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Combinaison des théories de I’élasticité, de la
plasticité et de la viscosité dans I'’étude de la sécurité
des structures.

Untersuchung der Tragwerkssicherheit mittels der
Elastizitats-, Plastizitats- und Viskositatstheorie.

Combination of the Theories of Elasticity, Plasticity
and Viscosity in Studying the Safety of Structures.
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DISCUSSION PREPAREE / VORBEREITETE DISKUSSION / PREPARED DISCUSSION

Creep Failure of Nonlinear Rotational Shells
Rupture par fluage de voiles minces axisymétriques non-linéaires

Kriechbruch nichtlinearer Rotationsschalen

W. OLSZAK Z. BYCHAWSKI
Prof.Dr., Dr.h.c. Assoc.Prof.Dr.
Poland

1.Introduction

The authors have established [1] a criterion of the attain-
ment of critical states in linear viscoelastic bodies. The idea
of the criterion can also be extended to the range of nonlinear
viscoelastic behavior, if the phenomenon of failure is consider-
ed as a critical state.

The criterion is founded on an energetical basis and for
a certain group of nonlinear viscoelastic materials it states
that such a critical state as, for example, creep rupture de-
pends in general on a function of the accumulated energy and the
dissipated power accompanying the deformation process. Thus, if
W stands for the accumulated energy and W is the disgsipated
power, the condition of creep rupture is sTated as follows:

{(WE,WD) = const. (1.1)

In some cases, however, the accumulated part of energy may
be neglectfully small. lloreover, there are materials which are
not able to accumulate energy at all ag, for example, the pure
creeping ones. In these cases it seems reasonable to represent
the criterion (1.1) in the following different form:

f(VJﬁ) = const. (1.2)

where W igs the deviatoric dissipated energy per unit volume of
the body. It follows from the condition (1.2) that the dissipated
energy is considered as a certain measure of the attainment of
the critical state. The correct form of this condition should be
founded on experimental results.

The problem of attainment of a critical state as, for exam-
ple, creep rupture may turn out to be essential when analysing
the conditions occurring for thin-walled metallic structures un-
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der high pressure, especially, high temperature containers,
pneumatic structures, etc.

For such problems, we apply the criterion (3.2) to geomet-
rically nonlinear rotational shells in the membrane state under
internal pressure in order to evaluate the critical time of
failure as a consequence of the creep process. Accordingly, we
assume that the material of shells exhibits pure creep only.

2.Physical and geometrical equations

In general, we assume that an isotropic incompresgible mate-
rial of shells creeps according to the integral law |2

ey = Ns Y (2'1)

stands for the creep strain tensor, sy is the stress

where eij j
deviator and N denotes a nonlinear integral operator of the

form

NSy =-Jts;3ct)a,c H[t,t,b(t)}dt , (2.2)

o]
Here, H is the generalized creep function depending on the ef-
fective stress

s(1=2[sysy®] (2.3)

t standing for time, t, being the initial instant and at==6V3T.
As shown in {2] the generalized creep function H covers both the
linear and nolinear range of creep. However, in the present pa-
per we use only its nonlinear representation.

In particular, the creep function may be assumed in such
a form as to satisfy the following condition:

A H[t.T,s0)] = Fsm]a  C(t-n) (2.4)

where F is a nonlinear magnifying factor and C the creep factor.
The last representation of the creep function is very useful
when considering the non-steady states of creep in which the de-
formation stabilizes after an infinite period of time.

For the state of creep of metallic materials, the derivative
of the creep factor becomes a constant, i.e., C is a linear func-
tion of time

C(t-t) = c(t-T) , (2.5)

where ¢ is a constant. In the last case, Eq.(2.2) takes the form
t

Ngs =Jt 5 (MF, [sm] de (2.6)

As it is seen from Eq.(2.6),we assume that the state of stress is
variable with time. We shall show later that in the case of creep
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of nonlinear shells in membrane state, the stress state is always
a non-steady one in the presence of a constant internal pressure.
%pe stresses are found to drop to zero in an infinite period of
ime.

According to Eqs.(2.2) and (2.6), the initial conditions
at t equal t, are assumed to be of zero value, i.e., there are
no deformations at the initial instant. However, these conditions
may not be zero, if we consider a creep process at t > t, . In
this case there is an initial deformation state expresse8 instan-
taneously by the values of integrals within the limits t,,t .

The equations (2.1) and 2.6) can be written in terms of
strain rates as follows:

é’i.j =Nsg, e = No-"i.j ’ (2.7)

where the dots over the operators are symbolic. For example, in
the case of the second relation (2.7) we find

Nosy = 558 Fo[s(1)] - (2.8)

We apply the physical equations (2.1) or (2.6) in order to
investigate the critical states of rotational membranes of small
and constant thickness which deform under constant internal press-
ure. In deriving the geometrical relations for such membranes we
agsume that in the time-interval considered, the strain tensor
and strain rate tensor are small quantities, the rotation angles
being also small; the normal component of displacement is suppos-
ed to have a finite value. Further, we assume that the undeformed
surface is generated by the revolution of a plane curve which
does not imply any singularities. In order to simplify the equa-
tions we restrict ourselves to shallow rotational membranes. For
such membranes we obtain a set of two equations of equilibrium [2]

d?(gcn) = 6, (2.9)
o;(R,—d;Q) + o'z(Rz—%clgW):% ; (2.10)

where & and @, are the stresses in the directions of the main
curvatures kq and k, , respectively, W is the displacement normal
to the surface, [ the constant internal pressure, h  the thick-
ness of the membrane and denotes the surface coordinate. The
symbol d represents the derivative d/d¢ .

To fthe set of Eqs.(2.9) and (2.10) we now join the equation
of compatibility of deformations 2]

4 -2 - - - a
?dgez +€,-€, =-3"(di) + dg(?u')_\"’)— k4w ) (2-11)
where ey = e11, e, = €,, are the main strains.
Further, we introduce the following substitutions:

T _ P _h
2=p% P=g TR (2.12)
k
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wnere R is the value of the larger radius of main curvatures.
On the basis of Eq.(2.12), the stress deviator components ex-
pressed by stress components become

$,= 5, = —45—(30'1—20'2) = -;—D(b—?- -2d.z) , (2.13)
— & = = 4 .
5,= S5, = -%- (3¢0,-20) = zD(4dz=3 %) . (2.14)

By introducing the quantities of Eg.(2.12), we satisfy Eq.(2.9)
and Eq.(2.10) takes the form

%[k,—ﬁg\ﬁ'-d‘,({Fc\'w)] +(2d,z- 2Xk, - 2qc,w) = 4. (2.15)

If the use of the physical relations (2.1) is made, then the
main strains become

e,=Ns, = N[‘%‘D(S%-Zd,z)] , e,=Ns,=N %D(‘ld,z-S-f.—)], (2.16)

and(the ffndition of compatibility may be written as follows fsee
Eq.(2.11)] :

2W d, (\WNs,) - Ns1=-232r(d,w)2+ 20VF d, (Fkyw) - gk, w . (2.17)

The set of equations (2.15) and (2.17) is a system determining
two unknown functions: the non-dimensional stress function z and
the non-dimensional deflection w . Thus, the solution of the above
system of equations gives the solution of the problem of creeping
nonlinear membranes.

In the particular case of physical relations (2.6), we put in
Eq.(2.17) Ny instead of N. In this very case the condition of com-
patibility may be presented in terms of strain rates and the rela-
tions (2.8) applied.

3.Concept of analogy

It has been found [2] that in the case of purely creeping non-
linear rotational membranes it is possible to obtain the creep so-
lution by separating the variables r and t in the fundamental set
of Eqs.(g.15 and (2.17). Then the time-independent set of equa-
tions is analogous to the corresponding system of the instantane-
ous problem, if only the nonlinear functions of deviatoric stress
intensity are of similar forms in both cases. The time-dependent
gset of equations can be solved in a closed form. It follows from
the last solution that the creep process of nonlinear membranes is
always unsteady. If the form of the generalized creep function is
assumed according to Eq.(2.4), where the creep factor is expressed
by exponential functions, then the solution describes a stabilizing
process_of creep. On the other hand, if the particular case of
Eq.(2.6) is considered and creep is unlimited, a complete relaxa-
tion of stresses occurs after an infinite period of time and strains
become infinite. From the physical point of view such a state of
the membrane cannot occur and at a certain finite time-instant the
creep rupture takes place. We assume as a measure of reaching this
point the value of dissipated energy during the creep process. Thus,
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if a certain critical value of energy is dissipated through creep
resistance, the membrane is considered as collapsed. From an appro-
priate condition of the form (1.2) it is then possible to find the
critical time of creep failure.

