

Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band: 8 (1968)

Artikel: The load collapse for elastic plastic trusses

Autor: Castellano, Giovanni

DOI: <https://doi.org/10.5169/seals-8739>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

The Load Collapse for Elastic Plastic Trusses

La charge limite pour un treillis élasto-plastique

Traglast elasto-plastischer Fachwerke

GIOVANNI CASTELLANO

Prof. Ing.

Istituto di Scienza delle Costruzioni
Facoltà di Architettura — Napoli

Abstract — The collapse load of a truss is investigated taking into consideration the way the bars actually behave, namely the effects of the strain hardening and the buckling respectively for the bars under tension and for those under compression.

During the buckling process the diagram which represents load versus axial deflection, on account of yielding of mid section, due to the bending, takes the form of a hiperbola branch (fig.1) [1] [2] [3]. At this stage, the bar, whose characteristic is a negative strain hardening — softening — becomes unstable. If, however, it is within a hyperstatic system, its buckling does not necessarily cause the collapse of the structure. Especially for multi-hyperstatic trusses, the collapse load may be found to be higher by far than the load generating the buckling condition of the first bar.

The problem has been put up with the restrictions as described in the following: The bars are pin hinged bars; the stress-strain relationship, as indipendent from the temperature and time, follows Prandtl's model [4]; the deflections are assumed to be infinitesimal, that is finite but small, just that the geometry of the system and thereby the internal condition of the stresses are not affected at all; both localized and global bifurcation phenomena are ruled out. Of this structure are discussed the stability conditions in the classical meaning, that is for infinitesimal perturbances.

This problem has already been dealt with by other authors [5], [6] [7]. From the stability postulate of Drucker's [8] [9] the sufficient conditions for stability and uniqueness of the solution have been deduced. In the discussion which follows only the first aspect of the question has been examined closely: By an original procedure, the necessary and sufficient stability conditions have been formulated.

The problem has been traced back to analysing the development to which is subjected the structural yield locus, which varies with the varying loads, under the action of incremental plastic deformations. Upon the external load reaching its critical value, to the increment of the plastic deformations corresponds a contraction into the yield locus which make it impossible to balance the original

load. From the discussion is possible to elaborate a graph which enables making a stability verification immediately, which can be made, however, for practical purposes, in the only case of two variables.

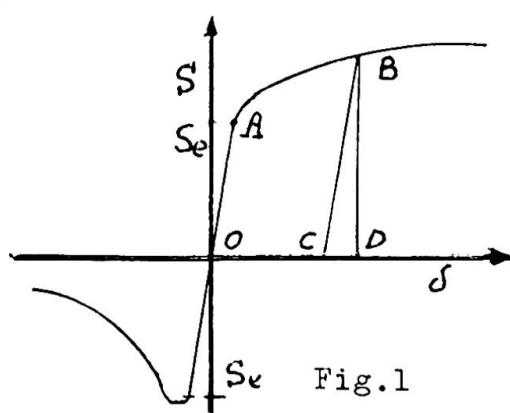
In the general case the problem is transferred into algebraic form: The parameter which indirectly furnishes the answer of the yield locus to an increase in the plastic deformations is determined by the energy irreversibly stored into the system: the elastic constrained energy and the energy dissipated through the plastic phenomena. If, to an increment whatever in the plastic deformation, the corresponding variation in the stored energy is still positive then the equilibrium is stable; if of no value or negative then at least in one case the equilibrium is neutral or unstable. The question is restricted to researching the sign of a quadratic form, associated with the matrix of rigidities, function of the plastic deformations and constrained thus by the signs of the latter.

These conditions can be brought to some other form as function of such parameters as are typical of the stability problems, that is the work done by the disturbing forces or the total energy of the system. It is demonstrable that if the variation occurring in the stored energy is either negative or zero the variation of the total energy of the resulting work done by the disturbing forces will likewise be either negative or zero. So we again come to a formulation which, though less practicable because of the further difficulty encountered in assessing the free elastic energy, connects directly to a principle which is as a rule normal within the elastic range or Drucker's postulate.

The problem is susceptible of generalizations. At this time the preference has been given to focussing the attention on the concepts rather than going deep into a more complex program.

The behaviour of the bars - The assumption is made that the bars, either in tension or compression, follow Prandtl's model [4], indifferently.

In fig.1 is shown the curve relative to the relationship existing between axial force S , elongation or shrinkage δ for any bar in general. The bar behaves elastically according to Hooke's law up to stress S_e ; Past this point, plastic deformations take place, such that the linear trend of the line is changed. Upon relieving the load the representative point of the stress condition moves along the line parallel to O-A.



Segment O-C indicates the plastic deformation δ , at B, which at the time the load is relieved remains unaltered; segment C-D represents the elastic deformation δ_e . If the bar is isolated for $S=0, \delta=\delta$; if it is within a hyperstatic system, for $S=0, \delta=\delta+\delta_e$, where δ_e indicates the elastic deformation constrained within the system and recoverably only through cutting the bar.

Area OABD represents the total

work performed by the external forces which is necessary to achieve pattern B. In particular OABC is the graphical representation of as much amount of energy as is absorbed by the system and is dissipated through the plastic phenomena; the area CBD is the elastic energy which can be returned only if the bar is isolated or part of an isostatic system.

Unlike the currently adopted convention on the signs for the axial forces S , a different one is being introduced here. The starting axial force S is assumed to be positive in all cases; increments are either positive or negative whether or not they are in accord with the starting force.

