Zeitschrift: IABSE congress report = Rapport du congres AIPC = IVBH

Kongressbericht
Band: 8 (1968)
Artikel: The load collapse for elastic plastic trusses
Autor: Castellano, Giovanni
DOl: https://doi.org/10.5169/seals-8739

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-8739
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

The Load Collapse for Elastic Plastic Trusses
La charge limite pour un treillis élasto-plastique

Traglast elasto-plastischer Fachwerke

GIOVANNI CASTELLANO
Prof. Ing.
Istituto di Scienza delle Costruzioni
Facolta di Architettura — Napoli

Abstract - The collapse load of a truss is investigated taking into
consideration the way the bars actually behave, namely the effects
of the strain hardening and the buckling respectively for the bars
under tension and for those under compression.

During the buckling process the diagram which represents load
versus axial deflection, on account of yelding of mid section,due to
the bending, takes the form of a hiperbola branch (fig.1l) [1] [2] [31
At this stage, the bar, whose characteristic is a negative strain har-
dening - softening - becomes unsteble. If, however, it is within a hy-
perstatic system, its buckling does not necessarily cause the collapse
of the structure. Especially for multi-hyperstatic trusses, the collapse
load may be found to be higher by far than the load generating the
buckling condition of the first bar.

The problem has been put up with the restrictions as described
in the following: The bars are pin hinged bars; the stress-strain
relationship, as indipendent from the temperature and time,follows
Prandtl's model [4] ; the deflections are assumed to be infinitesi-
mal, that is finite but small, just that the geometry of the system
and thereby the internal condition of the stresses are not affected
at all: both localized and global bifurcation phenomena are ruled
out. Cf this structure are discussed the stability conditions in the
clessical meaning,that is for infinitesimal perturbances.

This problem has already been dealt with by other authors [5] 5
[6] [7] . From the stability postulate of Drucker's [8][9] the suf-
ficient conditions for stability and uniqueness of the solution ha-
ve been deduced. In the discussion which follows only the first aspect
of the question has been examined closely: By an original procedure,
the necessary and sufficient stability conditions have been formula-
ted.

The problem has been traced back to analysing the development
to which is subjected the structural yield locus,ehich varies with
the varying loads, under the action of incremental plastic deforma-
tions. Upon the external load reaching its critical value, to the
increment of the plastic deformations corresponds a contraction in_
to the yield locus which make it impossible to balance the original
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load. From the discussion is possible to elaborate a graph which ena-
bles making a stability verification immediately, which can be made,
hoverer, for pratical purposes, in the only case of two variables.

In the general case the problem is transferred into algebraic
form: The parameter which indirectly furnishes the answer of the yield
locus to an increase in the plastic deformations is determined by the
energy irreversibly stored into the system: the elastic constrained
energy and the energy dissipated through the plastic phenomena. If,to
an increment whatever in the plastic deformation, the corresponding
variation in the stored energy is still positive then the equilibrium
is stable; if of no value or negative then at least in one case the
equilibrium is neutral or unstasble. The gquestion is restricted to re-
searching the sign of a quadratic form, associated with the matrix of
rigidities, function of the plastic deformations and constrained thus
by the signs of the latter.

These conditions can be brought to some other form as function
of such parameters as are typical of the stability problems, that is
the work done by the disturbing forces or the total energy of the sy-
stem. It is demonstrable that if the variation occurring in the sto-
red energy is either negative or zero the variation of the total ener_
gy of the resulting work done by the disturbing forces will likewise
be either negative or zero. So we again come to a formulation which,
though less praticable because of the further difficulty encontered
in assessing the free elastic energy, connects directly to a principle
which is as a rule normal within the elastic range or Drucker's postu-
late.

The problem is susceptible of generalizations.At this time tte
preference has been given to focussing the attention on the concepts
rather than going deep into a more complex program.