4. Shallow spherical membrane
We shall consider in detail a shallow spherical membrane with

the radius of curvature R . For such a membrane we obtain the fol-
lowing system of equations

a;(fi-d""gwh O'z(R‘jg'sdi)=l‘:,' »  k=4/R, (4.1)
2 T T -
gc:ige*z+e,‘,-e1 =--"é-(d?v‘?:) +d9(9kv'v)- kw , (4.2)

and Eq.(2.9) .

The equation (4.1) may be at once integrated by using Eq.(2.9) g
the constant of integration being equal zero. Thus, instead of
Eq. (4.1) ,we obtain

7 = o(k-L-).
dgW = 3(k 2ho, (4.3)
Further, we introduce the following notations:
T (1) » Z D 6—4 2 D P(2h) )y W= n 4 (4.4)
k=4R , R=R/h |, 3-_-h/4

where 4 is the maximum value of the variable ¢ (for e=1, *+= 1).
With the above notations,the stress deviator components have
the form of Egs.(2.13) and (2.14), and the strains are given by the

formula (2.16) .
Consideri the radius of curvature R as time dependent, we dif-
ferentiate Eq.(4.2) with respect to time and thus obtain

g g6, + &, &, = ~d d i + d g (gkim) + dg(gki)-Rw-kw  (1.5)

Finally, by using the second of Eqs.(2.7 and introducing the
notations (i.@ , we represent Egs.(4.3) and (4.5) in the following

form: 1 K .
dfw=-2-'§'2-“z' ) (4.6)

2vd N, [£D(4d,2-3 2)] + No[$D(4el 23 3] - N, [D(5F -24,2) (4-7)
: K
+ zr[dTw(Zga- d,w-k) + " d‘,w]= g .

Here the operator N, is given by Eq. 22.83 .
It is seen froz% the set of Eqs. (4.6) and (4.7) that the dis-
placement w can be easily eliminated from the second equation by

means of the first one.

Bg. Schlussbericht
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Now, let us assume that the nonlinear function of effective
stress appearing in Eq.(2.8) is a power function of the form

Fls0]=28s""(v) (4.8)

where B and n are physical constants, the last being an odd natu-

ral number,
According to Eq.(2.3) and Egs. (2.13) 5 (2.14) , the effective
stress is expressed as follows

s(v,t) =D'R(r,1) , (4.9)

where

RELH=Q() = 4(d,2)-6d z = + 3(%_—)2 © (4.10)

Introducing Eq. (4.8) together with Eqs. (4.9) and (4.10) and
eliminating the displacement in Eq. (4.7), we finally obtain

-3 . _
ot )[Sﬁd:z + (n-1)(4d,2-3%)d,Q] = 21‘[%(-})2-(3-;,9-‘3)"]%(4-11)

where P
T “gp™ - (4.12)

The method of solution of the problem for a creeping membrane
is founded on the basis of an analogy as stated above. We assume
the solution of Eq.(4.11) in the form

z(r,t) = z° () @(t) , (4.13)

and put &
k(t)=k/"P('t) . (4.14)

If we introduce the solution (4.13) into Eq. (4.11), then after
separating the variables we find

DKZ , T .2 SR (L 2 o o . 2°
%[(3-5—)—(;3)_] Q, (8Q.d, 2% (m-(4d,2°- 3% )0, Q,l= (4.15)

- .2 P (&)
o —
[et] ™

where
2

(v =Szo(z°)=q(d,z°)2-6d,z°-§ +3(—f.:) ) (s.16)

A Dbeing a constant.

The time-independent part of Eq.(4.15) is analogous to the
equation for an instantaneous problem, if only the physical equa-
tion is of a form analogous to Eq. (4.8 . Thus, if the solution of
the instantaneous problem is known, we are able to obtain the creep
solution in a formal way. The time-independent solution is obtain-
ed by representing the stress function in the form of power series.
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On the other hand, the time-dependent part of Eq. (4.
be written as follows: ? P q-(4.15) may

. n+3
e +4 o] = 0. (4.17)
The variables in‘Eq.(4.17) are separable and the solution is given
by the formula 1
4 N+4 - G-EIE)
@)= P [1+ TAY,  (n+2)(t-T)] ; (4.18)

where the constant of integration Y. = ¢ L), According to the so-
lution (4.18) we consider as initial instant of the observed creep
process a certain intermediate time-point at which the past creep
effects are taken into account instantaneously.

In order to obtain the appropriate solution for the displace-
ment w, we assume the last in the form

w(nt) = wl(ne(t) (4.19)
and by putting it into Eq.(4.6) we obtain
1)
4k _ T e 4 _
g =] dw= oy = (4.20)

From the last result we obtain the relation between the two
time functions Yy and

MORIHO] e . (4.21)

As may be seen from Eq.(4.18), the function @ tends to zero
with time tending to infinity. This means that the stiresses [see
Eq. (4.13)] drop to zero and their relaxation is complete after an
infinite period of time. On the other hand, the function Yy in-
creases infinitely with time and thus the displacement w [see Eq.
(4.19)] becomes infinite.

5. Critical time of failure

In order to find the critical time of failure we use the cri
terion for the critical creep state in the form (1.2) where the
function f is assumed as a linear one. Thus, we obtain the condi-

tion
W, = comst, =K* (5.1)

where K2 is the critical value of dissipated energy through the

creep resistance.
The power of dissipation is given by the relation containing

the stress components and strain rate components
Wy = o, (hh e (), (5.2)

and the condition takes the form
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- - 2
Wy J oy (Wey (Tde =K (5.3)
t
Here, by t we denote the time-instant at which the creep rupture
takes place. Evidently, the initial instant ¥ should also be
considered as a certain critical time-point as, for example, the
instant of reaching the stage at which the elastic effects can be
neglected. In this case, the value of dissipated energy Wj(t)=

characterizes the process up to this stage.
In the particular case of a spherical membrane, the condition

(5.3) takes the form
L™
Wp =J[°’4('-'°)é. (re)+a,(rv) éz(r\t)]dt =K* (5.4)

where t o (rt) = 22 M9(), 6, (r)=Dad, M-z )¢

e

E(rt)= ¢ (t)L[ﬁ'D(’ﬁ---ch %) &,(0t) = PWI[FD(ud, -3 2],

In the Eq. (5 5) 1L° is related to the operator L as follows
L=¢™ @l (5.6)

On the basis of Eqs.(5.4) and (5.5), the condition (5.4) may

now be written
L*

n*i 2
W, = w°(r)J Ly (] =K | (5.7)
t
where W° stands for a time- -independent energetical coefficient

t(he value of which can easily be evaluated on the basis of Egs.

and (5.5).
In order to obtain the critical time of creep rupture, we

calculate the value of the integral

¥ 5
n+4 K
j_[u;('c)] dn = vl (5.8)
t
by substituting the function @ according to the solution (4.18).
Denoting by
ne A n+2

=4+ '%7\'?0 (n+2)(z-¥) , A= 7 MY (n+2) > (5.9)

we obtain, instead of Eq.(5.8),
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N+{ i

P [ S K

T\gjx“dx"v?” (5.10)
4

*
where x = x(t*) a
Carrying out the integration in Eq.(5.10), we finally obtain

t= E*‘%—{[H‘?A“Po \_;SJMZ__G (5.11)

It is seen from the result obtained that, if the criterion
(5.3) is applied, we are able to predict the critical time of
creep rupture and thus bound the unlimited creep process predict-
ed by the creep solution. Since only dissipation is involved dur-
ing the process, it seems reasonable to found the prediction of
creep rupture on the basis of the amount of dissipated energy
wgicg zhus constitutes a certain measure of reaching this critic-
al state.

D] Z.Bychawski, W.0Olszak, Energetic interpretation of critical
states in viscoelastic bodies (in Polish), IBTP Reports, No.2,
Warsaw, 1967.

[2] Z.Bychawski, W.0lszak, Rheological states of geometrically
nonlinear rotational membranes, The Second IUTAM Symposium
on the Theory of Thin Shells, Copenhagen, 1967.

SUMMARY

On the basis of the authors criterion of attainment of crit-
ical states in viscoelastic bodies, the problem of creep failure
of nonlinear rotational shells is investigated. For a spherical
membrane the critical time of failure is found by introducing the
dissipated energy through creep resistance as a measure of attain-
ment of this state.

RESUME

En se basant sur la condition des etats critiques proposee
par les auteurs, on considere le probleme de la rupture par fluage
pour les voiles minces nonlineaires. Pour une membrane, le temps,
critique de rupture est calculé en introduisant 1’energie disaipee

ar la résistance de fluage comme une mesure pour atteindre cet

tat.
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ZUSAMMENFASSUNG

Die Verfasser haben ein Kriterium f#ir das Erreichen des
kritischen Zustandes infolge Kriecherscheinungen formuliert und
dasselbe zur Analyse des Problems des Kriechbruches von nicht-
linearen Schalen im Membranzustand angewandt. Als Resultat findet
man die kritische Zeit, in welcher Kriechbrucherscheinungen in
einer sph¥rischen Membran eintreten. Als entsprechendes Mass wird
dabei voraussetzungsgemBss die durch den Kriechwiderstand zer-
streute (dissipierte) Energie eingefthrt.