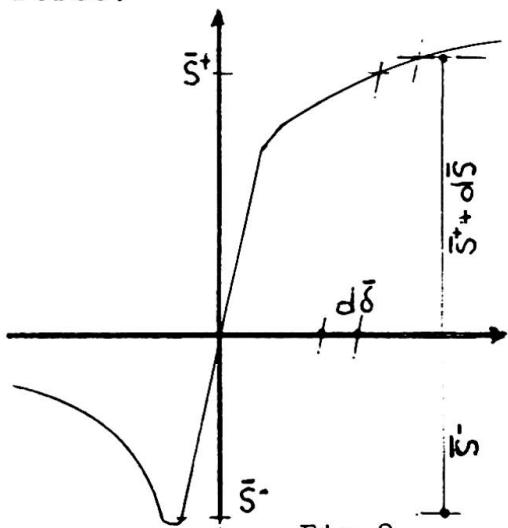


Fig. 2

For assigned plastic deformation δ (fig. 2), \bar{S} are meant to be indicative of the limiting values within whose range the axial force can oscillate performing elastically. Therefore the yield locus shall be as established by the relation:

$$(1) \quad S \leq \bar{S}$$

where \bar{S} , generically, indicates the \bar{S}^+ , \bar{S}^- limiting values according to whether is correspondingly a traction or compression. If the verification yields a disequality, the bar under test is in the elastic range, whereas the equality proves it is in the plastic range.

Where the bar is in the plastic range, i.e. if $S = \bar{S}$, the stress-strain relationship is linear, when the increments are infinitesimal: Curve $S(\delta)$ is substituted with its tangent line at \bar{S} . Then by differentiating (1) in relation to δ or S :

$$(2) \quad dS \leq \frac{dS}{d\delta} d\delta = W d\delta = \frac{dS}{d\delta} d\delta = \bar{W} d\delta = d\bar{S}$$

a limitation to the incremental relationship $\bar{S} - S$ is obtained. Owing to a $d\delta$ increment in the plastic deformation the bar, initially stressed under \bar{S} , is now capable of taking a stress increment, at the limit, $d\bar{S}$: Therefore $d\bar{S}$ determines the dislocation of the yield locus (fig. 2).

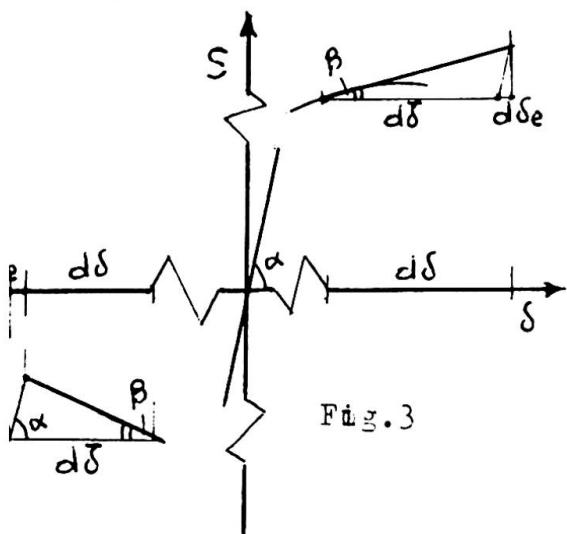


Fig. 3

In the eq (2) W represents the differential rigidity, \bar{W} the plastic differential rigidity (fig. 3): the following is the correlation of the above rigidities to the elastic rigidity W_e :

$$W = \frac{W_e}{W - W_e}$$

the result is that where $W \geq 0$, \bar{W} is likewise ≥ 0 . The plastic deformation $d\delta$ is restricted in sign by the relationship sign $d\delta = \text{sign } \bar{S}$, which, for the position of on the forces signs, is reduced to condition:

$$(3) \quad d\bar{S} \geq 0$$

The interval within which rigidifi-

ty W is included is so defined:

$$-\infty < W < W_e$$

By combining eq. (2) with limitations:

$$d\delta > 0 \quad dS = dS = Wd\delta \quad (-\infty < W < W_e)$$

$$d\delta = 0 \quad dS = W_e d\delta \quad (W = W_e)$$

the stress-strain incremental relationship is thus obtained. The eq. (2) covers the (4) and in a more general sense may be intended as relating to a cycle. At first, the incremental force dS verifies the equality with the bar being in the plastic range, subsequently is subjected to a reversal and thus verifies the disequality.

The behaviour of the system - As a reference, let it be taken a general type of reticular pin-hinged, made up by n bars, times r hyperstatic truss and let it be subjected to a loading pattern F : for an F_o load let C_o be the corresponding in equilibrium and compatible pattern, typified by k number of bars ($K \geq r$) in plastic range, $\delta_1, \dots, \delta_k$ being the corresponding elongations.

Let the displacements of the system be assumed as being infinitesimal, or finite, but such that they cannot affect the originary geometry of the system and, hence, indirectly, the stressed condition. This supposes that the strain condition which corresponds to C_o can be regarded as borne by the plastic deformations δ , intended as distortions, and by loads F_o , as applied to the elastic structure.

