp/mm2.
Hänge_brücke_ Köl_n-R£de_nkirchen:_Meßpunkte in Fig.2 ab Verkehrsübergabe

1954 aufgetragen. Spannungen aus ständiger Last i.M. 41 kp/mm.2;
aus Verkehrslast pro Tag i.M. 3-5 kp/mm2.
TSchrägs_e^lbrücke_Ko^ln-Deutz ^S^ver^nsbrücke.)^ Meßpunkte in Fig.3
ab Verkehrsübergabe im November 1959 aufgetragen. Spannungen aus
ständiger Last i.M. 38 kp/mm2; aus Verkehrslast pro Tag bis 9 kp/mm.2.

Fig. 3

Ein Vergleich des dargestellten Meßverlaufes für das
Kabelkriechen der jeweiligen Brücken zeigt eine offensichtliche
Übereinstimmung in der Tendenz bei den beiden Hängebrücken und ebenso
deutlich eine Abweichung bei der einzigen hier betrachteten
Schrägseilbrücke; beide Systeme zeigen in der semilogarithmischen
Darstellung im wesentlichen ein lineares Kriechen, wie wir es
prinzipiell schon von den kaltgezogenen Einzeldrähten her kennen. In
Fig.1 und Fig.2 wurde jeweils eine für Hängebrücken als typisch
angenommene mittlere Gerade h mit gleicher Steigung (12o mm/m in
2 Jahren) eingetragen. Die entsprechende Gerade s bei der betrachteten

Schrägseilbrücke verläuft mit 75 mm/m in 2 Jahren etwas
flacher (vergl.Fig.3)jdieser Brückentypus ist sichtlich
kriechsteifer als eine Hängebrücke. In der folgenden Abhandlung soll der
Einfluß des aufgezeigten Kriechverhaltens der Tragkabel auf das
Gesamttragwerk gezeigt und wenn möglich mit anderen üblichen
Lastfällen verglichen werden.

Hängebrücke
Die statische Berechnung einer erdverankerten Hängebrücke wird

üblicherweise an einem Ersatzsystem durchgeführt[1]; Fig.4 zeigt
ein solches für den Fall, daß der Versteigungsträger über 3 Felder
durchläuft. In den meisten Fällen kann

angenommen werden.
yf y£ - y" 8f/l^ const

17Feiten & Guilleaume Carlswerk Eisen und Stahl Aktiengesellschaft
Köln.
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Hangebtutke mit dutthlaufendem Versteifungsträger übet drei Öffnungen

~\tr".

STQ

M-P,r^r\Hp>fErsattSystem »WsWrv- Äp
u «1%fe

fffi vorliegenden Fall y', yj= const

Fig. 4

Die Brücke sei in üblicher
Weise so montiert, daß der
Anteil g const der
ständigen Brückenbelastung vom
Tragkabel allein getragen
wird. Ferner wird vorausgesetzt,

daß die Hänger vertikal
und ungedehnt bleiben, daß
die Hängerkräfte stetig über
den Versteifungsträger
verteilt sind, daß die Tragkabel
keine Biegesteifigkeit
besitzen, daß die Sattellager
waagrecht verschiebbar sind
und daß Pylonenverkürzungen
und Schubverzerrung des
Versteifungsträgers vernachlässigt

werden dürfen.Unter diesen Voraussetzungen erhält man auch
im vorliegenden Fall die I._Grund£le_i£hung in der Form

EJ vIV - Hg + Hp v» - p - Hp || 0 (1)

welche gleichzeitig die Differentialgleichung des Ersatzsystems
(Träger) darstellt. Dabei wurde angenommen, daß die Trägerachse
identisch mit der x-Achse und die Ordinaten des Tragwerkes mit y,
die entsprechenden Verformungen mit u bzw. v bezeichnet sind.

Stil

Träger-

•?-pZ>.

<5—^5

Versthiebung am Seilelement

dx

ik.
feudi

-i

Der Verfasser setzt als
bekannt voraus, daß die
I_I._Gr.juidgle_i£hung mit dem
Ansatz-

sA dx 0 (2)

gefunden wird. In Fig.5 sind
alle erforderlichen Zusammenhänge

zwischen der Verformung
des Seiles und des Trägers,
sowie am Seilelement selbst
dargestellt.

Fig. 5

Es gilt dann „
A ds _ _E_

\\coar + )61og t ds + <X,,AT ds (3)

worin H den Horizontalzugzuwachs gegenüber dem Normalzustand H
P S

(ständige Last), L die gesamte Länge des Versteifungsträgers, J£

die Steigung der Geraden h in Fig.1 und Fig.2 in den dortigen
semilogarithmischen Darstellungen, mit t als Zeit in Jahren,
und AT eine Temperaturänderung darstellt. Nach Erfüllung von (2)
erhält man schließlich mit (3) eine erweiterte T^i.JJ^undgl^icb.ung

L rL

Hpiy + (X.log t + CXTT LT +) y" v dx 0, (4)
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die den funktionellen Zusammenhang zwischen Tragkabel und
Versteifungsträger herstellt. Der Lastfall "Kabelkriechen" erscheint im
2.Term dieser Gleichung als ein ebenfalls erweiterter Temperaturlastfall;

L„ bedeutet dabei f dx/cos2a> später wird auch noch
fL 3 °

L, / dx/cos ID gebraucht). Die praktische Auswertung erfolgt
o '

Hoening [2J wo z.B. speziell ausKabelzweckmäßig nach K
kriechen

A H - * l0g t LT 8(f+Af)
8f (5)
T2 P + 8(f+Af) E FYk

mit F als die gesamte Biegefläche aller Öffnungen unter der
Einheitsgleichlast, bestimmt werden kann etc.

