**Zeitschrift:** IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

**Band:** 8 (1968)

Artikel: Discussion libre

Autor: Sfintesco, D.

**DOI:** https://doi.org/10.5169/seals-8742

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

### Discussion libre

Freie Diskussion

Free Discussion

### D. SFINTESCO

Par son intervention virulente, le Professeur Hrennikoff vient d'apporter la "contestation" dans la discussion sur le calcul probabiliste des constructions.

Parmi les arguments qu'il a développés, il y en a bon nombre qui paraissent incontestables et auxquels tout praticien sensé et réaliste ne peut que souscrire. Et cependant, il n'en va pas de même des conclusions qu'il en tire pour condamner le calcul probabiliste, et je suis heureux de constater que c'est également la position du Professeur Freudenthal.

Bien sûr, nous devons reconnaître que l'application pratique du concept probabiliste ne peut être que très imparfaite, tant que nous manquons encore de données statistiques suffisantes, notamment quant aux surcharges de caractère aléatoire, - le vent, par exemple. Toutefois, cela ne doit pas être une raison pour "jouer perdants", en nous figeant dans les errements d'un mode de calcul que l'on sait maintenant inapte à révéler le degré de sécurité réel des ouvrages : il vaut mieux oeuvrer vigoureusement pour obtenir ces données, au fur et à mesure que cela se pourra.

Certes, aucun coefficient de sécurité et aucun calcul ne sauraient prémunir contre les fautes graves de conception ou de réalisation et cela revient à dire que tout calcul, quel qu'il soit, doit nécessairement se placer dans les conditions de <u>respect des règles de l'art</u>. Un exemple très significatif est fourni par le danger de rupture fragile, source bien connue d'accidents. Or, celui-ci ne peut être évité que par une conception adéquate des formes constructives, mais <u>jamais</u> par l'introduction d'un coefficient supplémentaire dans le calcul, dont l'effet serait d'ailleurs exactement contraire au but recherché, car il ne ferait qu'augmenter la raideur, là où il faut la souplesse. Voilà donc un exemple qui illustre les arguments du Professeur Hrennikoff.

Cependant, les méthodes très exactes et très élaborées de calcul auxquelles on fait appel de plus en plus seraient dépourvues de sens si l'on n'adoptait pas un concept de base permettant de déterminer honnêtement le degré de sécurité, en se référant à un critère de ruine, défini dans le sens probabiliste et reflétant le comportement physique de l'élément ou de l'ouvrage considéré.

Ce serait une erreur de considérer que cela impliquerait obligatoirement le recours au calcul à l'état limite de ruine, soit le "plastic design", puisque le concept probabiliste s'applique également au calcul en élasticité.

Il suffit pour cela d'introduire des coefficients de pondération, appliqués aux charges et de se référer à un critère de ruine défini avec la même probabilité pour chaque mode de sollicitation. En procédant ainsi, on peut alors envisager un degré de sécurité homogène, indépendant du mode de sollicitation et pouvant être assez correctement chiffré. D'ail leurs, même la méthode actuelle, dite "déterministe", est assortie de probabilisme lorsqu'elle prévoit des contraintes admissibles différentes, suivant les cas de charges.

Mais il est temps de se libérer de ce système hybride, peu scientifique et parfois dangereux. En effet, le calcul pratiqué en appliquant aux contraintes un coefficient minorateur global, — donc le calcul par les contraintes admissibles, — n'est valable que dans les cas particuliers où il y a proportionnalité des charges et des contraintes, par exemple en traction pure, mais dans tous les cas impliquant des phénomènes d'instabilité, on est contraint de recourir à l'artifice des coefficients variables, arbitraires et dépourvus de signification.

D. SFINTESCO 103

Lorsqu'il y a superposition de plusieurs charges donnant lieu à des contraintes de signes contraires, c'est encore pire, et cette méthode est alors carrément dangereuse. En effet, une légère variation de l'une de ces charges peut donner lieu à une majoration démesurée de la contrainte, ou même à un renversement d'effort, que le calcul classique en contraintes admissibles n'annonce pas.

Le fait que d'innombrables ouvrages calculés ainsi se comportent parfaitement, n'est pas un argument. Dans les siècles passés, on en a bien construit d'autres sans les calculer du tout. Fallait-il alors en rester là ?

Une application du concept probabiliste de la sécurité au calcul en élasticité est préconisée dans les Recommandations de la Convention Européenne de la Construction Métallique. Les règles françaises CM 1966 en constituent un exemple pratique. Elles en ont adopté le principe et en ont fait l'application, dans les limites possibles aujourd'hui.

Il convient encore de signaler qu'un examen en commun des principes de sécurité est en cours, par la Convention Européenne de la Construction Métallique et le Comité Européen du Béton. Cet examen a déjà révélé:

- 1) que les principes probabilistes adoptés par les deux organismes dans leurs Recommandations respectives sont identiques, au point que l'on envisage d'en faire un document unique pour tous les matériaux,
- 2) que les modalités d'application de ces principes sont nécessairement différentes, compte tenu des caractéristiques particulières de chaque matériau et des conditions de réalisation des ouvrages respectifs.

En effet, les dispersions relatives aux divers paramètres ne sont pas les mêmes. De plus, certains paramètres importants pour un matériau n'entrent pas en ligne de compte pour l'autre. Il en résulte que les coefficients de pondération doivent prendre des formes et des valeurs différentes si l'on veut obtenir un même degré de sécurité des ouvrages.

# Leere Seite Blank page Page vide