This as a reference S_{ei} indicates the stress exercised by load F_o into bar "i"; S_{ij} the stress transmitted to bar "i" through distortion

$\delta_j = 1$ at "j". Then the resulting stress in bar "i" is:

$$(5) \bar{S}_i = S_{ei} + \sum S_{ij} \delta_j \quad (i = 1 \dots n)$$

Eq.(5) is substituted in (1) by transferring to the right hand side the term relative to the distortions:

$$(6) S_{ei} \leq \bar{S}_i + \sum_k S_{ij} \bar{\delta}_j = \bar{\bar{S}}_i$$

on the assumption that:

$$\bar{\bar{S}}_i = \bar{S}_i + \sum S_{ij} \bar{\delta}_j$$

The $\bar{\bar{S}}_i$, different, whether tractive or compressive, are a generalization of the \bar{S}_i referred in (1) and define, within the space of the plastic deformations, the yield locus for pattern C_o . If stresses S_{ei} verify the inequality, the point representative of the stress condition falls inside yield locus. On the contrary, if for some of the bars the equality has been verified the representative point falls onto the edge of the yield locus and the structure is in the plastic range.

A variation is assigned to pattern C_o by attributing to the bars in the plastic range a $d\delta$ increment to the initial plastic deformations. on the assumption that the bars in the elastic range will stay such. The resulting C'_o pattern is described as "perturbed" pattern. By differentiating (6) for the $d\delta$ increments assigned and consistent with (3) we obtain the stress increments which C'_o can absorb:

$$(7) dS_{ei} \leq \bar{S}_i d\delta_i + \sum_k S_{ij} d\delta_j = d\bar{\bar{S}}_i$$

Eq.(7) is a generalization of eq.(2). The dislocation of the initial yield locus \bar{S} , consequent to the assigned plastic deformations $d\delta_j$ is just supplied by the $d\bar{S}$. If the representative point of a new stress condition comes to fall inside of or into the edge of the yield locus, the equilibrium between the stresses and the strength of the bars is verified for pattern C'_0 ; if outside, that is if for a certain number of bars:

$$(8) dSe_i > \bar{dS}_i$$

the equilibrium is impossible: the plastic deformations continue their pursuance to a new pattern C''_0 which may still verify eq.(7).

Stability of the system - A graphical method for the verification of the stability, in which the above indicated concepts are expounded, is illustrated the problem being dealt with is limited to the case involving two plasticized bars only. It will not be difficult but rather easy to extend, conceptually at least, the representation to the more generalized case.

As a reference let us consider a Cartesian system having as many axes as are the plasticized bars. Let us mark on the axes plastic deformations $d\delta$: The origin of the axes thus defines the pattern C_0 . As is conventional for the signs on plastic deformations (3), all C'_0 patterns are comprehended within the quadrant of the positive $d\delta$. Choosing this as reference frame, we now draw as many straight lines $d\bar{S}_i = 0$ as are the bars in the plastic range: the enveloping line defines the boundary of the plasticity field for that part which influences the stability of the system; on the perpendiculars are marked the stresses Se_i and the corresponding increments dSe_i . Therefore point C_0 sets also the initial stress condition in which $Se_i = \bar{S}_i$.

Fixed the perturbed pattern C'_0 , the sides of the yield locus translate: according to $d\bar{S}_i \geq 0$ it will correspondingly expand or contract: the new yield locus, so obtained, is defined "perturbed". The equilibrium in this stage is assuredly verified if the transposition to C'_0 is considered as effected by forcing a set of supplemental restraints, non efficient in C_0 . Point C'_0 moreover establishes the elastic stresses dSe_i , relative to the reactions dF of the additional restraints constituting the, so called, perturbing forces.

The supplemental restraints are then removed and, hence, $dF \rightarrow 0$: Where $dSe_i \rightarrow 0$ the elastic stress condition C'_0 has a tendency to resuming the initial position C_0 . If C_0 is found to fall inside the area of the perturbed yield locus, that is, if:

$$0 \leq d\bar{S}_i$$

eq.(7) is verified: the pattern settles in C'_0 and the system behaves elastically again. If, on the contrary, for some of the bars eq. (8) is verified, that is

$$0 > d\bar{S}_i$$

C_0 comes to fall outside the perturbed field and there are no possibilities for an equilibrium. These bars keep being subjected to the plastic phenomenon with the field parallely evolving in pursuance of a new pattern C''_0 which comprehend C_0 . More forces are supposed to be interfering at this stage such that a point-by-point equilibrium is as-

sured.

For example, in the case illustrated in figura 4, what C'_o might be, the resulting system is in any case that of equilibrium. Being that at all times $d\bar{s}_1 > 0$, $d\bar{s}_2 > 0$, eq.(7) is verified, even where $dSe \rightarrow 0$: The perturbed yield locus shall always comprehend the originating pattern C_o . In this case the equilibrium of pattern C_o is stable.

A diametrically opposed case, is that shown in figura 5. Whatever C'_o the result is always $d\bar{s}_1 < 0$, $d\bar{s}_2 < 0$. Hence by eliminating the perturbing forces eq.(8) is verified: within the two bars the plastic deformations increase. However, whatever the C''_o pattern which one can come to, during the unloading stage, the situation repeats itself again: the plastic deformations have a tendency to become infinitely great. Parallelly the edge of the yield locus, originally \bar{S} , moves to $\bar{S} - d\bar{S}$: for $d\bar{\delta} \rightarrow \infty$, $\bar{S} - d\bar{S} \rightarrow 0$: the plasticity field for at least one its sides shrinks gradually up to becoming null. At C_o the equilibrium is therefore unstable.

Figures (6) and (7) report some intermediate situations. The first shows a case of stable equilibrium, the second one a case of instability.