Unter diesen einfachen und anschaulichen Voraussetzungen kann
bereits brauchbar etwas über die Auswirkung des Kabelkriechens
ausgesagt werden.

Beispiel :

Hänge_brü£ke_ KölnzMülheim_[j53_: Wenn man die Gerade h in Fig.1
zugrundelegt und E, konstant annimmt2^ erhält man z.B. für 3, 10 und
100 Jahre ein AH von rund -6Mp, -12 Mp und -24 Mp bei einem H

von 3180 Mp! Der entsprechende, äquivalente Temperaturlastfall °
entspräche einer Temperaturdifferenz von ca 2,1 C, 4,5 C und 9 C,
d.h. der letzte höchste Wert entspricht etwa 1/4 des in der
ursprünglichen Berechnung berücksichtigten Temperaturanteils.

Schrägseilbrücke
Auch für dieses Brückensystem (Fig.3) kann, wie F.W. Walt-

k i n g in einer unveröffentlicht gebliebenen Arbeit [4] gezeigt
hat, ein Ersatzsystem gefunden werden, das eine geschlossene Lösung
und eine sehr anschauliche baustatische Deutung des elastischen
Problems ermöglicht. Im Anhang zur vorliegenden Arbeit wird im
einzelnen gezeigt, daß die Lösung des als kontinuierliche Wand von

Schrägseilen (Zügelseilen)
aufgefaßten Ersatzsystems (vergl.
nebenstehende Fig.6) auf einen "Träger
auf elastischer Unterlage" führt.

Seilenöffnung nicht abgespannt Seilenöffnung abgespannt

Fig. 6

Der Verfasser sieht bei Benutzung

eines solchen Ersatzsystems
grundsätzlich die Möglichkeit, zeit-
und auch temperaturabhängige Vorgänge
an Schrägseilbrücken aber auch an
ähnlich seilabgespannten Konstruktionen
ohne größeren Aufwand zu untersuchen.
Es genügen wohl nicht mehr einfache
geometrische Überlegungen wie vorhin

2) Der E-Modul des Tragkabels ist streng genommen ebenfalls eine
Funktion der Zeit, was bei der Durchrechnung des Beispiels vernachlässigt

werden konnte.- Bei der Behandlung der Schrägseilbrücke wird
gezeigt werden, welche Form der Grenzwert E,^annimmt.
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bei der Behandlung der Hängebrücke aufgezeigt, aber auch die hier
anwendbaren Prinzipien der linearen Viskoelastizitätstheorie bieten
noch die Möglichkeit einer anschaulichen baustatischen Behandlung
des Problems.

Zur ausführlichen Theorie selbst sei auf die entsprechende
Literatur verwiesen ([5] u.a.).Hier soll nur das Wesentlichste zum
besseren Verständnis der Abhandlung herausgehoben und den nachfolgenden

Überlegungen vorangestellt werden:
Das betreffende Bauglied (hier die Schrägseilkabel) oder ganz
allgemein das Tragwerk als ganzes (wenn z.B. neben dem Kabelkriechen
auch das Kriechen des Versteifungsträgers berücksichtigt werden
sollte) wird als aus einem ideal viskoelastischen Baustoff
hergestellt angesehen, wo zwei Medien vereint gedacht sind, nämlich
der ideal elastische Körper und die zähe Flüssigkeit. Die elastischen
Effekte sollen dabei dem Hookeschen, die zähen Effekte dem Newton-
schen Gesetz unterliegen. Es gibt mehrere Modelle, je nachdem wie
diese Effekte nebeneinander und/oder hintereinander geschaltet
gedacht sind. Die Auswahl erfolgt im Idealfall nach aufgenommenen
Kriech- und Relaxationskurven am tatsächlichen Bauglied bzw. Tragwerk.
Grundsätzlich existieren Analogien zwischen einer Lösung des
viskoelastischen und einer entsprechenden des sogenannten"begleitenden
elastischen"Systems, die in Form von Korrespondenzprinzipien in der
Theorie erarbeitet worden sind.

Gelingt es also für ein gewisses Problem die Lösung des
"begleitenden elastischen" Systems zu finden, so besteht grundsätzlich
auch die Möglichkeit, die Lösung des viskoelastischen Problems
mithilf e eines der Korrespondenzprinzipien zu erhalten.

Im vorliegenden Fall ist es durch das Ersatzsystem von Waltking
möglich, eine elastische Lösung zu finden; sie lautet nach (A 13)

h Alttfk.x<*>kx f bfaHkMnk* -.C-hikxir^kx- i fr'fciikx**kx
(6)

Die Lösung entspricht,wie im Anhang näher ausgeführt, der eines
Balkens auf elastischer Unterlage, wobei hier speziell noch die Unterlage

viskoelastisch sein soll. Distefano hat in einer seiner
Arbeiten gezeigt £ 6] daß der Grenzwert der Lösung des

viskoelastischen Problems in diesem Fall mit der Lösung des reinen
elastischen Problems dann übereinstimmt, wenn der Koeffizient der
viskoelastischen Unterlage durch

** rrky ^
ersetzt wird, wobei t ff(t)dt und f(t) die Kriechfunktion
darstellt. y

o

Im Falle der Schrägseiltföcke hängt nach (A 8) dieser Koeffizient ,*lediglich vom E-Modul E, ab, wofür wir nach Dischinger auch '
den Wert K

anschreiben können; dabei wird in
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für £
setz

«.-Sä!r f°£ die elastische Dehnung und für / die Endkriechdehnung ge-
t. (p kann z.B. aus Fig.3 ermittelt^werden, wenn z.B. für /P

der Dehnwert für 1ooo Jahre eingesetzt wird. Mit diesem angenommenen
Grenzwert kann nach (A 11) der Koeffizient k und damit unter

Beachtung der Randbedingungen des vorliegenden Brückensystems y
und somit auch alle Schnittkräfte, wie beispielsweise das
Biegemoment

M - EJy" 2EJk2 A c5^kx ->»Hkx + B«&/kx Wkx -
- C 3wkx CK> kx - D<£/ kx 6M kx

gefunden werden.