Der EinfluR des zeitabhingigen Verhaltens bei Hinge- und Schragseilbriickensystemen
Time-Dependent Response of Suspension and Cable-Stayed Bridges

L'influence du temps dans le comportement de ponts suspendus ou haubannés

KURT MOSER
Dipl.Ing. Dr.techn.; Zivilingenieur
Salzburg

Es ist allgemein bekannt, dal bei fast allen heute gebriuchli-
chen Baustoffen - insbesondere unter Dauerbelastung - Formidnderungen
auftreten. Der vorliegende Beitrag befaBt sich mit dem zeitabhingi-
gen Verhalten bei Hinge- und Schrigseilbriickensystemen, wobei speziell
der EinfluB des Kabelkriechens (auch Nachlangung der Tragkabel ge-
nannt) betrachtet werden wird.

Diskussion iiber erfolgte Messungen

Zwel die zeitliche Deformation charakteristisch beschreibende
Darstellungen sind bei rheologischen Untersuchungen iiblich geworden:
der Verlauf der Dehnung bei konstanter Last und der Verlauf der
Spannung bei konstanter Gesamtdehnung, beides in Abhédngigkeit von
der Zeit bei konstant gehaltener Temperatur; man spricht bei dem
einen Verlauf vom "Kriechen" und bei der zweiten Funktion von der
"Relaxation". Wir werden uns hier mit dem ersten Phinomen befassen.
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In dankenswerter Weise hat ein an-
gesehen?ﬁ deutsches Draht-und Ka-
belwerk an einigen bekannten
NN Rheinbriicken Messungen vorgenom-
R e e —T men, womit es mbglich geworden
R S | B2 ist, nunmehr auch an kompletten
— I Hinge-und Schrigseilbriickentrag-
werken zeitlich ablaufende De-
formationen zu studieren. Die
Fig.1 und Fig.2 zeigen die auf-
= T ‘ genommenen Kriechkurven fiir die
‘ Tragkabel bei Hingebriicken; die
Fig.3 das gleiche bei einer
Schrédgseilbriicke. Es handelt
Fig.3 sich im einzelnen um die nach-
folgend aufgezZhlten Rhein-
briicken im Raume von K6ln in der Bundesrepublik Deutschland.
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zug ab etwa 1,4 Jahren, nach erfolgten Ballastierungen, Probebe-
lastungen und endgililtiger Fertigstellung. Spannung aus stédndiger
Last im Tragkabel i.M. 33 kp/mm2; aus Verkehrslast pro Tag i.M. 5
bis 8 kp/mm2.

Hangebriicke Koln-Rodenkirchen: MeBpunkte in Fig.2 ab Verkehrsiiber-
gabe 1954 aufgetragen. Spannungen aus stidndiger Last i.M. 41 kp/mm2;
aus Verkehrslast pro Tag i.M. 3-5 kp/mm2.

Ebﬂvgffehfguberggbe im November T9§9-aﬁfgetrggen. Spannungen aus
stdndiger Last i.M. 38 kp/mm?2; aus Verkehrslast pro Tag bis 9 kp/mm2.

Ein Vergleich des dargestellten MeBverlaufes fiir das Kabel-
kriechen der jeweiligen Briicken zeigt eine offensichtliche tberein-
stimmung in der Tendenz bei den beiden Hingebriicken und ebenso
deutlich eine Abweichung bei der einzigen hier betrachteten Schrég-
seilbriicke; beide Systeme zeigen in der semilogarithmischen Dar-
stellung im wesentlichen ein lineares Kriechen, wie wir es prin-
zipiell schon von den kaltgezogenen Einzeldréhten her kennen. In
Fig.1 und Fig.2 wurde jeweils eine flir H&angebriicken als typisch
angenommene mittlere Gerade h mit gleicher Steigung (120 mm/m in
2 Jahren) eingetragen. Die entsprechende Gerade s bei der betrach-
teten Schrigseilbriicke verliuft mit 75 mm/m in 2 Jahren etwas
flacher (vergl.Fig.3);dieser Briickentypus ist sichtlich kriech-
steifer als eine Hingebriicke. In der folgenden Abhandlung soll der
EinfluB des aufgezeigten Kriechverhaltens der Tragkabel auf das
Gesamttragwerk gezeigt und wenn mdglich mit anderen iliblichen Last-
fallen verglichen werden.

Hangebriicke
Die statische Berechnung einer erdverankerten Hidngebriicke wird
iiblicherweise an einem Ersatzsystem durchgefiihrt[1]; Fig.4 zeigt
ein solches fiir den Fall, daB der Versteigungstrédger iliber 3 Felder
durchlauft. In den meisten Fidllen kann y? = yg = y" = 8f/1¢ = const

angenommen werden.

1)

Felten & Guilleaume Carlswerk Eisen und Stahl Aktiengesellschaft
Koln.
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Die Briicke sei in iiblicher
Weise so montiert, daB der
Anteil g = const der stan-
digen Brilickenbelastung vom

T Tragkabel allein getragen
p] TﬂﬂﬂﬂUrT”ﬁ%h\\\f wird. Ferner wird vorausge-
’ . e .
éﬁfg = 7 = 4; setzt, daB die Hinger vertikal

T und ungedehnt bleiben, daB

Hangebriicke mit durchiaufendem Versteifungsirdger iibet drei d/fn ungen

T ¢ , die Hingerkrifte stetig liber
ﬂ”“”ﬂ:-,””f\anu ﬂwmwxprWf #¢r  den Versteifungstriger ver-
o Y 2% teilt sind, daB die Tragkabel
%%, ‘%% *? keine Biegesteifigkeit be-

sitzen, daB die Sattellager
" waagrecht verschiebbar sind
und daB Pylonenverkiirzungen
und Schubverzerrung des Ver-

steifungstrégers vernachléds-
sigt werden diirfen.Unter diesen Voraussetzungen erh&dlt man auch
im vorliegenden Fall die I._Grundgleichung in der Form

IV " - 8f y .

EJ v ( Hg + HP ) v ( p Hp 2 ) 0 (1)
welche gleichzeitig die Differentialgleichung des Ersatzsystems
(Triger) darstellt. Dabei wurde angenommen, daB die Trigerachse
identisch mit der x-Achse und die Ordinaten des Tragwerkes mit y,
die entsprechenden Verformungen mit u bzw. v bezeichnet sind.

im vorliegenden Fall: yi = y7 = const

Fig.4

Der Verfasser setzt als be-
kannt voraus, daB die
I1I.Grundgleichung mit dem

x X Ansatz
Seil: Verschiebung am Seilelement : T,
N - a dx — j A dx = 0 (2)
AN AR | * A 4 ° ; y ;
- gefunden wird. In Fig.5 sind
Pl = alle erforderlichen Zusammen-
) X . x hédnge zwischen der Verformung
Tagen L des Seiles und des Triagers,
l sowie am Seilelement selbst
' b 5 dargestellt.
Fig.5

Es gilt dann H ds

A ds = +Xlog t ds + O(TAT ds (3)

i -
Ekacosjo
worin Hp den Horizontalzugzuwachs gegeniiber dem Normalzustand H

(standige Last), L die gesamte Linge des Versteifungstrigers, X
die Steigung der Geraden h in Fig.1 und Fig.2 in den dortigen
semilogarithmischen Darstellungen, mit t als Zeit in Jahren,
und AT eine Temperaturdnderung darstellt. Nach Erfullung von (2)

L
H—=—7+ (Xlog t 10(T)L4Jy"vdx=0, (4)
P Eka T T .
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die den funktionellen Zusammenhang zwischen Tragkabel und Verstei-
fungstrédger herstellt. Der lastfall "Kabelkriechen" erscheint im
2.Term dieser Gleichung als ein ebenfglls erweiterter Temperatur-
lastfall; LT bedeutet dabeivf dx/cos y:( spadter wird auch noch
L 0
Lk =‘[ dx/cosB?Q gebraucht). Die praktische Auswertung erfolgt
o}

zweckmsBig nach K. Hoening [2] , wo z.B. speziell aus Kabel-

kriechen >
1
¥, log t L A
AH = - L, 8(E+47) (5)

= 81 1< . Tk ’
12 F + 87+ A5) EF,

mit F als die gesamte Biegefliche aller Offnungen unter der Ein-
heitsgleichlast, bestimmt werden kann etc.

Unter diesen einfachen und anschaulichen Voraussetzungen kann
bereits brauchbar etwas iUber die Auswirkung des Kabelkriechens aus-
gesagt werden.