In fig. 8 is then illustrated a situation of neutral equilibrium. Whatever C'_o the system is apt to assuming an equilibrium pattern C''_o coincident or not with the former. From this viewpoint the system is apparently stable. On the other hand, though, all patterns C'_o falling on straight line $d\bar{s}_1 = d\bar{s}_2 = 0$ are also corresponded by $dSe_1 = dSe_2 = 0$. All these patterns and, to the limit, the infinity one, are then attainable without the aid of a perturbing set-up for forcing the system, and hence without any energy dissipation.

Along this directrix the system is seemingly worn out, unfit to counteract the modification of the original pattern C_o . The situation as illustrated in fig. 7 is unstable although still presenting an indifference directrix.

Even if hardly usable, owing to the unpractical possibility of extending it to an n dimension system, this graphical representation helps to clarify the problem and affords a comparison with

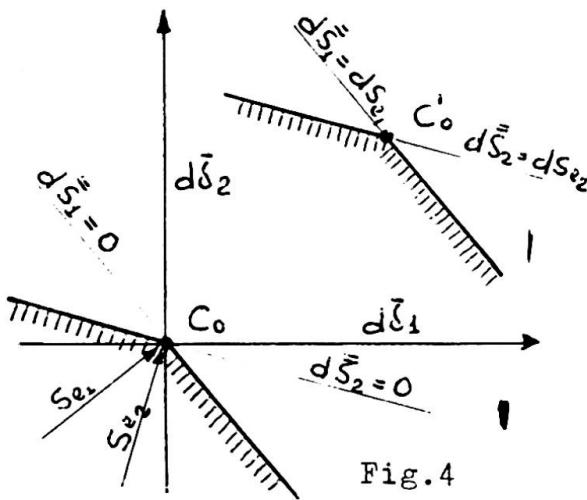


Fig.4

to $\bar{S} - d\bar{S}$: for $d\bar{\delta} \rightarrow \infty$, $\bar{S} - d\bar{S} \rightarrow 0$: the plasticity field for at least one its sides shrinks gradually up to becoming null. At C_o the equilibrium is therefore unstable.

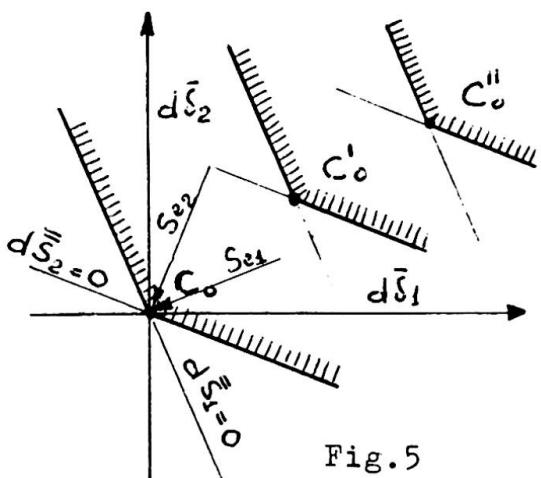


Fig.5

infinity one, are then attainable without the aid of a perturbing set-up for forcing the system, and hence without any energy dissipation.

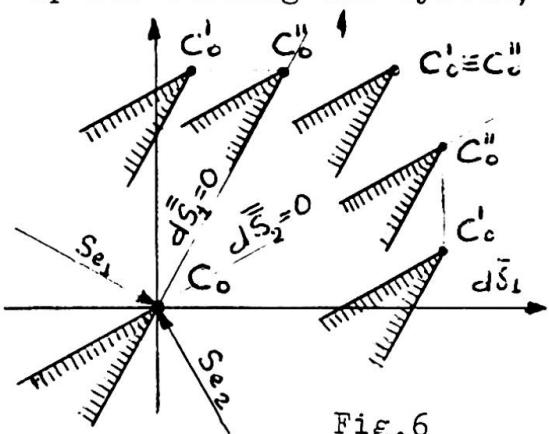


Fig.6

the analogous elastic problem.

In the elastic range, if the equilibrium is stable, $C'_0 \rightarrow C_0$ once eliminated the perturbation. In the elastic-plastic range we find that C'_0 , apart from not returning in C_0 at all, may further move away from it and reach C''_0 , which alike C'_0 , is very close to C_0 . It follows that lacks the clear differentiation between a stable and a neutral equilibrium, as is found in the elastic range. The distinguishing point that differentiates the latter from the former lies only in the fact that, for translating the system from one pattern to another along the indifference directrix, there is no need of any external work.

Fig. 7

The system energy - The stability conditions are algebraically expressed as functions of the energy. As an introduction some hint is therefore made about the energy stored in the system and its variations.

In an intermediate stage of the loading process $O-F_0$, the work done by forces F in equilibrium with the internal stresses S , under the action of a d increment in the displacements associated with an increment in the bar deformation d is:

$$(9) \quad dL = \sum F_i d\eta_i = \sum S_{ei} d\delta_i = \sum (S_{ei} - \sum_{j \neq i} S_{ij} \bar{\delta}_j) (d\delta e_i + d\bar{\delta} e_i + d\bar{\delta}_i) = \sum S_{ei} d\delta e_i + \sum_{j \neq i} (\sum_{i \neq j} S_{ij} \bar{\delta}_j + \bar{S}_i) d\bar{\delta}_i = \sum S_{ei} d\delta e_i + \sum_{j \neq i} S_{ej} d\bar{\delta}_i$$

the assumption having been made that in this stage too, K bars are plasticized.

