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DISCUSSION PREPAREE / VORBEREITETE DISKUSSION / PREPARED DISCUSSION

Model Analysis for Structural Safety and Optimization

Analyse sur modeles de la securite et de l'optimisation des structures

Modelluntersuchung der Bausicherheit und -Optimierung

GUIDO OBERTI
Prof.
Italy

i. - Foreword-
a) In a short note presented at the Rio de Janeiro

Congress of the IABSE in 1964 I stated that the possibility
of analyzing on modeis, even V3 failure,of large structures,
particularly piain or reinforced concrete structures, has
long been proved by nie in a great number of cases.

In fact, a model study under elastic conditions
furnishes the values of the prototype stresses under
working load, which is important for several reasons«
Firstly, the results obtained, unaffected by the assumptions
and limitations which impair the classical methods of
calculation, can profitably be compared with those supplied
by these methods. Secondly, it is not hard to solve on
modeis unusual three-dimensional problems, contrary to what
is the case with the conventional analytical procedures
both because of extreme complexity (only partly reduced by
the finite element method) and difficult mathematical
schematization of accurate boundary conditions.

Extension beyond the elastic ränge is still always
invaluable to the structural engineer as it may enable him
to locate possible weak points in the design and thus ausist in
securing greater safety and optimization.

Models may be classified in elastic (tested within the
elastic ränge only), structural (carried to failure) arid
geomechanical (when the foundation influences the structural
Performance).

Precent trends, bascd on experience at ISMES, are:
increasing emphasis on structural modeis;
constant improvement of model materials to better suit
the aims pursued;
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growing interest in thermal stress investigation,
especially for concrete dams and reinforced

(prestressed or not) concrete vessels of nuclear
reactors;
dynamic testing on large shake tables and marked
concern for earthguake effects,

b) Theme I has been treated by the general reporters
prof. A. M. Freudenthal and prof. J.Courbon.

In a first theoretical and critical paper regarding
topic la, prof. Freudenthal deals with the evaluation of
overall structural safety based on probabilistic criteria
related to the operating loads, which seems fit for
statically determinate structures only. In a second paper
concerning topic lb and also of a theoretical probabilistic
nature, the same author discusses the possibility of
predicting ultimate safety based on the physical properties
of the materials and their influence at failure. None of
the papers mentions structural model analysis.

Prof. Ccurbon's paper treats with topic lc of Theme I.It concludes by mentioning, all too briefly, the great
Services rendered by model studies in the design of dams,
thin shells and shields of nuclear reactors.

I, therefore, believe it of use tc outline, the
present-day possibilities of model analysis in evaluating
the safety degree of large statically indeterminate
structures.

d) Model investigation primarily concems statically
highly indeterminate structures and may be regarded as:
I) a modern method of stress analysis;
II)a tool for failure load evaluation.

In any case, it is possible to consider or predict the
Statistical disPersi°n °f the operating loads and of the
structural resistance of the prototype material.

In case II), when several modeis are tested, it is
possible to evaluate the ultimate carrying capacity R of
the structure for each type of load S, so that the model
functions as a tool for determining the overall safety
factor V •

This factor may vary for each type of structure,
depending on the probabilistic possibility assumed for the
operating loads and the structural resistance, associated
with a definite risk of failure,

Thus,for concrete dams, the loads are practically known
(excepting those for earthguake-resistant^ design), and the
uncertainties about the concrete resistance are quite small,
The highly redundant type of these structures generally
reduces the importance of the concrete strength dispersion,
The safety factor in this case, therefore, serves rather as
a coefficient of security against the insecurity of the
analytical results, especially in relation to the real
properties of the rock foundation.
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2.- Actual possibilities of model analysis.
a) Elastic modeis are based on linear elasticity

(Hocke's law) and, hence, a superposition of effects is
allowed, They also permit to proportionately modify the
loadings so as to obtain the most suitable testing
conditions. In parti,cular, it is possible to operate
at strains that are amplified with respect to these
required by similitude (which demands that the strains
in the prototype and in the model be the same).

Elastic modeis, widely used in "stress-analysis",-
may be divided in two groups.

The first group concerns plane elastic structures,and
for them the deformeter, photoelastic and Moire methods
are predominant,

Deformeters are based on the well-known reeiprocal
theorems (Maxwell, Betti, Müller-Breslau). Photoelasticity
is a first-rate research method, most used in structural
engineering laboratories. The Moire method is primarily
used in flat slab investigations.

However, it should be observed that the importance
of these methods has lately decreased due to the use of
Computers in solving problems relating to plane elastic
structures.

The se:ccndgroup deals with three-dimensional modeis.
In statical tests the loading equipment is usually made
up of calibrated weights or hydraulic jacks, the pistons
of which react against an external rigid frame; the loads
are applied to the model through wooden cork-soled pads.
Strain gages, ordinarlly applied to the surface of the
model, are used for measuring the direction and magnitude
of the principal strains.

Young's modulus and Poisson's ratio of the model
material are determined as usual, the former by tensile
and flexural tests and the latter by torsional tests, The
material may quite differ from that of the prototype,
provided it obeys Hooke's law and its Poisson's ratio is
similar to that of the structure. The model then functions as
a "stress Computer",and its results may be compared with
the theoretical ones.

For elastic mcdels, ISMES has recently sueeeeded in
using epoxy resins mixed with various aggregates.They permit
obtaining a wide ränge of elastic moduli in accordance with
the requirements of each case, and stress-strain
relationships that are similar even when the stresses are
high.

b) Structural modeis are best made of the same material
as the prototype. This is generally possible for steel or
prestressed concrete structures when suitable scale
(1:4-1:?0) modeis are used. But for very large structures,
such as concrete dams, we are forced, also for economic
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reasons, to adopt greatly reduced scales (1:30-1:100) and
hence to use model materials whose mechanical
characteristics are reduced compared with those of
concrete in accordance with similitude requirements,

For structural modeis, I have long since used special
materials simulating the mechanical properties of concrete,
by introducing the technique cf 'wet mcdels" (with a
waterproof coating) practically free of internal stresses.

The tests are then divided into two successive stages.
In the firststcge,;called "normal load tests", the
deformations are investigated for values close to
similitude conditions (that is, e e') under loads
corresponding to those of the structure in operation»0\,

The second stage concerns ultimate load tests and the
transition to them is gradual. The ratio cf the highest
actually supported load to that of the design load is
generally assumed as overall "factor of safety".

This ratio can easily be referred to all the operating
loads equally or differently increased following a

probabilistic coefficient applied tc each independent load.
In the case of statically high indeterminate structures itdiffers frcm the classical ratio cf ultimate Lo working
stress, and its meaning is greater since it takes into
account the bi- and triaxial strength of the material under
stresöes in different directions and the plastic-adjustment.

One can by expedients increase on the model solely the
loads which in the prototype may rise through extraordinary
action. Such are wind load for skyscrapers and water
pressure for dams. The horizontal loads alone may undergo
increases of consequence for the stability of these
structures. In setting up a model study it is, therefore,
cf basic importance that the factor of safety shall be
evaluated as simultaneously affected by:
- loads having a fixed value (dead load);
- loads which may increase with respect tc their ordinary

value (wind effect);
- actions the occurrence of which is only probable

(earthqaake).
In practice, when the so-called "weight" cf each of

the above phenomena has beon established, one can obtain

(°) It is advisable to secure, through repeated loading
cycles, non-elastic displacements (settlement of the
foundation, adjustment and opening of joints,
localized plasticity) which are likely to occur since
the first loading in order to obtain an elastic and
uniform model Performance fit for repeated measurements
.,...¦! -cntrols. Thir remits cbtai1-.*ng the stresses,
displacements and structural behavior of the prototype
under workir-g conditions.
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the factor of safety by experimentally increasing all the
loads up to the failure of the model, considering the
"weight" corresponding to each type of load

Therefore, not only cn© but a number cf faotors cf
safety can be secured, each of which corresponds to a
given set of phenomena the influence of which is to be
analyzed.

c, Geomechanical modeis investigate structures
on foundations whose equilibrium conditions

may affect the sarety of the structures, as is the case of
dams, large bridges and power or highway tunnels,

The stability of block foundations has lately beer
simulated and studied on geomechanical modeis the
characteristics of which had conveniently been schematized
on the basis of gecgnostic tests.

It may also be pointed cut that in-situ and laboratory
investigations cf the geomechanical features cf the reck
and soil mass are increasingly used and recemmended as an
aid tc model studies,

The modeis, therefore, must faithfully simulate the
rock and soil conditions and its mechanical preperties,
The tests are usually carried to failure.

These investigations are tc be considered as basic
when extensive discontinuities (faults, cavities) or a
prenouneed anisotrepy (stratificatiens and diaclases) are
present in the rock mass, especially when sliding er
least-resistance planes may develop or, more generally,
when large low-strength block formations are involved.

In these modeis, cohesion and angle of friction must
also be faithfully reproduced. The difficulty encountered
in establishing the true values of the angles of friction
makes it in the rnodeling conservative to assume reduced
values wnich are still within the approximation allcwed by
field tests.

The prototype and model strains have to be the same
and, therefore, the scale ratio must be reduced. The model
materials then shall have high densities and low mechanical
properties (i.e.,very low moduli of elasticity, yield-point
and ultimate loads) in order to ccmply with similitude.

3.- Ässessment of (structural) safety at the desiem stage.
The adeption of model techniques is firstly cf

considerable importance at the design stage of structures,
especially if these are statically highly indeterminate.

Structural safety can then be evaluated by modern
probabilistic criteria as suggested in the Freudenthal
report when:

the expected Statistical dispersion of the loads, i.e.
of the external or operating forces S, is taken into
consideration by determining the dimensions of the
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prototype on the basis of a force ys«S (where Vs,
the load safety factor, is >1) and adopting equivalent
working forces in the model;

- the Statistical dispersion of the strength dr of the
prototype material is taken into account by assuming an
ultimate load, or a yield point, equal to Or/Vr (with

Yj>, the rupture safety factor, > 1) and comparing the
hignest internal stresses furnished by the model at that
value.

The model then becomes a very efficient tool for a
"structural analysis".

Äs typical examples I shall mention:
- the statical and dynamic investigations carried out on

an elastic model of the Polcevera viaduct, of the
Maracaibo bridge type, designed by prcf. R. Morandi
(fig. l);

- the far more elaborate analysis, made particularly on a

structural model carried to failure, of the new San
Francisco Cathedral designed by prof. P.L.NervK figs.2,3);

- the study cf the safety degree of the Kurobe IV Dam and
its foundation (figs. 4, 5, 6).

j1
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Fig. 1 Polcevera viaduct, Italy. Elastic model:
Scale 1:50
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Alln*L<
Fig. 2 San Francisco Cathedral, U.S.A.

General view of model. Scale 1:15,
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Fig. 3 San Francisco Cathedral.
Structural model under failure tests,
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Pig.5 Kurobe IV Dam. Displacements recorded at
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Pig.6 Kurobe IV Dal. Structural model at failure,
showing the opening of joints.
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Evaluation of the safety degree cf an alreadv existing
structure.

Mcdels may be of great assistanr-o not only when

structures are being designed but also when the stability
and safety degree of er^"(-ed wcrks are being checked. This
is particularly f^-~ when verifying large structures which
have undergor- statical conditions unpredicted or
unprer11--' ---^-Le at the design stage.

Here, toc, I shall briefly illustrate some examples in
which testing cn mcdels has yielded highly significant and
conclusive results, with particular regard to the safety
degree of the structure«

After a few years of Operation, extensive subhorizontal
microcracks were found at the upstream face cf a large
arch-gravity dam completed in 1958. The influence of these
cracks on the structural Performance and safety of the dam
at füll reservoir has been investigated cn a large structural
mpdel in which the number and pattern of the microcracks
had faithfully been reproduced (figs. 7, 8).

Interesting tests were also conducted on a 1:4 scale
model tc verify the compression safety degree of the main
columns of the Cathedral in Milan (fig. 9). The two materials
(Candcglio and Serizzc mnrbles), of highly different moduli
of elasticity, and the geometry of the individual blocks

were identical with those of the prototype (fig, 10). The
pattern of the stresses in the masonry dorne carrying the
main spire of the Cathedral has then been anaJyzed on a
large elastic model (fig, 11),

The effect of the horizontally stratified bedrock
anisotropy cn the stability of a recently constructed dam
was investigated by means of geomechanical modeis. The
various expedients devised tc raise the safety degree of the
dam-foundation unit were also examined (fig, 12).

Finally, the model tests carried out for the
double-curvature arch Vajont Dam should be mentioned. As is
known, this dam has brilliantly withstood the extraordinary
sliding of Mount Toc into the partly filled reservoir and is
new sustaining the enormous aSymmetrie mass of slide
material (fig, "13). After the di säst er, model studies were
conducted to determine the safety degree of this imposing
structure under the present exceptional live load (fig. 14).
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Fig. 7 Flumendosa Dam, Italy. Microcracks on upstream
face of model.

:u ja

Fig. 8 Flumendosa Dam. Downstream view of model
under test.
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under test. Scale 1:4.
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Fig. 11 Milan Cathedral. Elastic model of masonry dorne.
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F ig. 12 Mequinenza Dam, Spain. Plane model on
geomechanical foundation.
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Fig. 13 Vajont Dam. Asymmetrie slide material
acting on upstream face.
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Fig. 14 Vajont Dam. Model under
asymmetric load test.



16 la - MODEL ANALYSIS FOR STRUCTURAL SAFETY

5. - C'onclusions.

It is believed that the above brief outline has
clearly shcwn the contribution given, and which can be
given, by testing on modeis when evaluating the safety
degree of a structure at its design stage and after
ccnstruction.

When it is assumed, in accordance with modern trends,
that a rational determination cf safety involves the
adoption cf an acceptable risk cf failure, a design
procedure for uniform safety, and hence optimization, can
be based on structural model investigation.

Finally, the arduous problem of structural reliability
of statically indeterminate structures, related to the
failure mechanisms depending on the ccnsecutive loads
mentioned also by prof. Freudenthal at the end cf his
paper, can satisfactorily be solved through a judicious
adopticn of the present model test technique.

SUMMARY

After a short introduction the paper outlines the
actual possibilities of evaluating the safety degree of
a structure by testing elastic, structural and geomechanical
models.

The evaluation may concern: 1)structural safety at the
design stage; 2) safety degree of an existent structure and
cf one operating under extraordinary conditions.

The importance of model investigation particularly for
the optimization of statically highly indeterminate
structures is then emphasized.

RESUME

Apres quelques mots d'intreduction le rapport sousligne
les possibilites actuelles donnees par les differents types
de modeles(elastigues,structureaux,gecmechanigues)pour
l'analvse de la securite dea grandes structures.

On considere apres:1) l'examen du coefficient de
securite dans la phase du projet de l'ouvrage; 2)l'evaluatior
du degre de securite d'un ouvrage dejä acheve ou soumis ä

des actions exceptionelles.
Le rapport termine en souslignont les possibilites des

modeles surtout pour l'etude et l'optimization des structures
hautement hyperstatiques.

ZUSAMMENFASSUNG

Nach einer kurzen Einleitung werden die wirklichen
Möglichkeiten einer Untersuchung des Sicherheitskoeffizienten
eines Bauwerkes an elastischen, strukturellen und
geomechanisehen Modellen beschrieben.

Der untersuchte Sicherheitskoeffizient kann sich auf den
Entwurf, \ein bestehendes oder ein unter ausserordentlichen
Verhältnissen befindliches Werk beziehen.

Die Wichtigkeit der Modelluntersuchungen für die
Optimisierung statisch hochunbestimmter Werke wird nachdem
besonders unterstri^chen.
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Critical Appraisal of -Safety Criteria and their Basic Concepts

Etude critique des criteres de securite et de leurs fondements conceptuels

Kritische Betrachtung der Sicherheitskriterien und ihrer grundsätzlichen Auffassungen

A. HRENNIKOFF, Sc.D.
Research Professor of Civil Engineering

University of British Columbia
Vancouver, Canada

The subject of structural safety is primarily a matter of common sense
and not of mathematics. This does not raean that mathematics should be ex-
cluded when safety Standards are being established,but it means that its
role must be subservient. The conclusions of a most erudite mathematical
derivation are only as valid as the underlying assumptions. With this
thought in view the writer intends to examine closely some of the propos-
itions forming the basis of the author's mathematical development.

The author associates safety of structures with the concept of
probability of failure and he outlines the method of derivation of the necessary

relations based on this principle. He is careful however to point out
that his formulae are not suitable for practical use for the reason of
absence of the pertinent Statistical data characterising the random Variation
of the relevant factors.

Furthermore he freely admits the presence of causes of failure unrelated
to random factors and even holds mistakes in design of details as the usual
cause of failure. In the light of these admissions one cannot see the virtue
of the formulae associating failures solely with the random factors, seldom

if ever responslble for the actual failure, and leaving out of consideration,
of necessity,the really significant non-random causes.