(10)

Be ispie 1: 6

6

Schrägseilbrücke nach Fig.6, linker Teil: Mit E =21.10 Mp/m2

1. 108 m F 0,06489 m2 E, (o) 16.106 "

1 260 " f. 0,4626.10~4 m J 0,6 m4

h 40 " p 4,5 Mp/m J =1,1 "
-3sowie mit £ 2,0625.10 erhält man extrapoliert aus Fig.3

0,464mm/m 0,464.10-3
worr.it man folgende Durchbiegungen in der Mittelöffnung erhält
aus der elastischen Lösung y 53,2 cm
aus der viscoelastischen Lösung y 7o,7 cm.

m

Zur Tragwerkssicherheit
In den vorangegangenen Abschnitten der Abhandlung hat der

Verfasser zeigen können, welchen Verlauf das Kablekriechen bei den beiden

hier untersuchten Brückensystemen jeweils hat, wie das Phänomen
praktisch rechnerisch erfaßt werden kann und welchen Einfluß es im
allgemeinen hat. Es konnte zumindest qualitativ festgestellt werden,
daß Hängebrücken ein stärkeres Kabelkriechen aufweisen als
Schrägseilbrücken. Schließlich kann ganz allgemein noch erwähnt werden,
daß trotz aller Komplexität davon ausgegangen werden kann, daß im
Falle der hier vorerst in Betracht gezogenen, stählernen Brücken
ein weitgehend lineares Verformungsverhalten vorliegt.

Ergänzend zu diesen Erkenntnissen wollen wir nun festhalten,
welche "konventionellen" Sicherheitsfaktoren

y= R /Sr min' max
nach Gleichung (2.17) auf Seite 19 des Vorberichtes zum laufenden
8. Kongreß - bei der jeweiligen Bemessung der Tragkabel bestimmend
waren (vergl. [3] und [7] wobei wir stellvertretend je ein
ausgeführtes Bauwerk für jedes Brückensystem herausgreifen:

3) Nach einem modifizierten Voigt'sehen Modell lautet die ent¬
sprechende Kriechfunktion f (t) £— (1-e

k
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Hängebrücke : Köln-Mülheim V 2,61
Schrägseilbrücke: Köln-Deutz (Severinsbrücke) ^T 2,55 bis 3,06

Dazu muß bemerkt werden, daß eine Hängebrücke eine weit
geringere Anzahl statisch Überzähliger aufweist, als eine
Schrägseilbrücke, was bei der Bestimmung einer realistischen
Bruchwahrscheinlichkeit u.a. aber eine Rolle spielen wird. Auch auf
sonstige unterschiedliche Verhaltenserscheinungen der beiden
Brückensysteme, wie etwa die aerodynamische Stabilität etc., kann
an dieser Stelle nicht näher eingegangen werden.

Beim Abwägen der oben zahlenmäßig angeführten "konventionellen"
Sicherheitsfaktoren wird man aber sicher schon bei Berücksichtigung
der vorangegangenen Betrachtungen zugeben müssen, daß offensichtlich
ein Widerspruch zwischen den bisher angenommenen Sicherheitszahlen
mehr oder weniger konstanter Größe und dem tatsächlichen Verhalten
der verglichenen Brückensysteme vorliegt.- Es wäre nun an der Zeit,
solche und ähnliche historisch entstandene und heute einfach üblich
gewordene Zahlen kritisch zu durchleuchten und wenn, wie hier
gezeigt, notwendig, zu korrigieren.

Es scheint bei dem hier aufgezeigten Sachverhalt wiederum
eine Bestätigung dafür vorzuliegen, daß wir uns im Bauingenieurwesen

mehr als bisher mit der Wahrscheinlichkeit des Zusammenbruches

bzw. des im vorliegenden Fall maßgebend sein werdenden
Unbrauchbarwerdens eines Tragwerkes befassen müssen. Dem Ziele,
ein"gleichmäßiges" Sicherheitsmaß für alle Tragglieder eines
Bauwerkes, aber auch für alle Tragwerke gleicher oder ähnlicher
Beanspruchung zu erreichen, können wir nur durch konsequente Verfolgung
stochastischer Prinzipien näherkommen. Dazu benötigen wir mehr als
bisher Beobachtungen und Messungen an ausgeführten Bauwerken. Bei
Vorliegen einer genügend großen Dichte solcher Beobachtungen und
Messungen ist es aber z.B. im vorliegenden Fall - wo ein weitgehend
lineares Verformungsverhalten vorliegt - ohne weiteres möglich,
die vom Verfasser vorgeschlagenen Differentialgleichungen der
jeweiligen Tragwerksmechanik in Gleichungen mit stochastischen
Koeffizienten umzuformen. Ähnlich wie hier von der elastischen zur
viskoelastischen Lösung kann dabei auch von der entsprechenden Lösung
der klassischen Gleichungen als erste Näherung auf den zu
"erwartenden" Wert nach der Wahrscheinlichkeitsdichtefunktion geschlossen

werden.
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Anhang
Vorschlag für ein Ersatzsystem für Schrägseilbrücken

von der Art von Zügelseilbrücken nach
F.W. Waltking 4)

Einzelne Schrägseile sollen hier durch eine kontinuierliche
Wand von Zügelseilen (Fig.6) ersetzt werden. Alle nachfolgenden
Betrachtungen beschränken sich auf symmetrische Systeme mit gelenkigen

Pylonenfüßen.