The behaviour of the bars - The assumption is made that the bars,eithe
in tension or compression, follow Prandtl's model f4] , indifferently.
In fig.1l is shown the curve relative to the rélationship existing
between axial force S, elongation or shrinkage d for any bar in general
The bar behaves elastically according to Hooke's law up to stress Se;
Past this point,plastic deformations teke place, such that the linear
trend of the line is changed. Upon relieving the load the representati
ve point of the stress condition moves along the line parallel to O-A,
& Segment O-C indicates the plastic de-

g F‘_‘B formation €,at B,which at the time the
load 18 relieved remains unaltered;seg
Se A ment C-D represents the elastic defor-

mation §,. If the bar is isolated for
S=0,6=§;1if it is within a hyperstatic
o_cl b system,for S=0,§=§+ Se,where d, indica-
d tes the elastic deformation constrai-
ned whithin the system and recoverably
only through cutting the bar.
Area OABD represents the total
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work performed by the external forces which is necessary to achieve
pattern B. In particular OABC is the graphical representation of as
much amount of energy as is absorbed by the system and is dissipated
through the plastic phenomena;the area CBD is the elastic energy which
can be returned only if the bar it is isolated or part of an isosta-
tic system.

Unlike the currently adopted convention on the signs for the axial
forces S, a different one is being introduced here. The starting axial
force S is assumed to be positive in all cases; increments are either
positive or negative whether or not they are in accord with the starting
force.

1 , - For assigned plastic deformation
ctl T S (fig. 2), SS"are meant to be indicati-

' ve of the llmltlng values within whose
range the axial force can oscillate per_

ﬁg forming elastically.Therefore the yield
K locus shall be as established by the re_
v lation: _
d§ (1)~ 5=5 B,
— - where S, generically,indicates the §* 8~

liniting values according to whether
is correspondingly a traction or compres_

‘kn sion. If the verification yelds a dise-
=, quality, the bar under test is in the
_:S : elastic range, whereas the equality pro_

Fig.?2 ves it is in the plastic range.

Where the bar is in the plastic ran
ge, i.e.if 5 = S the stress-strain relationship is linear, when the
increments are 1nf1n1tes1mal° Curve S(§ ) is substituted whlth its tan
gential line at S, Then by differentiating (1) in relation to § or s

(2) dS‘—%? a$ = wd§ = %% a§ = Tad = as
a limitation to the incremental relationship S-§ is obtained. Owing tc
a 4 increment in the plastic deformation the bar, initially stressed
under S, is now capable of taking a stress 1ncrement at the limit, d4S :

Therefore d S determines the dislocation of the 1e1d locus (fig. 2)
In the eq (2§rw_represents the dif

c:‘ ) ferential rigidity, VW the plastic diffe-
- rential rigidity (fig.3): the following
<> d dée is the correlation of the above rigidi_
' ties to the elastic rigidity We:

w ‘l!

$ restricted in sign by the relationship
|
N
: = condition:

w— -
dé * s the requt 1s ®that where W= 0 s Wis 1li-
H——————{N\ } | » Kxewise>0.The plastic deformation dad is
#ign 48 = sign S,which, for the position
of on the forces signs, is reduced to
A48 (3) a
The interva

N

Ll Y|

%.o
within which rigidi-

Ba. Schlussbericht
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ty % is included is so defined:
- L W £ We

By combining eq. (2) with limitations:
as > 0 ds

ad =0 ds = wed$ (W = We)
the stress-strain incremental relationship is thus obtained. The eq.
(2) covers the (4) and in a more general sense may be intended as re-
lating to a cycle. At first, the incrementzl force dS verifies the
equality with the bar being in the plastic range, subsequently is su-
bjected to a reversal and thus verifies the disequality.

ds = ¥al (-0 < W & We)

The behaviour of the system - As a reference, let it be taken a gene_
ral type of reticular pin-hinged, made up by n bars, times r hypersta_
tic truss and let it be subjected to a lcading pattern F: for an Fo
load let Co be the corresponding in equilibrium and compatible pattern,
typified by k number of bars (K 2 r) in plastic range, & ....&k being
the corresponding elogations.

Let the displacements of the system be assumed as being infini-
tesiual, or finite, but such that they cannot affect the originary geo_
metry of the system and, hence, indirectly, the stressed condition.
This supposes that the strain condition which corresponds to Co can be
regarded as borne by the plastic deformations § , intended as distor-
sions, and by loads Fo, as applied to the elastic structure.