The author's reference to the alleged use of the failure oriented
probabilistic concept of factor of safety in the design of aeroplanes poses an

interesting question as to the relevancy of this concept in the design of
bridges and buildings. Once a person steps into an aeroplane the risk of
failure and death, however remote, is tacitly accepted, and so it is not
illogical to associate the design of the aeroplane structure with a probability

of failure. The Situation is however different in case of buildings and

bridges. With his probabilistic approach the author in effect proposes an
intentional reduction of safety,however small,compared to the one implied in
the conventional design. Neither the society in general nor the engineering
profession in particular would accept this idea. The present practice is
and hopefully will always remain,that the building should be designed as safe
as humanly possible. This does not insure an absolute safety, because
life is füll of hazards. Factors responsible for these hazards are mostly of
a non-random nature and unpredictable, although some of them, such as tomadoes

Schlussbericht
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and earthquakes, excessively severe for a given region, are akin to the
phenomena normally incorporated in design. It is no more rational to
provide for these overviolent actions than for the acts of war, riots,
collision with aircraft, gas and chemical explosions and other factors
always left out of consideration.

The kind of reliability required for the design of structures seems
to be provided adequately by the commonly used factor of safety covering the
uncertainties and faults of all types, i.e. of design, construction, loads,
materials and Operation. This factor expresses the best collective judgment
of engineering profession, and its value is subject to revislon with
improvement of all aspects of engineering practice.

The concept of failure as an integral part of the probabilistic theory,
and several aspects of it, as used by the author, Warrant close examination.
A natural question is, how to analyze a particular structure for failure.
The theory of ultimate or limit design gives in some cases an answer to this
question. But this theory is highly controversial (50) and the acceptance
of its answer means the endorsement of the theory. In other words, an expert
on probability, and normally not an expert on structural theory, makes a

decision for the designer, that of the two conflicting theories the elastic
and the plastic, he must accept the latter.

Limit design procedure, right or wrong, is available only for low
flexural frames. What should one do for the multitude of structures of other
kinds? Wait until such aolutlons by ultimate theory become available, even

if one has no confidence that they may be forthcoming?

No distinction is made in the author's theory between the actual physical
failure and the functional failure, i.e. an excessively large deformation.
This implies that in the author's view it does not matter whether peOple
get killed in the collapse of a probabilistically designed structure or are
merely inconvenienced by a large deformation,-a proposition, which is not
likely to meet a ready acceptance.

A reader would find difficulty in following the author's argument that
failure of a Single member signifies failure of the whole structure irres-
pective of whether the latter is statically determinate or indeterminate.

A major Impression which one gathers from the discussion of the probabilistic

theory of failure is apparent lack of appreciation by its supporters
of a bewildering multiplicity of causes affecting vitally the reliability of
a structure. The writer wishes to illustrate this point by two examples.

Comparative stress analyses were made by the writer and his colleague (51)

of a reinforced concrete barrel roof by two different methods: firstly,
the theory of finite dement, a new and highly effective tool of structural
analysis, and secondly,by the equations of elasticity given in the Manual of
Engineering Practice 31 of the American Society of Civil Engineers. Some

significant stresses determined by the two methods differed greatly. How

then should the choice between different discordant but still admissible
methods be made by a probabilistic designer? By the way of explanation it
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may be pointed out, that in the present design practice, once the dis-
agreement of the existing methods is recognized, concensus is reached in
a course of time leading to the acceptance of one method in preference
to the other. In the meantime the factor of safety Covers the uncertainty.

The Situation in the example considered is however much more complicated
than mere disagreement of the two sets of numerical results. Both methods
of analysis were based on constant moment of inertia (i.e. an uncracked
section), constant values of the modulus of elasticity and Poisson's ratio
and the absence of creep and shrinkage. These assumptions are obviously
not true. The designer would allow for these unknowable factors by judgment
based on experience. Design is an art as well as a science, and is more
than a mere Substitution of numerical values into complicated probability
formulae.

The other example is borrowed from the writer's discussion of a recent
paper on probabilistic theory by the same author (52)

"A collapse of an important bridge in the course of erection several
years ago (accompanied by loss of life) was found to have been caused by the
wrong design of a detail of the erection structure, accentuated by the con-
tributing factors, including an unfortunate and destructive combination of
the yielding of steel and crushing of plywood (a phenomenon neither described
nor even recognized before), an inadequacy of prescribed allowable stress in
the significant area, and two elementary blunders in calculation. Such

nondescript errors would baffle any Classification, yet they are real and not
infrequent, although they are usually less drastic and seldom lead to
failure",

In conclusion the writer recapitulates the reasons for his unqualified
rejection of the probabilistic theory of safety of structures involving
human occupancy.

1. The concept of the probability oriented factor of safety is inacceptable
in principle.

2. The factors which usually cause failure are not of a random type.

3. The data for evaluation of parameters characterizing the random type
factors are mostly unavailable.

4. The failure causing factors are so numerous and varied that they defy any
Classification and codification.

5. The value of the intensity of a given load pattern causing failure of a

given structure is usually unknowable by a method of structural analysis
and is questionable when such analysis is available.

6. Distinction between physical and functional failures and between determinate
and redundant structures results in further difficulties for a probabilistic

designer.
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7. The usual concept of the factor of safety of the conventional elastic
design is the best one available.

(50).A. Hrennikoff. Plastic and Elastic Designs Compared. Preliminary
Publication. Seventh Congress, Rio de Janeiro, 1964. International
Association for Bridge and Structural Engineering.

(51). A. Hrennikoff and S. Tezcan. Analysis of Cylindrical Shells by the
Finite Element Method. International Association on Shell Structures.
Symposium. Leningrad, Ü.S.S.R. 1966.

(52)A. Hrennikoff. Discussion. Analysis of Structural Safety by
A. Freudenthal, J. Garrelts and M. Shinozuka. Journal of the

Structural Division of A.S.C.E.

SUMMARY

The writer rejects the probabilistic method of design of
structures involving human occupancy, because (1) it is in-
acceptable in principle, (2) leaves out of consideration the
really significant non-random causes of failure, (3) is based
only on a few random factors whose charaoteristic parameters
incidentally are mostly unavailable and (4) for most structures,

the condition of failure may not be identified by any
existing method of analysis.

RESUME

L'auteur rejette la methode de projection de constructions
qui se base sur la probabilite et tient compte de

l'occupation humaine.
1 Le principe meme de la methode est inadmissible
2 Elle neglige les causes de ruine non-accidentelles

vraiment importantes
3 Elle se base uniquement sur quelques facteurs aleatoires

dont les parametres caracteristiques sont le plus souvent
inutiles

4 Pour la plupart des constructions, les conditions de ruine
ne peuvent etre determinees par aucune methode de calcul
existante
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ZUSAMMENFASSUNG

Der Autor verwirft die wahrscheinlichkeitstheoretische
Entwurfsmethode für Gebäude, die von Menschen bewohnt werden,
weil sie
erstens im Prinzip unannehmbar ist,
zweitens die tatsächlich wichtigen, nicht zufälligen
Bruchursachen auslässt,
drittens auf wenigen zufälligen Grössen gegründet ist, deren
charakteristischen Parameter übrigens meist unbrauchbar sind,
und schliesslich viertens, weil für die meisten Bauwerke die
Bruchlast mit keiner bestehenden analytischen Methode
bestimmt werden kann.
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Critical Appraisal of Safety Criteria and their Basic Concepts

Etude critique des criteres de securite et de leurs fondements conceptuels

Kritische Betrachtung der Sicherheitskriterien und ihrer grundsätzlichen Auffassungen

FERNANDO VASCO COSTA
Prof.

Technical University, Lisbon

In his brilliant survey of the present Status of structural safety problems

Professor Freudenthal makes clear that engineers are not designing structures
close enough to the "state of art" limit, that the rational approach to the

problem of safety has to be a probabilistic one, and that absolute safety is no

more than a convenient fiction.

The key to a rational approach to structural safety is in his own words the

concept of an "acceptable risk of failure". But most engineers, because they be—

lieve they can or they have to design absolutely safe structures, are reluctant
to accept such a concept.

The difference between the attitude of accepting or not accepting a risk of
failure, be it a small one, is not an academic question, because structures will
be designed quite differently depending on whether one does or does not recognize
the impracticability of building absolutely safe structures. The consequences of
these two opposite attitudes seem worthwhile emphasizing.

If the existence of risks is to be recognized, accepted and taken into
consideration in the desirn of engineering structures, instead of trying to have

uniform safety in all eiements of a structure - which is an ideal recommended by

several authors - one has to reduce the strength of the eiements of which the

failure will have less castly consequences, with a view to reinforcing those
eiements of which the failure wnuld have costlier consequences. Such criteria will
enable the desirn to be improved without increase in cost.

If the existence of risks is to be taken into consideration, one has to

adjust the strennth of the whole structure to the consequences of possible failures.
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This implies building a dam, if located upstream of a town, stronger than one

located downstream, even if both dams could otherwise be built perfectly alike.

If the existence of risks is recognized and accepted, the structure should

be designed so as to reduce as much as possible the consequences of accidents.
There will even be instances where it may be convenient to increase the probability

of failure of a structure so as to reduce its cost, the savings being used

to minimize the consequences of a possible failure. This will be the case with

dykes against floods and sea invasions, where transverse dykes are built using

the money that could otherwise be used to increase the height and reinforce the

main dyke. The function of the transverse dykes is the reduction of the area

flooded in case of failure of the main dyke rather than direct protection against
sea Invasion.

If the existence of risks is to be recognized and taken into consideration,
structures will have to be designed so as to fail in the less inconvenient way.

In some cases this will imply the use of devices similar in function to fuses,

for instance when a lighter and lower dam is built on a secondary Valley as a

protection to a big earth or rock-fill dam on the main valley.

In spite of Professor Freudenthal's well presented arguments against redundant

eiements, the presence of such eiements can, in some particular cases, con-

tribute to increase the safety of the structure. Not only can the failure of
redundant eiements give warning to halt Operation and avoid serious consequences of

accidents, but in some other cases the presence of redundant eiements will avoid

complete collapse, that would, otherwise, have catastrophic consequences.

Some structures are intended to absorb energy rather than to hold forces.The
amount of energy consumed in the destruction of redundant eiements can, at least
in some cases, be sufficient to save the structure. This is apparently the main

reason why ships are always moored with a large number of redundant cäbles, ins-
tead of with a few strong cäbles.
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SUMMARY

The need to design structures accepting the existence of risks and taking
into account the possible consequences of accidents may, or may not, be

recognized. The practical implications of one or the other attitude are quite
different.

If the existence of risks is recognized, the adoption of an uniform safety
factor for all the eiements of a structure, and the adoption of the same safety
factor for structures submitted to the same loads but whose failure can have

different consequences, should be discontinued.

It is also pointed out how redundant eiements can contribute to increase the

overall safety of a structure.

RESUME

Reconnaitre ou ne pas reconnaitre l'impossibilite de securite absolue quand

on projecte une structure peut avoir des consequences pratiques tres differentes.
Si cette impossibilite est reconnue, on doit choisir le coefficient de securite

de chaque element d'une structure, et de chaque structure en elle-meme, d'apies

les consequences des possibles accidents.
L'influence des eiements superabondants sur la securite d'une structure

hyperstatique est aussi discutee.

ZUSAMMENFASSUNG

Sehr verschiedene praktische Polgerungen beruhen auf dem Erkennen
bzw. Nichterkennen der Möglichkeit, Tragwerke mit Ausschluss aller
Risiken zu entwerfen.

Wenn das Bestehen von Risiken erkannt wird, muss der
Sicherheitskoeffizient für jedes Element des Tragwerkes sowie das Tragwerk

an sich nach dem Umfang der Folgen eventueller Unfälle gewählt
werden, anstatt der üblichen Wahl von genormten Sicherheitskoeffizienten.

Der Einfluss der Verwendung zusätzlicher konstruktiver Elemente
zur Erhöhung der Sicherheit von statisch unbestimmten Tragwerkssyste-
men wird ebenfalls beleuchtet.
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Some Safety Problems

Quelques questions de la securite

Einige Fragen zur Sicherheit

E. MISTETH
Budapest

1./ Designations
R Internal breaking forces and moments
S Internal forces provoked by load

Yaer\~5' The Basler reserve
£, T) Probability variables
Hi), ^(t) Stohastic processes
0» E(f) Expectation value
S»D(l) Deviation
Vm -5- Relative deviation, Variation coefficient

/Up^EJltt-o) ] Central moment of the r order
f sc -=5- Asymmetry

C*-r-f--3 Excess

n» Ty Asymmetry of the fifth order
-fr- Risk
i Time
T Lifetime of the construction
cl Interest factor

Cross sectional quantity corresponding to the
" nature of internal forces and moments

^ Stress corresponding to the nature of internal
forces and moments
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•\ Functional relation of independent probability
52 > "Vir

m

Pfi f f ^Functions
7" °^i>i2>"^n) variables

Independent variable of the standardised distribution
function

C(k) Cost of rebuilding /the bearing element/
•. Annual maintenance cost of the construction /the

M*/ bearing element/
Q Sum of the damage caused by the ruin of the

construction /the bearing element/» profil lost
included

2./ Raising of the problem. Methods applied so far in calculating
of dimensions
In dimensioning engineering structures for stability it is most

essential to determine safety. The first question to be raised is
wether an objective Standard of safety can be found and v/hat is the
most economical magnitude thereof. Thus the general question of
dimensioning is this: In what dimensions should be designed the bearing
structure of an engineering construction at a time t 0, if the
construction is being designed for a lifetime t T, with rebuilding
cost of the bearing structure being C, and the annual maintenance
cost of the bearing structure being L, sum of damages incurred by
the ruin of the bearing structure, profit lost included, being Q.

The classical dimensioning specifications present safety in
terms of the magnitude of allowable stress. Allowable stress is an
empirical value: it is a quotient of breaking strength and safety.
Present time specifications are threefold.

Into the first group come those specifications in which- safety
manifests itself in the measure of allowable stresses and the
grouping of loadings. These specifications show, e.g. throe grou-
pings as to the combinations of loading forces: operational loading
forces, extraordinary loads, catastrophal loads and influences. To
each of the three groupings pertains a different allowable stress.

The second group comprises those specifications in which safety
is divided in the grouping of loading forces, the dimensioning

stresses and the cross section. These specifications proceed from
the ruin of the construction and take every uncertainty, with a
divided safety sector, at its proper place into consideration; to
a greater relative deviation pertains a higher safety sector, to
a smaller one a lower factor. The theoretical basis of these
specifications was elucidated by Basler [31 •

Specifications that come into the third group calculate safety
on the basis of probability theory, with consideration given to
loading forces and their deviation, rupture stress and its deviation.

These specifications calculate with an undivided safety
factor.

Safety factor is determined by a probability of rupture assumed

in advance, and probability distribution. The assumption of
the probability of rupture /10 3, 10"*, etc./ is a result of sub-
jective evaluation, though it is much more perceptible than
saying, that, e.g., a twofold safety is required. The function
of the selected distribution is also based on individual judgement.
The difference between, e.g., the V/eibull and lognormal distribution

in the rate of the safety factor can be 10-100 per cent [2]
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By means of this procedure are calculated airplanes and solved
the dimensioning problems connected with space travel. Theoretical
considerations were set forth by Freudenthal [V] [5]•

All of the three procedures, though at different places and in
various ways, give the rate of safety on the basis of individual
deliberation. This rate, the expression of safety, will be further
on considered to include failures of an accidental character only.

Safety only provides an objective rate of measurement, as itwill be demonstrated further below, together with economical
considerations.

3./ A new procedure for dimensioning
The known basic relation for the calculation of dimensions,

based on probability theory is, if the time parameter is also
considered:

lim min {[H(i)-S(t)]2o} =i~ J
Expression 1./ says so much in words that, durin

me of the construction, the Basler reserve pJJ Y/t/
must he greater by a probability given in adva
zero.

...1./
the lifeti-
R/t/-S/t/

vance /l —~- / than

The basic relation is not unequivocal without the time variable
t /fig.l./

E[ffO]-0(i)

RßW(t)+Ut)

h
Rh)

100

E[<n(t)] 0

S(t)-S(t) + <n(t)
7(0 ioo

70 80 10090 years<o io so 4o so eo

Fig. 1.
4-./ Lifetime of the engineering structure

Safety of engineering structures can be related only to a
certain lifetime. If T »00, the ruin of the structure is considered a
certain event. The lifetime of engineering structures, therefore,
has to be determined in advance. In respect of lifetime permanent
and temporary structures can be dealt with.