Die auf ein Längenelement dx des Versteifungsträgers entfallende
Schrägseil-Querschnittsfläche sei f dx, wobei f eine Funktion

von x sei. H(x) werde die mit x ebenfalls veränderliche Längskraft
im Versteifungsträger benannt; dabei soll Druck positiv gekennzeichnet

werden (entspricht den zugehörigen Seil- Zugkräften S!).

Nach Fig.7 ergibt sich bei
Gleichgewicht:

tV-dM

ir^
OdQpdx

dx -

dScos

'tW?
Cx-dO E.

dS - dH
cos

Q - Säy _ dx '

f ' (A 1)

(A 2)

dSsJny

dQ
dx

dHt-gtgy (A3)

Fig. 7
2 2

d ,„T d y N x dH (A 4)

Die elastische arbeit bei der Verformung der Brücke infolge
Dehnung des betrachteten Seiles:

dS As
(dS)2s

Ejf dx oder in Termen

dSoU-if.y - d6cosf\ g j~~
Mit s h/sin y? und tg to h/x

wird ; '

und daraus gemeinsam mit (A 4)

(A 5)

(A 6)

*£(EJ£*>) + ff(^3n=w+^t^/-^w (a 7:

47
Auszug aus einer unveröffentlichten Arbeit von F.W. Waltking [4]
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die Differentialgleichung der Zügelseilbrücke gefunden. Eine
Erweiterung der gefundenen Differentialgleichung nach den Prinzipien
der Verf£rmungs_thecirie (Theorie II. Ordnung genarrt) wäre ohne
Schwierigkeiten möglich. Eine von Waltking vorgenommene
Untersuchung zeigt aber, daß bei Schrägseilbrücken von der Bauart
einer Zügelseilbrücke bei idealen Montagezielen - der Versteifungsträger

weise unter ständiger Last weder Durchbiegungen noch
Biegemomente auf - im abgespannten Teil der Einfluß aus der Verformungstheorie

maximal eine 1,5 bis 2 - prozentige Erhöhung ergibt. Bei
einer üblichen Überhöhung der Brückenlängsachse wird auch dieser
geringe Einfluß zum größten Teil aufgehoben.

Zur Lösung der Differentialgleichung des Ersatzsystems werden
die Hilfsfunktionen

£*//„>_ 3,„
1

ctx) - -ff(y)*^y (A 8)
und p (X) -|k <fy f(X) ^(fUHlf
eingeführt. Man erkennt sofort, daß die Differentialgleichung des
Systems (A 7) der Differentialgleichung eines Trägers auf elastischer

Bettung entspricht. Zweckmäßig wird hier eine gl£i£hförmig£
Na£hgi£bi.gkei^t_, d.h. c(x) const, angestrebt. Setzt man demnach

f(y).^w3f - fk (A 9)

so erhält man zusammen mit der weiteren praktisch möglichen
Vereinfachung, J const, die vere_infa£hte_D_ifferentialgl^e^chung_des_
Ersat-zs_ys_t£ms_

EJ yIV + -jp y =p(x)+l^^x (A 10)

Die Lösung des Problems erhält man schließlich mit
Evf,k' 4T1J <A11>

womit man in der an sich bekannten Art die Lösung der homogenen
Differentialgleichung in der Form

tj Afykxunkx +BW*il(XCtokx + CJtfkXw*,kx +DViitkx'>titkxU 12)

und schließlich für einen Trägerabschnitt innerhalb dessen p const
ist, die Lösung der vollständigen Differentialgleichung

'•"I + J>$EÖ + f* <A")
findet.

Zur Bestimmung der Konstanten A, B, C und D, sowie der
Verschiebung -y, an der Pylonenspitze werden die Randbedingungen

y(o) 0 ; y'(o) y\ ; -EJ y"(o) MA

y'(l/2) 0 und y'"(l/2) =0 ^A 14^
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sowie die Gleichgewichtsbedingung

*>-££¦*¦ ^/V* -^ (A15)
0

herangezogen, wobei je nach Abspannart der Seitenspanne

4, "^^ LH^livlfi
.H1A 2h + h*J*i?t wird. y«

(A16)

oder ^ ^ü + j=m i xmdx (a 17)

verwende
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ZUSAMMENFASSUNG

Die Abhandlung bringt einen Beitrag zur Untersuchung der Tragwerks-
sicherheit mittels der Viskoelastizitätstheorie, wobei Ergebnisse
aus Lösungen "begleitender" Probleme der Elastizitätstheorie
herangezogen wurden. Im speziellen ist das Phänomen des Kriechens der
Tragkabel untersucht worden. Für Schrägseilbrücken wurde ein weniger
bekanntes Ersatzsystem nach Waltking vorgeschlagen und verwendet.
Es konnten baupraktische Schlüsse gezogen werden.

SUMMARY

This publication gives a contribution about the researches
of the safety of structures with the theory of viscosity, whereat
results with Solutions of "attendant" problems of the theory of
elasticity were drawn near. The creeping phenomenon of the main
cäbles has been investigated specially. For diagonalcable-bridges
there was proposed and used a less knDwn Substitution system of
Waltking. Practically conclusions were able to make.

RESUME

Les memoires apportent une contribution pour le calcul des la
securite des structures au moyen des theories de la viscosite oüon
a attire des resultats des solutiones des problemes "accompagnes"
de la theorie de 1'elasticite. Specialment on a examine le phenomene
du fluage des cäbles porteurs. Pour les ponts de fil incline on a
propose et employe un Systeme equivalent selon Waltking. On a pu
prendre des conclusions pratiaues pour la construction.