This as a reference Sei indicates the stress exercised by load Fo
into bar "i"; Sij the stress transmitted to bar”i” through distorsion

S} = 1 at “j. Then the resulting stress in bar i is:
(5) Si = Sei + =2 sSij& (i = 1....n)
Eq.(5) is substituted in (1) by transferring to the right hand side
the term relative to the distorsions:
(6) sei< Si + 5 sij &j =
on the assumptign that: " .
_ Si = Si 42Sij O3
The Si,different, whethér tractive or compres.ive, are a generaliza-
tion of the Si referred in (1) and define, within the space of the pla-
stic defcrmations, the yield locus for pattern Co. If stresses Sei ve_
rify the inequality,the point representative of the stress condition
falls inside yield locus. On the contraryyif for some of the bars the
equality has been verified the representative point falls onto the edge
of the yield locus and the structure is in the plastic range.

A variation is assigned to pattern Co by attributing to the bars
in the plastic range a d increwent to the initial plastic deforma-
tions.on the assumption that the bars in the elastic range will stay
such. The resulting C'o pattern is described as “perturbed“pattern. By
differentiating (6) for the d& increments assigned and consistent
with (3) we obtain the stress increments which C'o can absorb:

(7) dSey = W4dS i +Z.< sj4aj = as;

]

i
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Eq.(7) is a generalization of eq.(2). The dislocation of the initial
yield locus §,oonsequegt to the assigned plastic deformations ddj is
just supplied by the dS. If the representative point of a new stress
condition comes to fall iaside of or into the edge of the yield locus,
the equilibrium between the stresses and the strength of the bars is
verified for pattern C! ; if outside, that is if for a certain number

o : =

T bars: gy gse; > 484

the equilibrium is impossible: the plastic deforwations continue their
pursuance to a new pattern CJ which may still verify eq. (7).

Stability of the system - A graphica] method for the verification of
the stability, in which the above indicated concepts ore expounded,is
illustrated the problem being dealt with is limited to the case invol-
ving two placicized bars only. It will not be difficult but rather easy
to extend, conceptually at least, the representation to the more gene-
ralized case.

As a reference let us consider a Cartesian system having as many
axes as are the plasticized bars. Let us mark on the axes plastic de-
formations d& : The origin of the axes thus gefines the pattern Co.As
is conventional for the signs on plastic deformations (3),all C§ pat-
terns are comprehended within the quadrant of the positive dé. Chosing
this as reference frame,we now draw as many straight lines d§i= 0 as
are the bars in the plastic range: the enveloping line defines the boun-
dary of the plasticity field for that part which influences the stabi-
1ity of the system; on the perpendiculars are marked the stresses Sej
and the corresponding increments dSej. Therefore point Co sets also the
initial stress condition in which Sej; = Sj.

Fixed the perturbed pattern C'o, the sides of the yield locus tran-
slate: according to d§i20 it will correspondingly expand or contract:
the new yield locus, so obtained, is defined "perturbed". The equili-
brium in this stage is assuredly verified if the transposition to Cj
is considered as effected by forcing a set of supplemental restraints,
non efficient in C,. Point 8§ moreover establishes the elastic stres-
ses dSej, relative to the reactions dF of the additional restraints con-
stituting the,so called,perturbing forces.

The supplemental restraints are then removed and, hence, 4F—+0:
WVhere dSej +0 the elastic stress condition C} has a tendency to resu-
ming the initial position C,. If Co is found to fell inside the area
of the perturbad yield locus, that is, if:

0 = dgi
eq.(7) is verified: the pattern settles in C'o and the system behaves
elastically again. If, on the contrary, for some of the bars eq. (8)
is verified, that is_

O>d§i
Co comes to fall outside the perturbed field and there are no possibi-
lities for an equilibrium. These bars keep being subjected to the pla-
stic phenomenon with the field paralleley evolving in pursuance of a
new pattern Cg which comprehend Co. More forces are supposed to be in_
terfering ot this stage such that a point-by-point equilibrium is as-
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sured.