For permanent structures lifetime has to be stated in T 10
years, if it is a vehicle, in T - 100 years if it is an earthwork.
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For temporary structures, when an earthwork is concerned, T ¦ 10
years, for structures of locomotion it may be that T 1. Largely
speaking, for permanent structures it is reasonable to count with
T 50 years, for temporary ones with T 5. From expression 1./it is perceivable that if T is small, the difference, R/t/-S/t/.is
greater than it is for a long T time. This holds particularly ix
R/t/ and S/t/ are stohastic processes with a notable trend /fig.l/.
5./ Loading forces, loading movements

Loading forces which are constant within time /dead load, earth
pressure/, constitute a stohastic multitude, loading forces and
movements which vary within time /useful load, water pressure, snow
or wind pressure, Variation of temperature, creeping, etv./ constitute

a stohastic process. The periodical /e.g.annual/ maxima of
these latter stohastic processes only form stohastic multitudes.
With the processing of technical data it is reasonable to calculate
four probability characteristics: the expectation value /a/,
deviation /s/, asymmetry /f/ and excess /c/. The processing of the data
must be gerformed on the basis of some textbook of mathematical sta-
tistics 1 In order to provide that the relative deviation of
excess itself should not exceed 19 per cent, the number of eiements
of the multitude has to be selected ~500 at the least. For the
determination of the probability characteristics of the useful load
it must be proceeded, with consideration given also to future
development, from the loading spectre. Forces of a meteorological
character must be processed from Statistical data.
6./ Rupture stress, geometrical dimensions

Rupture stress within a t time, which constitutes a stohastic
process with a trend, has to be determined in principle through
precessing a stohastic multitude of rupture tests of the material
taken at different times. In want of data it is supposed, in first
approximation, that at the end of lifetime rupture stress can be
taken as equal to the longtime stress limit and its probability
characteristics are the following:

ß*CT)-f* (e.g. <T-1,15)

t*CT>-«*V7; fiD-rt; c'(t)~c'1 '"2J
Geometrical dimensions always display a normal distribution,

Because of the corrosion effect the geometrical dimensions have to
be diminished at the end of the lifetime by a value t which may
be, in absence of Statistical data, 1 to 5 per cent of the dimen-
sion. Deviation of corrosion is taken equal to deviation of dimen-
sion: __ _

S»(T)-$»Ui fM(T) K=0j «*(T)-C>0J ...3./
7./ Probability characteristics of the function distribution

Probability characteristics of internal forces which cause
rupture and internal forces which are the result of loading cannot

be determined in a direct way, it is therefore necessary to
determine from the probability characteristics of the components
the probability characteristics of a quantity characterised by a
functional relation. Exact formulation of the problem is this:
the independent probability variables^, fa,.-.--, £n are given,
the probability characteristics of these, a;, s;-, f .• cj
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/i= 1, 2, n/ are also independent, and v,-4.0,5j what are the
amounts of the probability characteristics of the functional value
„, characterised by the functional relation m G(^, f2,...,t fn)

If the function m is expanded in a Taylor series and also members

of the third order are considered, the probability characteristics

of a rational v/hole function can be determined according
to the rule

o7«Efa)»G(V2. °n) + TiG''s'2f

I f«J ("7

t.i t.i -J+j' J

In expression 4-./ e.g. <f $Zq 1 ^ Generally if v»
oy; \ -sr -sc—L i=i-i2. n "0f15i it suffices to

J LdSi öjj j!i=ai J(j.; ' ' calculate with the first,
%i*aj " < i*i the case of excess,

with the first two members. If 0,15 <v- ¦ 0,35, all of the members
written here must be counted with. i

If 0,35^^ * 0,5 it is necessary to calculate accordingly further
members which are not written here. If the derivatives of function
G are not limited derivatives but the function can be expanded to
a Taylor seriea at the places a^, a2, a., also members or an
order hidher than the third may be required ]5].
If /fl/<0,l and ((yl " 0,2, the resultant distribution may be considered

normal. '

8./ Internal forces that cause rupture
They depend in general on rupture stress and cross section

quantity and constitute a stohastical series

JW=-Vo-wm •••5,/

Rfi)-H[6fh), O), /^Vo, /"VoJ ...s./
In expression 5./ internal forces causing rupture can generally

be established as a product of rupture stress and cross section
quantity. Expression 6./ refers to cases in which the bearing
structure is not made of a homogenous material and the type of
bearing is such as cannot be separated from the geometrical dimensions

of the cross section /e.g. excentrical internal forces within
a r.-c, bearer/.

Probability characteristics of internal forces causing a
rupture, if calculation has to be made on grounds of expression 5./i
are
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iv"(t)]2-[v%)]^[vW(l)]2r[v6(t).VW(l)T

rm.t*a)[$fr]'

If the internal forces producing a rupture are to be calculated
by expression 6./, probability characteristics must be determined

with the use of formula 4./.
9./ Determination of the cross section quantity

If probability characteristics of the Basler reserve Y/t/ are
to be determined from expression 1./, then, on the basis of expression

4./ __ __
aY(i)= Y(i)=K(t)-S(i)

+ G[s'tft).ssa)JZJ-3
From expression 8./ it is to be seen that the dimensioning

will be correct if
K(i) =S(l)imsy(i)] ...9./

where
tn * m(f, c,k) J

The value of m depends on the selected distribution and the
risk given in advance. Before proposing a type of distribution
for the determination of the value of m, a simple relation can be
given for the cross section quantity at a time t «• 0, if internal
forces that provoke rupture are such as according to expression
5./

°~ k
G*(T) 1-m2([v6(T)]2t[vwmy} .-10. /

In expression 10./ the surplus cross section quantity, being
a result of corrosion, AW^ depends on the value m ¦ m/f,c,k/.
S/T/ is the expectatiön value of the sum of internal forces pro-
voked by loadings, at the end of the service time, ^/T/ is the
expectatiön value of the rupture stress of the structural
element in question, v/T/ are the final values of the Variation factors

of the variable quantities.
If internal forces provoking rupture can be calculated by

expression 6./, for the determination of the dimensions expression
5»/ must be 3atisfied by way of the trial and error method.
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10./ The selected type of distribution
-The problem is v/hat kind of a distribution function should be

selected for the stohastical process Y/t/ at a time t ¦ T at the
end of lifetime or any time t. From among the internal forces caused

by loading meteorological forces and movements /internal forces
caused by wind, snow, modifications of temperature/ can best

be described theoretically -with the use of the ffeibull distribution
£7]. A great part of useful loads and internal forces provo-

ked by dead load do not follow the Weibull distribution pattern.
The distribution of cross section dimensions is normal. The type
of distribution drawn upon the rupture stress can be treated as
though from among a homogenous multitude of bearers a discretional
one were selected and given to rupture. This problem is, in its
essential conception, an urn-model to which one of the Pearson
distributions will best apply. Since in the resultant distribution

it is the rupture stress that generali^ has the greatest part
and meteorological forces generally play but a slight part, for
a resultant distribution the four parameter Pearson distribution,
Pearson 17, can be recommended.

rj -ot are ftt k£

[MJ 9

f
W7 ¦dx'i- \

9>o ß>{ ...11./
The Pearson IV. distribution which is interpreted between

-<=>*>6c<+ «is not suitable because effective distribution is no
clear urn model and, because distribution is dimensioned only for
x>0. If the four probability characteristics of distribution,
atyt/f, sy/t/, fy/t/, cy/t/ are given, ß, cL, d and q can be determined.

The value of fl- can be determined from the condition that the
integral of expression 11./ between - 00 and + «*> is [l],

,,-e cUz-(fY)1
2cY- 3(ff)2- auxiliary quantity

/3>fW
y \l / ...12./

d'f.>>(l>'2)l <G(v-1)-(fY)'(\>-2)l

*-£ d ay-H±.
T»*

+T72
tLZl zdzcos

m
fr<

f.
OS-

fcV
<£*0

<tf

Fig.2.

Bg. Schlussbericht
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From expression 12./ numerous conditions present themselves for
the distribution characteristics which are not dealt with in this
paper. The values of ry for whole number values of <£ and \> are
shown in figur 2.
11./ Optimum risk

The value of m m/f,c,k/ has furthermore to be determined in
expression 10./ in order that the cross section quantity could be
determined. The determination from expression 11./ is unequivocalif the value of k is given. For the determination of k two conditions

can be offered.
The first condition is that the total cost of the installation

should be a minimum. Supposing the interest factor to be q, the
cost of rebuilding of the installation, C/k/, must be written off,
during a service time T, and it is assumed that the installation
will be ruined after a time t<T and the part of the construction
not yet written off at that time will be capitalised to the date
of the ruin. Then the total cost will be

A minimum cost can occur where the first derivative by k of
expression 13./ is zero.

The costs of the bearing structure increase in a linear way
with the cross section quantity, C/k/ ¦ A+BW This linearitywill hold if the cross section quantity represents an area or ifthe ratio of cross section modulus to radius of inertia is constant.

If expression 10./ is expanded to a series, it will hold,
with a good approximation, that W0 » W*+wm.

If f. c and s are constant, for the thinkable values of k,
m » X0 + /./log k. A deeper reason for linearity is to be found in
the fact that distribution functions generally are exponential
/For a normal distribution e.g. between 2<log k-^6, it is true
with a 3 per cent accuracy that m 1,22+0,6 log k/. Substitu-
ting the above expressions into eachother, C/k/s/A+BW'+B X0 w/+
+BX7w log k that is

C(k)=Co(lrbj09k) ...1W
Expression 14./ reflects a stohastic relation which can be

verified for a series of numerical examples with a difference less
than 2 per cent, doing regressional calculations. The minimum that
results from expressions 13./ and 14./ is

k

..15./
The maximum for expression 15./ produces itself at a time t=0.

On an average, if the cost of the bearing structure of a building
based on a 3 per cent risk, is C,

L^f[i>2] ...16./
It is apparent from expression 16./ that the more damage will

be caused by the installation when it is ruined, the less will be
the risk permitted to be taken. E.g. if T » 1 and Q 0, k-,-, ~ 50.If T =» 50 and iL - 100, kmgjc - 5000. Here the risk that is taken,
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varying within a ränge of 2 per cent and 0,02 per cent, corresponcß
to the percentage wastes in non damaging industrial production,
which is 1-2 per cent £8].

Another condition is that the annual quotient to write off for
the installation is ^r ' ^T ' C/k/ and the total of annual maintenance,

L/k/ is the minimum of what is referred to as entire cost.
The concept of entire cost was defined by a Congress held on
"Perspective of the user and reliability of the system" in the United
States in 1962. It is assumed that maintenance costs take the sum
°f

h

Expression 17»/ is not proved, it merely appears to be loglcal
upon the analogy of expression 14./ f9] • The minimum of all anual
costs is secured by the expression

y Lobi(cf-I) ...18./
k*10 C°b'1 ?r(Vf)

being satisfied. Expression 17./, if T»50 and q-1 =t§q where p,in percentage, is the interest rate, will be

ufJUL

From the two expressions /15«/ and 18./ that one must be
satisfied which gives a larger value for k. From the comparison of
expressions 14./ and 19./ results that when the condition

n \l U t>i

l>JL/n^Vc^p _9 ...20./
C 2,6 'u L

is satified, that is, if the ratio of the damage incurred and
the rebuilding costs is greater than the right side of expression

20./, the value of k must be determined on the basis of expression
15«/ and /or 16./, if it is smaller, expressions 18./ and/

or 19./ will give the value of k.
It should be noted that in the vicinity of the optimum value

for extremely small differences v/ill result in expression 13./»
therefore the value of k must be determined with a rounding up
and on a rather large scale.
12./ Other probabilities that may be considered

Beside what has been said above it is also essential, how
many uniform structural eiements are going to be built in. If n
number of bearing eiements are to be fabricated and a risk of
-jj- has to be taken for each of them, for one piece a risk of
-L<-Lmust only be taken. The Solution of the problem is

H-(oHT)V-Trr ...21./
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Eypression 21./ displays a binonial distribution.
K~ i-n)j JZ1L ...22./

and/or < i_ jj

If k>50, then, with a good approximation
fc'Ä nk "~ ...23./

Thus, if it is required that no one of the n pieces should
get ruined with a probability of -^- every piece must be fabrica-
ted with a risk of -4- being taken.nk
13./ Conclusions
1./ The following answer can be given to the problem raised: The
correct dimensions are given in expressions 9./ or 10./, the value
of in u /f, c, k/ can be determined through the Pearson IV.
distribution according to expression 11./, the most economical measure

of risk taken against failure, 1A, is given by expressions 16/
or 19./. As to the measure of the assumed risk it must furthermore
be considered, how many uniform eiements in question are going to
be fabricated.
The suggested method of calculation does not contain any subjecti-
ve factors, all dimensions and safety can - on the basis of
mathematical statistics - be determined solely upon economical considerations.

2./ Safety, consequently, is a mutual and unequivocal function of
the probabilities for the installation that during its scheduled
service time all circumstances provoking ruin can occur simul-
taneously in the most possibly unfavourable arrangement ^3j.
The lower this probability /the risk taken/ is, the greater is the
safety. V/e suggest the acceptance, as a measuring value, of log k

the logarythm of the reciprocal value of the risk taken. This
expression has proved suitable in information theory []l0] as a
quantity proportional to the measuring number of the information
quantity. For a great safety a large amount of information is
required about the given bearer. Investment expenditures increase
with safety, maintenance costs decrease with it.
3./ For our bearing structures the principle of equal safety is
in appropriate. The more damage is caused by the structure with
its ruin, with so much more safety must it be designed. Secondary
bearers, the ruin of which causes no damage, must be designed
with a lesser safety. Installation with a short designed service
time can be of smaller divisions, because within a shorter period
the rupture strength of the load-bearing building material shows
a lesser decrease and the probability for the occurrence of the
loads, particularly meteorological ones, is lower within a shorter

period.Consequently, if it is to proceed from the safety of
the primary system of bearers of definite installations, the
primary system of bearers of temporary installations can be
fabricated with a lesser safety and so can the secondary bearers of
the definite installations. Still lesser safety is required for
secondary bearers of temporary installations.
4./ General rules for dimensioning are provided by deterministic
interrelations in technical mechanics. By reason of a deviation
of parameters in the functional interrelations the economical
dimensions have to be determined with the aid of stohastic interrelations

based on probability theory.
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5./ A processing of Statistical data is required. The described
method, however, can be applied even without processing the data, in
that case it has to be proceeded from loading given in the rules
and from nominal geometrical and strength measures. For deviations
there is to be taken, in the absence of data, one half of the tole-
rance. Tolerance, then, is based on Statistical experience.
6./ Author considers the application of this procedure absolutely
necessary: in setting up rules for dimensioning, stability calcu-
lations for eiements of serial production and structures of high
cost.
7./ Rules in Operation at present are over-dimensioned even today.
The degree of over-dimensionedness is, with various rules, in terms
of costs 8-12 per cent for primary bearers at definite installations.

Over-dimensionedness for secondary bearers and for temporary
installations is 11-17 per cent. This can best be helped if calcu-
lations will be made, instead of the minimum values as specified
in the rules, with their expectatiön values. If this proportion is
considered, there will result economical dimensions /E.g. the
expectable value of the yield point of St. 37 is, on the basis of
Statistical data, [ll] «» 2800 kp per square cm, whereas the rule
specifies 2400 kp per square cm.
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Summary.

From all factors influencing the dimensions /loading, geometrical

dimensions, crushing stress, etc./ the value and the probability

variables of the load capacity reserve, Y/t/, can be
determined. By means of the Pearson IV. distribution the geometrical
dimensions can be determined for a risk arbitrarily undertaken.The
undertaken risk can be determined through only economical conside-
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rations. The greater the damage caused, the lesser risk should be
undertaken. If the damages are not significant, dimensions are
influenced by the annual maintenance costs, /!/. For a safety
rate the logarithm of the reciprocal value of risk /log k/ is
suggested.

RESUME

La valeur de la reserve de limite admissible de la Charge,
Y/t/, et ses variables de probabilite peuvent etre determines a
l'aide de tous les facteurs qui sont a meme d'influencer les
dimensions - tels la charge, les dimensions geometriques, tensions
de rupture, etc. Par moyen de la distribution Pearson IV. les
dimensions geometriques peuvent s'etablir pour un risque arbi-
trairement entrepris. Or, le risque entrepris peut etre determine

moyennant des seules considerations economiques. Plus le
degät est grand, moins de risque doit etre entrepris. Si le de-
gät n'est pas important, les dimensions seront influencees par
les frais annuels d'entretien. Proposition est faite d'employer,
pour mesure de securite, le logarithme de la valeur reciproque
de la risque entreprise (log k).