Bg. Schlussbericht
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L'influence du fluage lineaire sur l'equilibre des

systemes hyperstatiques en beton precontraint

Einfluß des geradlinigen Kriechens auf das
Gleichgewicht der statisch unbestimmten Spannbetonsysteme

Influence of Linear Creep on the Equilibrium
of Prestressed Indeterminate Systems

J. COURBON
Professeur ä l'Ecole Nationale des Ponts et Chaussees

France

PREMIERE PARTIE - LES LOIS de FLUAGE et de RELAXATION du BETON

I - LOI de DEFORMATION du BETON

Imposons a un prisme de beton une contrainte de compression constante <X

ä partir de l'age -*0 Si la contrainte er n'est pas trop grande, inferieure

par exemple au tiers de la contrainte de rupture, l'experience montre que le

raccourcissement unitaire du beton £(£) ä l'äge -t > -£, est proportionnel
ä la contrainte <T ; done :

(1) £W=^7^7
Le module de deformation du beton est done une fonction des deux

variables £0 et •£ Pour L— ta nous obtenons le module instantane

£(^-ö) ' et Pour ^-~ °° ¦ *e module differe tC(£0 :

(2) ELt0)=- E(t0/<t0) KL*0)= c(<j°°)
La relation (l) peut egalement s'ecrire ;

La deformation apparait ainsi comme la somme de la driformation
elastique instantanee et de la deformation differee <T'/"'i^-j-tj proportionnelle
ä la contrainte et croissant avec le temps, appelee fluage lineaire. On notera
que FC^Pj^o) est nul

Seule l'experience permet de connaitre la fonction E(¦('c, .i~)
Diverses expressions analytiques ont ete proposees pour la representer.
La plus simple est

ß caracterise la vitesse de fluage.
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Lorsque le beton n'est Charge qu'a un age assez grand, on peut admettre
que EÜt. et K(-tc) sont des constantes £ et K de sorte que :

«-l+tt-M-'-*-"](5) iS,<j
u oj) ne depend alors que de la variable 'C — -C0

Lorsque la contrainte cr(t) appliquee au beton dans l'intervalle de temps

K^O)00) est variable, on trouve, en appliquant la loi l) que le raccourcissement

£ (£) a pour expression :

rrj-\ <rt*c) f* ¦r'ieidf
o

II - LOI de RELAXATION du BETON

L'experience montre que si l'on impose ä un prisme de beton un
raccourcissement unitaire £_ a partir de l'Sge ^t. la contrainte de

compression initialement egale a er(a.b \ —. £ C t^-o, *ö decroitdans
le temps et reste proportionnelle ä. <£ ; done :

(7) cr^;-= £ RLt0)t) avec: K (*0j <r0) E(<t.t <J

La formule 7 peut egalement se mettre sous la forme :

(8) cr^jz, a-(i0) _ i Crlt0j c^javec : Cr(te/)= *(.*,**)-£«*)
qui met en evidence la diminution de contrainte ou relaxation

Lorsque le raccourcissement 3 [t) impose au beton dans l'intervalle
de temps /^=üJ est variable, on trouve, en appliquant la loi 7 que la

contrainte cr(ft) a pour expression :

III - LOI de RELAXATION DF.DUITE de la LOI de FLUAGE

Si l'on se donne £(^) • la contrainte '-r(t') Solution de l'equation
integrale (6) est donnce par l'expression (9) Cette Solution est done connue si
l'on sait determiner la fonction H. tc >t) connaissant la fonction Lz ('t0 t)

Nous designerons par s \. ot*' l'unique Solution de l'equation integrale

qui s'annule pour -T ¦=. sta L'equation (10) peut se ramener äune equation de

VOLTERRA

Dans le cas general, le calcul des valeurs de la fonction & t oi '
s'effectue sans difficulte par Integration numerique

<r(t) £(t.) R(*o, *) +J £ W /t (*, t) dB
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L'integration formelle est possible dans le cas de la loi de deformation
5 oü l'on trouve :

#W ('-£]['-«""''''"*'],-".¦• r=/*
et dans le cas de la loi de deformation 4 oü l'on trouve;

«»' W> =fi im' mi)Jf"*~,"Lu-~ • n*i>M+
o <J

Ceci pose, pour determiner la fonction n[-t0 -t) donnons a £(¦£)
la valeur constante £ dans la relation £,) ; nous obtenons ainsi ;

0

de sorte que la diminution de contrainte ou relaxation #V^V ~ <-T/t0J -<T['t)
est la Solution de l'equation integrale ;

t' taaiL -=, «tt.) Fit t)
Jt. et*, *)

qui s'annule pour -£* =- <^ Done :

et par suite :

erIt) atfo) [ 4 - $(t0j &)] £ E(t0t0)[^ - §[*.*)]

En comparant avec la formule (7), nous voyons done que \

(13) &«,*)= e(*,t0)t<-${*,*)]
Ainsi, dans le cas de la loi de deformation (5), nous obtenons :

(H) *(*.,*) E-(t=-K)[^e-r^>] (ry£)
Le coefficient Y caracterise la vitesse de relaxation ; ce coefficient est

environ trois fois plus grand que le coefficient ß> qui caracterise la vitesse
de fluage. La relaxation est done plus rapide que le fluage.

