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DISCUSSION PREPAREE / VORBEREITETE DISKUSSION / PREPARED DISCUSSION

Model Analysis for Structural Safety and Optimization
Analyse sur modéles de la sécurité et de I'optimisation des structures

Modelluntersuchung der Bausicherheit und -optimierung

GUIDO OBERTI
Prof.
Italy
1.~ Forewoxd,.
a) In a short note presented at the Rio de Janeiro

Congress of the IABSE in 1964 I stated that the possibility
of analyzing on models, even -.: failure,of large structures,
particularly plain or reinforced concrete strucrures, has
long been proved by me in a great number of cases,

In fact, a model study under elagtic conditions

furnishes the values of the prototype stresses under
working load, which is important for several reasons.,
Firstly, the results obtained, unaffected by the assumptions
and limitations which impair the classical methods of
calculation, can profitably be compared with those supplied
by these methods, Secondly, it is not hard to solve cn
models unusual three-dimensional problems, contrary to what
is the case with the conventional analytical procedures
both because of extreme complexity (only partly reduced by
the finite element method) and difficult mathematical
schematization of accurate boundary conditions.

Extension beyond the elastic range is still always
invaluable to the structural engineer as it may enable him
to locate possible weak points in the design and thus assist in
securing greater safety and optimization,

Models may be classified in elastic (tested within the
elastic range only), structural (carried to failure) and
geomechanical (when the foundation influences the structural
performance),

Precent trends, bascd on experience at ISMES, are:

- 1increasing emphasis on structural mocdels;
- constant improvement of model materials to better suit
the aims pursued;
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- growdng interest in thermal stress investigaticn,
especlally for concrete dams and reinforced
(prestressed or not) concrete vessels of nuclear
reactors;

- dynamic testing on large shake tables and marked
concern for earthquake effects,

b) Theme I has been treated by the general reporters
prof. A. M. Freudenthal and prof., J.Courbon,

In a first thecretical and critical paper regarding
topic la, prof. Freudenthal deals with the evaluation cf
overall structural safety based on probabilistic criteria
related to the operating loads, which seems fit for
statically determinate structures only. In a second paper
concerning topic 1b and also of a theoretical probabilistic
nature, the same author discusses the possibility of
predicting ultimate safety based on the physical properties
of the materials and their influence & failure. None of
the papers mentions structural model analysis.

Prof. Ccurbon’s paper treats with tcpic 1lc of Theme I.
It concludes by mentioning, all too briefly, the great
services rendered by model studies in the design of dams,
thin shells and shields of nuclear reactors,

I, therefore, believe it of use toc cutline, the |
present-day possibilities of model analysis in evaluating
the safety degree of large statically indeterminate
structures.,

é) Mcdel investigation primarily concerms statically
highly indeterminate structures and may be regarded as:

I) a modern method of stress analysis;
1) a tool for failure load evaluation.
In any case, it is possible to consider or predict the

statistical dispersion of the operating loads and of the

structural resistance of the prototype material,

In case II), when several models are tested, it is
possible to evaluate the ultimate carrying capacity R of
the structure for each type of load S, sc that the model
functions as a tool for determining the overall safety
factor y .

This factor may vary for each type of structure,
depending on the probabilistic possibility assumed for the
operating loads and the structural resistance, associated
with a definite risk of failure,

Thus,for concrete dams, the loads are practically known
(excepting those for earthquake-resistantsi design), and the
uncertainties abcut the concrete resistance are quite small,
The highly redundant type of these structures generally
reduces the importance of the concrete strength dispersion,
The safety factor in this case, therefore, serves rather as
a ccefficient of security against the insecurity of the
analytical results, especially in relation to the real
properties of the rock foundation,
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Actual pcssibilities of model analysis,

Elastic medels are based on linear elasticity
(Hocke’s law) and, hence, a superpcsition of effects is
allowed. They alsc permit to proportionately modify the
lcadings so as to obtain the most suitable testing
conditions. In particular, it is possible to operate
at strains that are amplified with respect to thcse
required by similitude (which demands that the strains
in the prototype and in the model be the same).

Elastic models, widely used in ”"stress=-analysis”,
may be divided in two groups.

The first group concerns plane elastic structures,and
for them the deformeter, photoelastic and Moiré methods
are predominant,

Deformeters are based on the well-known reciprocal
theorems (Maxwell, Betti, Miller-Breslau). Photoelasticity
is a first-rate research method, most used in structural
engineering laboratories. The Moiré method is primarily
used in flat slab investigations.

However, it should be observed that the importance
of these methcds has lately decreased due to the use of
computers in solving problems relating to plane elastic
structures.

The secondgroup deals with three-dimensional models,
In statical tests the loading equipment is usually made
up of calibrated weights or hydraulic jacks, the pistons
of which react against an external rigid frame; the loads
are applied to the model through wooden cork-soled pads.
Strain gages, ordinaxily applied to the surface of the
model, are used for measuring the direction and magnitude
of the principal strains,

Young’s modulus and Poisscn’s ratio of the model
material are determined as usual, the former by tensile
and flexural tests and the latter by torsional tests, The
material may quite differ from that of the prototype,
provided it obeys Hooke’s law and its Poisson’s ratio is
similar to that of the structure. The model then functions as
a "stress computer”,and its results may be ccompared with
the theoretical ones.

