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Safety of Structures as a Problem of Time
Sécurité des constructions en fonction du temps

Sicherheit der Bauten als ein Zeitproblem

C. EIMER
Poland

First attempts of probabilistic approach to safety of struct-
ures were made as early as 1936 (W.Wierzbicki /1/y M.Prot /2/) . The
probabilistic philosophy has been discussed, for a long time, and
gained its devotees and its 8§keptics, the problem being looked upon
mainly from the point of view of a direct applicability to design
and calculation. By the present writer s opinion, too little empha-
sis has ever been laid on the explanation of actual phenomena and
interrelations that, in fact, has been dimmed by traditional methods,
and this is the fundamental purpose of every theory. Once we realize
we operate quantities affected with random scatter, we are induced,
necessarily and at the same time, to the notion of safety and to
probabilistic considerations, irrespective of whether we intend to
establish a pure probabilistic theory of safety or to explain prec-
isely the meaning of conventional coefficients of safety. Similar
development can be noticed in those branches of technical activity
where problems of reliability are of importance.

The present contribution aims at explaining the role of time
in safety which, from the mathematical point of view, means making
a step from random variables to random stochastic processes. So
far, the basic end of the theory consisted in finding the probabil-
ity of the strength criteripm to be fulfilled, i.e. of the inequal-
ity P<R, where, loosely, P is the load and R the strength ( carrying
capacity) « Since every structure is to be reliable during a limited
period of time ( called, in what follows, life time or period of ex-
ploitation), P denotes the maximum load that can occur in the course
of this period and R is assumed to be independent of time and of
previous history of loading. The former assumption presents serious
difficulties as, in general, statistics containing long periods of
time, within a more or less homogeneous population of struccures,
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are not available. The second assumption is only a crude approx-
imation, e.g. it disregards phenomena comnnected with rheologic
strength or fatligue. An attempt to avoid the first of the above
assumpions is given by A.M.Freudenthal /3/. The author considers

a sequence of load applications, the probability distribution of

P in a single application being known. However, it is not always
easy or even possible to say what is a single load application as
the loading is a continuous process. Basides, in order to "locate"
the process in time the intervals between those applications must

be assumed. Thus, in general, the whole of the problem is to be
discussed in the language of stochastic processes, the approximation
with different discrete models being of course possible and valuable
in view of effective calculations.

l. Measures of safety in time

A fundamental merit of the probabilistic approach to safety
is the introduction of a unique and universal probabilistic meas-
ure of safety. We shall descuss here some basic notions following
the very clear exposition of the subject in /3/. The generalization
depends on passing from the discrete model to a continuous time
process.

On the assumption that the carrying capacity R is independent
of time ( which will hold in this point) we define the probability
of safety or the reliability,L, as the probability that the time
to failure tgs 1.e. the effective life time of a structure exceeds
the period of exploitation t =T, T < tR' This is equivalent to the
condition Pmax{ R 1f Pmax denotes the maximum load during Tj; hence
we have

L(t) =Pr (t ¢ tg) = Pr (Pmax<'R), t =" (1.1)
The probability of failure within that period equals
F(t) =1-L(t) = Pr (t > tg) . (1.2)

The a priori probability demsity of failure at the instant t is

£ (¢) = B | (1.3)
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The failure rate, accordingly to /3/, is the probability that a
structure that has survived t will fail in a time unit at t,

h(t) = %-((3 = - & 1o 1(). (1.4)

Obviously, the above formulae correspond to (2.1)% (2.7) in /3/.
Here, tR is a random variable and denotes the time to first sur-
passing the value R by the load.