II est egalement possible de deduire la fonction Et^o, * / de la
fonction K['CC t) par une methode analogue a celle qui vient d'Stre

exposee
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DEUXIEME PARTIE - APPLICATION aux SYSTEMES HYPERSTATIQUES

I - EQUILIBRE sous l'ACTION d'un SYSTEME de FORCES DONNEES

Considerons un Systeme rix. fois hyperstatique \2>) et designons parX'
les nnrt composantes des forces appliquees aux points A^ et par K.-

les tl composantes des reactions hyperstatiques appliquees aux points Eh

Associons au Systeme (S) le Systeme isostatique (2 J obtenu en supprimant
les liaisons surabondantes correspondant aux reactions Rj Si, au temps ^
on applique au Systeme (S j un ensemble de forces constantes A ¦ et rZ.'

aux points n et S ¦ le d<3placement nX. du point Be dans

la direction de la force ft-£ aura pour valeur au temps t > t dans

l'hypothese du fluage lineaire :

J öryyru

j
(15) "*'*>' C-lt.*>

i rj£ et hg etant des constantes caracteristiques du Systeme etudie

II en resulte que les reactions hyperstatiques K < sont donnees par
le Systeme :

<"' X 4 *< + S 4 $¦ o
tl «r/

dans lequel le determinant | or n'est pas nul (configuration non critique)

Done, dans l'hypothese du fluage lineaire, l'equilibre d'un Systeme
hyperstatique, soumis ä des forces exterieures donnees constantes dans le
temps, est independant du temps et identique ä l'equilibre elastique determine
avec un module de deformation constant.

Si les forces appliquees X47v et fy/'t) au Systeme isostatique
associe (2/ dependent du temps, le deplacement ^e,lt) au temps £
posterieur au temps 'to debut de l'application des forces a pour expression :

<"» *i">=fe [2<w-pi«M+fjfcd[?^f<lA
ou, en integrant par parties

a Ci dp
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II en resulte que les reactions hyperstatiques >\-i' sont donnees par
le Systeme : ^_^ j -^

Done, dans l'hypothese du fluage lineaire, l'equilibre d'un Systeme
hyperstatique, soumis a. des forces variables dans le temps, se confond ä tout
moment avec l'equilibre elastique dT3termine avec un module de deformation
constant

En particulier, les resultats precedents s'appliquent aux calculs des
reactions hyperstatiques dues a la precontrainte, puisque la precontrainte est
equivalente ä. l'application d'un Systeme de forces donnees : forces concentrees
aux ancrages des armatures et forces reparties provoquees par la courbure des
armatures.

II - EQUILIBRE sous l'EFFET de DEFORMATIONS IMPOSEES

A - Compensation des systemes hyperstatiques

Pour diminuer les contraintes d'un Systeme hyperstatique, on impose
souvent ä ce Systeme des deformations maintenues par les liaisons surabon-
dantes (par exemple : denivellation des appuis d'une poutre continue) On
introduit ainsi dans le Systeme des efforts dits de compensation qui s' opposent
aux efforts provoques par les forces donnees. Le probleme qui se pose est de
savoir comment les efforts de compensation evoluent dans le temps.

En imposant ä. l'äge 'X"ö des deplacements IT. aux points d'application

3t dans la direction des reactions rc& on introduit dans le Systeme
des reactions compensatrices ^ l-t) qui sont des fonetions du temps.

Au temps -i les valeurs Ay (£<,) sont donnees par le Systeme *

Au temps A. les valeurs fu.-(-t-) verifient les equations integrales :

La comparaison des deux equations precedentes donne :

ou, puisque le determinant I o » I est different de zero :

V
£(**. *)
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II en resulte que les diminutions ~j'l /¦== j*- °) ~~ 7I'' des

reactions compensatrices sont les Solutions des equations integrales ;

J<. E(e.t) J

Done : S ¦({)¦=: Rjlt0) <3r(-t*J ¦£) et par suite :

(20) Rj(t) *,/<; [^ -s&te,*;]
Les reactions; hyperstatiques introduites par la compensation ä l'age

JC0 diminuent done dans le temps. A l'age ,t > -^ les efforts de

compensation (moments flechissants, contraintes, etc. sont egaux aux

efforts de compensation a l'äge -tfl multiplies par le coefficient de

reduction A — (rL^-c. Ce coefficient de reduction ne depend que

des proprietes du beton et non des caracteristiques du Systeme hyperstatique.
II peut Stre calcule une fois pour toutes pour un beton donne.

Dans le cas particulier de la loi de deformation 5 la formule 20
devient :

Faisons tendre <E vers l'infini, nous obtenons "

*•«-) £ *s(V
Dans ce cas, les efforts de compensation initiaux sont reduits ä la longue

dans le rapport du module de deformation differee au module de deformation
instantanee.

B - Effet de deformations imposees dans le cas general

Imposons aux ryrx points A^ du Systeme ¦?<- fois hyperstatique \^->)

des deplacements donnes dans la direction des forces /^- Ceci revient
ä introduire dans le Systeme (Z OTX, liaisons supplementaires, done ä le

transformer en un Systeme (S-U rtn-f Tu- fois hyperstatique. II est meme

possible que le Systeme (S) goit isostatique dans ce cas le Systeme \^-'4j

est im- fois hyperstatique
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En appliquant les resultats obtenus ci-dessus pour la compensation au

ysteme hyperstatique (-S, qUe nous supposons ne pas etre ä configuration

critique, nous voyons que les efforts, provoques dans un Systeme isostatique
ou hyperstatique par des deformations imposees a. l'Sge X0 diminuent dans

le temps Au temps -T"> t0 les efforts sont egaux aux efforts initiaux

multiplies par un coefficient de reduction egal ä A — ä?(. oj^

III-INFLUENCE du MODE de CONSTRUCTION- DEFORMATIONS DIFFEREES

Supposons que pour construire le Systeme hyperstatique \Z-j I

on execute d'abord un Systeme isostatique associe (S et qu'on
realise ensuite a l'age ^0 les liaisons surabondantes au moyen d'armatures de

precontrainte. Ce cas se rencontre en particulier dans la construction en encor-
bellement, et egalement lorsqu'on realise une poutre continue ä partir de poutres
prefabriquees posees d'abord sur appuis simples.