For elastic mcdels, ISMES has recently succeeded in
using epoxy resins mixed with variocus aggregates.They permit
obtaining a wide range of elastic moduli in accordance with
the requirements of each case, and stress-strain
relationships that are similar even when the stresses are
high.

Structural models are best made of the same material
as the prototype. This is generally possible for steel or
prestressed concrete structures when suitable scale
(1:4-1:20) nodels are used, But for very large structures,
such as concrete dams, we are forced, also for econcmic
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reasons, to adopt greatly reduced scales (1:30-1:100) and
hence to use mcdel materials whose mechanical
characteristics are reduced compared with those of
concrete in accordance with similitude requirements,

For structural models, I have long since used special
materials simulating the mechanical properties of concrete,
by introducing the technique of "wet mcdels” (with a
waterproof coating) practically free of internal stresses.

The tests 2re then divided intc two successive stages,
In the firststage,called “normal lcad tests”, the
deformations are investigated for values close to
similitude conditicns (that is, € = €’) under loads
corresponding to those of the structure in operationto),

The second stage concerns ultimate load tests and the
transition to them is gradual. The ratio c¢f the highest
actually supported load to that of the design lcad is
generally assumed as overall “factor of safety”.

This ratio can easily be referred to all the operating
locads equally or differently increased following a
probabilistic coefficient applied tc each independent load.
In the case of statically high irdeterminate structures it
differs frcm the classical ratio of ultimate “o working
stress, and its meaning is greater since it takes into
account the bi- and triaxial strength of the material under
stresses in different directions and the plastic.adjustment,

One can by expedients increase on the model sclely the
loads which in the prototype may rise through extraordinary
action. Such are wind load for skyscrapers and water
pressure for dams. The horizontal loads alone may undergo
increases of consequence for the stability of these
structures. In setting up a model study it is, therefore,
cf basic impcrtance that the factcr of safety shall be
evaluated as simultanecusly affected by:

- loads having a fixed value (dead load);

- loads which may increase with respect tc their ordinary
value (wind effect);

- actions the cccurrence of which is cnly probable
(earthquake).

In practice, when the so-called "weight” cf each of
the above phenomena has becn established, one can cbtain

(°) It is advisable to secure, through repeated loading
cycles, non-elastic displacements (settlement of the
foundation, adjustment and opening of joints,
localized plasticity) which are likely to occur since
the first loading in order toc obtain an elastic and
unlfcrm model performance fit for repeated measurements
.2 <cntrels, Thic re-mits obtairing the stresses,
d.splacenents and structural behavior of the prototype

unde> workirng conditions.,
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the factor of safety by experimentally increasing all the
loads up to the failure of the model, considering the
"weight” corresponding to each type of load

Therefore, not only cne but a number cf faogtcrs cf
safety can be secured, each of which corresponds to a
given set of phenomena the influence of which is to be
analyzed,

Geomechanical models investigate structures
on foundations whose equilibrium conditions
may arfect the sarety of the structures, as is the case of
dams, large bridges and power or highway tunnels,

The stability of block foundations has lately beer
simulated and studied on gecmechanical models the
characteristics of which had conveniently been schematized
on the basis of geognostic tests.,

It may also be pointed cut that in-situ and laboratory
investigations c¢f the geocmechanical features of the rcck
and soil mass are increasingly used and reccmmended as an
aid tc model studies,

The models, therefore, must faithfully simulate the
rock and soill conditions and its mechanical prcperties,
The tests are usually carried to failure.

These investigatiocns are tc be considered as basic
when extensive discontinuities (faults, cavities) or a
pronounced anisotrcpy (stratificaticns and diaclases) are
present in the rock mass, especially when sliding cr
least-resistance planes may develcp c¢r, more generally,
when large low-strength block formations are involved.

In these models, cohesion and angle of fricticn must
also be faithfully reproduced. The difficulty encocuntered
in establishing the true values of the angles cf friction
makes it in the modeling conservative tc assume reduced
values which are still within the approximation allcwed by
field tests.

The prctotype and model strains have to be the same
and, therefcre, the scale ratic must be reduced, The model
materials then shall have high densities and low mech8nical
properties (i.e.,very low moduli of elasticity, yield-point
and ultimate loads) in order to comply with similitude.

Assessment of (strictural) safety at the design stage,

The adcption of model techniques is firstly of
considerable importance at the design stage of structures,
especially if these are statically highly indeterminate.

Structural safety can then be evaluated by mcdern
probabilistic criteria as suggested in the Freudenthal
report when:

- the expected statistical dispersion of the loads, i.e.
of the external or operating forces S, is taken into
consideration by determining the dimensicns of the
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prototype on the basis of a force Y 4«8 (where Y,
the load safety factor, is > 1) and adopting equivalent
working forces in the model;

- the statistical dispersion of the strength o, of the
prototype material is taken into account by “assuming an
ultimate load, or a yield point, equal to op/ yp (with

, the rupture safety factor, > 1) and comparing the
highest internal stresses furnished by the model at that
value,

The model then becomes a very efficient tool for a
"structural analysis”.

