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1. Introduction

Within the context of Theme I of the 8th congress,
this paper establishes a method of struccural safety
analysis for the lateral vibration of aerodynamically
stable suspension bridges under stormy winds.

The recent use of the so-called gust response
factor in the dynamic analysis of structures subjected
to gusty winds indicates an achievement of a higher level
of sophistication in the structural safety analysis
compared with the use of conventlonal safety factor,
since the introduction of the gust response factor is
based on the recognition that the wind velocity and hence
the structural response have to be treated realistically
as random processes.

The present paper demonstrates that a further effort
will make it possible to estimate, in approximation, the
probability of survival or failure of the suspension
bridge (in the lateral mode of vibration) which is a more
direct measure of safety in accordance with the proba-
bilistic concept of structural safety! ® .

Since the type of failure considered in this paper
is either buckling or yielding of a chord member of the
stiffening truss due to its lateral bending under the wind
pressurec %this defines a critical bending moment at each
cross-section), the linear equations of motion can be
employed in the response analysis. Such failure modes are
also assumed implicitly or explicitly in the previous
papers** dealing with the same problem.

(*) Numerals indicate references at the end.
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2. Structural Analysis

In the present paper, as in References 2 and 3, the
wind velocity Uit)at the height 2z above ground i{s the
sum of the mean wind velocity (4(t) and the fluctuating
part Ua(t,x) .

The pressure due to the wind velocity'LA@)is, as
usual, assumed to consist of two parts: the pressure due
to the mean wind velocity

P@t) = LscA Ut )
and the pressure due to the fluctuating part

bt,x) = AUr(H) wact, x)

where f is the density of air, ¢ and ¢ the static and
the dynamic drag coefficient and A the exposed area of
the structure considered.

It is usually observed from wind velocity records
that uz(t,yis nonstationary with a larger variance at a
larger mean wind velocity. In the present study, however,
it is assumed that U:;(t,x) is stationary with a (constant)
variance equal _to that associated with the maximum mean
wind velocity (Jy. TFurthermore, (i(t)in Eq.(2) is replaced

(2)

by for simplicity. Hence, the following stationarized
and conservative expression is used for p(t,x). ,
pit,x) = ¢ e A U, uslt, x). (3)

Since the variation of P(t)in time is much slow
compared with the fundamental period of lateral vibration
of the system of the cables and truss, the response Yr(t, 1)
and Ye(t,x) to P(t) is obtained performing a quasi-static
analysis, while the mean square value of Y.*(f,x) and the
bending moment M’(tx) of the truss to pP(f, x) is evaluated
on the basis of the standard equations of motion:

EIY" + 4§y - %) = B (t) (4)

“HY" - k)G, - %)= R@ )
my .);'r* + M7 7.7.* + EI 7T* v + ﬁ(x)()’r,‘]c.) =P7(t)1) (6)

e )'C’ + Mc }c‘ - H 76‘ " - %(1) ()"r*‘ 7C*)=/bc (t,x) (7)
with
bix)y=mr¢ /40 (8)

where the primes and the dots indicate differentiation
with respect to x and t respectively, #(x) is the hanger
length, E] the bending rigidity of the truss in the hori-
zontal direction, H the sum of the horizontal forces in
the cables, m the mass per unit length, 4 the linear
viscous damping with subscripts 7 and C indicating that
the quantities with T are associated with the truss and
those with C are with the cables. The lateral bending
moment of the truss can be obtained from its lateral
displacement in the usual fashion.
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The finite sine transform technique or the sine series
expansion_of Y and Ye can be used to solve Eqs.(4) and
(5) for Yr and % . To evaluate the mean square response
of M2 , the frequency response functions H, (w,x, x,) of
> *(t,x) and Hre(w,x, z) Of J¥(t,x) due to an input

e** §(x-x,) gpplied at x = X, on the truss are first
obtained by emplozing the finite sine transform technique.
After some manipulation, one can show_that the sine
transforms Hrr(J) = Hrr(w, j, %) and  Hre(j) = Hre (@, ], x0)
(with respect to x over x = O~ 2 ) of Hrr( W, x, X,)

and H, (w, x,x,) satisfy the following equations.