ZUSAMMENFASSUNG

Aus sämtlichen, die Abmessungen beeinflussenden Faktoren -
wie Belastung, geometrische Abmessungen, Bruchspannungen usw. -
können der Wert Y/t/ der Belastungsfähigkeitsreserve und seine
Wahrscheinlichkeitsveränderlichen berechnet werden. Mit Hilfe
der Verteilung Pearson IV. können die geometrischen Abmessungen
zu einem beliebig unternommenen Risiko bestimmt werden. Das
unternommene Risiko kann wieder auf Grund allein wirtschaftlicher
Betrachtungen festgelegt werden. Je grösser der Schaden, ein
um so niedrigeres Risiko darf unternommen werden. Bei nicht
bedeutendem Schaden beeinflussen die jährlichen Wartungskosten,
/L/, die Abmessungen. Als Sicherheitsmass wird der Logarithmus
des Kehrwertes des unternommenen Risikos vorgeschlagen (log k).
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axe not available. The second assumption is only a crude approx-
imation, e.g. it disregards phenomena connected with rheologic
strength or fatigue. An attempt to avoid the first of the above

assumpions is given by A.M.Freudenthal /3/. The author considers
a sequence of load applications, the probability distribution of
F in a Single application being known. However, it is not always
easy or even possible to say what is a Single load application as
the loading is a continuous process. Basides, in order to "locate"
the process in time the intervals between those applications must
be assumed. Thus, in general, the whole of the problem is to be

discussed in the language of stochastic processes, the approximation
with different discrete modeis being of course possible and valuable
in view of effective calculations.

1. Measnres of safety in time

A fundamental merit of the probabilistic approach to safety
is the introduction of a unique and universal probabilistic measure

of safety. We shall descuss here some basic notions following
the very clear exposition of the subject in /3/. The generalization
depends on passing from the discrete model to a continuous time
process.

On the assumption that the carrying capacity R is independent
of time which will hold in this point) we define the probability
of safety or the reliability. L, as the probability that the time
to failure tR, i.e. the effeotive life time of a structure exceeds
the period of exploitation t T, T < t,-.. This is equivalent to the

)n P„„^< R if P„ov denotes the i
max max

we have
condition P„„^< R if P„„_ denotes the maximum load during T; hence

L(t) Pr (t < tjj) Pr (Pmax<R), t T (l.l)
The probability of failure within that period equals

F (t) 1 - L(t) Pr (t > tR) (1.2)

The a priori probability density of failure at the instant t is

f (t) Sgl (1.3)
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The failure rate, accordingly to /3/, is the probability that a

structure that has survived t will fail in a time unit at t,
h<*> IfH " h to LW (1.4)

Obviously, the above formulae correspond to (2.1) f (2.7) in /3/.
Here, R is a random variable and denotes the time to first sur-
passing the value R by the load.

The load P, being a continuous time process which we denote
hy g(t), the results of measurements can, dependlng on the type
of measuring devices, be obtained in threefold form: (1) as a con^
tinuous graph seif-recording Instruments) Fig.l, (2) as periodic
readings at time intervals 6t (points denoted by small circles)
(3) as maximum values at fixed time intervals At, usually related
to cyclicity of load accurrence, e.g. in 24 hours, a year, etc.
(devices recording maximum values denoted by little crosses).

n
\-x

t.£\A

&
*6t^ M

Fig.l
By taking the ratios of the number of points( marked with little

circles) in the consecutive intervals Ag i.e. in consecutive
horizontal bands to their total amount for a sufficiently long time

interval t we obtain the frequency distribution and for t-> oe> the
probability density of load at a given instant, 'Ü'(g), as shown on

the left hand side of Fig.l. When the recording is continuous one

can take arbitrary time intervals 6 t. On "matching" this probability
density to that of R we arrive at the probability of failure at

a Single load application (pF in /3/).
By considering the time interval At in which we are interest-

ed and a sufficiently long interval nAt, and on establishing a
constant value of g, we find the number m of intervals At in which
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are attained. The distribution (l.5) now tends to the Poisson
distribution

$(g) exp [- V(g) T] (1.7)

with \> (g) denoting here the average number of events when g is
surpassed per unit time (v*= 1/t where t is the average time
interval between such events), this number being dependent on the
fixed value of g. The function V(g) is found experimentally, e.g.
by Computing t for consecutive g (on a graph of the type of Fig.l).

The second procedure we mentioned above does not require de—

terraining of the function y(g) or p(g) and is based on Fisher-
-Tippett asymptotic extreraal distribution representing the
distribution of the highest or lowest) value in a test, where the
number of particular test readings increases infinitely. Thus, it
is a matter of finding the limiting disturbation, for n -?¦ co of the
largest of n randomly chosen ordinates of points marked by little
circles in Fig.l, at a fixed value of St (so as to satisfy the
requirement of independent loads). It is this form to which the
distribution of max g tends for t ¦¦¦> oo since a test of infinite
number of test readings tends to become strictly representative.
For finite n we obtain here Eqs. 1.5 and 1.6); albeit, p(g)
and m (g) have to be repiaced by i|r(g) and i|((g), respectively
(cf. Fig.l), i.e. by the probabilities of g at a given moment (in
the experiment under consideration).

On introducing the new variables
z n[l - f(g)],

-u lnz lnn + ln f \to(g) dg,
<3

we obtain

9(8) <-S - n §*~\ dg n (l - |] y dg -—^

¦ n e"Zf d"S7d"g
dz - e_z dz e~e (~e~u) du»

whence the variable u is seens to possess the asymptotic density
distribution

co-Cu) exp (-u - e~u). (I«8)
The variable u is seen to be related linearly to g if ^(g) is ex-
ponential. Consequently, cp(g) can be obtained directly from Eq.
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in progressively and results in the "death" of the structure
when 6 attains 1. For a simple example (not to be directly ex-
tended) 6 can represent the reduction of the cross- section
of an axially loaded rod because of an expanding crack. Thus,
our strength condition P< R is to be replaced by a more general
one

6 < l. (2.1)

Now, the problem consists in the prediction of the time t
at which the damage becomes 1 or, in a probabilistic approach
(<J being a random variable), in the determination of the
probability

L(t) Pr( 6< 1) (2.2)

for a given period of exploitation t T.
For the classical case 6 remains 0 as long as P < R,

R being the carrying capacity. On surpassing R for the first
time 6 suddenly increases to 1 and the structure falls Fig.2)
It is seen that <j is defined to be a Heaviside function

& (t) H(t - tR),
tR denoting the time to first
surpassing R by P g(t). The

probability (2.2) reduces to
(l.l) and exactly the theory in
point 1 provides the Solution.

In general, the hypothesis
that the physical state of a
structure can be determined by a

unique parameter, c5 is a
considerable simplification of
actual conditions, albeit it

Fig.2 results in a far reaching gene-
ralization of the former theories of safety. In fact, ci can

depend on the whole previous history of loading and, therefore,
is a functional defined on the class of all possible functions
P •§(*) • Depending on what phenomena are to be included (e.g.
fatigue, rheology, etc.) and for the sake of effective calculation
further restricting hypotheses have to be introduced. First of all,

<7Li)

iR
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we shall assume that 0 is cumulative so that we only examine
the increments &6(t) which simply integrate in time. If, for the
time being, we abstract from rheologic phenomena, we are able to
make the assumption that ä6 depends only: (l) on the instantaneous
internal state described by 6 » 2) on the external state
described by P g(t), (3) on the change of the external state given
by dP d g(t), (4) directly on time. Taking the increments in a

time unit, i.e. replacing them by velocities (denoted with dots)
we obtain

6 t (* g, g, t). (2.3)

The direct dependence on time reflects corrosion-like phenomena

affecting 6 and will be neglected in further consideration. If
we assume that damage is irreversible, the function f will be

nonnegative with respect to all arguments. If g approaches the limit
strength R the velocity 6 rapidly increases; if, furthermore,

R depends on 6 and is independent of g, we have f-*¦ oo for g^>R(<5)

Further simplifying assumptions may state that 6 does not depend

on the sign of dg (internal friction-like phenomena at fatigue) -
resulting in f Symmetrie respectively to g, and that it is
proportional to g which gives the form

6 f («5, g)lgl (2.4)

or, equivalently
d<$ f (ö P) | dP|

Formulae of similar form, where instead of dP appears dn (n - number

of cycles can be found in the theory of fatigue (cf., for
instance, /5/7J however, those do not include any hypothesis as to
the mechanism of failure and hold only withfcin the above theory,
for Symmetrie oscillations).

The simplest possible assumption for (2.4) is

i (& g) =/9 const (2.5)

within the admissible region Fig.3, shaded area) and f ¦¦> «*» for
g --> R (6) that is the actual smooth passage of the surface f(d",g)
is replaced by a singularity. If, in particular, (3 0, we have

the classical case, with the additional assumption that initial
damage is possible and makes R lower we are moving along vertica."
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lines in Fig.3). On integrating 2.4) for (2.5) we get 6 p£l^0"l

qu KP)

77Z777-

'AX ,', Ä

i \ '/,
\ 1

f-H—ri *¦r<*
/-»«*>

Fig. 3

f^,S)=fi

#>

a>rrj

..*

r
Fig. 4

i.e. cJ is proportional to the sum of amplitudes of all load cyc-
les, irrespective of the mean value (in Fig.5, below, the sum of
segments ÜI + 12 + 2~3" + In the case of simple Symmetrie)
oscillations it is proportional to the number of cycles, n,

6 4 n (3 gm,

v/here g is the maximum load at one cycle. The path of loading is
composed of straight segments with constant slope \&6/tiq\-ß
independent of the forms of "waves" in time, and on intersection of
the curve R (<5) it jumps horizontally tili 4 1 (Fig.3). This
assumption is equivalent to the well-known Miner's hypothesis in
the theory of fatigue of materials about a constant damage in a

Single oscillation with given amplitude. If, in particular, the
curve R (&) eoineides with the bounding straight segments, R const
and 6=1 respectively, the equation of Wöhler's curve will result
directly from the above formula for c5 1,

gm
_1__

4 (5 N

which is the equation of a hyperbola. More generally, if the
equation of Wöhler s curve g W(N) is available, we obtain the
curve R (6) solving for R the equation

R W [rjTJ 'P
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However, it must be pointed out that this curve might eventually
not fit other non- zero values of the mean force, the assumption

2.5) being too simple.
The equation of the curve g R(6) can also be argued theoretically,

for instance, in the following way. Imagine a body composed

of grains with variable strength properties and a process of damage

that consists in consecutive failing of weaker grains. The volume

Proportion of eiements at different levels of local strength,
r, can be represented by an integral or differential probability
distrubution Fig.4) Define the damage 6 as the part of the area
(normalised to l) under the curve (f (r) or eise as an ordinate of
the curve § (r) The shaded part of the area., l-c5 represents
the actual carrying capacity (due to stronger grainsJ The equation
sought for is

R(<p)-(l - 6)f(6)
where G>(^) is the abscissa of the centre of gravity of the shaded

area.
The analysis of safety can be performed similarly to what has

been said in point 1 (Fig.5). For a stationary process of loading

ft
—n m)6«)

g(v

Fig. 5

J ö
0 ¦/ 4

the damage 6 can be regarded, approximately, as proportional to
time and assimilated to a straight line 6 60t, where 60 ti1>_]Acj\

is the average damage during a time unit obtained from the load
curve by averaging over a sufficiently long time period). The

strength curve is expressed in new units

g R(ö0t) (2.6)

and failure appears at first intersection of this curve with P

g("t) > "the problem being reduced to the one of a material with
decreassing strength,
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If strength properties represented by (2.6)) are not affec-
ted with scatter, we can use, for instance, the same reasoning as
for the formula 1.5,) Assume, we have got records for a fixed
period At and determined for this period the probability des-
tribution p(g) (similarly as for (1.5)). Since the strength changes

in time, we obtain

cj P(R1) p(R2) P(R3)... (2.7)

where, according to(2.6), R, refers to the k- th sector At
(cf. Fig.l). Taking logarithms of both sides

In | 2 In p(Rj
k K

and taking for In p(Rk) its average value in the respective
sector +.

In p(Rk) -j| j In p[R(t)] dt

we have z

ln * - 2T 1) ^ pLRCt^ dt
o

and, finally, ~

cj exp -| J In p[R(tj] dt. (2.8)

This is an explicit function of parameters describing the function

R (t). Of course, this is but an approximate calculation,
those parameters and, what more, the curve R(t)by itself being
random cf. Fig.5

So far, the analysis was based on the assumptions (2.4)
and (2.5) which is only a first step towards a theory including
time - dependent phenomena. One of serious difficulties to be

surmounted is connected with specifying the functions (2.$), ("2.4)
In general, if Wöhler - type curves for different non-zero mean

stresses were available, we could come at a result on comparing
them with respective Solutions of the differential equation (2.4J
for sinusoidal forms of load curves and for 6 1» n N, cot n,
a,b - constants,

$£ f (6 b + a sino>t) | atu6oscot |

dt

3g. Schlussbericht
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Further generalizations could take into account rheologic phenomena

and the formulae of the type (2.3) would be replaced by func-
tionals, e.g. in an integral or an operational form. The simplified
assumptions would, possjbly, tetain formulae of the type (2.3)
introducing, however, some characteristic values of the load from
the precedent history( e.g. the next local or the absolute maximum

and minimum values of g). The analysis, however, would be much more

complex and is beyond the scope of this article.
In the present contribution we did not consider conventional

measures of safety (e.g. coefficients of safety), as the methods

of derivation of such measures have been discussed many times (cf.
for instance, /3/, /5/) and a "pure" theory of safety can (and
ought to) de without them.
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SUMMARY

The contribution is concerned with the problem of safety of
structures on the basis of the theory of cumulative damage. The
actual state of a struoture (from the point of view of its carrying

capacity) is described with a parameter, variable in time,
depending on the previous course of loads. The latter is regarded
as a stochastic process and a probabilistic measure of safety is
derived.

RESUME

L'auteur a examine le probleme de la securite de constructions
du point de vue de la theorie du dommage cumule. L'etat

actuel d'une construction est caracterise par un parametre unique
(le dommage) variable avec le temps, dependant des charges pre-
alables. Celui-ci est considere comme un Processus stochastique
et une mesure probabiliste de la securite est derivee.

ZUSAMMENFASSUNG

Im vorliegenden Beitrag wird die Frage der Sicherheit einer
Konstruktion auf Grund der Theorie der Anhäufung der Beschädigungen

behandelt. Der Zustand der Konstruktion vom Standpunkt
seiner Tragfähigkeit wird durch einen Parameter beschrieben, der
die Beschädigung charakterisiert und von dem vorigen Verlauf der
Belastung abhängig ist. Der obenerwähnte Verlauf wird als ein
zufälliger Prozess aufgefasst und ein wahrscheinliches Mass der
Sicherheit wird abgeleitet.
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Zur Schätzung der Bruchwahrscheinlichkeiten der Tragwerke

Estimation of the Probability of Failure of Structures

L'estimation de la probabilite de rupture des structures

MANFRED KOCH
Dr.-Ing., Leipzig

1. Einleitung
Seit längerer Zeit laufen Bemühungen, die Sicherheitsuntersuchungen

der Tragwerke aussagefähiger zu machen. Hierzu bieten
sich die Methoden der Wahrscheinlichkeitsrechnung und mathematischen

Statistik an [l]. Trotz zahlreicher Untersuchungen auf diesem

Gebiet, die im Endergebnis auf eine Bestimmung der Bruch- bzw.
Überlebenswahrscheinlichkeit der Tragwerke an Stelle der klassischen

Sicherheitsberechnung hinzielen, haben diese modernen Methoden

bisher noch keine oder nur sehr zögernde praktische Anwendung
gefunden.

Der Grund dafür dürfte in den noch recht erheblichen
Schwierigkeiten bei der Anwendung dieser Methoden liegen und in den
dadurch bedingten bedeutenden Umstellungen für den Konstrukteur.

Solchen weitgreifenden Umstellungen werden erfahrungsgemäß
berechtigte und unberechtigte Widerstände entgegengestellt, und
es ergibt sich daraus die Aufgabe, Methoden und Möglichkeiten der
Bestimmung von Bruch- bzw. Überlebenswahrscheinlichkeiten zu finden,

die dem Konstrukteur für die Anwendung zumutbar, übersichtlich
und in ihren Auswirkungen durchschaubar sind.

Diese Arbeit befaßt sich daher mit einer Möglichkeit, die
Bruchwahrscheinlichkeit eines Tragwerkes mit möglichst einfachen
Mitteln zu bestimmen. Die akzeptablen Bruchwahrscheinlichkeiten
eines Tragwerkes sind relativ gering, so daß es genügt diese in
der Größenordnung richtig zu schätzen. Eine größere Genauigkeit
ist schon wegen der Schwierigkeit in der Präzisierung der
Ausgangswerte kaum zu erhalten und für praktische Belange sicher
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auch von weniger Interesse.
Demgegenüber bleiben die weiteren Probleme, die hiermit im

Zusammenhang stehen und die z. B. FREUDENTBAL [l] ausführlich
behandelt hat, unberührt.