The load P, being a continuous time process which we denote
by g(t), the results of measurements can, depending on the type
of measuring devices, be obtained in threefold form: (1) as a con-
tinuous graph (self-recording 1nstruments) s Fig.l, (2) as periodic
readings at time intervals §t (points denoted by small circles)
(3) as maximum values at fixed time intervals At, usually related
to cyclicity of load accurrence, e.g. in 24 hours, a year, etc.
(devices recording maximum values denoted by little crosses).
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Fig.1l

By taking the ratios of the number of points( marked with 1it-
tle circles) in the consecutive intervals Ag 1.e. in consecutive
horizontal bands to their total amount for a sufficiently long ti-
me interval t we obtalin the frequency distribution and for t-> oo the
probability density of load at a given instant, jy(g), as shown on
the left hand side of Fig.l. When the recording is continuous one
can take arbitrary time intervals & t. On "matching" this probabil-
ity density to that of R we arrive at the probability of faillure at
a single load application (pF in /3/).

By considering the time interval At in which we are interest-
ed and a sufficiently long interval n At, and on establishing a con-—
stant value of g, we find the number m of intervals At in which
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the latter has not been surpassed. The ratio m/n provides an ap-
proximate measure (exact for n -> a2 ) of the probability of not
surpassing g in At. This probability is a function of the load,
P = p(g) that can be found empirically by repeating the procedure
for subsequent values of g. At the same time, it represents the
distribution function of maximum load in At, since non-surpas-—
sing of g is equivalent to non-exceeding it by the maximum load.
The probability density ot (g) of maximum load in At can be obtain-
ed as the derivative dp(g)/dg or else directly from the graph,
from the occurrences of "maximum" points in the consecutive in-
tervals Ag (a procedure similar to the one already used for'W(g)) R
If At were equal to the period of exploitation, the function
p(g) would represent directly the distribution required. For pract-
ical purpose, however, it is important to arrive at some conclus-
ions as to the distribution of maximum load in the period of ex-—
ploitation T from the distribution of max g during an interval At
that is, as a rule, shorter or, directly, from the demnsity func-
tion w(g), which implies two possible procedures, discussed in
what follows.
In the first of them we find the probability of not exceeding
g in n intervals At during the time T = n At,

J (@)= p"(8)s (1.5)

valid under the restriction of independence of those events. Here,
@(g) represents the distribution of the maximum load. The probab-
ility density of this load is obtained by taking the derivative of
1.5 ,
n-1 :
g (8) =np "(g) (&)~ (1.6)

The above formula can also be obtained directly on taking into ac-
count that npn”1 represents the probability of not surpassing g in
n - 1 intervals At, whereas 51(g) dg is the probability of the max-
imum load amounting to g in the remaining one interval At.

On establishing the load max g at a sufficiently high level
so that higher values of g will occur but rarely, e.g. once in
several months or even years , the interval At can be so far red-
uced that - without encroaching on the assumption of independent
loads in consecutive intervals - very high values of p (near to 1)
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are attained. The distribution (1.5) now tends to the Poisson
distribution

$(g) =exp [- v(g)T], (1.7)

with ,J(g) denoting here the average number of events when g is
surpassed per unit time (V= l/to, where to is the average time
interval between such events), this number being dependent on the
fixed value of g. The function y’(g) is found experimentally, e.ge.
by computing to for consecutive g (on a graph of the type of Fig.l).

The second procedure we mentioned above does not require de-
termining of the function y (g) or p(g) and is based on Fisher-
~-Tippett asymptotic extremal distribution representing the dis-
tribution of the highest ( or lowest) value in a test, where the
number of particular test readings increases infinitely. Thus, it
is a matter of finding the limiting disturbation, for n > oo of the
largest of n randomly chosen ordinates of points marked by little
circles in Fig.l, at a fixed value of &t (so as to satisfy the
requirement of independent loads). It is this form to which the
distribution of max g tends for t > , since a test of infinite
number of test readings tends to become strictly representative.
For finite n we obtain here Egs. (1.5 and 1.6); albeit, p(8)
and JU (g) have to be repkaced by ﬂ}(g) and (g), respectively
(cf. Fig.l), i.e. by the probabilities of g at a given moment (in
the experiment under consideration).