oo

2 Fr Gy = 2 HeG) ey = sin T, hdd
(n:f} 2,..- )
—Z ﬁ'r'r(j) C"j M Zf ﬁTc (./) €rj =0, (10)
J=1 J= (?’Z=I, 2, )
where
A"y
dy = (~wimy + iwpr + EIZZ) Sy o+ Gy (11)
e [j-71]
C'lj ="£L rz-aﬁr { S(j-fi),n + _b.— Slj—rl,'n } (12)
enj=(—w=fmc + 1w MU "'H—n%‘z')é\u_j*'c"j (13)

where { 1is the span length, di;j the Kronecker delta,
and #-> the coefficients of cosine series expansion of
R(X)

O=

bix) = f— > Ay cos r; x| (14)

Y=o

Egs.(9) and (10) represent two sets of infinite
number of equations for Hr;(n) and Hr(n). By taking only
first N terms each ofArr(n) and Hrem) (n,j = 1,2,...,
N, and r =1,2,...,2N ), One can obtain a set of zN
equations for ZN unknowns Hrr(n) and Hyc (n) (n =1,
2,.++4,N ). Solving these and applying the inverse sine
transformation, the frequency response function Hr(w, x, X, )

can be written as
N

. R
Hrr(w) X, Xo) = gz; X g (w, x) Sm—f'xa (15)
where N ,
% = 3 o smdly
R(w, x) = e ? (16)

In the Eq.(16) aj;_! is the j - & member of the inverse
matrix of a symmetric 2N x 2N matrix
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D i -C
C with D =[d;;] ,C=[cj] and E =[ey].
. ! E

B
n

The frequency response functions Her (W, X, X0)  of
¥ (t, x) and Hece (w, x,x,) of ¥*(t, x) due to an input
eiwt £(x-x,) on the cable can also be obtained in a
similar fashion.

HC'{(C‘U: Xy Xo) = iz_;pl (w, x) SM%Z, (Ill/)

where
. i T
Balw, x) = .Z e S (18)

The functions Heel(w,x; Xs) and Hye(w, X, x,) are not
needed in the following analysis.

vMaking use of Xg(w,x) and 8% (w, Xx) , one can show
that the mean square spectral density function of M. (¢, x)

is
N N

S(wx) =2, 0 [ 6" (w, xy i (w,x) S7e (@)

T=mt S=t
+ 2Re {ar (w,x) B (w) Sy (w)}

—_u

F R (W, x) B (w, %) SEE (w) ] (19)

in which Re 2 and 2 respectively indicate real part and
complex conjugate of 2

XY LN
Srs (w) = J J thp:(w) 5‘.”1%1! Sim-—zllz dx, dx, (20)

with X and Y standing either for T or C and

XY
Sp. p, (w) being the cross-spectral density of Px(t, x1)
and Py(t xl) 2 * . ¥
The variances O and Ox of Mr(t,X) anda My (, X)
are then obtained as

\6-"”2’ =5 S(w,X)dUJ, O’MZ =J sz(w;Z) da) (21)
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In the following discussion, however, the second and
third terms within the square brackets of Eq.(1y) are
neglected because of their small contributions (as also
done in Refs.2 and 3), and S,), is approximated by

5?'7’;' (w) = EXP(__ 'kw_ II’ - ’) é(w) (22)

2T,

where the exponential term is the square root of the
coherence, 2m(Jz /(#f w) the scale of turbulence at the
wave length 27z J:/w, and &(w) is the mean square
spectral density of p-(t, x) and is given by?

. 4’_“:)
P(w) =4 (P ar T, P K g” il (23)
w 1%
[”(fg,,)}

in which K is the surface drag coefficient, Uss , The
mean wind velocity at the reference height of 33 ft above
ground, is related to (J; by

L—/J = L—/! (-2_3)“ (24)

with & being a constant.

5. Safety Analysis

In previous papers""’5 , one of the present authors
developed a method of estimating upper and lower bounds
of the probability that a Gaussian random process =z (t)
will not be confined in a domain defined by - a(t)<z(t)< act)
in a specified time interval, where a(t) (zo) is a
deterministic function of time.