A - Calcul des reactions hyperstatiques dues ä la realisation des liaisons

Nous designons par A^ les forces appliquees en permanence (ycompris
eventuellement les forces dues ä la precontrainte isostatique) ä partir de
l'instant /*j, Nous pouvons faire abstraction des forces appliquees poste"rJ.au-

remenl; a. &0 car nous savons que les r-sactions hyperstatiques correspondantes
sont Celles que l'on calcule en supposant le module de deformation constant. Si
l'on avait construit d'emblee le Systeme hyperstatique, par exemple en l'executant
sur cintre, les reactions hyperstatiques auraient eu les valeurs "Rj donnees par
les equations

(22) X ^ X. ,4- S lJk Kf D
-c d

Supposons d'abord que les liaisons surabondantes sont realisees par
precontrainte concordante, done que les reactions hyperstatiques "R.-(-t) sont

nulles pour '£'¦= *-~0

Avant la realisation des liaisons surabondantes, les deplacements des

points Dt du Systeme isostatique associe Zj ont pour valeurs ä.

l'instant *t0 en supposant pour simplifier l'expose que les forces

sont appliquees ä partir de l'instant -C0 :

^ E«/*) ^ Clk X.

Ces deplacements ne varient plus lorsque les liaisons surabondantes sont
realisees ; nous avons done a l'instant yf
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K',(B)d9_

t)
Eliminons 1^£ entre les deux equations precedentes ; nous obtenons, en

tant compte de la relaxation 22 :

soit, puisque le determinant f -O^ est different de zero :

(23)

4, *^ '
Les equations 23 sont des equations integrales du type 10 ; done :

(24) ^/'^= */ FUQl4-)

Dans le cas particulier de la loi de deformation (5), nous avons

Nous voyons done que les reactions hyperstatiques varient constamment
dans le meme sens depuis les valeurs initiales ^i'(t.) ~== O
jusqu'aux valeurs limites :

Ainsi les valeurs limites des reactions hyperstatiques peuvent atteindre
les deux tiers des valeurs correspondant ä la realisation directe du Systeme
hyperstatique.

Le cas oü la precontrainte de liaison n'est pas concordante se ramene
imm-adiatement au cas precedent, puisque la precontrainte peut etre consideree
comme un Systeme de forces exterieures appliquees a l'instant -C0 Nous

aurons done pour valeurs des reactions hyperstatiques dues a. la realisation des
liaisons surabondantes :

(26)
<#,#,;= s~d

OL (4) Sj + Zr(t)J

ä l'instant

ä. l'instant

£

t>-t
les valeurs j(¦ J etant donnees par 24

B - Etude des deformations differees
Le deplacement d'un point ^ du Systeme hyperstatique (2 J sous l'effet

des forces Xc" et de la precontrainte (supposees, pour simplifier l'expose,
appliquees ä partir de l'instant -2". est egal au deplacement du point A7 du
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Systeme isostatique associe (^2 J sous l'effet des forces X^- de la

precontrainte et des reactions hyperstatiques &ü,'[-u) dues a la realisation
des liaisons surabondantes. A l'instant -£"/>d^0 t Ce deplacement aura done

une expression de la forme :

M

od ^ et

E&t) M 7i» j J yi»j mt)
J/*% etant des constantes et

V*M

EtW- le deplacement provoque par
la precontrainte.

Le displacement differe au temps -1 est :

(28) i,V)^ KM- *Z ^
Dans le cas d'un Systeme isostatique, les reactions ^'(-cj sont

identiquement nulles, et l'on deduit de (27) et (28) :

S (4)
AI L ' eTCT) -iK^JAI in i KIL) wo
A la limite, la deformation differee peut done etre le double de la

deformation instantanee.

Dans le cas d'un Systeme hyperstatique Q> /) obtenu par realisation
des liaisons surabondantes dans le Systeme isostatique associe (1>] par
precontrainte concordante, la formule (27) devient :

cV- Lt) — _-^M( E(t0jt)
soit, compte tenu de la relation 23 :

(29) <"~ ,n - ^

c -et -Co

*i, (t)
E(to/t)

Nous obtenons done pour valeur du deplacement differe

(30) C.=>>;= f(^) fv +Z<x< +Z/Z */.
u /' <f

expression que l'on peut egalement mettre sous la forme :

n
<31) <¦' ft>

M Wr<h(v ¦" Fr'--')£tä
Dans le cas oü la precontrainte de liaison n'est pas concordante, les

reactions 06(t) sont donn<ses par 26 et l'on trouve sans difficulte que la
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formule 30 doit etre remplacee par la formule :

C J

la formule (31) demeurant valable.

En general, les termes entre crochets des formules (30)et (32) sont tres
petits, de sorte que les deformations differees des systemes hyperstatiques
sont faibles. Dans des cas pratiques, nous avons trouve, et observe sur les
ouvrages, des deformations differees vingt fois moindres que celles de l'ouvrage
isostatique associe.

IV-EFFET du RETRAIT, de la TEMPERATURE et des TASSEMSNTS d'APPUI
Dans le Systeme isostatique associe \Zj le retrait, la temperature ou

des tassements d'appui, agissant ä. partir de l'instant "Ss donnent des

deplacements des points -ö/. egaux ä. rif- fg-j

Considerons alors le Systeme hyperstatique \2-> et supposons d'abord
le module de deformation constant et egal du module instantane ; dans cette
hypothese, on obtiendrait des reactions hyperstatiques h-, ('t) donnees par
les equations :

(33) 7\i't%(*)=ov*M+ Et<*o)

Nous connaissons done les fonetions '^/' l"*/
En realite, le module de deformation n'est pas constant, et les reactions

hyperstatiques Kj (i) sont donnees par les equations integrales :

* 5(t„t)Xj f. J £-, ij £/ft)ul C7 "UO

L'elimination de "t£ (t) entre les deux equations precedentes donne

les equations :

äquivalentes, puis le determinant Ofc I est different de zero, aux equations ;

(34) r*7?J-iP)*<e %M_ ___ 3^L
Ju WT EM>j *) El**j *')

Les equations 34) sont des equations integrales du type de l'equation (6);
leurs Solutions sont done donnees par les formules :
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(35) fc'(i)= _±_ \RjU0) tritt) + f Ti'*(B) Alf t)jf]
qu'une Integration par parties permet egalement d'ecrire :

(36)

"7 *f o

</<£

Dans le cas particulier de la loi de deformation 5 il est possible de
faire de nombreuses applications des resultats precedents.