The total work L , spent by the external forces for the development of pattern C_0 is:

$$(10) \quad L = \int F_i d\eta_i = \frac{1}{2} \sum_{i=1}^n S_{ei} \delta e_i + \sum_{j=1}^K (\sum_{i \neq j} S_{ij} \bar{\delta}_j) \bar{\delta}_i + \sum_{i=1}^n S_{ei} d\bar{\delta}_i = E_e + E_v + E_p$$

The right hand side indicating the energy absorbed by the structure. In detail the first term, E_e , signifies the free elastic energy, in other words that quantity of energy which totally returns to the external forces at the unloading stage. The second term, E_v , the elastic ener-

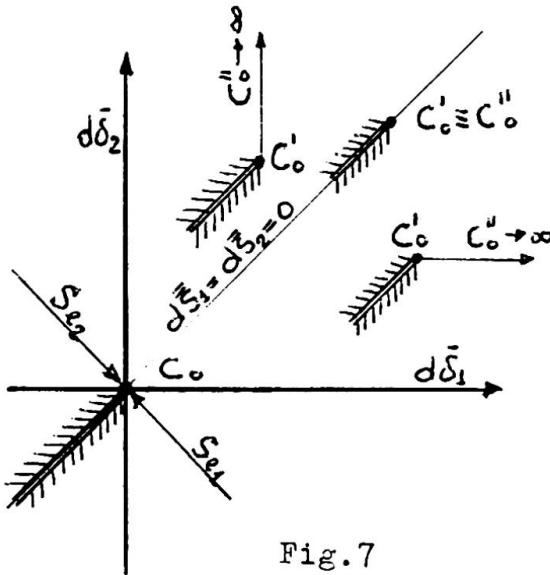
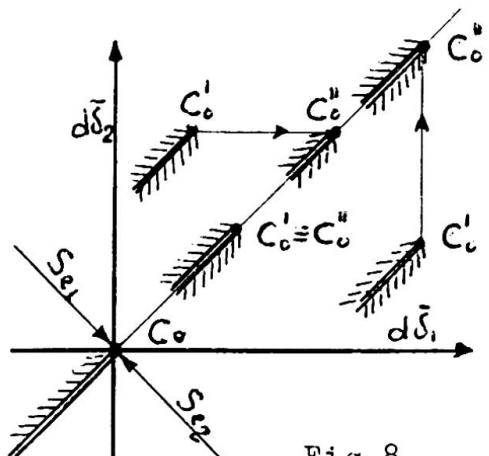


Fig. 8

gy constrained within the system by the plastic deformations which can be released to the outside only by making cuts in such a way that the structure becomes isostatic. The third term, E_p , the irreversible energy absorbed by the system, used to produce those alterations in the internal structure of the material which give origin to the plastic dislocations.

For translating the system from pattern C_0 to C_0' the work, d_2L , of the second order, done by the perturbing forces, taking into account the linearity of the stress-strain relationship, is

$$(11) \quad d_2L = \frac{1}{2} \sum dF d\gamma = \frac{1}{2} \sum_n dSe_i d\delta e_i + \frac{1}{2} \sum_k (\sum_{ij} S_{ij} d\bar{\delta}_j + \bar{W}_i d\bar{\delta}_i) d\bar{\delta}_i \\ = \sum_n dSe_i d\delta e_i + \sum_k dSe_i d\bar{\delta}_i = d_2E_1 + d_2E_v + d_2E_p = d_2E_1 + d_2\bar{E}$$

$d_2\bar{E}$ being the global constrained energy of the system both elastic and plastic.

The constrained energy d_2E is expressed by a homogeneous quadratic polynomial whose variables, however, are conditioned, in sign, by eq (3). For that part relative to the hiperquadrant 0 this polynomial coincides with the quadratic form, associated to the matrix of the rigidities (7) and may result positive, null or negative: the last circumstance being possible in the sole case that, at least one bar be characterized by softening. The E_1 and E_v polynomials are instead always positive.

Generalizing the notion of the total energy of the system 10 by adding, in addition to the positional energy of the external agencies, and the free elastic energy, also the constrained energy, eq.(11), after transferring to the right hand side the external work, defines the variation prime, dE_t , of the total energy, stationary for the C_0 equilibrium pattern. Variation second d_2E_t is furnished instead by the right hand side of eq.(11).

Stability conditions - Let us suppose that the quadratic form $d_2\bar{E}$, devised for pattern C_0 , is always positive for all the $d\bar{\delta}$ consistent with (3), but not simultaneously nought, that is:

$$(12) \quad d_2\bar{E} = \sum d\bar{\delta}_i d\bar{\delta}_i = \sum (\sum_{ij} S_{ij} d\bar{\delta}_j + \bar{W}_i d\bar{\delta}_i) d\bar{\delta}_i > 0$$

In particular let for C_0' be:

$$dS_i = \left[\frac{d}{d\bar{\delta}_i} (d_2E) \right]_{C_0'} > 0$$

Eq (7) verified at the beginning in respect to the interference of the perturbing forces still rests verified for $dSe_i \rightarrow 0$: through the unloading stage the system behaves in an elastic way. In the space of the $d\bar{\delta}$ the pattern settles in C_0' .