For example, in the case illustrated in figura 4, what C'o might
be, the resulting system is in any case that of equilibrium. Being tha
at all times dS7>0,dS» >0, eq.(7) is verified, even where dSe—>0:The
perturbed yield locus shall alwais com-
prehend the originating pattern CO' In
this case the equilibrium of pattern Co
is stable.

A diametrally dpposed case, is that
shown in figura 5. "hatever Cj the resul
is alwais d5;< 0 dSg< 0. Hence by eli-
minating the perturbing forces eq.(8) is
verified: within the two bars the pla-
stic deformations increase. However,wha-
tever the Cg pattern which one can come
to,during the unloading stage, the situa
tion repeats itself again: the plastic
deformatihons have a tendency to become
infinitely great. Parallelely the edge
- - of the yield locus, originally S moves
to S - d4S: for dé—'ao S - aS—»0: the plasticity field for at least one
its sides shrinks gradually up to becoming null. At C, the equilibrium
is therefore unstable.

Figures (6) and (7) report some in-
termediate situations. The first shows a
se of stable equilibrium, the second one
a case of instability.

In fig. 8 is then illustrated a si-
tuation of neutral equilibrium. “hatever
Cy the system is apt to assuming an equi.
librium pattern Cg coincident or not
whith the former. rrom this viewpoint
the system is apparently stable. Cn the
other hand, though, all_patterns C'p fal.
Fig.5 ling on straight line d57 = dSp = O are

also corresponded by dSeq = dSep= 0.All
these patterns and, to the limit, the in
finity one, are then attainable without the aid of a perturbing set-
up for forcing the system, ond hence without any energy dissipation.
Along this directrix the system is see-
mingly worn out, unfit to counteract the
modification of the original pattern Cg,.
The situation as illustrated in fig.7
is ungtable although still presenting
an indifference directrix.

Fven if hardly usable, owing to the
unpratical possibility of exténding it
tc an n dimension system, this graphi-
cal representation helps to clarify the
problem and affords a comparison whith

i
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the analogus elastic problem.

In the elastic range, if the equi_
librium is stable, C'g*C, once elimina-
ted the perturbation. In the elastic-pla-
stic range we find that €'y, apart from
not returning in C, at all, may further-
ly move away from it and reach C",,which
alike C'g, is very close to C,. It fol_
lows that lacks the clear differentia_
tion between a stable and a neutral equi_
librium, as is found in the elastic ran_
ge. The distinguishing point that dif_
ferentiates the latter from the former
lies only in the fact that.,for transla-
ting the system from one pattern to ana_
ther along the indifference directrix,
there is no need of any external work.

Fig.7

The system energy - The stability conditions are algebraically expres_
sed as functions of the energy. As an introduction some hint is the_
refore made about the energy stored in the system and its variations.
In an intermediate stage of the loading process 0-F,, the work
done by forces F in equilibrium with the
pa internal stresses S, under the action
Ceo of a d increment in the dispacements as-
sociated with an increment in the bar
deformazion d 1is: _
(9) 4L =Zqu=§Sid&i =Z(Sei -%Sij (SJ)

0
deii+d6?-i+d£ i) =2Sej aSe; +2(Z Sij
§j+51) a8y =ZSej d ej+Zse; af 4
i the assumption having been made that in
this stage too, K bars are plastici-
zed.

The total work L, spent by the
external forces for the developtment
of pattern 005131

(10) L =de-q_= 22Se; Sej+ 2(s51 gj)gié_[sidgi: Eg + Ey + Ep

The right hand side indicating the energy absorbed by the structure.

In detail the first term, Fg, signifies the free elastic energy, in other
words that quantity of energy which totally returns to the external
forces at the unloading stage. The second term, Ey, the elastic ener
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gy constrained within the system by the plastic deformations which can
be released to the outside only by making cuts in such a way that the
structure becomes isostatic. The third term, Fp, the irreversible ener_
gy absorbed by the sysitem, used to produce those alterations in the in-
ternal structure of the material which give origin to the plastic di-
slocations.