Beispiel

_____________ man die Gerade h in Fig.1 zu-
grundelegt und E, konstant annimmtz) erhdlt man z.B. fir 3, 10 und
100 Jahre ein %&H von rund -6Mp, -12 Mp und -24 Mp bei einem H
von 3180 Mp! Der entsprechende, &quivalente Temgeraturlastfallo
entspriache einer Temperaturdifferenz von ca 2,1°C, 4,5°C und 9 C,
d.h. der letzte hochste Wert entspricht etwa ¥4 des in der ur-
springlichen Berechnung beriicksichtigten Temperaturanteils.

Schrigseilbriicke
Auch fiir dieses Briickensystem (Fig.3) kann, wie F.W. Wa 1 t -
kK ing in einer unversffentlicht gebliebenen Arbeit [ 4] gezeigt
hat, ein Ersatzsystem gefunden werden, das eine geschlossene LOsung
und eine sehr anschauliche baustatische Deutung des elastischen
Problems ermdglicht. Im Anhang zur vorliegenden Arbeit wird im
einzelnen gezeigt, dalB die Losung des als kontinuierlicheWand von
Schrigseilen (Ziigelseilen) aufge-
faBten Ersatzsystems (vergl. neben-
stehende Fig.6) auf einen "Triger
auf elastischer Unterlage" fiihrt.

Seilenoffaung nichi abgespanni Seitendffnung abgespannt

Der Verfasser sieht bei Benut-
zung eines solchen Ersatzsystems
grundsdtzlich die Moglichkeit, zeit-
und auch temperaturabhingige Vorginge
an Schrégseilbriicken aber auch an
ghnlich seilabgespannten Konstruktionen
ohne groBeren Aufwand zu untersuchen.
Es genligen wohl nicht mehr einfache
Fig.6 geometrische Uberlegungen wie vorhin

2)Der E-Modul des Tragkabels ist streng genommen ebenfalls eine
Funktion der Zeit, was bei der Durchrechnung des Beispiels vernach-
lédssigt werden konnte.- Bei der Behandlung der Schrigseilbriicke wird
gezeigt werden, welche Form der Grenzwert Ekooannimmt.
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bei der Behandlung der Héngebriicke aufgezeigt, aber auch die hier
anwendbaren Prinzipien der linearen ViskoelastizitZtstheorie bieten
noch die Moglichkeit einer anschaulichen baustatischen Behandlung
des Problems.

Zur ausfihrlichen Theorie selbst sei auf die entsprechende
Literatur verwiesen ([5] u.a.).Hier soll nur das Wesentlichste zum
besseren Versténdnis der Abhandlung herausgehoben und den nachfol-
genden Uberlegungen vorangestellt werden:

Das betreffende Bauglied (hier die Schrigseilkabel) oder ganz all-
gemein das Tragwerk als ganzes (wenn z.B. neben dem Kabelkriechen
auch das Kriechen des Versteifungstrédgers berilicksichtigt werden
sollte) wird als aus einem ideal viskoelastischen Baustoff herge-
stellt angesehen, wo zwei Medien vereint gedacht sind, n&mlich

der ideal elastische Korper und die zZhe Fliussigkeit. Die elastischen
Effekte sollen dabei dem Hookeschen, die z&dhen Effekte dem Newton-
schen Gesetz unterliegen. Es gibt mehrere Modelle, je nachdem wie
diese Effekte nebeneinander und/oder hintereinander geschaltet
gedacht sind. Die Auswahl erfolgt im Idealfall nach aufgenommenen
Kriech- und Relaxationskurven am tats&chlichen Bauglied bzw. Tragwerk.-
Grundsidtzlich existieren Analogien zwischen einer Losung des visko-
elastischen und einer entsprechenden des sogenannten'"begleitenden
elastischen"Systems, die in Form von Korrespondenzprinzipien in der
Theorie erarbeitet worden sind.

Gelingt es also fir ein gewisses Problem die Ldsung des "be-
gleitenden elastischen" Systems zu finden, so besteht grundsitzlich
auch die Moglichkeit, die Losung des viskoelastischen Problems mit-
hilfe eines der Korrespondenzprinzipien zu erhalten.

Im vorliegenden Fall ist es durch das Ersatzsystem von Waltking
méglich, eine elastische Losung zu finden; sie lautet nach (A 13)

R S/
y=n+zwEs * X (6)
h = Adofkx akx + Bk k2 +C dpfkx kX + D Tk o kx

Die Losung entspricht,wie im Anhang ndher ausgefiihrt, der eines
Balkens auf elastischer Unterlage, wobei hier speziell noch die Unter-
lage viskoelastisch sein soll. Dis t e f ano hat in einer sei-
ner Arbeiten gezeigt [6] y, daB der Grenzwert der Losung des visko-
elastischen Problems in diesem Fall mit der Ldsung des reinen ela-
stischen Problems dann lbereinstimmt, wenn der Koeffizient der vis-
koelastischen Unterlage durch
¥ —k

k e 1+ ka" (7)
ersetzt wird, wobei f = [f£(t)dt und £(t) die Kriechfunktion dar-
stellt. 0

Im Falle der Schrigseilthicke hingt nach (A 8) dieser Koeffizient
lediglich vom E-Modul Ek ab, wofiilr wir nach D i s ¢chinger auch
den Wert 5

BT TP (8)

3)

anschreiben konnen, dabei wird in
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_ 5%1

P~ o
filr £ . die elastische Dehnung und fiir die Endkriechdehnung ge-
setzt’ kann z.B. aus Fig.3 ermittelt“werden, wenn z.B. fiir
der Dehnwert fiir 1ooo Jahre eingesetzt wird. Mit diesem angenomme-
nen Grenzwert kann nach (A 11) der Koeffizient k und damit unter
Beachtung der Randbedingungen des vorliegenden Briickensystems y
und somit auch alle Schnittkrafte, wie beispielsweise das Biege-
moment

2

M = - BJy" = 2EJk~ ( A Omkx wmkx + Bdfkx Mkx -
- COmkx @ kx - Db kx M) kx )

(10)

gefunden werden.

Belspiel:
Schrégseilbriicke_nach Fig.6, linker Teil: Mit E

— e — v w— . m— — — —— — o — — — —

21.10° Mp/m2

1, =108 m P, = 0,06489 m2 B, (0) = 16.10°
1 = 260 " £, = 0,4626.10™% n J = 0.6 =t
h = 40 " p = 4,5 Mp/m J1 = 1,1 "

sowile mit Eél = 2,0625.‘]0_3 erhdlt man extrapoliert aus PFig.3
fo = 0,464™"/m = 0,464.107°

womit man folgende Durchbiegungen in der Mitteldffnung erhidlt
aus der elastischen Ldsung Yo = 53,2 cm
aus der viscoelastischen Ldsung ¥, = To,7 cm.
Zur Tragwerkssicherheit

In den vorangegangenen Abschnitten der Abhandlung hat der Ver-
fasser zeigen konnen, welchen Verlauf das Kablekriechen bei den bei-
den hier untersuchten Briickensystemen jeweils hat, wie das Phinomen
praktisch rechnerisch erfafBt werden kann und welchen EinfluB es im
allgemeinen hat. Es konnte zumindest qualitativ festgestellt werden,
daB H&ngebricken ein stédrkeres Kabelkriechen aufweisen als Schrig-
seilbriicken. Schlieflich kann ganz allgemein noch erwdhnt werden,
daB trotz aller Komplexit&t davon ausgegangen werden kann, dafB im
Falle der hier vorerst in Betracht gezogenen, stdhlernen Briicken
ein weitgehend lineares Verformungsverhalten vorliegt.

Ergdnzend zu diesen Erkenntnissen wollen wir nun festhalten,
welche "konventionellen" Sicherheitsfaktoren

V= Rmin/smax
nach Gleichung (2.17) auf Seite 19 des Vorberichtes zum laufenden
8. KongreB - bel der jeweiligen Bemessung der Tragkabel bestimmend
waren (vergl. [3] und [7] ), wobei wir stellvertretend je ein
ausgefihrtes Bauwerk flr jedes Briickensystem herausgreifen:

3) Nach einem modifizierten Voigt'schen Modell lautet die ent-

sprechende Kriechfunktion f (t) = ée— (1—e_Jt)
k
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Hé.ngebrﬁ()ke : K&jln—Mlilheim ® o & 00 0 8 0 0 00 00 vl'
Schrigseilbriicke: Kdln-Deutz (Severinsbriicke) Y

2,61
2,55 bis 3,06

Dazu muBl bemerkt werden, daB eine Hangebriicke eine weit ge-
ringere Anzahl statisch {Uiberzzhliger aufweist, als eine Schrig-
seilbriicke, was bei der Bestimmung einer realistischen Bruch-
wahrscheinlichkeit u.a. aber eine Rolle spielen wird. Auch auf
sonstige unterschiedliche Verhaltenserscheinungen der beiden
Briickensysteme, wie etwa die aerodynamische Stabilitit etc., kann
an dieser Stelle nicht ndher eingegangen werden.