Consider the standard design procedure for wind
loads where the stiffening truss is designed so that it
can withstand, with a safety factor m , the bending
moment M4(x) produced by a specified (uniform) design
wind pressure #$2 . This implies that the critical
bending moment at cross-section x is nM«(X). Suppose
that the suspension bridge is subjected to a storm with
mean wind velocity J(t) or mean wind pressure ?(t)
producing the bending moment M(t,x) . Then, a(t,x) =M*(x)
~-M(t x) = mMi(x) - M(t,x) is the maximum value of the
bending moment M*(t, x) that the fluctuating part of wind
pressure p(t,x) can produce without fallure. Since the
variances of M¥(t,x) and M*(t. x) are evaluated in the
preceding section, the method developed in References 4
and 5 can be applied to estimate upper and lower bounds
of the probability of failure by or the probzbility that

73
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M*(t,x) will not be confined in the domain defined by
- alt,x)<€M*(t, x) £« alt,x).

Evidently, for a storm with a different mean value
velocity function Uz(t) , a different value of % is
obtained. In fact, (J,(t) itself is usually a random
function of time containing a number of random parameters,
say U, and T ; (,(t) =U,(t; Uz, T.). For example, the
following forms of (; (t, U, 7.) are mathematically expedient
an%lat the same time agree with observations reasonably
well.

Ue (t5 Uay, T ) = Us- e-(t/T) —soctcoo  (25)

and _ _
OXt; 0., T ) =0 (1-1t1/T) -Tét<T

=0 otherwise

(26)

where 7, is a measure of the duration of a storm in Eq.
(1) while it is the duration in Eq.(2). Eq.(1) is used
in Reference 3.
The probability of failure #_ is then computed for

a storm with a particular set of U and 7. ; % =
#(Us, T») . Therefore, the probability of failure A"
due to a single application of a tatistical storm with
(J; &and 7. being random is the expected value of
P(J;, T,) With respect to (J; and 7,

b <[t (O, T) 5O, T) dTi 4 (27)

where (U, T,) is the joint density function of (s and
7. . Hence, one can obtain the upper and lower bounds
of #* from those of b (T, T-) using Eq.(27).

4, Numerical Example

As an example, a suspension bridge of the same
dimension as the Forth Bridge is considered with EI
1.842 x 10" 1b=ft? ,A(x)= 309 - 1200(x/8)( 1- X/¢) f%t,
meg = 2.52 x 10> 1b/ft,m- g = 8.38 x 10° 1b/ft, £ =
3300 ft, H = 4.934 x 10" 1b (Egs.(4) - (8)), and such
values of the linear viscous damping coefficients  «-
and M¢ (Eqgs.(6) and (7)) that the logarithmic damping
decrements of the first mode of independent lateral
vibration of the truss and of the cables are both equal
to 0.05. In Egs.(15) - (19), N = 5 and in Egs.(22) - (24),
£ =7, & = 2000 ft, K = 0.01, « = 0.2 and 2 = 200
ft (height of the truss above ground as in Refs.2 and 3).

With these parameter values, the variances of M*(tx)
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and M*(t,x) can now be evaluated numerically (IBM 7090

is used) following the method described in SectionZ2.
Because of the same assumption on the structure and the
wind, the variance of M*(t,x) computed here is found to be
close to those in Refs.2 and 3. Once these variances

are computed, the bounding technique in Refs. 4 and 5
can be applied for the probability of failure # ((:) with
the time dependent barrier a(t,x) . Since in the present
study, Eq.(26) is assumed for simplicity, a(t,x) becomes

a.(t,x)=&(x)(zlch){nUf-U,’(f-%)} (28)
where %}(x) is the bending moment of the truss at point x
due to # = 1 1b/ft and % = 1/8.9 1b/ft (this value 8.9
is taken from Ref.3 and it is the ratio between the
corresponding values of ¢A for the truss and the cables)
and U« 1is the design wind velocity which is taken as
110 mph in this study. -

If the maximum mean wind velocity U: is assumed to
have the second asymptotic distribution of largest values*
under a further assumption that U; 2 110 mph has a return
period of 3450 years3? , then the demnsity function (U; is
given by

T _ _Z_.. L_J -7-1 Cf -7
JOo =gl 5e) el 1)) @
where ¥ is assumed to be 9.0 and (e = 110 [- Ln (1- 3:50)}’/'

mph.