On introducing the new variables

z = n[} - iﬁ(gﬂ,

-u=1n2=1nn + 1n Tx);(g)dg,

9
we obtain
0(8) dg = Bli gy - n 127 g
g(g) dg =n I Hdg=n(1-7 Ydg —3x
-u
=n e"zgyaz%ag dz = - e 2 dz = ¢ ° (—e—u) du,

whence the variable u is seens to possess the asymptotic density
distribution
w(u) =exp (-u- e ). (1.8)

The variable u is seen to be related linearly to g if zp(g) is ex-
ronential. Consequently, q(g) can be obtained directly from Eq.
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(1.8). It is proved in mathematical statistics that the asymptotic
extremal distribution of Eq. (1.8) holds for normal distribution
of ﬁ’(g), too. Obviously, this is but an approximate calculation,
since the centre of the distribution is shifted proportionally to
ln n, at finite n = /8t (to be calculated from the records),
whereas the form of the distribution (1.8) itself is exact only
for n > o0 and does not depend on n.

Further calculations depend on the particular form of the
distribution Y (g) and, for different theoretical assumptionms,
are developed in the theory of extreme value distributions (cf.
for instance /4/). Once we have found the extremal probability
density @ (g) [from (1.6) or the derivative of (1.7) or else
(1.8)] we insert it into the integral

L = JS(Y(g)-ly(R) dg dR, (1.9)
PLR
q)(R) being the probability density distrubation for the strength
R, where the integral is taken over the part of the plane ( g,R)
determined by the inequality g {R. Since q(g) is a function of

time, so is L = L(t) and our problem is solved.

2, Concept of damage and outline of a general theory

Precedent considerations were based on the assumption that
R 1s constant which is but a crude approximation. We know that
it depends, for instance, on the number of repeating load cycles
in fatigue tests or on the time of loading if rheologic phenome-
na are involved. In order to describe this behavior the notion
of "cumulative damage" i1s introduced in the theory of fatique
of materials and similar notions are also known from the general
theory of reliability.

Let us generalize this notion and assume that the actual
state of a structure (or a material) at a given instant (from
the view~point of its carrying capacity) is defined by a unique
positive number, § , 0. 8¢ 1, called damage, where zero damage
(d = 0) describes a perfect state and 6 = 1 a complete failure.
In general, d increases in the course of time, particularly, in
the course of the loading precess, which means that the ruin sets
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in progressively and results in the "death" of the structure
when § atteains 1. For a simple example (not to be directly ex-
tended) , 6 can represent the reduction of the cross- section
of an axially loaded rod because of an expanding crack. Thus,
our strength condition P< R is to be replaced by a more general

one
d < 1. (2.1)

Now, the problem consists in the prediction of the time t
at which the damage becomes 1 or, in a probabilistic approach
(6 being a random variable), in the determination of the prob-
ability
L(t) = pr(d<1) (2.2)

for a given period of exploitation t = T,

For the classical case J remains 0 as long as P { R,
R being the carrying capacity. On surpassing R for the first
time ¢ suddenly increases to 1 and the structure fails ( Fig.2) .
It is seen that ¢ 1is defined to be a Heaviside function

é (t) = H(t - tR)’

tR denoting the time to first
surpassing R by P = g(t). The
probability (2.2) reduces to
(1.1) and exactly the theory in
point 1 provides the solution,

In general, the hypothesis
that the physical state of a str-
ucture can be determined by a
unique parameter, d , is a con-
- siderable simplification of
[4 actual conditions, albeit it