For translating the system from pattern Cop to C,' the work, dzL,
of the second order, done by the perturbing forces, taking into account
the linearity o{ the stressisﬁfain relation hip,.is _ _ -

(11) dpL = 5-2 dFdm = a=iE dieidéei + ?%(%sijdsj + wiasi) ds 4

=ansei s ¢y + z_K‘_dSei 481 = dpEq+d o Ev+dpEp = dpFa+ dp E

d2E being the global constrained energy of the system both elastic and
plastic.

The constrained energy doE is expressed by a homogeneous quadra-
tic polynomial whose varkables, howewver, are conditioned, in sign, by
eq (3). For that part relative to the hiperquadrant 0O this polynomisal
coincides with the quadrantic form, associated to the matrix of fhe ri_
gidities (7) and may result positive, null or negative: the last cir-
cumstance being possible in the sole case that, at least one bar be cla.
racterized by softening. The E3j and Ey polinomials are instead always
positive.

Generalizing the notion of the total energy of the system 10 by
adding, in addition to the positional energy of the external agencies,
and the free elastic energy, also the constrained energy, eq.(ll),after
transferring to the right hand side the external work, defines the va-
riation prime, dEt, of the total energy, stationary for the Cpequili-
brium pattern. Variation second doEt is furnished instead by the right
hand side of eq.(11).

Stability conditions - Let us suppose that the quadratic form dzﬁ; de-
vised for pattern Co, is always positive for all the d& consistent
with (3), but not simultaneonaly nought, that is:_ _

(12) aE = 2.d5; 46 =2(ZSij d35 + Wi aSi) a§ 1>0

In particu arp let for C§ De:
ds; E—gl (dgE)JCE,), 0
Eq (7) verified at the beginning in respect to the interference of the
perturbing forces still rests verified for dSei—+0: thpough the unloa-
ding stage the system behaves in an elastic way. In the space of the
d& the pattern settles in Cp.
Its aupposed,dinstead, that for C}

dsS; =[-d—3_i (d2E_)]C|>%O

In this case, although as a whole eq. (12) is verified, same of
the addenda result as being negative. Whith the eliminzation of the
perturbing forces for some of the bars eq.(8) is verified. For such

bars the plastic phenomenon then progresses spontaneously a@nd the
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system moves away passing from C', to C",. The second principle of the
thermodynamics, as formulated by Lewis, Lll] affirms that any sponta-
neaus phenomenon is corresponded by a decrease in the system energy
which is transformed into the work of the balancing forces, that 1is ar,
in the present case. Thus, if with d>E. we designate the energy corre-
sponding to travel Co-C'y,, and dgFC: that relative to Co-C'0-C"o, the
result will always yield:

(13) doEu > ALy

But, for the supposition made in eq. (12), the verification of this re-
lationship can only be ascertained where C"o within the space of the

& - comes to falling around C', and, hence Cy. The pattern C%, defi-
nes a relative extreme (minimum) of function dgf, conditioned by eq (3)

and therefore:

ds; =["?— dE]_E?_O
Hence at C§, also for dSei—~0, eq (7) is verified. So eq (12) represents

a condition sufficient for Co being a pattern of stable equilibriun.
As a substitute of (12) let us assume:
(12" dE = 0

In particular then let,for C'o,be doE = O: In the other case we come
to fall again within the preceding situation.
Allowing for eq.(12') the risult will alvays yielad:

d5q = [%31_ ( doF )JJ:‘O
Thus C'qg is a2 pattern of equilibrium with no interference of pertur_
bing forces and as such are all those other patterns which fall into
directrix Co-C'o which is justly typified by d2§=0. The system moves
along this direction with no external work being done. Then the follo-
wing is particularly to be verified:
d 'Si >0 for d_6i =0
a3y =0 for 453 > 0
Pattern Co, which is corresponded by (12'), is then a pattern of neu-
tral equilibrium.
For (12) let us assume as substitute:
(12") 4> E 2 0
In_particular is assumed as the assigned pattern C) that for which
d2E<O. In_this_.ease for some of the bars:
dsi:%'?—i (d2E)JC:O
The perturbing forces eliminated, the plastic phenomenom then progress:
the energy relative to a successive pattern Cy is related to the ener-
gy at C4 by eq.(13). In C3, and so for the successive patterns, is thus
repeated the like situation as is found in C). The plastic phenomenon
keeps continuing indefinitely with the mystem never reaching a pattern
of equilibrium with load Fo. Therefore if the pattern Co is associa-
ted to eq.(12") the equilibrium is unstable.
Thé considerations on the eq.(12'), (12") follows that eq.(12) re_