2. Grundsätzlicher Lösungsweg und Schwierigkeiten
Bezeichnet y die Tragfähigkeit und x die Belastung, so ist

die bisherige Sicherheitskonzeption durch das Verhältnis

N> |> 1 (1)

definiert. Ohne auf die Vor- oder Nachteile der einen oder anderen

Darstellungsweise einzugehen, könnte auch

z y - x > 0 (2)

als ein solches Kriterium betrachtet v/erden.

Werden, was ihrem tatsächlichen Charakter besser entspricht,
die Tragfähigkeit als Zufallsgröße Y und die Belastung als
Zufallsgröße X betrachtet, so ist z selbst eine Zufallsgröße Z.
Die Gl. (2) stellt hierbei für alle Zustände z y - x 0 den

Bruchbereich und für z y - x > 0 den Überlebehsbereich dar.
Gelingt es, die Wahrscheinlichkeitsverteilung für die Zufallsgröße Z

zu formulieren und über -©o<z ^ 0 bzw. 0<z< + oo zu integrieren,
so ist die Bruch- bzw. Überlebenswahrscheinlichkeit bestimmt

und das Problem gelöst.

Ist die Wahrscheinlichkeitsverteilung der Tragfähigkeit G(y)
und der Belastung F(x) bekannt, so wird die Wahrscheinlichkeitsverteilung

der neuen Zufallsvariablen Z durch Faltung [2] gefunden

H(z) =JJ df(z - y) dG(y). (3)
x-y<z

Diesem formal einfachen Lösungsweg stellen sich praktische
Schwierigkeiten entgegen, die vor allem folgende Gründe haben:

a) Die mathematischen Modelle für die Wahrscheinlichkeitsver¬
teilungen der Tragfähigkeit Y und der Belastung X sind häufig
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nichtsymmetrische und oft ein- oder zweiseitig begrenzte
Verteilungsfunktionen.

b) Die Belastung auf ein Tragwerk besteht in der Regel aus einer
Summe von Zufallsvariablen

k
X £ X± (4)

i=1

und die Bruchbedingung lautet daher

k
z y - Y. x± - 0 (5)

i=1

c) Die Belastung auf ein Tragwerk wird im allgemeinen wiederholt,
d. h. häufig eingetragen, so daß nicht die Ausgangsverteilung
der Belastung F(x), sondern die Extremwertverteilungen F (x^rL'')
für n Belastungen maßgebend sind, wobei n auch durch die Zeit t
ausgedrückt sein kann.

d) Durch die wiederholte Belastung auf das Tragwerk wird ober¬
halb einer Anzahl n von Belastungen eine Minderung der
Tragfähigkeit des Tragwerkes auftreten. Daher wird G(y) von der
Zeit t abhängig und geht in den stochastischen Prozeß G(y,t)
über.

Hierzu ist folgendes zu bemerken:

zu a) Eine geschlossene Lösung des Faltungsintegrals (3) gelingt
außer für Normalverteilungen bisher nur für Sonderfälle,
die jedoch für das Bemessungsproblem wenig Bedeutung haben.
Auch Potenzreihenentwicklungen führten bisher nicht zum

Erfolg.

zu b) Die Berücksichtigung der k Zufallsvariablen X. der Belastung
führt zu einer Mehrfachfaltung entsprechend Gl. (3)»
wodurch das mathematische Problem noch wesentlich komplizierter

wird.

zu c) Die Notwendigkeit, bei wiederholten Belastungen statt einer
Ausgangsverteilung F(x) eine Extremwertverteilung Fn(x^ ')
zu verwenden, ist leicht einzusehen, wenn die auftretenden
Belastungen x^ nach Ranggrößen x^n^ geordnet werden, so daß
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x^<...<xCi)<#..<Xb(n)

wobei die x^ ' der AusgangsVerteilung F(x) entsprechen und

x.^ ' die im Zeitraum t aufgetretene größte Belastung x^n^ bedeutet.

Unter der Voraussetzung, daß die Tragfähigkeit zeitlich
konstant ist, kann nur die größte Belastung zum Bruch führen und es

ist die Extremwertverteilung des größten Wertes *+. maßgebend.
Diese Extremwertverteilung ist abhängig von der Ausgangsverteilung

und der Anzahl n der Belastungen [3, 4-]

Wirken mehrere zufällige Belastungsgrößen X., so ist nur
die maßgebende Extremwertverteilung mit den übrigen Ausgangsver—

teilungen zu falten, da sonst vorausgesetzt würde, daß mehrere
Extremwerte gleichzeitig auftreten.

Mit der Annahme, daß der gesamte Belastungsablauf als
diskreter stationärer Prozeß aufgefaßt werden kann, läßt sich die
Richtigkeit und die Notwendigkeit der Verwendung von
Extremwertverteilungen in der hier aufgeführten Art mit Hilfe der
Übergangswahrscheinlichkeiten beweisen.

3. Die vier Fälle der Zuverlässigkeitsuntersuchung
Die Bestimmung einer Überlebenswahrscheinlichkeit unterscheidet

sich von der Sicherheitsuntersuchung und wird als
Zuverlässigkeitsuntersuchung bezeichnet.

Aus dem unter 2. Genannten ergeben sich vier Fälle der
Zuverlässigkeitsuntersuchung:

\. Statischer Fall
Die Tragfähigkeit G(y) ist zeitlich unbeeinflußt; für die
einmalige Belastung ist die Ausgangsverteilung F(x)
maßgebend.

2. Quasi-statischer Fall
Die Tragfähigkeit G(y) ist zeitlich unbeeinflußt; für die
n-malige Belastung ist die Extremwertverteilung F (x^n')
maßgebend.

3. Betriebsfestigkeitsfall
Die Tragfähigkeit G(y) ist zeitlich beeinflußt und geht
über in G(y,t); für die TragwerksSchädigung ist das ge-
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samte Belastungskollektiv eines stochastischen Belastungsvorganges

und für die Brucheinleitung die Extremwertverteilung

F (x^11-') maßgebend.

•4. Zeit- oder Dauerfestigkeitsfall
Hierunter wird ein BelastungsVorgang mit konstanter
Mittelspannung, Spannungsamplitude und Frequenz verstanden.
Dieser Fall kann unter bestimmten Voraussetzungen auf den
statischen Fall zurückgeführt werden.

In der angegebenen Form
+00

Cu) J F(u-;H^u) / F(u-y) dGKy)

gilt Gl. (3) für den statischen Fall. Für den quasi-statischen Fall
erhält sie die Form

-1- 00

H9(u) I Fn(u-y) dG(y) (3 a)2"

und für den Betriebsfestigkeitsfall
+ 00

3 !u) J Fn(u-;H_(u) / FTi(u-y) dG(y,t) (3 b)

Daraus folgt, daß der statische, der quasi-statische und unter
gewissen Voraussetzungen auch der Zeit- bzw. Dauerfestigkeitsfall,
ausgehend von Gl. (3) und Gl. (3 a) lösbar sind. Dagegen kann der
Betriebsfestigkeitsfall wegen seines Charakters eines stochastischen

Prozesses mit diesen Mitteln nicht gelöst werden, weshalb
er hier zunächst nicht weiter behandelt wird.

4» Lösung mit Hilfe der Edgeworth-Reihe

Zur näherungsweisen Bestimmung der Bruchwahrscheinlichkeit
bietet sich eine Reihenentwicklung aus der Wahrscheinlichkeitsrechnung

an, die unter dem Namen Edgeworth-Reihe bekannt ist. In
der Form für die Wahrscheinlichkeitsdichte wird sie auch als
Gram-Charlier—Reihe bezeichnet.



56 la - ZUR SCHÄTZUNG DER BRUCHWAHRSCHEINLICHKEITEN

Wahrscheinlichkeitsverteilungen
x

F(x) f f(t)dt (6)¦/
können auch durch die Gesamtheit ihrer Momente

mk J xkf(x)dx k 1,2,3 (7)
— oo

vollständig beschrieben werden.

Aus Gl. (7) lassen sich die Momente häufig nur schwer
berechnen. Wendet man auf Gl. (6) eine Fourier-Stieltjes-
Transformation an, so erhält man die sogenannte charakteristische

Funktion der Verteilungsfunktion F(x):

+ oo

Q (t) J eitxf(x)dx (8)
— oo

Die k-te Ableitung der charakteristischen Funktion nach t
ergibt den Ausdruck

+ oo

Q (k)(t) f ikxkf(x)eitxdx (9)
— oo

woraus durch Nullsetzen von t und nach Division durch i das

k-te Moment der Verteilungsfunktion (6) folgt:

JLi^M (TO)
i

Die charakteristische Funktion hat u. a. folgende und für die
Lösung unseres Problemes wichtige Eigenschaft:

Die charakteristische Funktion einer Differenz von
Zufallsvariablen X,, - Xp - X-. - erhält man aus der Beziehung

e (t) =g1(t). e2(t). e3(t) od
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wobei Oj^t) die charakteristischen Funktionen der
Zufallsvariablen X^ und Qji(t) die konjugiert komplexe Form von
Q.(t) bedeuten.

Außerdem ist

log Q (t) logQ1(t) + logQ2(t) + (12)

Aus der logarithmischen Form der charakteristischen Funktion
log Q (t) können analog zu den Momenten m, Größen X, hergeleitet

werden, die als Semiinvarianten oder Kumulanten in der
Wahrscheinlichkeitsrechnung bekannt sind. Diese haben die
günstige Eigenschaft, daß die k-te Semiinvariante der Verteilungsfunktion

einer Summe oder Differenz von Zufallsvariablen als
Summe oder Differenz der k-ten Semiinvarianten der Verteilungsfunktionen

der einzelnen Zufallsvariablen gebildet werden kann,
d. h.

Xk Xk1 + (_1)iC %k2 + ••* * (13)

Die Edgeworth-Reihe beruht auf dem Grundgedanken, die
anzunähernde Verteilungsfunktion H(z) durch eine Summe von Gliedern

darzustellen, die aus geeignet zu bestimmenden Vorzahlen
sowie der Normalverteilung

<B(z) \ e
2 6 du (14)

und ihren Ableitungen (J) (z) bestehen. Die Reihenentwicklung
lautet:

H(z) - V(z) Y_ aV $ (z) (15)

-0=0

Damit diese Reihe die anzunähernde Verteilungsfunktion möglichst
gut approximiert, werden die Koeffizienten av so bestimmt, daß

das Integral über die Abstandsquadrate der wahren Verteilungsfunktion

H(z) von der Näherung V(z) ein Minimum wird.
Um bei der Bestimmung der Bruchwahrscheinlichkeit die ta-
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beliierten Werte der Normalverteilung verwenden zu können,
muß z normiert werden.

Wegen der Bruchbedingung z y - x < 0 ist bis z 0

zu integrieren - d. h. eigentlich V(O) zu berechnen.
Die normierte Bruchbedingung lautet aber

-V-
wobei H=Hy-Hx1-Hx2"'--- und

Ö= ~\Jh2 + dx12 + tfx22 + ••' ist- Außerdem müs-

sen alle a^ durch o dividiert werden. Gl. (15) erhält

(16)

daher die endgültige Form

£¦ aV t(«) -r 1 *-, T«7(r)= V -J- $ (r) $ (r) 1 $ (r) (17)
V=0

S-.& I (r) -

In der angegebenen Form enthält die Edgeworth-Reihe im ersten
Glied die Faltung der beteiligten Verteilungsfunktionen als
Normalverteilungen. Die weiteren Glieder sind Korrekturen, die
auf Grund der höheren Semiinvarianten erfolgen. Diese Korrekturen

werden wegen der Konvergenz der Edgeworth-Reihe von
Glied zu Glied kleiner und es ist zu übersehen, wann die
Genauigkeit der erreichten Annäherung ausreicht. Hier ist zu
bemerken, daß wegen der besseren Konvergenz bei der praktischen

Anwendung der Edgeworth-Reihe die Korrekturglieder
umgeordnet wurden, also eine etwas andere Form, als hier
angegeben verwendet wurde [4-]

Die durchgeführten Berechnungen ergaben, daß im allgemeinen

bereits das erste Glied der Edgeworth-Reihe das Ergebnis in
der richtigen Größenordnung angibt. Es sind also nur bei genaueren

Untersuchungen die Korrekturglieder zu berücksichtigen. Da

in Zuverlässigkeitsanalysen sehr geringe Bruchwahrscheinlichkei-
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ten zu erwarten sind, wird in der Regel die Berechnung des ersten
Gliedes der Edgeworth-Reihe genügen.

5. Schlußbemerkungen

Als Ergebnis durchgeführter Untersuchungen konnte folgendes

festgestellt werden:

1. Die Schätzungen ergaben, daß im allgemeinen bereits das
erste Glied der Edgeworth-Reihe das Ergebnis in der
richtigen Größenordnung angibt. Es sind also nur bei genaueren

Untersuchungen die Korrekturglieder zu berücksichtigen.
Da in Zuverlässigkeitsanalysen sehr geringe

Bruchwahrscheinlichkeiten zu erwarten sind, wird in der Regel
die Berechnung des ersten Gliedes der Edgeworth-Reihe
genügen,was einer einfach durchzuführenden Faltung von
NormalVerteilungen entspricht.

2. Die Bruchwahrscheinlichkeiten ausgeführter Tragwerke
schwanken je nach getroffener Voraussetzungen in weiten
Grenzen und liegen zwischen P 10"' bis 10 j die richtige

Verwendung der ExtremwertVerteilung ist für das
Ergebnis von großer Bedeutung.
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ZUSAMMENFASSUNG

Die Schätzung der Bruchwchrscheinlichkeiten gelingt relativ
einfach unter Anwendung der Edgeworth-Reihe. Dabei ist es
erforderlich, bei mehrfach eingetragenen Belastungen die entsprechenden

Extremwertverteilungen zu verwenden. Soll die Bruchwahrscheinlichkeit

nur in der Größenordnung richtig geschätzt werden, so
sind dazu nur die ersten beiden Momente der beteiligten
Verteilungsfunktionen erforderlich. Damit reduziert sich das Problem auf
eine Faltung von Normalverteilungen, die einfach durchzuführen ist.

SUMMARY

The estimation of the probability of fracture succeeds compa-
ratively easy by the application of the Edgeworth-progression.
Thereby it is necessary to use the corresponding extreme value
distributions, if multiple stresses are inscribed. If the
probability of failure is to estimate right only in the order of magnitude,

there are necessary only the first two moments of the con-
cerned distribution functions. With that the problem is decreased
to the folding of normal distributions, which is easily to carry out,

RESUME

Le calcul des probabilites de rupture reussit d'une facon
relativement simple, si l'on emploie la progression d'apres
Edgeworth. Ce faisant, il est necessaire d'utiliser, ä une

distribution multiple des charges, les repartitions de valeurs
extremes correspondantes. Lorsque la probabilite de rupture
ne doit etre exactement evaluee qn'en ordre degrandeur, les
deux premiers moments des fonctions de repartition engagSes

sont seulement necessaires. Ainsi, le probleme est reduit
a une convolution des repartitions normales qui est facile
ä effectuer.
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By the methods of rational mechanics and the calculus of probability, we

can now process the probability distributions for loads and material strengths

relating to a proposed structure and calculate the 'probability of failure' to

any desired number of decimal places, regardless of how scanty the data is or
how poorly the curves fit the data. Clearly, the meaning of this calculated

probability needs to be studied critically before it can be used with confidence

in the design process. In particular, we must find ways to assess whether or

not the data is really sufficient to Warrant the probability Statements used in
the design.

The nature of probability has been studied extensively [1, 2], In relation
to the structural design problem the notion is fairly well defined; in most

studies of the structural safety problem, 'probability' is usually taken in the

sense of "probability-1" defined at length by CARNAP [2] (loosely called 'sub-

jective probability'), or it is left as an undefined notion; "probability-2"
('objective probability') cannot properly be assigned any meaning in this con-

text.
One way to e'mploy probability(-1) in problems of structural safety is to

adopt the viewpoint that it is merely a subjective measure of 'degree of

belief,' or 'strength of belief'. The relation of data to the probability of
failure is then very simple; data may rationally be assimilated into the input
probabilities by Bayesian methods [3]. The question of what constitutes a

sufficient amount of data to make a particular Statement about the probability
of failure, does not arise. Therefore, this paper is not relevant to 'Bayesian

design.'
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Alternatively, we may consider the probabilities associated with loads and

strengths to be inherently unknown, auxiliary quantities. Objective Statements

about the probability of failure can then be made in the usual terms of Statistical

inference, and the subjective element in the justification of the design
is greatly reduced. The viewpoint in the following, then, is that probability
is not an absolute notion; rather, it has meaning only in relation to a specified
body of evidence which, in this context, means: Actual results of load measurements,

materials tests, model tests, prototype tests, etc., called the data. The

advantage of this approach (when it is feasible) over the Bayesian approach is
that it leads to propositions about the probability of failure that can be

subjected to scientific inquiry.
Under normal conditions of practical design the data is, unfortunately,

insufficient to make objective Statements about the probability of failure of
a proposed structure; for example, future loads must be guessed from measurements

taken in the past. Nevertheless, it is instructive to study the rational inferences
about the probability of failure that are possible under certain idealized conditions

as modeis of reality, permitting us to estimate the amount of data required
under less ideal conditions. In the following we will derive such a relationship
(equation 12) between the necessary amount of data and various constants related
to the design value of the probability of failure.