RESUME

Lorsque le raccourcissement du beton sous contfainte constante est propor-
tionnel a la contrainte mais depend de l'äge du beton et de la duree du
chargement, l'equilibre d'un Systeme hyperstatique sous l'action de forces
donnees est l'equilibre elastique. Par contre, l'equilibre, sous l'effet de
deformations imposees dues au retrait, ä la temperature ou au mode de
construction evolue dans le temps et tend vers un equilibre limite.

SUMMARY

When the strain of concrete under constant stress is poportional to the stress,
but depends on the age of the concrete and the time the load is applied the
equilibrium resulting from the action of given forces is the elastic equilibrium.
But, under imposed deformations resulting from shrinkage, temperature or
mode of construction, the equilibrium evol'ves in time and tends toward a limit
equilibrium.

ZUSAMMENFASSUNG

Wenn die Verkürzung des Betons unter ständiger Spannung proportional
zur Spannung bleibt, aber vom Alter des Betons und von der Dauer der
Belastung abhängt, ist das Gleichgewicht eines statisch unbestimmten
Systems bei gegebenen Kräften das elastische Gleichgewicht. Unter den
aufgezwungenen Verformungen des Schwindens, der Temperatur oder der
Bauart entwickelt sich hingegen das Gleichgewicht mit der Zeit zu einer
Grenzlage.
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Comments by the author of the introductory report
Remarques de l'auteur du rapport Introductif
Bemerkungen des Verfassers des Einführungsberichtes

ALFRED M. FREUDENTHAL
Columbia University

New York

The discussion contributed to Theme la ranges from a rejec-
tion of the approximate probabilistic approach to structural safety

based on the introduction of load and of carrying capacity as

random variables as mathematically not rigorous enough (Misteh,
Eimer, Konishi) to its rejection as being "mathematics" instead of
being "common sense" (Hrennikoff), whatever this may mean. It is
encouraging to those who, over the years, have attempted to pro-
mote a rational probabilistic approach to the concept of structural

safety, that among the 8 contributions to Theme la only a single
one (Hrennikoff) repeats the familiär argument of the "practical
engineer" that problems of safety should be left to the "collective
judgment of the profession" which will protect society from "erudite
mathematical derivations" which can obviously not estimate the chances

of incompetence in analysis, design and construction. Since Prof.
Costa, in his discussion, has refuted this point of view by summari-

zing the principal arguments for the probabilistic approach in a most

effective manner I shall comment only on the other extreme, namely

the proposition to base the approach to structural safety on the

theory of stochastic processes.
While, in principle, there can be no objection to this

approach, a closer consideration of its practical applicability re-
veals that even an approximate Solution of the problem of the esti-
mation of the time to failure ffirst exceedance" or first passage"

time) presupposes the introduction of such drastic simplifying as-
sumptions concerning the character of the random process, the

response of the structure and the nature of the failure process that
the physical significance of the Solution becomes dubious, to say
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the least. Even with these simplifying assumptions not even an

approximate Solution can be obtained if the resistance of the
structure is a Statistical variable subject to time-or load history

effects. It appears that under these conditions the
engineering relevance of the stochastic approach to structural safety

is open to serious doubts.

It is therefore more expedient to develop the approximate

probabilistic approach reviewed in the Introductory Report and

dealt with in the contributions by Prof. Lind and Dr. Koch.
However, I should like to express some apprehension concerning the
use of the Gram-Charlier expansions in fitting distribution
functions. These expansions produce negative ordinates at not too
large distances from the mean and are therefore unsuitable in the
low probability ränge characteristic of safety analysis. Also
selection of distribution functions on the basis of curve-fitting
near the center of the distribution is an irrelevant procedure.
Distribution functions that can be extrapolated towards the tails
may be rationally selected only on the basis of physical argument
by which a certain probability model can be justified.

In the case of structures the loads of which are of a clear-
ly stochastic nature, such as towers subject to wind, maritime structures

subject to waves and swell and flexible structures subject to
earthquake accelerations, a synthesis must be attempted between the
approximate probabilistic and the rigorous stochastic approach to
safety analysis on the basis of which rational design criteria for
such structures are developed. An illustration of such a procedure
for maritime structures is presented by the author at the 22nd

International Navigation Congress in Paris in 1969.

Considering the elaborate analytical methods of safety analysis

in the inelastic ränge, as illustrated by the various contributions

to Theme Ib, and the dubious physical assumptions concerning
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the material response underlying such analysis (linear visco-elas-
tic, ideal elastic-plastic, steady state creep, etc.), it would seem

that structural model analysis represents, so far, the only really
reliable method for the establishment of the critical failure mech-

anism of any but the simplest structural forms on which a rational
safety analysis can be based. The fact that it has not been specif-
ically referred to in the Introductory Reports, on which Prof. Oberti
comments, is simply a tacit expression of the conviction that it is
so well-established a tool that it is unfailingly used whenever the

results of a theoretical analysis are either physically suspect or
unobtainable.

Bq. Schlussbericht
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