presents also a condition necessary for the stability of the system.
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Drucker's second stability postulate LBJ L9] , @s applied in the
"small", fully confirms this result. In order that the system is sta-
ble the closed cycle work accomplished by the perturbing forces,applied
at first and removed afterward, is to be positive. As this cycle termi-
nates_this work is found again under the form of stored energy: thus
if d2F >0 the equilibrium is stable. On the contrary, if dpE<O the re-
sult is that the cycle cannot be closed, that is the equilibrium is not
verifiable without the introduction of an equilibrating system dF:then
the equilibrium is unstable.

From the above it can be easy to deduce that, where the bars behav
in an ideally plastic way (W=C), unjer the collapse load the equilibriu
is neutral. True, in general doE 20 (doEp = 0), particularly it nulli-
fies for that d& set which is corrisponded by the collapse uechanism.,
If the bars are instead strain hardened (W>0), d>E >0 as dpEp>0: In
this case the equilibrium 48 stable.

The stability according to Drucher's postulate - The first postulate

of Drucher's gtates that a system is stable, in the "small",if the work
accomplished by whatever forces dF yields always a positive result. If
these forces are supposed as acting in a proportional way,the work ac_
complished by forces 4F is coincident with the energy stored by the sy-
stem, (11),that is the total energy variation. In the following is the
demonstration that this principle and the one expounded in the prece-
ding paragraph match perfectly at least as far as concerns the speci-
fic case under consideration. It is demonstrated particulary that if
d2E >0 or d,F=0, parallely,always does exist at least one perturbing
pattern 4F for which d2Et >0 or dpEt = O.

Let us assume that d2E >0 and as dF a system of forces proportio_
nate to load Fo acting in Co, characterized, thus, by a proporzionali-
ty factor dA, infinitesimal. Since the system results being unstable
for a given number of bars dSj< 0. In order that C'p be an equilibrium
pattern, eq.(7) must be verified and the result dSej <O must thus be
yielded. Since, for convention, stresses Sejy are positive, factor g,
must be negative, or:

dASey = - dSey
The perturbing rattern 4F must then result opposite to that Fo. In
these conditions, at all times, eq.(7) is verified, even if plastic
deformations are absent, in which case dSej O. Among the C§{ solutions
which verify eq.(7) there exists at least one, C4 which verifies also
eq.(4) in its generalized form, or:

(14) - ¢Sey = d§y ds i >0

- dSej <« dSi dd3 =0 _ _ .
This solution defines one extreme of function dg E [12] LIBJ L14] con-
ditioned by eq. {7) and in particular for the assumption adopted on
the sign,(12"), it defines a maximum. The work accomplished by fcrces
dF, in moving the system from pattern Co to that C'p, is then supplied
by €q.(11) agress with eq.(9) multiplied by the 5 dA negative factor.
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Since is always: dL >0
- 3 dA 4L = dL< O

Obviously, if do L<O0, such is also the right hand side of eq. (11)
that is the variation d,E{ of the total energy. This implies that in
Co if (12") is verified, Ft definies a maximum and there exists, at
least, one perturbed pattern C'y, for which d»L <O.

Cn the contrary if doE = O, for the patterns C'y falling on the
indifference directrix:

dSey x4dF = O
then: dF¥F =
doEt

If finally:

doE >0
since dpFy> 0;also d2FE4>0. In Co the function Et{ defines a minimum.

