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The Relation of Data to Calculated Failure Probabilities
Rapport entre les différents facteurs dans le calcul de la probabilité de rupture

Die Beziehung der Daten zur berechneten Bruchwahrscheinlichkeit

N. C. LIND
Professor of Civil Engineering
University of Waterloo
Canada

By the methods of rational mechanics and the calculus of probability, we
can now process the probability distributions for loads and material strengths
relating to a proposed structure and calculate the 'probability of failure' to
any desired number of decimal places, regardless of how scanty the data is or
how poorly the curves fit the data. Clearly, the meaning of this calculated
probability needs to be studied critically before it can be used with confidence
in the design process. In particular, we must find ways to assess whether or
not the data is really sufficient to warrant the probability statements used in
the design.

The nature of probability has been studied extensively [1, 2]. 1In relation
to the structural design problem the notion is fairly well defined; in most
studies of the structural safety problem, 'probability' is usually taken in the
sense of "probability-1" defined at length by CARNAP [2] (loosely called 'sub-
jective probability'), or it is left as an undefined notion; "probability=-2"
('objective probability') cannot properly be assigned any meaning in this con-
text.

One way to 3ﬁp10y probability(-1) in problems of structural safety is to
adopt the viewpoint that it is merely a subjective measure of 'degree of
belief,' or 'strength of belief'. The relation of data to the probability of
failure is then very simple; data may rationally be assimilated into the input
probabilities by Bayesian methods [3]. The question of what constitutes a
sufficient amount of data to make a particular statement about the probability
of failure, does not arise. Therefore, this paper is not relevant to 'Bayesian

design,’
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Alternatively, we may consider the probabilities associated with loads and
strengths to be inherently unknown, auxiliary quantities. Objective statements
about the probability of failure can then be made in the usual terms of statis-
tical inference, and the subjective element in the justification of the design
is greatly reduced. The viewpoint in the following, then, is that probability
is not an absolute notion; rather, it has meaning only in relation to a specified
body of evidence which, in this context, means: Actual results of load measure-
ments, materials tests, model tests, prototype tests, etc., called the data. The
advantage of this approach (when it is feasible) over the Bayesian approach is
that it leads to propositions about the probability of failure that can be sub-
jected to scientific inquiry.

Under normal conditions of practical design the data is, unfortunately,
insufficient to make objective statements about the probability of failure of
a proposed structure; for example, future loads must be guessed from measurements
taken in the past. Nevertheless, it is instructive to study the rational inferences
about the probability of failure that are possible under certain idealized condi-
tions as models of reality, permitting us to estimate the amount of data required
under less ideal conditiohs. In the following we will derive such a relationship
(equation 12) between the necessary amount of data and various constants related
to the design value of the probability of failure.

Consider a structure drawn at random from an infinite population of like
structures and submitted to a single scalar load S drawn at random from an
infinite population of loads. Let R denote the resistance of the structure,
defined in such a way that failure is the event R < S. Resistance R and load S
are assumed to be intrinsically positive, independent, continuous stochastic
variables with unknown probability densities pR(R) and pS(S); information about
these functions is assumed obtainable by random sampling. The data D is there-
fore a set of n_ resistance values and n_ load values:

R S

D= {Ri, i=1,..., nps sJ., i=1l,..., nS]. ¢H)

The probability of failure is

pp ~pg (®) pg(S)dsar; @)
R<S

since Pr and pg are unknown, pp cannot be determined. The problem is instead

to compute a suitable estimator C_ called the calculated probability of failure.

F
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To make inferences about the probability of failure Pp> it is necessary to
derive suitable statistics of the stochastic variable CF.