Beim Abwigen der oben zahlenmidBig angefilhrten "konventionellen"
Sicherheitsfaktoren wird man aber sicher schon bei Beriicksichtigung
der vorangegangenen Betrachtungen zugeben missen, daB offensichtlich
ein Widerspruch zwischen den bisher angenommenen Sicherheitszahlen
mehr oder weniger konstanter GroBe und dem tatsdchlichen Verhalten
der verglichenen Briickensysteme vorliegt.- Es wdre nun an der Zeit,
solche und d@hnliche historisch entstandene und heute einfach iiblich
gewordene Zahlen kritisch zu durchleuchten und wenn, wie hier ge-
zeigt, notwendig, zu korrigieren.

Es scheint bei dem hier aufgezeigten Sachverhalt wiederum

eine Bestdtigung dafiir vorzuliegen, daB wir uns im Bauingenieur-
wesen mehr als bisher mit der Wahrscheinlichkeit des Zusammen-
bruches bzw. des im vorliegenden Fall maBgebend sein werdenden
Unbrauchbarwerdens eines Tragwerkes befassen miissen. Dem Ziele,
ein"gleichmdaBiges" SicherheitsmafB fiir alle Tragglieder eines Bau-
werkes, aber auch fiir alle Tragwerke gleicher oder Zhnlicher Bean-
spruchung zu erreichen, konnen wir nur durch konsequente Verfolgung
stochastischer Prinzipien nzherkommen. Dazu bendtigen wir mehr als
bisher Beobachtungen und Messungen an ausgefiihrten Bauwerken. Bei
Vorliegen einer genligend grofBen Dichte solcher Beobachtungen und
Messungen ist es aber z.B. im vorliegenden Fall - wo ein weitgehend
lineares Verformungsverhalten vorliegt - ohne weiteres mdglich,
die vom Verfasser vorgeschlagenen Differentialgleichungen der je-
weiligen Tragwerksmechanik in Gleichungen mit stochastischen Koeffi-

zienten umzuformen. Ahnlich wie hier von der elastischen zur visko-
elastischen Losung kann dabei auch von der entsprechenden Ldsung
der klassischen Gleichungen als erste NZherung auf den zu "erwar-
tenden™ Wert nach der Wahrscheinlichkeitsdichtefunktion geschlos-
sen werden.
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Anhang
Vorschlag fiir ein Ersatzsystem flr Schrigseil-

briicken von der Art von Ziigelseilbriicken nach
F.W. Waltking 4)

Einzelne Schrigseile sollen hier durch eine kontinuierliche
Wand von Ziigelseilen (Fig.6) ersetzt werden. Alle nachfolgenden Be-
trachtungen beschrinken sich auf symmetrische Systeme mit gelen-
kigen Pylonenfifen.

Die auf ein Léngenelement dx des Versteifungstridgers entfallen-
de Schrigseil-Querschnittsfliche sei f dx, wobei f eine Funktion
von x sei. H(x) werde die mit x ebenfalls veridnderliche Liangskraft
im Versteifungstridger benannt; dabei soll Druck positiv gekennzeich-
net werden (entspricht den zugehdrigen Seil- Zugkriaften S!).

Nach Fig.7 ergibt sich bei
Gleichgewicht:

dH .

gs ds = - cossa ; (A1)

MdM
AN S a= g ; (4 2)

JO*OO

d

dx p-dxthO A 3)

Fig., 7

a2 dH

bzw. d (EJ—‘E)— p(X)+5;tg30 (A 4)

Die elastische Arbeit bei der Verformung der Briicke infolge
Dehnung des betrachteten Seiles:

2
dS As = égglai oder in Termen
k
. B (dS)Qo
dSOW(f).y — d660$90”3"4 = _E?f_d—x_
Mit = h/si d t =h
- i s /81n570 un g(/o /x (A 5)
dH _ . 2 _ : 2
x = 2l (yeinPparp = Dompanp ) (+

und daraus gemeinsam mit (A 4)

gjz Jd? o)ty e fx)omp.y = p) + f(f/’*‘“?mgﬂ (4 7)

4) Auszug aus einer unverdffentlichten Arbeit von F.W. Waltking L4J
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die Differentialgleichung der Ziigelseilbriicke gefunden. Eine Er-
weiterung der gefundenen Differentialgleichung nach den Prinzipien

_— e e ——— — — S—

Schwierigkeiten mdglich., Eine von Wa 1l t king vorgenommene
Untersuchung zeigt aber, daBl bei Schridgseilbriicken von der Bauart
einer Zigelseilbriicke bei idealen Montagezielen - der Versteifungs-
trédger weise unter stidndiger Last weder Durchbiegungen noch Biege-
momente auf - im abgespannten Teil der EinfluB aus der Verformungs-
theorie maximal eine 1,5 bis 2 - prozentige Erhdhung ergibt. Bei
einer iiblichen Uberhthung der Briickenlingsachse wird auch dieser
geringe Einflul3 zum groBten Teil aufgehoben.

Zur Losung der Differentialgleichung des Ersatzsystems werden
die Hilfsfunktionen

c(x) = —,gff(x)m35ﬂ (4 8)
and P(x) = BBy fx) i’y g

eingefilhrt. Man erkennt sofort, daB die Differentialgleichung des
Systems (A 7) der Differentialgleichung eines Trigers auf elasti-

. 3 —
f(y)/n" 50 = f; (A 9)
so erhdlt man zusammen mit der weiteren praktisch mdglichen Verein-

E f . E T
L kTk
n ¥ = p(x) +Y S X (4 10)

Die Ldsung des Problems erhdlt man schlieBlich mit

4 B

k' = R (& 11)

womit man in der an sich bekannten Art die LOsung der homogenen
Differentialgleichung in der Form

n = Alykxorkx + Blmiky Gokx + Cloghex wwmkx + D Gourky minkex (A 12)

und schlieBlich fiur einen Tr&dgerabschnitt innerhalb dessen p = const
ist, die Losung der vollstandigen Differentialgleichung

p Py
Yy =Nt Zxsgg T 3 X (4 13)
findet.
Zur Bestimmung der Konstanten A, B, C und D, sowie der Ver-
schiebungfﬁ‘an der Pylonenspitze werden die Randbedingungen
y(o) = 0 ; y'(o) = y{ : -EJ y"(o) = My
y'(1/2) = 0 und y"'(1/2) = O A T4
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sowie die Glelchgew1chtsbed1ngung

pLE = _
H, = an * e X7dx H, (4 15)
herangezogen, WObiS je nach Abspannart der Seitenspanne
4, = —}‘7‘5’9’ Coo?p, vn p, (416)
2
oder j-l,] = -EL- -+ Ex k\/X?dX (A 17)
. Zh
verwendet wird. 0
Literaturhinweise

(1] HAWRANEK / STEINHARDT, Theorie und Berechnung der Stahlbriicken,
Springer-Verlag Berlin 1958.

L2 ] K. HOENING, Beitrége zur Berechnung der versteiften Hiénge-
briicke mithilfe unmittelbarer Integration, Bauingenieur 24
(1949) Heft 10, Seite 292 bis 300.

&3'] Die neue KoOln-Miilheimer Briicke, Festschrift herausgegeben
von der Stadt Koln, zusammengestellt von Prof.Dr.-Ing.
F.W. Waltking, 1951.

[4] F.W. WALTKING, Beitrag zur Theorie der Ziigelseilbriicke,
unveroffentlicht gebliebene Arbeit.

[5] W. NOWACKI, Theorie des Kriechens - Lineare Viskoelastizitit,
Franz Deuticke Wien 1965. Teoria Pelzania, Warszawa 1963.

[ 6] J.N. DISTEPANO, Redistribution of Stresses in a Continuously
Supported Beam, due to Creep, IVBH Vi.KongreB, SchluBbericht
Vbi, S. 417 bis 428.

[7] Stahlbau, Handbuch Band 2, herausgegeben vom Stahlbauverband
K61ln, Stahlbauverlags-GmbH. K6ln 1964, 2. neubearb. Aufl.,S.588.



KURT MOSER 129

ZUSAMMENFASSUNG

Die Abhandlung bringt einen Beitrag zur Untersuchung der Tragwerks-
sicherheit mittels der Viskoelastizitadtstheorie, wobei Ergebnisse
aus Losungen "begleitender" Probleme der Elastizitdtstheorie heran-
gezogen wurden. Im speziellen ist das Ph&nomen des Kriechens der
Tragkabel untersucht worden. Fur Schrédgseilbriicken wurde ein weniger
bekanntes Ersatzsystem nach Waltking vorgeschlagen und verwendet.

Es konnten baupraktische Schlisse gezogen werden.