Fig.2 results in a far reaching gene-

ralization of the former theories of safety. In fact, d can
depend on the whole previous history of loading and, therefore,
is a functional defined on the class of all possible functioms
P = g(t) . Depending on what phenomena are to be included (e.ge
fatigue, rheology, etc.) and for the sake of effective calculation
further restricting hypotheses have to be introduced. First of all,
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we shall assume that dé is cumulative so that we only examine

the increments d 4 (t) which simply integrate in time. If, for the
time being, we abstract from rheologic phenomena, we are able to
make the assumption that dad depends only: (1) on the instantaneous
internal state described by §d , (2) on the external state des-
cribed by P = g(t), (3) on the change of the external state given
by dP = d g(t), (4) directly on time. Taking the increments in a
time unit, i.e. replacing them by velocities ( denoted with dots)

we obtain

C.S = f(d’ g, &, t)' (2'3)

The direct dependence on time reflects corrosion-like phenomena
affecting é and will be neglected in further consideration. If
we assume that damage is irreversible, the function f will be non-
negative with respect to alliarguments. If g approaches the lim-

it strength R the velocity d rapidly increases; if, furthermore,
R depends on § and is independent of %, we have f=> oo for g->R()
Further simplifying assumptions may state that d does not depend
on the sign of dg ( internal friction-like phenomena at fatigue) -
resulting in f symmetric respectively to &, and that it is prop-
ortional to & which gives the form

d =£(d, g)lgl (2.4)

or, equivalently

ad==£(d, p)| apl

Formulae of similar form, where instead of dP appears dn (n - num-
ber of cycles ), can be found in the theory of fatigue (cf., for
instance, /5/); however, those do not include any hypothesis as to
the mechanism of failure and hold only withgin the above theory,
for symmetric oscillations).

The simplest possible assumption for (2.4) is

£ (4, g) =/ = const (2.5)

within the admissible region ( Fig.3, shaded area) and f->eo for
g>R({) , that is the actual smomth passage of the surface f(d,g)
is replaced by a singularity. If, in particular, (3 = O, we have
the classical case, with the additional assumption that initial

damage is possible and makes R lower (we are moving along vertica!
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lines in Fig.3). On integrating (2.4) for (2.5) we get ¢ =‘321Ag|
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Fig.3

i.e. § is proportional to the sum of amplitudes of all load cyc-—
les, irrespective of the mean value ( in Fig.5, below, the sum of

segments O + IZ + 23 + ... ). In the case of simple ( symmetric)
oscillations it is proportional to the number of cycles, n,

§ =4npg,

where B is the maximum load at one cycle. The path of loading is
composed of straight segments with constant slope {dé/dg|=f, inde-
pendent of the forms of "waves" in time, and on intersection of

the curve R(4) it jumps horizontally till & = 1 (Fig.3). This as-
sumption is equivalent to the well-known Miner "s hypothesis din

the theory of fatigue of materials about a constant damage in a
single oscillation with given amplitude. If, in particular, the
curve R (8) coincides with the bounding straight segments, R = const
and & = 1 respectively, the equation of Wohler s curve will result
directly from the above formula for d = 1,

which is the equation of a hyperbola. More generally, if the
equation of Wohler s curve 8y = W(N) is available, we obtain the
curve R(ﬁ) solving for R the equation

ne v ()
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However, it must be pointed out that this curve might eventually
not fit other non- zero <values of the mean force, the assump-
tion ( 2.5) being too simple.

The equation of the curve g = R(é) can also be argued theoret-
ically, for instance, in the following way. Imagine a body composed
of grains with variable strength properties and a process of dam=—
age that consists 1n consecutive failing of weaker grains. The vol-
ume proportion of elements at different levels of local strength,

r, can be represented by an integral or differential probability
distrubution ( Fig.4 ) . Define the damage J as the part of the area
(normalised to 1) under the curve ¢ (r) or else as an ordinate of
the curve § (r) . The shaded part of the area, 1-d , represents
the actual carrying capacity (due to stromnger grains) . The equation
sought for is