Its supposed, instead, that for C_0' :

$$dS_i = \left[\frac{d}{d\bar{\delta}_i} (d_2E) \right]_{C_0'} \geq 0$$

In this case, although as a whole eq. (12) is verified, some of the addenda result as being negative. With the elimination of the perturbing forces for some of the bars eq.(8) is verified. For such bars the plastic phenomenon then progresses spontaneously and the

system moves away passing from C'_0 to C''_0 . The second principle of the thermodynamics, as formulated by Lewis, [11] affirms that any spontaneous phenomenon is corresponded by a decrease in the system energy which is transformed into the work of the balancing forces, that is dF , in the present case. Thus, if with $d_2\bar{E}_c$ we designate the energy corresponding to travel $C_0-C'_0$, and $d_2\bar{E}_{c''}$ that relative to $C_0-C''_0$, the result will always yield:

$$(13) \quad d_2E_{c'} > d_2\bar{E}_{c''}$$

But, for the supposition made in eq. (12), the verification of this relationship can only be ascertained where C''_0 within the space of the \bar{S} - comes to falling around C'_0 and, hence C_0 . The pattern C''_0 defines a relative extreme (minimum) of function $d_2\bar{E}$, conditioned by eq (3) and therefore:

$$d\bar{S}_i = \left[\frac{d}{d\bar{S}_i} (d_2\bar{E}) \right]_{C''_0} \geq 0$$

Hence at C''_0 , also for $dS_i \rightarrow 0$, eq (7) is verified. So eq (12) represents a condition sufficient for C_0 being a pattern of stable equilibrium.

As a substitute of (12) let us assume:

$$(12') \quad d_2\bar{E} \geq 0$$

In particular then let, for C'_0 , be $d_2\bar{E} = 0$: In the other case we come to fall again within the preceding situation.

Allowing for eq.(12') the result will always yield:

$$d\bar{S}_i = \left[\frac{d}{d\bar{S}_i} (d_2\bar{E}) \right]_{C'_0} \geq 0$$

Thus C'_0 is a pattern of equilibrium with no interference of perturbing forces and as such are all those other patterns which fall into directrix $C_0-C'_0$ which is justly typified by $d_2\bar{E}=0$. The system moves along this direction with no external work being done. Then the following is particularly to be verified:

$$\begin{aligned} d\bar{S}_i &> 0 \quad \text{for} \quad d\bar{S}_i = 0 \\ d\bar{S}_i &= 0 \quad \text{for} \quad d\bar{S}_i > 0 \end{aligned}$$

Pattern C_0 , which is corresponded by (12'), is then a pattern of neutral equilibrium.

For (12) let us assume as substitute:

$$(12'') \quad d_2\bar{E} \geq 0$$

In particular is assumed as the assigned pattern C'_0 that for which $d_2\bar{E} < 0$. In this case for some of the bars:

$$d\bar{S}_i = \left[\frac{d}{d\bar{S}_i} (d_2\bar{E}) \right]_{C'_0} < 0$$

The perturbing forces eliminated, the plastic phenomenon then progress: the energy relative to a successive pattern C''_0 is related to the energy at C'_0 by eq.(13). In C''_0 , and so for the successive patterns, is thus repeated the like situation as is found in C'_0 . The plastic phenomenon keeps continuing indefinitely with the system never reaching a pattern of equilibrium with load F_0 . Therefore if the pattern C_0 is associated to eq.(12'') the equilibrium is unstable.

The considerations on the eq.(12''), (12'') follows that eq.(12) represents also a condition necessary for the stability of the system.

Drucker's second stability postulate [8] [9], as applied in the "small", fully confirms this result. In order that the system is stable the closed cycle work accomplished by the perturbing forces, applied at first and removed afterward, is to be positive. As this cycle terminates this work is found again under the form of stored energy: thus if $d_2\bar{F} > 0$ the equilibrium is stable. On the contrary, if $d_2\bar{E} < 0$ the result is that the cycle cannot be closed, that is the equilibrium is not verifiable without the introduction of an equilibrating system dF : then the equilibrium is unstable.

From the above it can be easy to deduce that, where the bars behave in an ideally plastic way ($W=0$), under the collapse load the equilibrium is neutral. True, in general $d_2\bar{E} \geq 0$ ($d_2E_p = 0$), particularly it nullifies for that $d\delta$ set which is corresponded by the collapse mechanism. If the bars are instead strain hardened ($W > 0$), $d_2\bar{E} > 0$ as $d_2E_p > 0$: In this case the equilibrium is stable.

The stability according to Drucker's postulate - The first postulate of Drucker's states that a system is stable, in the "small", if the work accomplished by whatever forces dF yields always a positive result. If these forces are supposed as acting in a proportional way, the work accomplished by forces dF is coincident with the energy stored by the system, (11), that is the total energy variation. In the following is the demonstration that this principle and the one expounded in the preceding paragraph match perfectly at least as far as concerns the specific case under consideration. It is demonstrated particularly that if $d_2\bar{E} > 0$ or $d_2F=0$, parallelly, always does exist at least one perturbing pattern dF for which $d_2E_t > 0$ or $d_2E_t = 0$.