The simplest way to obtain such an estimator is to draw from the data
D a sample W of n QSnR, sns) pairs (R,S) of resistance and load values, at
random and without replacement, see Fig. 1. Then, W is a random sample of
the parent population{(R,S)}, and the elements of W are stochastically inde-
pendent. Let ng denote the number of outcomes of the failure event R < S

"successes" in n

in the sample W. Evidently, N is the total number of
independent Bernoulli trials with probability Pp of "success'". Therefore,
n, is distributed according to the binomial distribution

b(1,n,p,) = mpg (1-pp)™ 3)

with mean npp and variance on(l-pF). It follows that the estimator fF=nF/n is

similarly distributed with mean m = Pp> variance 02 = (l—pF)/n, and coefficient

P
of variation v = ¢/m = 1[JE;;7?T:;;5. The relative failzre frequency fF is
therefore an unbiased estimator of Ppe It is discrete valued (fF € {0, 1/n,
2/n, ..., 1}), so that in order to get sufficient resolution it is required that
nF be large in comparison with unity. Assuming that ng is greater than 9 and
neglecting Pp in comparison with unity, it can be shown [4] that fF is
approximately normally distributed with mean Py and coefficient of variation
1/ /AP

In this context, the most appropriate way to indicate the precision of
an estimate of pF is by means of confidence intervals [4]. First, a confidence
coefficient « 1is selected. Taking the distribution to be normal with mean C

F
and coefficient of variation 1/\/nCF gives the following approximate confidence



64 la — CALCULATED FAILURE PROBABILITIES

limits for pF computed from the calculated probability of failure:
- -1 + -1
L = CF(l-N (oz)/\/nCF), L'~ CF(1+N (@)/ nCF); &)

N-l( ) denotes the inverse function of the normal probability integral. 1In
a long sequence of repetitions the confidence interval between L  and L+ will
contain the probability of failure Pp nearly a fraction ¢ of tge time, .
To illustrate, assume that the data D consists of ng = 107 and n, = 10
random samples of load and resistance, respectively. The largest random
sample W of independent elements that can be drawn contains n = 104 (R,S)-
pairs. Assume that n, = nCF = 16 is the number of failure events in such a
sample. If a confidence coefficient @ = 90 per cent is considered suitable,
we get from a table of the normal probability integral that N-l(0.9) = 1.645.
Equations (4) then give L = (1-0.41)0F and L+ = (1+0.41)CF. The following

continued inequality may be written down:
0590 B2r) € po € (LaAL) Bl 5)
-29) (10%) < P -41) (70705 (

it may be asserted that this inequality is satisfied with probability 0.9.

In other words, chances are nine out of ten that the value of Pp lies between
0.00094 and 0.00226. Independent random pairing of load and resistance values
is clearly a very inefficient way of processing the data, in the present case
using only 104 out of a possible maximum of neng = lO9 combinations of load

and strength.
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Fig. 2 illustrates a sample consisting of a total of npng pairs obtained
by independent random sampling. Fig. 3 shows all the (R,S)- pairs that can
be formed from the data. The ordering of the pairs in this figure suggests a
stochastic dependence which, according to the sign of the correlation between
sample elements, may either increase or decrease the variance of the estimated
probability of failure in comparison with independent random sampling using the
same sample size. Nevertheless, the relative failure frequency, CF’ in the
sample is an unbiased estimator of the probability of failure,

m(Cy) = Pps )

since every sample element was obtained by random sampling. To compute the
variance, consider a sub-sample Ui (Fig. 3) consisting of n pairs formed by
one of the load values, Si’ paired with all the resistance values Rl’ eesy, R
A conditional probability of failure at this load level, p;, may be associatzg
with the sub-sample:

55

P =S pR(R)dR- (7)
0

As before, the elements of the sub-sample constitute a sequence of np indepen-
dent random Bernoulli trials. The number of failure events, n,, at load level
Si is therefore binomially distributed with mean neps and variance ani(l-pi).
However, it is also observed that the ng sub-samples constitute a sequence of
independent random samples, for the np resistance values may be considered to
be drawn a priori, thereby dividing the load range into ne + 1 intervals
establishing for each interval an associated probability that a load value
will fall in the interval. As the loads are drawn independently and at random,

the outcomes ni(i = Ly e ey nS) are stochastically independent. Accordingly,

the estimator
n

1
CF=Z l.nn n, (8)

S
i=1 RS

has the mean value

1
m(CF) ¥ = Zani (9)