Consider a structure drawn at random from an infinite population of like
structures and submitted to a Single scalar load S drawn at random from an

infinite population of loads. Let R denote the resistance of the structure,
defined in such a way that failure is the event R < S. Resistance R and load S

are assumed to be intrinsically positive, independent, continuous stochastic
variables with unknown probability densitles pD(R) and p„(S); information about

R S

these functions is assumed obtainable by random sampling. The data D is therefore

a set of n resistance values and n load values:
R S

D {Ri, i 1,..., nR; S j 1,..., ng). (1)

The probability of failure is

PF =$PR(R) Ps(S)dSdR; (2)
R<S

since p and p are unknown, p cannot be determined. The problem is instead
to compute a suitable estimator C called the calculated probability of failure.
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Load
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Fig. 1

Resistance

To make inferences about the probability of failure p it is necessary tor
derive suitable statistics of the stochastic variable C

r
The simplest way to obtain such an estimator is to draw from the data

D a sample W of n (<iu, <nc) pairs (R, S) of resistance and load values, at
random and without replacement, see Fig. 1. Then, W is a random sample of
the parent population {(R,S)), and the eiements of W are stochastically
independent. Let il, denote the number of outcomes of the failure event R < S

in the sample W. Evidently, il, is the total number of "successes" in n

independent Bernoulli trials with probability p of "success". Therefore,
F

il, is distributed according to the binomial distribution

b(l,n,pF) nppd-pp)11"1 (3)

with mean np and variance np (1-p It follows that the estimator f =iL,/n is

similarly distributed with mean m p variance a p (1-p )/n, and coefficient
^^____^____ F r r

of Variation v o"/m l/\/np /(1-p The relative failure frequency f is
* F F r

therefore an unbiased estimator of p It is discrete valued (f e {0, 1/n,

2/n, l}), so that in order to get sufficient resolution it is required that
n be large in comparison with unity. Assuming that n is greater than 9 and

F £

neglecting p in comparison with unity, it can be shown [4] that f is
approximately normally distributed with mean p and coefficient of Variation

In this context, the most appropriate way to indicate the precision of
an estimate of p is by means of confidence intervals [4]. First, a confidence

F

coefficient a is selected. Taking the distribution to be normal with mean C
r

and coefficient of Variation l/"\/nC gives the following approximate confidence
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limits for p computed from the calculated probability of failure:
F

L"= C (l-N"1(a)/v/nCl), L+« c (l+N"1(a)/^cI); (4)

N denotes the inverse function of the normal probability integral. In
a long sequence of repetitions the confidence interval between L and L will
contain the probability of failure p nearly a fraction a. of the time.

5 4
To illustrate, assume that the data D consists of n 10 and il 10

random samples of load and resistance, respectively. The largest random
4

sample W of independent eiements that can be drawn contains n 10 (R,S)-

pairs. Assume that il, nC 16 is the number of failure events in such a

sample. If a confidence coefficient a. 90 per cent is considered suitable,
we get from a table of the normal probability integral that N (0.9) 1.645.

Equations (4) then give L~ (1-0.41)0,, and L+ (1+0.41)^,. The followingF F
continued inequality may be written down:

46 16
(0.59) (T^zf) < p < (1.41) (f^-);10^ (5)

it may be asserted that this inequality is satisfied with probability 0.9.
In other words, chances are nine out of ten that the value of p lies between

F
0.00094 and 0.00226. Independent random pairing of load and resistance values

is clearly a very inefficient way of processing the data, in the present case
4 9

using only 10 out of a possible maximum of tLn 10 combinations of load
and strength.

• *

Fig. 2

t H H

Fig. 3
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Fig. 2 illustrates a sample consisting of a total of nn pairs obtained

by independent random sampling. Fig. 3 shows all the (R,S)- pairs that can

be formed from the data. The ordering of the pairs in this figure suggests a

stochastic dependence which, according to the sign of the correlation between

sample eiements, may either increase or decrease the variance of the estimated

probability of failure in comparison with independent random sampling using the

same sample size. Nevertheless, the relative failure frequency, C in the
r

sample is an unbiased estimator of the probability of failure,

m(CF) PF, (6)

since every sample element was obtained by random sampling. To compute the

variance, consider a sub-sample U. (Fig. 3) consisting of n pairs formed by

A conditional probability of failure at this load level, p., may be associa• VLatea

with the sub-sample:

fSi
pi =J PR(R)dR- (7)

0

As before, the eiements of the sub-sample constitute a sequence of n independent

random Bernoulli trials. The number of failure events, n., at load level
S. is therefore binomially distributed with mean iLP. and variance n^p (1-p.).
However, it is also observed that the n sub-samples constitute a sequence of

independent random samples, for the il resistance values may be considered to

be drawn a priori, thereby dividing the load ränge into il + 1 intervals
establishing for each interval an associated probability that a load value

will fall in the interval. As the loads are drawn independently and at random,

the outcomes n.(i 1, n are stochastically independent. Accordingly,

the estimator

has the mean value

i X1- V. - (9)1<CF) vü 2_.Vi

Rn Schlussbericht
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and the variance

2,^¦rbSv^-f (10)

Neglecting p. in comparison with unity for all i 1, n eliminating
1 ö

m(C from equations (7) and (9), and inserting the result into equation (10)
F

gives for the estimator C_ the coefficient of Variation
F

V(Cp) o-(CF)/m(CF) - 1/Vv^F (U)

Thus, as a good approximation, the coefficient of Variation of C has the

same value as if all ilii sample pairs had been obtained by independent random

sampling. We may therefore use equations (4) with n n„n to determine the

confidence limits for the probability of failure. To illustrate, let n il,
yielding 10 (R,S)-pairs, and assume that 16 of these pairs represent failures.
This data yields the same confidence interval as found above, equation (5). The

calculated probability of failure, C n /iLn according to Fig. 3, is believed

to utilize the data in the most efficient way possible.
The amount of data required for a specified confidence coefficient Cü, a

target "design" probability of failure P and a specified maximum width ßP

of the confidence interval (Symmetrie about P is easily computed from equation
r

(4) to be

ryig > [2N"1(a)/ß]2/PF (")

For example, assume that we seek to design the structure so that the

probability of failure "with 90 per cent confidence" (a 0.9) is a number
-3 -4between 10 and 10 We select the target probability of failure

-4
P 5.5 x 10 and choose ß 9/5.5 in order that the confidence limits

F -3 -4
(1 + ß)P_ eoineide with the specified limits p 10 and p 10

F FFEquation (12) gives the result that the produet n n must be greater than 7,500.
R S

For example, n must be greater than 150 is n equals 50. Alternatively, if
R S -6

we demand that the probability of failure equals 10 + 5%, with 957„ confxdence,
g

the required amount of data is increased to n n > 1.5 x 10 (50,000)(30,000).
R S

While the specific case studied here is greatly idealized, it serves to

give an idea of the amount of data required in probabilistic design, unless one

is content with giving merely a subjeetive meaning to the term 'probability of

100,
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failure'. The value of n n according to equation 12 may be taken as a rough
S R

lower bound for the data required to make an objective Statement about the

probability of failure in the form of a confidence interval. The amount of
data that, as a practical possibility, can be collected does not seem out of
Proportion to the amount required in probabilistic design, assuming that
reasonable Standards of precision are prescribed.
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Summary

Statistical considerations must be used to Supplement purely

probabilistic considerations in structural reliability studies if concepts

such as the probability of failure are to have more than a mere subjective

meaning. In this contribution, the amount of data required to make

confidence interval Statements about the probability of failure is

estimated by the methods of mathematical statistics.

Resume

Nous voulons ajouter des considerations statistiques aux

considerations probabilistiques des etudes de securite dans le
domaine de la construction, afin d'elever ces dernieres au-dessus

du niveau purement subjectif. Dans cette etude, nous proposons,
a l'aide des methodes de statistiques mathematiques, d'evaluer
la quantite requise de donnees pour etablir les intervalles
de confiance autour de la probabilite de ruine.
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Zusammenfassung

Ueber rein wahrscheinlichkeitstheoretische Ueberleguhgen
hinausgehende statistische Betrachtungen sind für die Studien
der Sicherheitskriterien im Hochbau erforderlich, falls Begriffe

wie "Bruchwahrscheinlichkeit" usw. mehr als mit bloss
subjektiver Bedeutung belegt sein sollen. In der vorliegenden
Arbeit wird aufgrund eines speziellen Modells eine Abschätzung
für den Bedarf an Datenmaterial vorgenommen, um Konfidenzgren-
zen für die berechnete Bruchwahrscheinlichkeit angeben zu
können.
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1. Introduction
Within the context of Theme I of the 8th congress,

this paper establishes a method of struccural safety
analysis for the lateral Vibration of aerodynamically
stable Suspension bridges under stormy winds.

The recent use of the so-called gust response
factor in the dynamic analysis of structures subjected
to gusty winds indicates an achievement of a higher level
of sophistication in the structural safety analysis
compared with the use of conventional safety factor,
since the introduction of the gust response factor is
based on the recognition that the wind velocity and hence
the structural response have to be treated realistically
as random processes.

The present paper demonstrates that a further effort
will make it possible to estimate, in approximation, the
probability of survival or failure of the Suspension
bridge (in the lateral mode of Vibration) which is a more
direct measure of safety in accordance with the
probabilistic concept of structural safety1 '*'

Since the type of failure considered in this paper
is either buckling or yielding of a chord member of the
stiffening truss due to its lateral bending under the wind
pressure (this defines a critical bending moment at each
cross-section), the linear equations of motion can be
employed in the response analysis. Such failure modes are
also assumed implicitly or explicitly in the previous
papers2-5 dealing with the same problem.

(* Numerais indicate references at the end.
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2. Structural Analysis

In the present paper, as in References 2 and 3, the
wind velocity U*(t) &t the height_ z above ground is the
sum of the mean wind velocityL/zW and the fluctuating
part utct, x)

The pressure due to the wind velocity Uz(t) is, as
usual, assumed to consist of two parts: the pressure du«
to the mean wind velocity

Vit) - ±f<.A 0,'Ct) (1)

and the pressure due to the fluctuating part
(2)

p(t, x) / cd A UzCi) Ui(t. x)
where J° is the density of air, c and ct the static and
the dynamic drag coefficient and A the exposed area of
the structure considered.

It is usually observed from wind velocity records
that utCt,x)±a nonstationary with a larger variance at a
larger mean wind velocity. In the present study, however,
it is assumed that ut(t,x) is stationary with a (constant)
variance equal_to that associated_ with the maximum mean
wind velocity (Jt • Furthermore, UtLt) in Eq.(2) is replaced
by for simplicity. Hence, the following stationarized
and conservative expression is used for P(t,x)

pCt, x) S <-*. A U, Uitt, x (3)

Since the Variation of T(t) in time is much slow
compared with the fundamental period of lateral Vibration
of the System p_f the cäbles and truss, the response yT(t,x)
and ye(t,x) to P(t) is obtained performing a quasi-static
analysis, while the mean square value of yT* (t,x) and the
bending moment M*(t,x) of the truss to p(t,x) is evaluated
on the basis of the Standard equations of motion:

ElyT" + 4(x)(?T - %) PT(t) W

- Hyc" - &(x)(yT - %) PcCt) (5)

^^' + Ar %• * EI yr*" +4 (Xj (Jt/ - tf) PT(t,X) (6)

<%* +/"c>c* - Hyc" -fe(x)(yT*-yc*} Pc(t,x) (7)w,

with
feix) ^g /-ficx) pß)

where the primes and the dots indicate differentiation
with respect to x and t respectively, -fL(x) is the hanger
length, EI the bending rigidity of the truss in the
horizontal direction, H the sum of the horizontal forces in
the cäbles, in. the mass per unit length, M the linear
viscous damping with subscripts T and C indicating that
the quantities with T are associated with the truss and
those with C are with the cäbles. The lateral bending
moment of the truss can be obtained from its lateral
displacement in the usual fashion.
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The finite sine jtransform technique or the sine series
expansion_of yT and yc can be used to solve Eqs. (4) and
(5) for yT and % To evaluate the mean square response
of M* the frequency response functions HTr (oj, x, x„) of
yT*(t,x) and HTCCm,x,x.) of yc*(t,x) due to an input
e.tCl> ö Cx-Xc) applied at x X„ on the truss are first

obtained by emploving the finite sine transform technique.
After some manipulation, one can showjhat the_ sine
transforms hfTT(j) HTT{oi, j, x0) and Hrc'j) Htc (.<*>>j*x,)
(with respect to x over x 0 ~ Z of Htt(u, x, x„)
and HTCCo), x, x0) satisfy the following equations.

% ffrr (J)dV - LHTC(j)C*j „stof^X, C9)
J'' j-l <

(n=1,2,-~
-lHTT(j)cnj + ZHTC(j)enJ =o, (10)

where

eUj - w'nr + i u>Mt + E^- Ji ') *»j + c*j (11)

Cj =j|^ | $W« + -yiy- ^y_r,,, } (12)

enj (-Cü*-mc + IW/ic + /-/ ^ -) Snj + cnj (13)

where -t is the span length, S'ij the Kronecker delta,
and 4.r the coefficients of cosine series expansion of
•/lex; :

£<xj j Z £r ws-y-ac. (14)

Eqs.(y) and (10) represent two sets of infinite
number of equations for HttW anäJ^TC(n). By taking only
first N terms each of ffrr(n) and Ay-rc Cn) n,j 1,2,...,
/V and 7- 1,2,...,2/V jone can obtain a set of 2N
equations for 2/V unknowns HrrCn) and HTC (n) n 1,
2,...,/V Solving these and applying the inverse sine
transformation, the frequency response function/-/tt(o>, x, x.)
can be written as

Htt(cojX, x„) 2. cct(u,x) Sc^-y-X0 (15)

where n
v -i jnOt-kiU,*) Z a;> Sun.—j-X ^16-j

In the Eq.(16) CLjt is the j - k member of the inverse
matrix of a Symmetrie 2N x 2/V raatrix
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A
D

-c
c

E
with D [dij] C fQ/J and E [ey]

The frequency response functions HctC")^^»^ of
yT*Ct, x) and A/eC (co, x, x,; of yc*(t,x) due to an input
e.iut (TCx-x.) on the cable can also'be obtained in a
similar fashion.

HCT (<^> x, x„ X, ßt. tu, x sUa -^z» (17)
*-<

where

/3*( co, x ; X fl,-,*** s^Äx.
^, ^ -¦ (18)

The functions HCctu,z, x0) and Hrctu,x, x„) are not
needed in the following analysis.

fiaking use of a'^Cto, x; and /3 !* 'u,x) one can show
that the mean Square spectral density function of MT*tt,x)
is N r,

S W. X =ZZ [ <*/' CO, X ; OC'j ü), X Srs i u>)

+ Z Re \ ötr tu, x) ßi' t") S^/ t(v) j

+ ßr" (co, x) p; (co, x; S " (w; ] (1y)

in which Re Z and 2 respectively indicate real part and
complex con.jugate of 2

S« tu) =J J Sf^tu) Wy^f sly.±l.X2 dXi dxt (20)

with X and Y standing either for T or C and
C- XY

^htitoj) being the cross-spectral density of p%tt, Xt
and Pytt.xi). z »

The variances Cv,2 and 0^ ofMT(t,x) exx6.MT(t,x)
are then obtained as

w -r S tu, x du OÄ CO'2 S (co, x; cj'o)
(21;
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In the following discussion, however, the second and
third terms within the square brackets of Eq.(1y) are
neglected because of their small contributions (as also
done in Refs.2 and 3), and S^ is approximated by

SfJl tu) „p (- _i^L_ | x, - Xl | $(u) (22)
V

2.11 (Ji '
where the exponential term is the Square root of the
coherence, 2U{Ji/tku) the scale of turbulence at the
wave length zx Qt /'co and 4>(u) ±s the mean square
spectral density of pTtt, x) and is given by2

§t") lr(?cdTArÜt?K-^- *-^- (23)

in which K is the surface drag coefficient, Un the
mean wind velocity at the reference height of 33 ft above
ground, is related to U* by

ü, ü (¦?;." (24)

with oc being a constant.

3. Safety Analysis

In previous papers *' s one of the present authors
developed a method of estimating upper and lower bounds
of the probability that a Gaussian random process z(t)will not be confined in a domain defined by - a(r)'j?(tji a(t)
in a specified time interval, where <xtt) (>o) is a
deterministic function of time.