R(d)=(1 - §)P(S)

where @(5) is the abscissa of the centre of gravity of the shaded

area.
The analysis of safety can be performed similarly to what has

been said in point 1 (Fig.5). For a stationary process of loading

the damage & can be regarded, approximately, as proportiona} to
time and assimilated to a straight line & = Jd,t, where J,=B3|Ag]
is the average damage during a time unit ( obtained from the load
curve by averaging over a sufficiently long time period). The
strength curve is expressed in new units

g =R (éot) (2‘6)

and failure appears at first intersection of this curve with P =
= g(t) , the problem being reduced to the ome of a material with
decreassing strength,
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If strength properties ( represented by (2.6)) are not aftec—
ted with scatter; we can use, for instance, the same reasoning as
for the formula ( 1.5) . Assume, we have got records for a fixed
period At and determined for this period the probability des-—
tribution p(g) (similarly as for (1.5)). Since the strength chan-
ges in time, we obtain

3 = »(Ry) p(Ry) p(Ry).-. (2.7)

where, according to( 2.6), Ry, refers to the k- th sector At
(cf. Fig.l). Taking logarithms of both sides

In & = %‘ In p(Ry)

and taking for 1n p(Rk) its average value in the respective
sector 1.

1n p(Rk) = Z% 5 In p|R(t)] dt

i
we have

and, finally,

(2.8)
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This is an explicit function of parameters describing the func-~
tion R(t). Of course, this is but an approximate calculation,
those parameters and, what more, the curve R(t)by itself being
rendom ( cf. Fig.5 ) .

So far, the analysis was based on the assumptions (2.4)
and (2.5) which is only a first step towards a theory including
time - dependent phenomena. One of serious difficulties to be
surmounted is connected with specifying the functions (2.3), (2.4) .
In general, if VWohler - type curves for different non-zero mean
stresses were available, we could come at a result on comparing
them with respective solutions of the differential equation (2.4)
for sinusoidal forms of load curves and for d = 1, n = §, wt = n,

a,b - constants,

O~

40 = £f(d, b + a sinwt) | awsoswt]| .
d

+

39. Schiussbericht
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Further generalizations could take into account rheologic phenom-
ena and the formulae of the type ( 2.3) would be replaced by func-
tionals, e.g. in an integral or an operational form. The simplified
assumptions would, possibly, tetain formulae of the type (2.3) ,
introducing, however, some characteristic values of the load from
the precedent history( e.g. the next local or the absolute maximum
and minimum values of g). The analysis, however, would be much more
complex and is beyond the scope of this article.

In the present contribution we did not consider conventional
measures of safety (e.g. coefficients of safety), as the methods
of derivation of such measures have been discussed many times (cf.,
for instance, /3/, /5/) and a "pure" theory of safety can (and
ought to) de without them.
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SUMMARY

The contribution is concerned with the problem of safety of
structures on the basis of the theory of cumulative damage. The
actual state of a structure (from the point of view of its carry-
ing capacity) is described with a parameter, variable in time,
depending on the previous course of loads. The latter is regarded
as a stochastic process and a probabilistic measure of safety is
derived.

RESUME

L'auteur a examiné le probleme de la sécurité de construc-
tions du point de vue de la théorie du dommage cumulé. L'état
actuel d'une construction est caractérisé par un paramétre unique
(le dommage) variable avec le temps, dépendant des charges pré-
alables. Celui-ci est considéré comme un processus stochastique
et une mesure probabiliste de la sécurité est dérivée.

ZUSAMMENFASSUNG

Im vorliegenden Beitrag wird die Frage der Sicherheit einer
Konstruktion auf Grund der Theorie der Anhdufung der Besch&di-
gungen behandelt. Der Zustand der Konstruktion vom Standpunkt
seiner Tragfédhigkeit wird durch einen Parameter beschrieben, der
die Besch&ddigung charakterisiert und von dem vorigen Verlauf der
Belastung abhéngig ist. Der obenerwdhnte Verlauf wird als ein zu-
fdlliger Prozess aufgefasst und ein wahrscheinliches Mass der
Sicherheit wird abgeleitet.
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