. Ba. Schlussbericht



66 la — CALCULATED FAILURE PROBABILITIES

and the variance

n
S
crz(CF) = —1—-3- S np, (1-3). (10)
(anS) i=1

Neglecting P in comparison with unity for all i =1, ..., n_, eliminating

S
m(CF) from equations (7) and (9), and inserting the result into equation (10)

gives for the estimator CF the coefficient of variation

v(Ccp) = o (Cp)/m(Cy) =~ 1 ’anSpF (11)

Thus, as a good approximation, the coefficient of variation of CF has the
same value as if all npng sample pairs had been obtained by independent random
sampling. We may therefore use equations (4) with n = anS to determine the
confidence limits for the probability of failure. To illustrate, let ng = np = 100,
yielding 104 (R,S)-pairs, and assume that 16 of these pairs represent failures.
This data yields the same confidence interval as found above, equation (5). The
calculated probability of failure, CF = nF/anS according to Fig. 3, is believed
to utilize the data in the most efficient way possible.

The amount of data required for a specified confidence coefficient Q, a
target "design" probability of failure PF’ and a specified maximum width BPF
of the confidence interval (symmetric about PF) is easily computed from equation

(4) to be
nong > (28 T (@)/B)/®, (12)

For example, assume that we seek to design the structure so that the

probability of failure "with 90 per cent confidence" (¢ = 0.9) is a number
between 10_3 and 10-4. We select the target probability of failure

-4
P_ = 5.5 % 10 ~ and choose B = 9/5.5 in order that the confidence limits

F
(1 + B)PF coincide with the specified limits pF = 10 3 and Py = 10 4

Equation (12) gives the result that the product anS must be greater than 7,500.

For example, n must be greater than 150 is nS equals 50. Alternatively, if

R -
we demand that the probability of failure equals 10 & + 5%, with 95% confidence,
the required amount of data is increased to npng > 1.5 x 109 = (50,000) (30,000).
While the specific case studied here is greatly idealized, it serves to
give an idea of the amount of data required in probabilistic design, unless one

is content with giving merely a subjective meaning to the term 'probability of
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failure'. The value of n.n. according to equation 12 may be taken as a rough
lower bound for the data required to make an objective statement about the
probability of failure in the form of a confidence interval. The amount of
data that, as a practical possibility, can be collected does not seem out of
proportion to the amount required in probabilistic design, assuming that

reasonable standards of precision are prescribed.
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Summary

Statistical considerations must be used to supplement purely
probabilistic considerations in structural reliability studies if concepts
such as the probability of failure are to have more than a mere subjective
meaning. In this contribution, the amount of data required to make
confidence interval statements about the probability of failure is

estimated by the methods of mathematical statistics.

Résumé

Nous voulons ajouter des considérations statistiques aux
considérations probabilistiques des études de sécurité dans le
domaine de la construction, afin d'élever ces derniéres au-dessus
du niveau purement subjectif. Dans cette étude, nous proposons,
3 1l'aide des méthodes de statistiques mathématiques, d'évaluer
la quantité requise de données pour établir les intervalles

de confiance autour de la probabilité de ruine.
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Zusammenfassung

Ueber rein wahrscheinlichkeitstheoretische Ueberlegungen
hinausgeliende statistische Betrachtungen sind fiir die Studien
der Sicherheitskriterien im Hochbau erforderlich, falls Begrif-
fe wie "Bruchwahrscheinlichkeit" usw. mehr als mit bloss sub-
jektiver Bedeutung belegt sein sollen. In der vorliegenden Ar-
beit wird aufgrund eines speziellen Modells eine Abschétzung
flir den Bedarf an Datenmaterial vorgenommen, um Konfidenzgren-
zen fur die berechnete Bruchwahrscheinlichkeit angeben zu

konnen.
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