In the following a very simple example has been evolved. The stru_
cture is that as shown in fig.9. In figg.9, 9-a, 9-b, 9-c the graph
shows plotted, in the upper part, the Ft force versus the slope §,at
C, for the beam, whose behaviour is suprosed to bé infinitely elastic;
in the lower part of the same graph for the stanchion subjected to a
buckling at A, assuming three different values for rigidity Wa. Star_
ting from pattern Co, to ®hich corresponds lcad Fo = Fy + Fg, an incre-
ment d& 1s attributed to the plastic deformation and pattern C'oy is
reached. Addenda d» E;, d2Ey, dng, all coming within the energy ba-
lance, hold as follows.

N oun

0

F dpEe = 2 (Wg + Wi)d& e = CBE area
l d2Fy = & (W adeal = ACD area
FAY C Pas 1 -— 7 2
doEp = % Wy ad = ABD area
Fig.9

7

In particular, for.chart in fig.(9-a):

A é
Fig.9-a ol
e
F, s
'l -
*: doF = ACD-AED = ACB >0
§ W) dpEg= ACB+CBE = ABE > 0
! 'dzﬂ The equilibrium is stable.
d&ri'_,”//
e :?“] & ?i_TE
(Jd' _.O— ﬁ = Cj—
t‘&f"'Wa B, IWJ :
v A d
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For chart in fig.(9-b):
A

i Fig.9-b doE = ACD-ABD = O
t
g £ Gofy= O
. z o The equilibrium is neuter .
J+ 4ogs, d5
. czB:zE
b B -
d¢& ;
\ | A D

For chart in fig. (9-c¢)

doFE = ACD-ABD = - ABC K O
dpEy= ABC-CBE = « ABE < 0

v

The ¢quilibrium is unstable,

Conclusions
The stability analyis of an olonomous system, whdse components are
stressed axially and are typified by positive and negative rigidities
is led back to the study of function do E, that is the quadratic form
associated to the matrix of the differential rigidities within the hy-
perquadrant of the positive dd . If, within this boundary, dpE >0 then
the equilibrium is stable: on the contrary it is neutral or unstable.

By the avail of the matrices theory (14] some conclusions cdn be
drawn. If the cuadratic form,associated to the matrix of the rigidi-
ties,is definite positive, such it will be also in the hyperquadrant
d5>0: therefore the result is do E >0. Hence the equilibrium is sta_
ble. Instead if the quadratic form is definite negative, in like man_
ner, d2E<iO: the equilibrium is then unstable. The same holds true if
the quadratic form is semi-definite negative: the range of the matrix
can never be less than one, and thus the indifference direction,at the
linitycan only occupy a subspace of the positive hyperquadrant, the
quadratic form in the complementary subspace remaining negative.

More complicated the question presents itself where the quadra_
tic_form is semidefinite positive or indefinite: In the first case
dp E>0 or d, E=0, in the second case dpE 20 or the intermediate
cases. The research of an algorism for the solution of this problem
will be the subyect of a forthcoming information.
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SUMMARY

The stability analysis of an olonomous system, whose com-
ponents are stressed axially and are typified by positive and
negative rigidities is led back to the matrix of function d. E,
that is the quadratic form associated to the matrix of the s
differential rigidities within the hyperquadrant of the posi-
tive a6 . If, within this boundary, d,E >0 then the equilibrium
is stable: on the contrary it is neu%ral or unstable.

RESUME

L'analyse de la stabilité d'un treillis, dont les barres ne
subissent que des efforts axiaux, est déduite & 1'étude de la
fonction dy E. 831 dp E>O le systéme est stable, sinon, il est
neutre ou instable. Avec l'aide de la théorie des matrices [14]
on peut tirer des conclusions sur la forme guadratique associée
4 la matrice. Le probléme est plus ou moins simple, selon gque
cette forme quadratique est définie positive ou négative, ou
semi-définie négative, ou alors si elle est semi-définie posi-
tive ou indéfinite. Ces derniers cas seront traités dans une in-
formation ultérieure.

ZUSAMMENFASSUNG

In diesem Beitrag wird die Stabilit&dt unter Berlicksichtigung
der Traglast an einem Fachwerk, deren Stdbe achsialer Krafte un-
terworfen sind, untersucht und mit Hilfe der Matrizenrechnung die
Fdlle des stabilen, labilen oder instabilen Gleichgewichts beschrie-
ben.
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