SUMMARY

This publication gives a contribution about the researches
of the safety of structures with the theory of viscosity, whereat
results with solutions of "attendant" problems of the theory of
elasticity were drawn near. The creeping phenomenon of the msin
cables has been investigated specially. For diagonalcable-bridges
there was proposed and used a less known substitution system of
Waltking. Practically conclusions were able to make.

RESUME

Les memoires apportent une contribution pour le calcul deg la
sécurité des structures au moyen des théories de la viscosité oudon
a attiré des résultats des solutiones des problémes "accompagnés"
de la théorie de 1°élasticité. Spécialment on a examiné le phénoméne
du fluage des cables porteurs. Pour les ponts de fil incliné on a
proposé et employé un systéme équivalent selon Waltking. On a pu
prendre des conclusions praticues pour la construction.

Bg. Schlussbericht
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L'influence du fluage linéaire sur I'équilibre des
systémes hyperstatiques en béton précontraint

Einfluld des geradlinigen Kriechens auf das Gleich-
gewicht der statisch unbestimmten Spannbetonsysteme

Influence of Linear Creep on the Equilibrium
of Prestressed Indeterminate Systems

J. COURBON
Professeur a I'Ecole Nationale des Ponts et Chaussées
France

PREMIERE PARTIE - LES LOIS de FLUAGE etde RELAXATION du BETON

I -10I de DEFORMATION du BETON

Imposons a un prisme de béton une contrainte de compression constante &

3 partir de 1'dge 4, . Si la contrainte o n'est pas trop grande, inférieure
par exemple au tiers de la contrainte de rupture, l'expérience montre que le
raccourcissement unitaire du béton £(¢) i 1l'age 4 > 4, est proportionnel

a la contrainte g ; donc :

(1) g(t) = Z

E(t, t)
Le module de déformation du béton est donc une fonction des deux

variables ’to et £ . Pour C= £, , nous obtenons le module instantané
E(’to) , et pour £ =0 , le module différé K(fo)

(2) Elt)= Elt,4),  K(h)= E(4)

La relation (1) peut également s'écrire ;

_ o t £ . Fle t)="1 _ — A
(3) £(t) = =5 —+ o F( °, ) avec : (0, ) [__{{D/f) E[[o,fo)

La déformation apparait ainsi comme la somme de la déformation
élastique instantanée et de la déformation différée G /—'[Q} {) . proportionnelle

a la contrainte et croissant avec le temps, appelée fluage linéaire, On notera

que F(fojfo) est nul .,

Seule l'expérience permet de connaitre la fonction E[-Q}i") .
Diverses expressions analytiques ont été proposées pour la représenter,
La plus simple est

~B(L-to)
(4) ! = +[ ! —--;%]-!:4-—6 J
El4,t) ~ Elt) K(t,)  El4

IB caractérise la vitesse de fluage.
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Lorsque le béton n'est chargé qu'a un dge assez grand, on peut admettre
que E[,{:a) et K'({ ) sont des constantes £ et K , de sorte que :

4 4 g4 AN 4 e A
(5) —— = L+ (- Z
E(4,%) &
E(’ﬁ;} ‘f) ne dépend alors que de la variable ‘Z-—’f—o
Lorsque la contrainte o (/) appliquée au béton dans l'intervalle de temps

(t‘,,w) est variable, on trouve, en appliquant la loi (1) que le raccourcis-
sement £ (L) a pour expression:

TlLo) +/IM
<

(6) ) = 273 E(€ L)

II - LOI de RELAXATION du BETON

L'expérience montre que si l'on impose a un prisme de béton un
raccourcissement unitaire g a partir de l'dge IT,; , la contrainte de

compression initialement égale a o(t,)) — & E(’fd"f:,) décroitdans
le temps et reste proportionnelle 3 & ; donc:
(7) ot)= £ R (£, ¢) avec: R(t, t,)= E(L,1,)

La formule ( 7 ) peut également se mettre sous la forme :
(8) oft)= ald ) — & G(to/ £)ave (;—([0/ f}: R(.fo}-[‘,)_-ﬁ_’[-[:jf')

qui met en évidence la diminution de contrainte ou relaxation

Lorsque le raccourcissement Z(¢) imposéau béton dans l'intervalle
de temps ({0 9(_)) est variable, on trouve, en appliquant la loi ( 7 ) que la
)

contrainte o (£) a pour expression :

.
(9) o(t)= &(4) Rt t) +/[ £/(E) R(E E)dE

IIl - 1LLOI de RELAXATION DEDUITE de la 1.OI de FLUAGE

Sil'on se donne &(€) , la contrainte = (£) , solution del'équation

intégrale (6) est donnde par l'expression (9) . Cette solution est donc connue si
'on sait déterminer la fonction (/4 ) connaissant la fonction E[—f:,/ t)

Nous désignerons par .C.z ([u, ¢) l'unique solutiondel'équationintégrale
“ ’
(10) / _re)at ki = F([u/ ¢)
Lo E(E/ {)

qui s'annule pour € =.f, . L'équation (10) peutse ramener adune équation de
VOLTERRA ,

Dans le cas général, le calcul des valeurs de la fonction & [{—‘,} f)
s'effectue sans difficulté par intégration numérique .,
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L'intégration formelle est possible dans le cas de la loi de déformation
(5) ot I'on trouve :

_yplt-£) -
(11) ¢[’€;T): (’7—“2}5—)[4"6 4 ])avec: f:ﬁ-:%

et dans le cas de la loi de déformation ( 4 ) o l'on trouve

<
y 4 < e £ln)
02 P68 = [ = | [E0 T e yitizg | T

Ceci posé, pour déterminer la fonction (£, £) donnons 3 &(¢)
/

la valeur constante §& dans la relation (6) ; nous obtenons ainsi ;
£ ,

o(4.) o (4s) /‘ al(8)cll

—_— = S . e S

El4,t,) Els,¢) S TECEC)

(-3

de sorte que la diminution de contrainte ou relaxation ?[‘f’) = a'/[,,) -O'/’f)
est la solution de 1'équation intégrale :

C pue Al _ o) Flt ¢)
<, Elf]/f)

qui s'annule pour 4 =, . Donc:

plt) = F(t,) ® (£, ¢)

et par suite :

o(t)= alts) [1-B(4,¢)] = & E(talto)[/; ~ $(4,1)]

En comparant avec la formule (7), nous voyons donec que

(13) Rt t) = E(, t,) [1-P(t,,t))]

Ainsi, dans le cas de la loide déformation (5), nous obtenons :
—y (&-C5) £
(14) R(t,t)= E - (E-K) (1-e77 ) (Y:/f ,_/\_)

Le cocfficient ¥° caractérise la vitesse de relaxation ; ce coefficientest
environ trois fois plus grand que le coefficient /B3 qui caractérise lavitesse
de fluage., La relaxation est donc plus rapide que le fluage.

I1 est également possible de déduire la fonction E([a, t) de la

fonction R[{‘,/z{") par une méthode analogue 2 celle qui vient d'étre

exposée .
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DEUXIEME PARTIE - APPLICATION aux SYSTEMES HYPERSTATIQUES

I - EQUILIBRE sous 1'ACTION d'un SYSTEME de FORCES DONNiEES

Considérons un systeme . fois hyperstatique (2) et désignons par X.,'

les m composantes des forces appliquées aux points /‘}“ et par RJ'

les . composantes des réactions hyperstatiques appliquées aux points BJ
Associons au systéme (2) le systeme isostatique (Z’) obtenu en supprimant
les liaisons surabondantes correspondant aux réactions RJ' . Si, au temps ’l:
on applique au systeme (E’) un ensemble de forces constantes X/_- et EJ’
aux points /94_‘ et Ba,- , le déplacement fl)é du point BE dans

la direction de la force Ré aura pour valeur au temps 7 > ¢, , dans

1I'hypothese du fluage linéaire :

£) = ) a ,X + [)dl
(15) fvﬁ( ) E{toj‘t) Z ﬁ Z

& = A
i L9 P - P
C(/& et A étant des constantes caractéristiques du systeme étudié
Il en résulte que les réactions hyperstatiques Ed‘ sont données par

le systeme : ,
L #
(16) a, X. + b5, B, = 0O
IR

dans lequel le déterminant I L'Z l n'est pas nul (configuration non critique) ,

Donc, dans l'hypoth®se du fluage linéaire, 1'équilibre d'un systeme
hyperstatique, soumis a des forces extérieures données constantes dans le
temps, est indépendant du temps et identique & 1'équilibre élastique déterminé
avec un module de déformation constant,

Si les forces appliquées X‘. [1‘) et ﬂ:}[t.") au systeme isostatique
associé (Z’) dépendent du temps, le déplacement ‘U‘é (£) au temps T

postérieur au temps L, début de 1'application des forces a pour expression :

e DRI TR LMC{[ZM/!/Q o)
ou, en intégrant par parties :
08 we)= [Zﬂ X{f)J,ZAJ}?[é)] /[Za X/€)+Z )wbéﬂf/p

4

e

(17) Vg lt) =
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Il en résulte que les réactions hyperstatiques 7‘_-;1' sont données par
le systeme : P J s
(19) E a’ X[{') —+ E é)'} 7?/:5):’:0
£ " % = A d
&= -

Donc, dans l'hypothése du fluage linéaire, 1'équilibre d'un systeéme
hyperstatique, soumis 2 des forces variables dans le temps, se confond 2 tout
moment avec 1'équilibre élastique déterminé avec un module de déformation
constant .