Let us assume that $d_2\bar{E} > 0$ and as dF a system of forces proportionate to load F_0 acting in C_0 , characterized, thus, by a proportionality factor $d\lambda$, infinitesimal. Since the system results being unstable for a given number of bars $d\bar{S}_i < 0$. In order that C'_0 be an equilibrium pattern, eq.(7) must be verified and the result $dSe_i < 0$ must thus be yielded. Since, for convention, stresses Se_i are positive, factor $d\lambda$ must be negative, or:

$$d\lambda Se_i = - dSe_i$$

The perturbing pattern dF must then result opposite to that F_0 . In these conditions, at all times, eq.(7) is verified, even if plastic deformations are absent, in which case $dSe_i = 0$. Among the C'_0 solutions which verify eq.(7) there exists at least one, C'_0 which verifies also eq.(4) in its generalized form, or:

$$(14) \quad \begin{aligned} - dSe_i &= d\bar{S}_i & d\bar{S}_i &> 0 \\ - dSe_i &< d\bar{S}_i & d\bar{S}_i &= 0 \end{aligned}$$

This solution defines one extreme of function $d_2\bar{E}$ [12] [13] [14] conditioned by eq. (7) and in particular for the assumption adopted on the sign, (12"), it defines a maximum. The work accomplished by forces dF , in moving the system from pattern C_0 to that C'_0 , is then supplied by eq.(11) agrees with eq.(9) multiplied by the $\frac{1}{2} d\lambda$ negative factor.

Since ϵ is always: $dL > 0$

$$-\frac{1}{2} d\lambda \cdot dL = d_2 L < 0$$

Obviously, if $d_2 L < 0$, such is also the right hand side of eq. (11) that is the variation $d_2 E_t$ of the total energy. This implies that in C_0 if (12") is verified, F_t defines a maximum and there exists, at least, one perturbed pattern C'_0 for which $d_2 L < 0$.

On the contrary if $d_2 E \geq 0$, for the patterns C'_0 falling on the indifference directrix:

$$dS_{eq} = \alpha_j dF = 0$$

then: $dF = 0$

$$d_2 E_t = 0$$

If finally:

$$d_2 F > 0$$

since $d_2 F_1 > 0$, also $d_2 F_t > 0$. In C_0 the function E_t defines a minimum.

In the following a very simple example has been evolved. The structure is that as shown in fig.9. In figg.9, 9-a, 9-b, 9-c the graph shows plotted, in the upper part, the F_t force versus the slope δ , at C, for the beam, whose behaviour is supposed to be infinitely elastic; in the lower part of the same graph for the stanchion subjected to a buckling at A, assuming three different values for rigidity \bar{W}_a . Starting from pattern C_0 , to which corresponds load $F_0 = F_t + F_a$, an increment $d\delta$ is attributed to the plastic deformation and pattern C'_0 is reached. Addenda $d_2 E_l$, $d_2 E_V$, $d_2 E_p$, all coming within the energy balance, hold as follows.

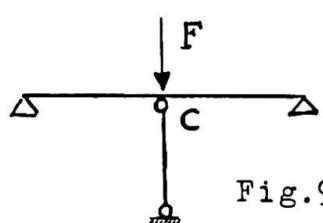


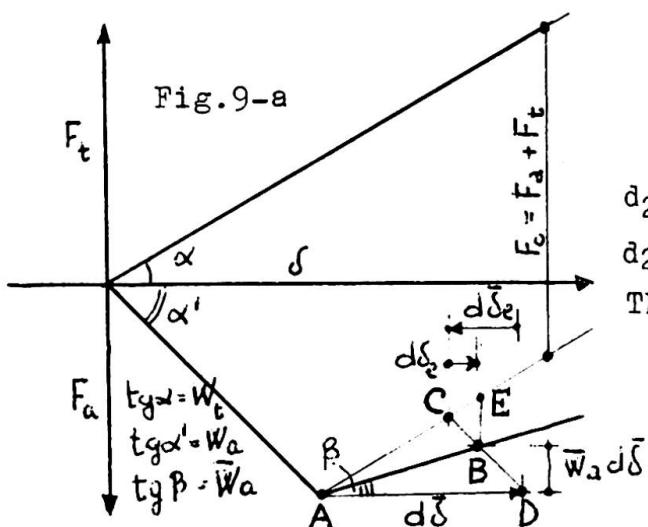
Fig. 9

$$d_2 F_e = \frac{1}{2} (W_a + W_t) d \mathcal{S}_e = CBE \text{ area}$$

$$d_2 E_V = \frac{1}{2} (W_a d\bar{\epsilon} d\bar{\epsilon}) = ACD \text{ area}$$

$$d_2 E_p = \frac{1}{2} \bar{W}_a d \bar{J}^2 = ABD \text{ area}$$

In particular, for chart in fig.(9-a):

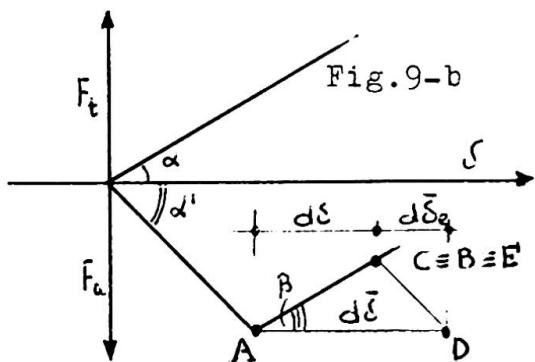


$$d_2 \bar{F} = ACD - ABD = ACB > 0$$

$$d_2 E_+ = ACB + CBE = ABE > 0$$

The equilibrium is stable.

For chart in fig.(9-b):

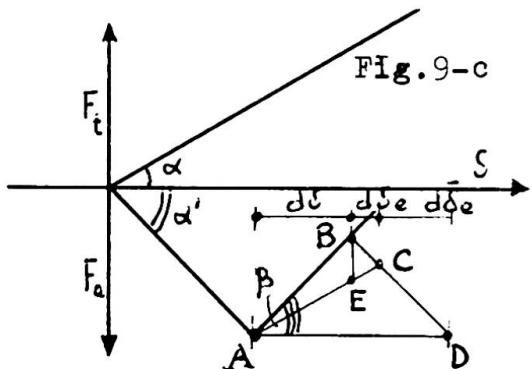


$$d_2 \bar{E} = ACD - ABD = 0$$

$$d_2 E_t = 0$$

The equilibrium is neutral.