Consider the Standard design procedure for wind
loads where the stiffening truss is designed so that it
can withstand, with a safety factor n. the bending
moment Miix) produced by a specified (uniform) design
wind pressure fd This implies that the critical
bending moment at cross-section x is nMd(x) Suppose
that the suspension_bridge is subjected to a storm with
mean wind velocity Utt) or mean wind pressure pCt)
producing the bending moment Rtt.x) Then, alt, x =M*tx)
-MttoX) nMdix) -MCt,x) is the maximum value of the
bending moment M*(t,x) that the fluctuating part of wind
pressure PCt,x) can produce without failure. Since the
variances of M*(t,x) and M*(t.x) are evaluated in the
preceding section, the method developed in References 4
and 5 can be applied to estimate upper and lower bounds
of the probability of failure fy or the probability that
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M*(t,x) will not be confined in the domain defined by
- alt.x * M* tt, x a a(t, x

Evidently, for a storm with a different mean value
velocity function Uitt) a different value of Pf is
obtained. In fact, Qhtt) itself is usually a random
function of time containing a_ number of random parameters,
say Ut and To ; Ut(t) =üi(t; Ui,T). For example, the
following forms of ut tt,Q,,T.) are mathematically expedient
and at the same time agree with observations reasonably
well.

Üiitt Üt, T. Üt- e-ct/T°)* -«xttoo (25)

and
ü;ctiOt.T.)-ü:(.-iti/T) -t***t.

(26)
o otherwise

where Tc is a measure of the duration of a storm in Eq.
(1) while it is the duration in Eq.(2). Eq.(1) is used
in Reference 3-

The probability of failure Pj_ is then computed for
a storm with a particular set of U% and T, ; Pf

h(Üi,T,) • Therefore, the probability of failure Pf*
due to a Single application of a tatistical storm with

Qt and To being random is the expected value of
PtQx, TQ) with respect to Ui and T„ :

V -// Pj Um T. ftÜt, Tt,) JÜ, dT.
_

(27)
where f(ÜitT,) is the Joint density function of Ui and
Tc Hence, one can obtain the upper and lower bounds
of p* from those of Pf(Oi,T.) using Eq.(27).

4. Numerical Example

As an example, a Suspension bridge of the same
dimension as the Forth Bridge is considered with El
1.842 x 10'3 lb-ft2 ,A(x)= 309 - 1200(x/^)( /- x/i) ft,
-»icg 2.52 x 103 lb/ft,-mTg 8.38 x 10° lb/ft, £
3300 ft, H 4.934 x 10* lb (Eqs.(4) - (8)), and such
values of the linear viscous damping coefficients Mt
and Mt (Eqs.(6) and (7)) that the logarithmic damping
decrements of the first mode of independent lateral
Vibration of the truss and of the cäbles are both equal
to 0.05. In Eqs.(15) - (19), N 5 and in Eqs.(22) - (24),
£ 7, <p 2000 ft, K 0.01, « 0.2 and 2 200
ft (height of the truss above ground as in Refs.2 and 3).

With these parameter values, the variances of M*(t,x)
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and M*tt,x) can now be evaluated numerically (IBM 7090
is used) following the method described in Section2.
Because of the same assumption on the structure and the
wind, the variance ofM*(t,x) computed here is found to be
close to those in Refs.2 and 3« Once these variances
are computed, the bounding technique in Refs. 4 and 5
can be applied for the probability of failure pjtUi) with
the time dependent barrier a.(t,x) Since in the present
study, Eq.(26) is assumed for simplicity, a(t,x) becomes

att.x) |Cx;(l/c r\)\nUi-Ül il- -^-)) (28)

where %tx) is the bending moment of the truss at point x
due to f, =1 lb/ft and ft 1/8.9 lb/ft (this value 8.9
is taken from Ref.3 and it is the ratio between the
corresponding values of cft for the truss and the cäbles)
and Ui is the design wind velocity which is taken as
110 mp'h in this study.If the maximum mean wind velocity Ui is assumed to
have the second asymptotic distribution of largest values'
under a further assumption that Ui > 110 mph has a return
period of 3450 years3 then the density function C/a is
given by

i(0"-irM)""->[-(%;)"} ™>

where T is assumed to be 9.0 and Uc 110 [- -in il- 777~J| "

mph.
3 °

_ An additional assumption is made at this point that
U\ and Tc are proportional (or the intensity of storm

and its duration are proportional) which appears to
reflect the reality at least in approximation. In fact,
a value U\ /T, 5 ft/secJ observed from some Japanese
records3 is used here. Because of this assumption, Eq.
(27) becomes a Single Integration hence considerably
reducing the computational work:

fr/ r t>j(ut)j(üt)düt (30)

It is evident from Eq.(26) that pttÜt) 1 when Ü» >fnUd.
A further assumption cT cdr (see Eqs.(1) and (2)) is
made here so that the following analysis becomes
independent of the value offcrAr.

The upper and lower bounds of Pf* are computed as a
function of the safety factor_n (Fig.1). To be precise,
the probability of failure P,tU>.) and therefore pf* vary
along x However, the Variation is negligible because
the quantities £Cx.> / Ci (x) and gcx) /<r*(x) on which the
Variation depends, are almost constant according to the
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Fig. 1 Probability of Failure p as

function of safety factor n

numerical
computation.

In spite
of the rather
wide differences
between the
upper and lower
bounds, the
result shown
in Fig.1 is
quite useful
in many respects.
For example,
using Fig.1
one can examine
the effect of
increasing the
safety factor

n In fact,
Fig. 1 indi-
cates that the
probability of
failure decreases
by one order
of magnitude
from the order
of 10_z to that
of 10'3 by
increasing TL

from 1.0 to 2.0.
This implies
the increase

of the mean life by one order of magnitude from the order
of 100 years to that of 1000 years, if it is assumed
that significant storms occur on the average once a year.It is pointed out that from the view point of structural
reliability analysis, the probability of failure esti-
mated even only within the order of magnitude is a

significant information.

5. Conclusion and Acknowledgement

A method of safety analysis by which the probability
of failure of a Suspension bridge due to lateral wind
pressure caused by a (Statistical) storm can be evaluated,
is presented with a numerical example. The numerical
example indicated that the probability can at least be
estimated within the order of magnitude. This seeras
significant and satisfactory enough in view of the various
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assumptions one has to make as to structural response
properties as well as Statistical characteristics of
the wind.

This study identified the information that is needed
to make such an analysis more reliable. Other than those
already identified elsewhere (for example, Refs. 2 and 3)>
the following quantities have to be known with
reasonable accuracy; the cross-spectral density Sp,1^
(Eq.(20)) and more importantly, the mean wind velocity
QiCt) as a function of time t (Eqs.(25) and (26j) and

its Statistical nature, and the frequency of occurrence
of significant storms.

The authors are grateful to Professor A.M. Freudenthal,
Technical Director of -che Institute for the Study of
Fatigue and Reliability, Columbia University for his
support of the study.
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SUMMARY

This study presents a method of safety analysis of
aerodynamically stable Suspension bridges subjected to
lateral wind pressure. The pressure is treated as a
random process in space as well as in time. A numerical
example is given under certain assumptions of Statistical
characteristics of the wind velocity. Importance of such
a study lies not only in the development of a method of
probabilistic safety analysis but also in the fact thatit indicates what further information, Statistical or
otherwise, is needed to make the safety prediction more
reliable.

RESUME

Cette etude presente une methode d'analyse de securite
pour ponts suspendus aerodynamiquement stables soumis a une
pression de vent laterale. La pression est supposee arbitraire
dans l'espace et dans le temps. Un exemple numerique a ete
calcule a partir de certaines hypotheses des aaracteristiques
statistiques de la vitesse du vent. L'etude ne developpe pas
seulement une methode d'analyse de securite probabiliste, eile
indique avant tout quelles informations supplementaires,
statistiques ou autres. sont requises pour rendre les estimations
de securite plus precises.

ZUSAMMENFASSUNG

Dieser Beitrag zeigt ein Verfahren für die Sicherheitsbetrachtung

aerodynamisch stabiler Hängebrücken, die seitlichem
Winddruck ausgesetzt sind. Der Druck wird als zufälliges

Ereignis in Raum und Zeit behandelt. Ein numerisches Beispiel
für bestimmte Annahmen der statistischen Charakteristiken der
Windgeschwindigkeit wird angegeben. Die Wichtigkeit solcher
Untersuchungen liegt nicht allein in der Entwicklung der
wahrscheinlichen Sicherheit, sondern auch darin, daß erkannt wird,
welche statistischen oder sonstigen Auskünfte künftig für die
Sicherheitsvoraussage zuverlässig sein werden.
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The Load Collapse for Elastic Plastic Trusses

La Charge limite pour un treülis elasto-plastique

Traglast elasto-plastischer Fachwerke

GIOVANNI CASTELLANO
Prof. Ing.

Istituto di Scienza delle Costruzioni
Facoltä di Architettura — Napoli

Abstract - The collapse load of a truss is investigated taking into
consideration the way the bars actually behave, namely the effects
of the strain hardening and the buckling respectively for the bars
under tension and for those under compression.

During the buckling process the diagram which represents load
versus axial deflection, on account of yelding of mid section,due to
the bending, takes the form of a hiperbola branch (fig.l) [_l] [2] fßj
At this stage, the bar, whose characteristic is a negative strain
hardening - softening - becomes unstable. If, however, it is within a hy-
perstatic system, its buckling does not necessarily cause the collapse
of the structure. Especially for multi-hyperstatic trusses, the collapse
load may be found to be higher by far than the load generating the
buckling condition of the first bar.

The problem has been put up with the restrictions as described
in the following: The bars are pin hinged bars; the stress-strain
relationship, as indipendent from the temperature and time,follows
Prandtl's model [4] ; the defiections are assumed to be infinitesimal,

that is finite but small, just that the geometry of the system
and thereby the internal condition of the stresses are not affected
at all; both localized and global bifurcation phenomena are ruled
out. Cf this structure are discussed the stability conditions in the
classical meaning,that is for infinitesimal perturbances.

This problem has already been dealt with by other authors [~5j
[6] [7.] From the stability postulate of Drucker's [8] [9] the
sufficient conditions for stability and uniqueness of the Solution have

been deduced. In the discussion which follows only the first aspect
of the question has been examined closely: By an original procedure,
the necessary and sufficient stability conditions have been formula-
ted.

The problem has been traced back to analysing the development
to which is subjected the structural yield locus,«hich varies with
the varying loads, under the action of incremental plastic deformations.

Upon the external load reaching its critical value, to the
increment of the plastic deformations corresponds a contraction in_
to the yield locus which make it impossible to balance the original
TS 1
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work performed by the external forces which is necessary to achieve
pattern B. In particular OABC is the graphical representation of as
much amount of energy as is absorbed by the system and is dissipated
through the plastic phenomena ;tho area CBD is the elastic energy which
can be returned only if the bar it is isolated or part of an isosta-
tic system.

Unlike the currently adopted Convention on the signs for the axial
forces S, a different one is being introduced here. The starting axial
force S is assumed to be positive in all cases; increments are either
positive or negative whether or not they are in accord with the starting
force.

For a_ssigned plastic deformation
o (fig.2)j £?S"are meant to be indicati-
ve of the limiting values within whose
ränge the axial force can oscillate per_
forming elastically.Therefore the yield
locus shall be as established by the re_
lation:

_(l) S== S

where S, generically, indicates the S*,S'
limiting values according to whether
is correspondingly a traction or compres_
sion. If the verificatlon yelds a dise-
quality, the bar under test is in the
elastic ränge, whereas the equality pro_
ves it is in the plastic ränge.

Where the bar is in the plastic ran
i.e.if S S,the stress-strain relationship is linear, when the

increments are infinitesimal: Curve S($ is substituted whith its tan
gential line at S, Then by differentiating (1) in relation to o or S ;

un

M

d6
H

k/j

1S"

Fig.2

ge

(2) dS=-
iS äS Wd<S =41 dS dS
d.S *" " "**" ~ dj

a limitation to the incremental relationship ~S-S is obtained. Owing tc
a dJ increment in the plastic deformation the bar, initially stressed_
under§ is now capable of taking a stress increment, at the limit, dS :

Therefore d S determines the dislocation of the yield locus (fig.2).
In the eq (2; W_represents the dif_

ferential rigidity, W the plastic diffe-
rential rigidity (fig.3): the following
is the correlation of the above rigidi_
ties to the elastic rigidity We:

JL_jve_
W V'e —

the result~is that where W -£ 0 W is li-
kewise^O.The plastic deformation d3 is
restrict^ed in sig_n by the relationship
aign d.J sign 'S,which, for the position
of on the forces signs, is reduced to
condition: _

(3) dS^-0
The interval within which rigidi-

d£d?

AS d<5\
Ä^^v*. Fig.3

oij

Ba. Schlussbericht
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ty v. is included is so defined:
- -3° < w < We

By combining eq. (2) with limitations:
d<5 > 0 dS dS Wd£ (- c*> < ff < We)

di =0 dS V'edS (\. We)
the stress-strain incremental relationship is thus obtained. The eq.
(2) covers the (4) and in a more general sense may be intended as re-
lating to a cycle. At first, the increnientel force dS verifies the
equality with the bar being in the plastic ränge, subsequently is su-
bjected to a reversal and thus verifies the disequality.

The behaviour of the system - As a reference, let it be taken a gene_
ral type of reticular pin-hinged, made up by n bars, times r hypersta_
tie truss and let it be subjeeted to a loading pattern P: for an Fo
load let Co be the corresponding in equilibrium and compatible_ pattern,
typified by k number of bars (K g r) in plastic ran6e, 5j 6* being
the corresponding elogations.

Let the displacements of the system be assumed as being
infinitesimal, or finite, but such that they cannot affect the originary geo_
metry of the system and, hence, indirectly, the stressed condition.
This supposes that the strain condition which _corresponds to Co can be
regarded as borne by the plastic deformations <5 intended as distor-
sions, and by loads Fo, as applied to the elastic structure.

This as a reference Sei indicates the stress exercised by load Fo
into bar "i"; Sij the stress transmitted to bar"i"through distorsion
St 1 at "j". Then the resulting stress in bar"i"is:

(5) Si Sei + Z. Sij 6; (i 1 n)
Eq.(5) is substituted in (l) by transferring to the right hand side

the term relative to the distorsiqns:
(6) Sei ^ Si + % Sij 6 j Si

on the assumption that: K
_

"Si Si -t-lSij oj
The Si ,difierent, whether tractive or compressive, are a generaliza-
tion of the Si referred in (l) and define, within the space of the
plastic defermations, the yield locus for pattern Co. If stresses Sei ve
rify the inequality,phe point representative of the stress condition
falls inside yield locus. On the contrary,if for some of the bars the
equality has been verified the representative point falls onto the edge
of the yield locus and the structure is in the plastic ränge.

A Variation is assigned to pattern Co by attributing to the bars
in the plastic ränge a do incre...ent to the initial plastic deformations.

on the assumption that the bars in the elastic ränge will stay
such. The resulting Co pattern is described as "perturbed"pattern. By
differentiating (6) for the d6 increments assigned and consistent
with (3) we obtain the stress increments which Co can absorb:

(7) dSei ^ *id& i +2 SL^lj äS±
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Eq.(7) is a j^eneralization of eq.(2). The dislocation of the initial
yield locus "5, consequent to the assigned plastic deformations d<5j is
just supplied by the dS. If the representative point of a new stress
condition comes to fall inside of or into the edge of the yield locus,
the equilibrium between the stresses and the strength of the bars is
verified for pattern C^ ; if outside, that is if for a certain number
0f bars:(8) dSei>a8i
the equilibrium is impossible: the plastic deformations continue their
pursuance to a new pattern CJJ which may still verify eq.(7).

Stability of the system - A graphical method for the verification of
the stability, in which the above indicated concepts ore expounded,is
illustrated the problem being dealt with is limited to the case involving

two placicized bars only. It will not be difficult but rather easy
to extend, conceptually at least, the representation to the more
generalized case.

As a reference let us consider a Cartesian system having as many
axes as are the plasticized bars. let us mark on the axes plastic
deformations d£ : The origin of the axes tbus defines the pattern Co.As
is conventional for the signs on plastic deformations (3),all C0 pat-
terns are comprehended within the quadrant of the positive d&. Chosing
this as reference frame,we now draw as many straight lines dSj_= 0 as
are the bars in the plastic ränge: the enveloping line defines the boun-
dary of the plasticity field for that part which influences the stability

of the system; on the perpendiculars are marked the stresses Sei
and the corresponding increments dSe^. Therefore point Co sets also the
initial stress condition in which Sej_ Sj_.

Fixed the perturbed pattern Co, the sides of the yield locus tran-
slate: according to dS^O it will correspondingly expand or contract:
the new yield locus, so obtained, is defined "perturbed". The equilibrium

in this stage is assuredly verified if the transposition to C£

is considered as effected by forcing a set of supplemental restraints,
non efficient in C0. Point Q0 moreover establishes the elastic stresses

dSej_, relative to the reactions dP of the additional restraints con-
stituting the,so called,jperturbing forces.