En particulier, les résultats précédents s'appliquent aux calculs des
réactions hyperstatiques dues a la précontrainte, puisque la précontrainte est
équivalente a l'application d'un systeme de forces données : forces concentrées
aux ancrages des armatures et forces réparties provoquées par la courbure des
armatures,

II - EQUILIBRE sous I'EFFET de DEFORMATIONS IMPOSEES

A - Compensation des systemes hyperstatiques

Pour diminuer les contraintes d'un systeme hyperstatique, on impose
souvent a ce systeme des déformations maintenues par les liaisons surabon-
dantes (par exemple : dénivellation des appuis d'une poutre continue} , On
introduit ainsi dans le systeme des efforts dits de compensation quis'opposent
aux efforts provoqués par les forces données, Le probleme qui se pose est de
savoir comment les efforts de compensation évoluent dans le temps.

En imposant a 1'dge ft'o des déplacements VE aux points d'application

Bk dans la direction des réacticns /?,5_ , on introduit dans le systeme

des réactions compensatrices E/@ (4) qui sont des fonctions du temps,

Au temps 'z_o , les valeurs /’5 [J.‘o) sont données par le systéeme
e -~ Z)J R ([)
i = 2.5 Gt
Elt,t) £ %k

Au temps A, les valeurs & -{f) vérifient les équations intégrales :

,U-o 7 /F)
% EmHZgﬁﬁ’ﬂ)"—Z / [/,,at)

La comparaison des deux equatlons precedentes donne :

> [ = - 2 )
J <o

ou, puisque le déterminant ] E,é , est différent de zéro :
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£ 4, 1]

f _RIBAE _  Rilh,) Fl4e)
. £o E(éj'é)

Il en résulte que les diminutions 5;["): @'{{o)" @(t) des

réactions compensatrices sont les solutions des équations intégrales :

< _
/ Sd/.(gjzlé’ _ 75 /'J—o) f_['to, ,t)
4

E(8¢)
Donc : %[f)': f?j[“o) %({},} '{) et par suite :
(20) Ry(€) = Ro(t,) [+~ P(4, )]

Les réactions: hyperstatiques introduites par la compensation a l'dge

ffo diminuent donc dans le temps. A l'dge .£> -1, les efforts de

compensation (moments fléchissants, contraintes, etc. .) sont égaux aux

efforts de compensation a 1'4ge /7:0 multipliés par le coefficient de

réduction 4 — @ (‘Qlf) . Cecoefficientde réduction ne dépend que

des propriétés du béton et non des caractéristiques du systeme hyperstatique,
I1 peut étre calculé une fois pour toutes pour un béton donné,

Dans le cas particulier de la loi de déformation ( 5 ), la formule ( 20 )

devient :
K K\ -rft-t)
(21) RJ{I)Z R{/{fa) [—[—:—- -+ (’f~ E) < J

Faisons tendre Z vers l'infini, nous obtenons *
K ¢
k@) o (%)

Dans ce cas, les efforts de compensation initiaux sont réduits a la longue
dans le rapport du module de déformation différée au module de déformation
instantanée,

B - Effet de déformations imposées dans le cas général

Imposons aux an points /3 du systeme 7L fois hyperstatique (2)

des déplacements donnés dans la direction des forces X . Ceci revient
a introduire dans le systéme(ZJ are  liaisons supplémentaires, donc a le
transformer en un systeme (5_21) nn + 7 fois hyperstatique, Il est méme

possible que le systeme @) soit isostatique ; dans ce cas le systéme (Z,,)

est M fois hyperstatique ,
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En appliquant les résultats obtenus ci-dessus pour la compensation au
systeme hyperstatique (2‘9) que nous supposons ne pas €tre a configuration

critique, nous voyons que les efforts, provoqués dans un systeéme isostatique
ou hyperstatique par des déformations imposées 2 l'age %, , diminuent dans

le temps . Au temps 4 >€, , les efforts sont égaux aux efforts initiaux

multipliés par un coefficient de réduction égal & 1 — @(to){)

IIT - INFLUENCE du MODEde CONSTRUCTION - DEFORMATIONS DIFFEREES

Supposons que pour construire le systeme hyperstatique (2)
on exécute d'abord un systéme isostatique associé <S)) et qu'on
réalise ensuite a 1'4dge ’—Co les liaisons surabondantes au moyen d'armatures de
précontrainte., Ce cas se rencontre en particulier dans la construction en encor-
bellement, et également lorsqu'on réalise une poutre continue a partir de poutres

préfabriquées posées d'abord sur appuis simples,

A - Calculdes réactions hyperstatiques dues ala réalisation des liaisons

Nous désignons par )(4,_- les forces appliquées en permanence (ycompris
éventuellement les forces dues 2 la précontrainte isostatique) a partir de
l'instant 4, . Nous pouvons faire abs‘raction des forces appliquéas postérizun-

rement 2 ’to , car nous savons que les réactions hyperstatiques correspondantes

sont celles que 1'on calcule en supposant le module de déformation constant., Si

l'on avait construit d'emblée le systéme hyperstatique, par exemple en l'exécutant
. . . +* P,

sur cintre, les réactions hyperstatiques auraient eu les valeurs /’L; données par

les équations .
. < S *
(22) >, a5 X, + 2,5 R =0
; Jd
<

Supposons d'abord que les liaisons surabondantes sont réalisé€es par
précontrainte concordante, donc que les réactions hyperstatiques /"Cc;-[{) sont

nulles pour = 'to

Avant la réalisation des liaisons surabondantes, les déplacements des

/ ~
points B,é du systeme isostatique associé (E ) ont pour valeurs a
1'instant /fo , en supposant , pour simplifier 1'exposé que les forces
-z,

sont appliquées a partir de 1l'instant -t, :

4 E ' c X
Wy == a
A= Frt) £ kT

Ces déplacements ne varient plus lorsque les liaisons surabondantes sont

réalisées ; nous avons donc a l'instant a
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R/ (6)db
. zz X + /
Yk = Fe, 0 4 Z’ 5 . El6E)

Eliminons %% entre les deux equatlons précédentes ; nous obtenons, en
tant compte de la relaxation ( 22 ) :

g s ¥
2 b, / W = Rz ) b7
. J .
soit, puisque le déterminant IA},; l est différent de zéro :
£ _ :
JE) d E x
23) / O REF4, )
£ (1)
Les équations ( 23 ) sont des équations intégrales du type ( 10 ) ; donc :
*
(24) @,(rj = 76:/. Flt, £)
Dans le cas particulier de la loi de déformation (5), nous avons

(25) @_{U: }5* (4“%)[4_8—;{4—5)]

Nous voyons donc que les réactions hyperstatiques varient constamment
dans le mé&me sens depuis les valeurs initiales ﬁJ {{J) = O

jusqu'aux valeurs limites :
* K
r, = o, (’f - —‘)

Ainsi les valeurs limites des réactions hyperstatiques peuvent atteindre
les deux tiers des valeurs correspondant a la réalisation directe du systéme
hyperstatique,

‘v

Le cas olu la précontrainte de liaison n'est pas concordante se rambene
immédiatement au cas précédent, puisque la précontrainte peut étre considérée
comme un systeme de forces extérieures appliquées a l'instant 4, . Nous

aurons donc pour valeurs des réactions hyperstatiques dues a la réalisation des
liaisons surabondantes :

%) =
F() = S+ Fy(t)

les valeurs 6(‘*) étant données par (24 )

1'instant 'éo

[Vl

(26)
l'instant £ > [;

[\

B - Etude des déformations différées

Le déplacement d'un point /7 *du systeme hyperstatique (2) sous l'effet
des forces X, et de la précontrainte (supposées, pour simplifier 1'exposé,

appliquées 2 partir de l'instant Io) est égal au déplacement du point M du
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}
systeme isostatique associé (2 ) sous l'effet des forces X‘L- , de la

précontrainte et des réactions hyperstatiques @(‘t—) dues a laréalisation

des liaisons surabondantes. A l'instant £ > Lo, ce déplacement aura donc

une expression de la forme :

[V +Zoz X +Z/M08{~*)] +Zﬂm RS

(27) v [f)a /ﬁ,z‘)

Y

lot)

¢ §
(-4 m et ﬂi étant des constantes et le déplacement provoqué par

la précontrainte,

Le déplacement différé au temps e est :

(28) 0, (£) = ©, (4] — %, (%)

Dans le cas d'un systeme isostatique, les réactions @('&) sont

identiquement nulles, et l'on déduit de (27) et (28) :
E(‘{_ {0) [L/UJ ]
t)= | S0 %00 73 g N
J/\w[) £ (4 4) 1]%[ I IS s

A la limite, la déformation différée peut donc étre le double de la
déformation instantanée.