For chart in fig. (9-c)



$$d_2 \bar{E} = ACD - ABD = -ABC < 0$$

$$d_2 E_t = ABC - CBE = -ABE < 0$$

The equilibrium is unstable.

Conclusions

The stability analysis of an oligomous system, whose components are stressed axially and are typified by positive and negative rigidities is led back to the study of function $d_2 \bar{E}$, that is the quadratic form associated to the matrix of the differential rigidities within the hyperquadrant of the positive $d\bar{\varepsilon}$. If, within this boundary, $d_2 \bar{E} > 0$ then the equilibrium is stable: on the contrary it is neutral or unstable.

By the avail of the matrices theory [14] some conclusions can be drawn. If the quadratic form, associated to the matrix of the rigidities, is definite positive, such it will be also in the hyperquadrant $d\bar{\varepsilon} > 0$: therefore the result is $d_2 \bar{E} > 0$. Hence the equilibrium is stable. Instead if the quadratic form is definite negative, in like manner, $d_2 \bar{E} < 0$: the equilibrium is then unstable. The same holds true if the quadratic form is semi-definite negative: the range of the matrix can never be less than one, and thus the indifference direction, at the limit, can only occupy a subspace of the positive hyperquadrant, the quadratic form in the complementary subspace remaining negative.

More complicated the question presents itself where the quadratic form is semidefinite positive or indefinite: In the first case $d_2 \bar{E} > 0$ or $d_2 \bar{E} = 0$, in the second case $d_2 E \geq 0$ or the intermediate cases. The research of an algorism for the solution of this problem will be the subject of a forthcoming information.

References

- [1] - T.V. Karman
 - Untersuchungen über Knickfestigkeit
Forschungsarbeiten N.81 - 1910.
- [2] - B.G. Neal
 - The plastic methods of structural analysis
Chepman Hall 1963.
- [3] - G.Castellano
 - Comportamento dei solidi snelli oltre il carico critico - Ingegneria Civile - N.13-1964.
- [4] - P.M.Naghdi
 - Stress-strain relations and thermoplasticity
Proc. of the second symposium on naval structural mech.
Pergamon press - 1960.
- [5] - G.Maier
 - Stabilità, unicità di soluzione e leggi di scorrimento per strutture elastoplastiche con legami incrementali sforzi deformazioni associati.
Rend.Ist.Lombardo di Scienze e lettere vol.100-1966.
- [6] - G.Maier and D.Drucker - Elastic - plastic continua containing unstable elements obeying normality and convexity relations - Schweizerische Bauzeitung - Vol. 84 - N.23 -1966.
- [7] - D.C.Drucker
 - A more fundamental approach to stress strain relations. Proc.First U.S. National Congress of applied mechanics - AM.SOC.MECH.ENGRS 1951 pp.487-491.
- [8] - D.C.Drucker
 - On the postulate of stability of materials in the mechanics of continua.
Journal de mécanique - Gauthier - Villars Vol.3 N.2 - 1964, pp.235-249.
- [9] - M.R.Horne
 - The stability of elastic plastic structures.
Progress in solid mechanics - Vol.II pp.277-321.
North Holland 1961.
- [10] - G.Ceradini
 - Strutture reticolari iperstatiche - costruzioni metalliche N.3 giugno 1965.
- [11] - D.C.Spanner
 - Introduction to thermodynamics - Academic press-London.
- [12] - Hill
 - The mathematical theory of plasticity - Oxford press - 1964.
- [13] - W.T.Koiter
 - General theorems for elastic - plastic solids
Progress in solid mechanics - Vol.I - North Holland 1960.
- [14] - S.Cherubini
 - Calcolo delle matrici - Cremonese - Roma.

SUMMARY

The stability analysis of an olonomous system, whose components are stressed axially and are typified by positive and negative rigidities is led back to the matrix of function $d_2 \bar{E}$, that is the quadratic form associated to the matrix of the differential rigidities within the hyperquadrant of the positive $d\bar{E}$. If, within this boundary, $d_2 \bar{E} > 0$ then the equilibrium is stable: on the contrary it is neutral or unstable.

RÉSUMÉ

L'analyse de la stabilité d'un treillis, dont les barres ne subissent que des efforts axiaux, est déduite à l'étude de la fonction $d_2 \bar{E}$. Si $d_2 \bar{E} > 0$ le système est stable, sinon, il est neutre ou instable. Avec l'aide de la théorie des matrices [14] on peut tirer des conclusions sur la forme quadratique associée à la matrice. Le problème est plus ou moins simple, selon que cette forme quadratique est définie positive ou négative, ou semi-définie négative, ou alors si elle est semi-définie positive ou indéfinie. Ces derniers cas seront traités dans une information ultérieure.

ZUSAMMENFASSUNG

In diesem Beitrag wird die Stabilität unter Berücksichtigung der Traglast an einem Fachwerk, deren Stäbe achsialer Kräfte unterworfen sind, untersucht und mit Hilfe der Matrizenrechnung die Fälle des stabilen, labilen oder instabilen Gleichgewichts beschrieben.