The supplemental restraints are then removed and, hence, dP-*0:
Where dSe^-^O the elastic stress condition C0 has a tendency to resu-
ming the initial position C0. If C0 is found to fall inside the area
of the perturbad yield locus, that is, if:

0 ^ dSi
e<l.(7) is verified: the pattern settles in Co and the system behaves
elastically again. If, on the contrary, for some of the bars eq. (8)
is verified, that is_

0 > dSj_
C0 comes to fall outside the perturbed field and there are no possibilities

for an equilibrium. These bars keep being subjected to the plastic

phenomenon with the field paralleley evolving in pursuance of a

new pattern C0 which coiaprehend C0. More forces are supposed to be in_
terfering ot this stage such that a point-by-point equilibrium is as-
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sured.
For example, in the case illustrated in figura 4, what Co might

be, the resulting system is in any case that of equilibrium. Being tha
at all times dS]_> 0 dS2>0, eq.(7) is verified, even where dSe -+0:The

perturbed yield locus shall alwais com-
prehend the originating pattern C.. In
this case the equilibrium of pattern Co

is stable.
A diametrally öpposed case, is that

'$/S(o shown in figura 5. ^hatever C0 the resul
is alwais dSj_< 0 dSg<0. Hence by eli-
ruinating the perturbing forces eq.(8) is
verified: within the two bars the
plastic deformations increase. However,wha-
tever the C" pattern which one can come

to,during the unloading stage, the situa
tion repeats itself again: the plastic
deformations have a tendency to become

infinitely great. Parallelely the edge
of the yield locus, originally S, moves

to S - dS: for do-»=*>, S - dS-*-0: the plasticity field for at least one
its sides shrinks gradually up to becoming null. At C0 the equilibrium

is therefore unstable.
Figures (6) and (7) report some

intermediate situations. The first shows a

se of stable equilibrium, the second one
a case of instability.

In fig. 8 is then illustrated a

Situation of neutral equilibrium. "hatever
C0 the system is apt to assuming an
equilibrium pattern C" coincident or not
whith the former. From this viewpoint
the system is apparently stable. Cn the
other hand, though, all_patterns C0 fal
ling on straight line dSi_ dS2 0 are

O.All

i

*7Tr

1*w^.<-,
»fr Alz

''AY /x* Jy\.o

Co d£i
r

^y 1 iy </?/ \.
Vv Fig.4
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eJ&i

<^
vT»

Fig
also corresponded by dSej dS e2=
these patterns and, to the limit, the in

finity one, are then attainable without the aid of a perturbing Setup

for forcing the system, ond hence without any energy dissipation.
Along this directrix the System is see-
mingly worn out, unfit to counteract the
modification of the original pattern C0.
The Situation as illustrated in fig.7
is ungtable although still presenting
an indifference directrix.

Fven if hardly usable, owing to the
unpraticai possibility of extending it
to an n dimension system, this graphi-
cal representation helps to clarify the
problem and affords a comparison whithFig."

iicUc

,0CaN

>;i
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the analogus elastic problem.
In the elastic ränge, if the equi_

librium is stable, C'0-*C0 once elimina-
ted the perturbation. In the elastic-pla-
stic ränge we find that 6' o > apart from
not returning in C0 at all, may further-
ly move away from it and reach C"0,which
alike C0, is very close to C0. It fol_
lo.vs that lacks the clear differentia_
tion between a stable and a neutral equi_
librium, as is found in the elastic ran_
ge. The distinguishing point that dif_
ferentiates the latter from the former
lies only in the fact that.;for transla-
ting the system from one pattern to ano_
ther along the indifference directrix,
there is no need of any external work.

The system energy - The stability conditions are algebraically expres_
sed as functions of the energy. As an introduction some hint is the_
refore made about the energy stored in the system and its variations.

In an intermediate stage of the loading process 0-F0, the work
done by forces F in equilibrium with the
internal stresses S, under the action
of a d increment in the dispacements
associated with an increment in the bar
deforrnazion d is:
(9) dL =lFdn=|Sidd:i =I(Se± -iSi;j 5-j)

(äoei+diSe-i+dS ±) =ZSe± d^e, 4-I(£Si-j
Sj+Sj_) d^i =ZSei äS, ei+£sei dl ±

the assumption having been made that in
this stage too, K bars are plastici-
zed.

The total work L, spent by the
external forces for the developtment
of pattern C0 is:

=/Fd-1= i2.Se±S>e±+U-£Si^ S d)Si+i|sidSi= E^ + Ev + Ep

The right hand side indicating the energy absorbed by the structure.
In detail the first term, E^, signifies the free elastic energy, in other
words that quantity of energy wüich totally returns to the external
forces at the unloading stage. The second term, Ev, the elastic ener

C6
ciS / c„=c„

vT

—o?)i

AS

¦pT

Fig.8

(10) I
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gy constrained within the system by the plastic deformations which can
be released to the outside only by making cuts in such a way that the
structure becomes isostatic. The third term, Ep, the irreversible ener_
gy absorbed by the system, used to produce those alterations in the
internal structure of the material which give origin to the plastic di-
slocations.

For translating the system from pattern C0 to C0' the work, d2L,
of the second order, done by the perturbing forces, taking into account
the linearity of the stressr-strain relationship, is _ _

(11) d2L -j-1 dFd-rT. |~£dSeid S e± 4- ^-2(£S|jdS j + W^d-S ±) d S ±

=£<j.Sei dS ei + ü dSej_ dSi d2Ei+d2 £v+d2Ep d2Ea,+ d2 E

_ n K

d2E being the global constrained energy of the system both elastic and
plastic.

The constrained energy d2E is expressed by a homogeneous quadra-
tic polynomial whose variables, however, are conditioned, in sign, by
eo. (3). For that part relative to the hiperquadrant 0 this polynomial
coincides with the quadrantic form, associated to the matrix of fhe ri_
gidities (7) and may result positive, null or negative: the last cir-
cumstance being possible in the sole case that, at least one bar be cha-
racterized by softening. The E^ and Ev polinomials are instead always
positive.

Generalizing the notion of the total energy of the system 10 by
adding, in addition to the positional energy of the external agencies,
and the free elastic energy, also the constrained energy, eq.(11),after
transferring to the right hand side the external work, defines the
Variation prime, äE\, of the total energy, stationary for the Cs,equili-
brium pattern. Variation second d2E-i- is furnished instead by the right
hand side of eq.(ll).

Stability conditions - Let us suppose that the quadratic form d2E, de-
vised for pattern C0, is always positive for all the dt5 consistent
with (3), but not simultaneonaly nought_, that is:_ _

(12) d2E 2_dS"i äS i £( 2-Si-j d Sj + Wi d£i) dS i>0
In particular let for C^, be:

dSi=foi (d2£)jc.^ °
Eq (7) verified at the beginning in rewpect to the interference of the
perturbing forces still rests verified for dSei-*-0: thoough the unloading

stage the system behaves in an elastic way. In the space of the
dS the pattern settles in C0.

Its supposed, instead, that for CQ :

dSi -feSi ^EH°
In this case, although as a whole eq. (12) is verified, same of

the addenda result as being negative. V/hith the elimination of the
perturbing forces for some of the bars eq.(8) i3 verified. For such
bars the plastic phenomenon then progresses spontaneously and the
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system moves away passing from C0 to C"0. The second principle of the
thermodynamics, as formulated by Lewis, [il] affirrns that any sponta-
neaus phenomenon is corresponded by a decrease in the system energy
which is transformed into the work of_the balancing forces, that is dF,
in the present case. Thus, if with d2Ec,__we designate the energy
corresponding to travel C0-C0, and d2Fc- that relative to Co-Co-C"o, the
result will always yieldj_

(13) a2EcL > d2Ec.L

But, for the supposition made in eq. (12), the verification of this
relationship can only be ascertained where Co within the space of the

6 - comes to failing around C0 and, hence C0. The pattern C"0 defines

a relative extreme (minimum) of function d2E, conditioned by eq (3)
and therefore: r

d
dSi LdoT (d2E) o

Hence at Cq, also for dSei~*-0, eq (7) is verified. So eq (12) represents
a condition sufficient for Co being a pattern of stable equilibrium.

As a Substitute of (12) let us assume:
(12') d2E 2^ 0

In particular then let,for C'Ojbe d2E 0: In the other case we come
to fall again within the preceding Situation.

Allowing for eq.(l2') the risult will alvays yield:
d?i fe (d2E It0

Thus C'0 is a pattern of equilibrium with no interference of pertur_
bing forces and as such are all those other patterns which fall into
directrix Co-Co which is justly typified by d2E=0. The system moves
along this direction with no external work being done. Then the following

is particularly to be verified:
d Sj_ > 0 for d_6 i =0
d Bj_ =0 for d5 i > 0

Pattern Co, which is corresponded by (12'), is then a pattern of
neutral equilibrium.

For (12) let us assume as Substitute:
(12") d2 E £ 0

In_particular is assumed as the assigned pattern C0 that for which
d2E<0. In_this ,ease for some of the bars:

d§ri;är (d2E)f<0Li J c ft
The perturbing forces eliminated, the plastic phenomenom then progress:
the energy relative to a successive pattern CQ is related to the energy

at C0 by eq.(13). In C|J, and so for the successive patterns, is thus
repeated the like Situation as is found in C0. The plastic phenomenon
keeps continuing indefinitely with the system never reaching a pattern
of equilibrium with load Po. Therefore if the pattern Co is associated

to eq.(l2") the equilibrium is unntable.
Thö considerations on the eq.(l2"), (12") follows that eq.(l2) re_

presents also a condition necessary for the stability of the system.
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Drucker's second stability postulate [ 8J [9] as applied in the
"small", fully confirms this result. In order that the system is stable

the closed cycle work accomplished by the perturbing forces,applied
at first and removed afterward, is to be positive. As this cycle termi-
nates_this work is found again under the form of stored energy: thus
if d2F>0 the equilibrium is stable. On the contrary, if dgE<0 the
result is that the cycle cannot be closed, that is the equilibrium is not
verifiable without the introduction of an equilibrating system dF:then
the equilibrium is unstable.

From the above it can be easy to deduce that, where the bars behav
in an ideally plastic way. (W=0), un^er the collapse load the equilibriu
is neutral. True, in general d2E ä-0 (d2Ep 0), particularly it nulli-
fies for that d6 set which is corrisponded by the_collapse laechanism.
If the bars are instead strain hardened (W>0), d2E >0 as d2Ep->-0: In
this case the equilibrium is stable.

The stability according to Drucher's postujate - The first postulate
of Drucher's states that a system is stable, in the "small",if the work
accomplished by whatever forces dF yields always a positive result. If
these forces are supposed as acting in a proportional way,the work ac_
complished by forces dP is coincident with the energy stored by the
System, (11),that is the total energy Variation. In the following is the
demonstration that this principle and the one expounded in the prece-
ding paragraph match perfectly at least as far as concerns the speci-
fi£ case under consideration. It is demonstrated particulary that if
d2E >0 or d2F=0, parallely»always does exist at least one perturbing
pattern dF for which d2Et >_0 or d2Et 0.

Let us assume that d2E ;>0 and as dF a system of forces proportio_
nate to load Fo acting in Co, characterized, thus, by a proporzionali-
ty factor dA, infinitesimal_. Since the system results being unstable
for a given number of bars dS"i<. 0. In order that C0 be an equilibrium
pattern, eq.(7) must be verified and the result dSei<0 must thus be
yielded. Since, for Convention, stresses Sei are positive, factor dA
must be negative, or:

dÄ Sei - dSei
The perturbing pattern dF must then result opposite to that Fo. In
these conditions, at all times, eq.(7) is verified, even if plastic
deformations are absent, in which case dSe^ 0. Among the C0 Solutions
which verify eq.(7) there exists at least one, C0 which verifies also
eq.(4) in its generalized form, or:

(14) - <?Se.j_ dSi d6 i > 0
- aSei < dSi d 6 ± 0

This Solution defines one extreme of function dg E ["l2] [_13j L14J
conditioned by eq. {7) and in particular for the assumption adopted on
the sign,(12"), it defines a maximum. The work accomplished by forces
dF, in moving the system from pattern C0 to that C0| is then supplied
by eq.tll) agrees with eq.(9) multiplied by the _1 dA negative factor.
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Since is always: dL>0

- % dA dL d2L < 0

Obviously, if d2 L<0, such is also the right hand side of eq. (11)
that is the Variation ^2^-^ of the total energy. This implies that in
C0 if (12") is verified, Ft definies a maximum and there exists, at
least, one perturbed pattern C0 for which d2L<0.

On the contrary if d2E ^ 0, for the patterns C0 failing on the
indifference directrix:

dSei «iflP 0

then: dF 0

d2Et 0

If finally:
d2E >0

since d2F-j_> O.also d2E-fc>0. In C0 the function Eh- defines a minimum.
In the following a very simple example has been evolved. The stru_

cture is that as shown in fig.9. In figg.9, 9-a, 9-b, 9-c the graph
shows plotted, in the upper part, the Ft force versus the slope 6~,at
C, for the beam, whose behaviour is supposed to be infinitely elastic;
in the lower part of the same graph for the stanchion subjected to a

buckling at A, assuming three different values for rigidity Wa. Star_
ting from pattern Co, to which corresponds load P0 F«- + Fa, an increment

d& is attributed to the plastic deformation and pattern C'0 is
reached. Addenda d2 E]_, d2Ey, d2E_, all Coming within the energy ba-
lance, hold as follows.

+ Wt)d S e CBE area
d<fed<f ACD area

ABL area
Zi

d2Ee ft (Wa

d2Ev * (wa

d2Ep i "a dS2

Fig.9

In particular, for.Chart in fig.(9-a):

Fig.9-a
u_

LP

AU
AL

TWacJi

d2F ACD-ABD ACB > 0

ä2Et= ACB+CBE ABE > 0

The equilibrium is stable,

A dT^V
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For chart in fig.(9-b):

Fig.9-b

h di t ciSa

CsßiE

d2I ACD-ABD 0

d2Et= 0

The equilibrium is neuter

A D

For chart in fig. (9-c)

Fig.9-c

I !T<tt^

A

doE ACL-ABD - ABC < 0

d2Et= ABC-CBE - ABE < 0

The equilibrium is unstable

Conclusions
The stability analyis of an olonomous system, whdse components are
stressed axially and are typified by positive and negative rigidities
is led back to the study of function d2 E, that is the quadratic form
associated to the matrix of the differential rigidities within the
hyperquadrant of the positive di If, within this boundary, d2E>0 then
the equilibrium is stable: on the contrary it is neutral or unstable.

By the avail of the matrices theory 0-4] some conclusions cdn be
drawn. If the quadratic form^associated to the matrix of the rigidi-
ti_es,is definite positive, such it will be also in the hyperquadrant
d^>0: therefore the result is d2 E>0. Hence the equilibrium is sta_
ble. Instead if the quadratic form is definite negative, in like man_
ner, dpE^O: the equilibrium is then unstable. The same holds true if
the quadratic form is semi-definite negative: the ränge of the matrix
can never be less than one, and thus the indifference direction,at the
liiüit„can only occupy a subspace of the positive hyperquadrant, the
quadratic form in the complementary subspace remaining negative.

More complicated the question presents itself where the quadra_
tic_form is semidefinite positive or indefinite: In the first case
d2 E>0 or d2 E 0, in the second case d2E £ 0 or the intermediate
cases. The research of an algorism for the Solution of this problem
will be the subyect of a forthcoming information.
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SUMMARY

The stability analysis of an olonomous system, whose
components are stressed axially and are typified by positive and_
negative rigidities is led back to the matrix of function d_ E,
that is the quadratic form associated to the matrix of the
differential rigidities within the hyperquadrant of the positive

äff. If, within this boundary, d„E>0 then the equilibrium
is stable: on the contrary it is neutral or unstable.

RESUME

D'analyse de la stabilite d'un treülis, dont les barres ne
subissent que des efforts axiaux, est deduite ä l'etude de la
fonction d2 E. Si d2 E>0 le Systeme est stable, sinon, il est
neutre ou instable. Avec l'aide de la theorie des matrices fl4J
on peut tirer des conclusions sur la forme quadratique associee
ä la matrice. Le probleme est plus ou moins simple, selon que
cette forme quadratique est definie positive ou negative, ou
semi-definie negative, ou alors si eile est semi-definie positive

ou indefinite. Ces derniers cas seront traites dans une
information ulterieure.

ZUSAMMENFASSUNG

In diesem Beitrag wird die Stabilität unter Berücksichtigung
der Traglast an einem Fachwerk, deren Stäbe achsialer Kräfte
unterworfen sind, untersucht und mit Hilfe der Matrizenrechnung die
Fälle des stabilen, labilen oder instabilen Gleichgewichts beschrieben.
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