Dans le cas d'un systeme hyperstatique (Z) obtenu par réalisation
des liaisons surabondantes dans le systeéme isostatique associé (z )) par

précontrainte concordante, la formule (27) devient :

wl= g [ e S 2 B

soit, compte tenu de la relation ( 23 ) :
29) vaid) =1 (v i >t x Fle. ) > 47 p”
&  Elt,t) MM e + g > Fm 'y

Nous obtenons donc pour valeur du déplacement différé :

59 )= Flay ) [V + S tn X+ 2 B |
4 v

expression que l'on peut également mettre sous la forme :
0 E'/fa £) d'. 7K
31 ¢ = d —1 v [ F(t, ¢ 7T
Y mt) (Ez:,x) P ) + FlL, )J- Fr &

Dans le cas ou la précontrainte de liaison n'est pas concordante, les

réactions "//(?;[f] sont données par ( 26 ), et l'on trouve sans difficulté que la
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formule ( 30 ) doit &tre remplacée par la formule :

(32) or;{é);_— Fl<, )[V +Z X *Z/M (R =) )]

la formule (31) demeurant valable,

En général, les termes entre crochets des formules (30)et (32) sont tres
petits, de sorte que les déformations différées des systemes hyperstatiques
sont faibles, Dans des cas pratiques, nous avons trouvé, et observé sur les
ouvrages, des déformations différées vingt fois moindres que celles del'ouvrage
isostatique associé.

IV-EFFET du RETRAIT, dela TEMPERATURE etdes TASSEMIENTS d'APPUIL

Dans le systeme isostatique associé (2 ) , le retrait, latempérature ou

des tassements d'appui, agissant a partir de l'instant ’fa , donnent des
déplacements des points 3’{,-. égaux a (7)
Considérons alors le systtme hyperstatique (2) , et supposons d'abord

le module de déformation constant et égal du module instantané ; dans cette

hypothese, on obtiendrait des réactions hyperstatiques %1('” données par

Z{:EJ”{H_mo

Nous connaissons donc les fonctions 72 ! (’T)

les équations :

(33) Vs (t)+

['[f <)

En réalité, Ie module de déformation n'est pas constant, et les réactions
hyperstatiques (() sont données par les équations intégrales :

5 R s[RI
f/fw“)dz £ Hdz 4, R

Vet

L'élimination de ”U/:; {t) entre les deux équations précédentes donne
les équations :
i g / '—"
< 4RI z )= > /f)
sl - — R
Z_J b/ﬁ J (8t E// £t t) £ )
~

v

équivalentes, puis le déterminant r A,;: est différent de zéro, auxéquations:

“ R ' e
Rt B B
iy E/‘Q)'t) E(’{aji‘J E([c/ a)

Les équations ( 34) sont des équations intégrales du type de 1'équation (6);
leurs solutions sont donc données par les formules :

(34)
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£
3 ) — A [re) RUE ¢ /ﬁ’% TlE ¢ 5/57
(35) @”;EW‘,)[JU B+ ) ) Rl ¢)

qu'une intégration par parties permet également d'écrire :
felE )
a J /é

P
i —_— // ¥ { ‘t- — t -K Y i
(36) @m,%w [RJ-[é)ff(f, S cE

(]

Dans le cas particulier de la loi de déformation ( 5 ), il est possible de
faire de nombreuses applications des résultats précédents,

RESUME

Lorsque le raccourcissement du béton sous contrainte constante est propor-
tionnel 4 la contrainte mais dépend de 1'dge du béton et de la durée du
chargement, 1'équilibre d'un systeme hyperstatique sous l'action de forces
données est 1'équilibre élastique. Par contre, 1'équilibre, sous 1l'effet de
déformations imposées dues au retrait, a la température ou au mode de cons-
truction évolue dans le temps et tend vers un équilibre limite,

SUMMARY

When the strain of concrete under constant stress is poportional to the stress,
but depends on the age of the concrete and the time the load is applied the
equilibrium resulting from the action of given forces is the elastic equilibrium,
But, under imposed deformations resulting from shrinkage, temperature or
mode of construction, the equilibrium evol-ves in time and tends toward a limit
equilibrium,

ZUSAMMENFASSUNG

Wenn die Verkiirzung des Betons unter sté@ndiger Spannung proportional
zur Spannung bleibt, aber vom Alter des Betons und von der Dauer der
Belastung abhédngt, ist das Gleichgewicht eines statisch unbestimmten
Systems bel gegebenen Kridften das elastische Gleichgewicht. Unter den
aufgezwungenen Verformungen des Schwindens, der Temperatur oder der
Bauart entwickelt sich hingegen das Gleichgewicht mit der Zeit zu einer
Grenzlage.
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Comments by the author of the introductory report
Remarques de l'auteur du rapport introductif
Bemerkungen des Verfassers des Einfiihrungsberichtes

ALFRED M. FREUDENTHAL
Columbia University
New York

The discussion contributed to Theme Ia ranges from a rejec-
tion of the approximate probabilistic approach to structural safe-
ty based on the introduction of load and of carrying capacity as
random variables as mathematically not rigorous enough (Misteh,
Eimer, Konishi) to its rejection as being "mathematics" instead of
being "common sense" (Hrennikoff), whatever this may mean. It is
encouraging to those who, over the years, have attempted to pro-
mote a rational probabilistic approach to the concept of structur-
al safety, that among the 8 contributions to Theme Ia only a single
one (Hrennikoff) repeats the familiar argument of the "practical
engineer" that problems of safety should be left to the "collective
judgment of the profession" which will protect society from "erudite
mathematical derivations" which can obviously not estimate the chances
of incompetence in analysis, design and construction, Since Prof.
Costa, in his discussion, has refuted this point of view by summari-
zing the principal arguments for the probabilistic approach in a most
effective manner I shall comment only on the other extreme, namely
the proposition to base the approach to structural safety on the
theory of stochastic processes.

While, in principle, there can be no objection to this ap-
proach, a closer consideration of its practical applicability re-
veals that even an approximate solution of the problem of the esti-
mation of the time to failure ('first exceedance" or first passage"
time) presupposes the introduction of such drastic simplifying as-
sumptions concerning the character of the random process, the re-
sponse of the structure and the nature of the failure process that

the physical significance of the solution becomes dubious, to say
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the least. Even with these simplifying assumptions not even an
approximate solution can be obtained if the resistance of the
structure is a statistical variable subject to time-or load his-
tory effects. It appears that under these conditions the engi-
neering relevance of the stochastic approach to structural safe-
ty is open to serious doubts,

It is therefore more expedient to develop the approximate
probabilistic approach reviewed in the Introductory Report and
dealt with in the contributions by Prof, Lind and Dr. Koch. How-
ever, I should like to express some apprehension concerning the
use of the Gram—-Charlier expansions in fitting distribution func-
tions. These expansions produce negative ordinates at not too
large distances from the mean and are therefore unsuitable in the
low probability range characteristic of safety analysis. Also
selection of distribution functions on the basis of curve-fitting
near the center of the distribution is an irrelevant procedure.
Distribution functions that can be extrapolated towards the tails
may be rationally selected only on the basis of physical argument
by which a certain probability model can be justified.

In the case of structures the loads of which are of a clear-
ly stochastic nature, such as towers subject to wind, maritime struc-
tures subject to waves and swell and flexible structures subject to
earthquake accelerations, a synthesis must be attempted between the
approximate probabilistic and the rigorous stochastic approach to
safety analysis on the basis of which rational design criteria for
such structures are developced. An illustration of such a procedure
for maritime structures is presented by the author at the 22nd In-
ternational Navigation Congress in Paris in 1969.

Considering the elaborate analytical methods of safety anal-
ysis in the inelastic range, as illustrated by the various contribu-

tions to Theme Ib, and the dubious physical assumptions concerning
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the material response underlying such analysis (linear visco-elas-
tic, ideal elastic-plastic, steady state creep, etc.), it would seem
that structural model analysis represents, so far, the only really
reliable method for the establishment of the critical failure mech-
anism of any but the simplest structural forms on which a rational
safety analysis can be based. The fact that it has not been specif-
ically referred to in the Introductory Reports, on which Prof. Oberti
comments, is simply a tacit expression of the conviction that it is
so well-established a tool that it is unfailingly used whenever the
results of a theoretical analysis are either physically suspect or

unobtainable,

I. Ba. Schlussbericht
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