_ An additional assumption is made at this point that
U and T, are proportional (or the intensity of storm
and its duration are proportional) which appears to
reflect the reality at least in approximation. In fact,
a value Uy /T = 5 £ft/sec® observed from some Japanese
records®* is used here. Because of this assumption, Egq.
(27) becomes a single integration hence considerably
reducing the computational work:

b= [ P(U) (G dG, (30)

It is evident from Eq.(26) that £ (U:) = 1 when Us 2Vn Us.
A further assumption ¢; = Cer (See Eqs.(1) and (2)) is
made here so that the following analysis becomes
independent of the value of fc Ay,

The upper and lower bounds of P* are computed as a
function of the safety factor m (Fig.1). To be precise,
the probability of failure #,(U;) and therefore #! vary
along x . However, the variation is negligible because
the quantities E(x) /0 (x) and £(x) /ey (x) on which the
variation depends, are almost constant according to the

75
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numerical

computation.
In spite

of the rather

wide differences
. between the
1\ upper and lower

10 bounds, the
‘\\\ result shown

function of safety factor n

upper bound in Fig-’l is
quite useful
in many respects.
10 For example,
% 5 using Fig.1
\ one can examine
lower bound the effect of
B \\\‘5‘\~ increasing the
10 safety factor
\ n . In fact,
Fig. 1 indi-
cates that the
10 probability of
0.5 1.0 1.5 2.0 2.5 failure decreases
by one order
of magnitude
from the order
Fig. 1 Probability of Failure Py 85 & of 10 to that
of 102 by in-
creasing n
from 1.0 to 2.0.
This implies
the increase
of the mean life by one order of magnitude from the order
of 100 years to that of 1000 years, if it is assumed
that significant storms occur on the average once a year.
It is pointed out that from the view point of structural
reliability analysis, the probability of failure esti-
mated even only within the order of magnitude is a
significant information.

5. Conclusion and Acknowledgement

A method of safety analysis by which the probability
of failure of a suspension bridge due to lateral wind
pressure caused by a (statistical) storm can be evaluated,
is presented with a numerical example. The numerical
example indicated that the probability can at least be
estimated within the order of magnitude. This seems
significant and satisfactory enough in view of the various
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assumptions one has to make as to structural response
properties as well as statistical characteristics of
the wind.

This study identified the information that is needed
to make such an analysis more reliable. Other than those
already identified elsewhere (for example, Refs. 2 and 3),
the following quantities have to be known with e
reasonable accuracy; the cross-spectral density Sy,
(Eq.(20)) and more importantly, the mean wind velocity

J:(t) as a function of time t (Egs.(25) and (26)) and
its statistical nature, and the frequency of occurrence
of significant storms.

The authors are grateful to Professor A.M. Freudenthal,
Technical Director of the Institute for the Study of
Fatigue and Reliability, Columbia University for his
support of the study.
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SUMMARY

This study presents a method of safety analysis of
aerodynamically stable suspension bridges subjected to
lateral wind pressure. The pressure is treated as a
random process in space as well as in time. A numerical
example is given under certain assumptions of statistical
characteristics of the wind velocity. Importance of such
a study lies not only in the development of a method of
probabilistic safety analysis but also in the fact that
it indicates what further information, statistical or
otherwise, is needed to make the safety prediction more
reliable.

RESUME

Cette étude présente une méthode d'analyse de sécurite
pour ponts suspendus aérodynamiquement stables soumis & une
pression de vent latérale. La pression est supposée arbitraire
dans 1l'espace et dans le temps. Un exemple numerique a été
calculé 3 partir de certaines hypothéses des ocaractéristiques
statistiques de la vitesse du vent. L'étude ne développe pas
seulement une méthode d'analyse de sécurité probabiliste, elle
indique avant tout quelles informations supplémentaires, sta-
tistiques ou autres, sont requises pour rendre les estimations
de sécurité plus precises.

ZUSAMMENFASSUNG

Dieser Beitrag zeigt ein Verfahren fir die Sicherheits-
betrachtung aerodynamisch stabiler Hangebricken, die seitli-
chem Winddruck ausgesetzt sind. Der Druck wird als zufédlliges
Ereignis in Raum und Zeit behandelt. Ein numerisches Beispiel
fir bestimmte Annahmen der statistischen Charakteristiken der
Windgeschwindigkeit wird angegeben. Die Wichtigkeit solcher
Untersuchungen liegt nicht allein in der Entwicklung der wahr-
scheinlichen Sicherheit, sondern auch darin, dall erkennt wird,
welche statistischen oder sonstigen Auskiinfte kiinftig fiir die
Sicherheitsvoraussage zuverliassig sein werden.
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