As typical examples I shall mention:

- the statical and dynamic investigations carried cut on
an elastic model of the Polcevera viaduct, of the
%aracai?o bridge type, designed by prcf. R. Mcrandi

fig. 1);

- the far more elaborate analysis, made particularly on a
structural model carried to failure, of the new San
Francisco Cathedral designed by prof. P.L.Nervi(figs.2,3);

- the study cf the safety degree cf the Kurobe IV Dam and
its foundation (figs. 4, 5, 6).

Fig. 1 Polcevera viaduct, Italy. Elastic inodel:
Scale 1:50
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Fig. 2 San Francisco Cathedral, U.S.A.

Scale 1:15.

view of model.

General

Fig. 3 San Francisco Cathedral.

Structural model under failure tests,
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Pig.4 EKurobe IY Dam, Japan.
General Layout of geomechanical model.
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FPig.5 Kurobe IV Dam. Displacements recorded at
a horizontal section (el. 1320 m).
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Fig.6 EKurobe IV Dal. Structural model at failure,
showing the opening of joints.
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4.- Evaluation of the safety dearee of an already existing
structure.

Mcdels may be of great assistance not only whenl '
structures are being designed but also when the stability
and safety degree cf ercreted works are being checked. This
is particularly t =~ when verifying large structures which
have undergor- Statical conditions unpredicted or
unprec it -ole at the design stage.

Here, toc, I shall briefly illustrate some examples in
which testing cn mcdels has yielded highly significant and
conclusive results, with particular regard to the safety
degree of the structure,

After a few years of operation, extensive subhorizontal
microcracks were found at the upstream face cf a large
arch-gravity dam completed in 1958, The influence of these
cracks on the structural performance and safety of the dam
at full reservoir has been investigated on a large structural
model in which the number and pattern of the microcracks
had faithfully been reproduced (figs. 7, 8).

Interesting tests were also conducted on a 1:4 scale
model tc verify the compression safety degree of the main
columns of the Cathedral in Milan (fig. 9). The two materials
(Candcglio and Serizzc marbles), of highly different moduli
of elasticity, = and the geometry of the individual blocks
were identical with those of the prototype (fig. 10). The
pattern of the stresses in the masonry dome carrying the
main spire of the Cathedral has then been analyzed on a
large elastic model (fig, 11).

The effect of the horizontally stratified bedrock
anisotropy on the stability of a recently constructed dam
was investigated by means of gecmechanical models, The
various expedients devised tc raise the safety degree of the
dam-foundation unit were also examined (fig. 12).

Finally, the model tests carried out for the
double-curvature arch Vajont Dam should be mentioned. As is
known, this dam has brilliantly withstood the extraordinary
sliding of Mount Toc into the partly filled reservoir and is
ncw sustaining the enormous asymmetric mass of slide ‘
material (fig.13)., After the disaster, model studies were
conducted to determine the safety degree of this imposing
structure under the present excepticnal live load (fig. 14).
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Pig, 7 Flumendosa Dam, Italy. Microcracks on upstream
face of model.

-# §

Fig. 8 Flumendosa Dam. Downstream view of model
under test.
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Fig. 10 Milan Cathedral.Cross-sections
of columns,

/] F ..;’.f‘:f‘ 2

Fig. 9 Milan Cathedral., Model of column
under test., Scale 1:4.

13
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Fig. 12 Meguinenza Dam, Spain. Plane model on
geomechanical foundation.
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Fig., 13 Vajont Dam. Asymmetric slide material
acting on upstream face.

Pig. 14 Vajont Dam. Model under
asymmetric load test.
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S~ Conclusions,

It is believed that the above brief outline has
clearly shown the contribution given, and which can be
given, by testing on models when evaluating the safety
degree of a structure at its design stage and after
censtruction,

When it is assumed, in accordance with modern trends,
that a rational determination cf safety involves the
adoption cf an acceptable risk of failure, a design
procedure for uniform safety, and hence optimization, can
be based on structural model investigation.

Finally, the arduous problem of structural reliability
of statically indeterminate structures, related to the
failure mechanisms depending on the consecutive loads
mentioned also by prof. Freudenthal at the end of his
paper, can satisfactorily be sclved through a judicious
adopticn of the present model test technique.

SUMMARY

After a short introduction the paper outlines the
actual possibilities of evaluating the safety degree of
a structure by testing elastic, structural and geomechanical
models.

The evaluation may concern: 1)structural safety at the
design stage; 2) safety degree of an existent structure and
cf one operating under extraordinary conditions.

The importance of model investigation particularly for
the optimization of statically highly indeterminate
structures is then emphasized,

RESUME

Aprés quelgques mots d’intrecduction le rapport socusligne
les possibilités actuelles données par les differents types
de mcdeéles(elastiques, structureaux,gécmechaniques)pour
l17analyvse de la sécurité dea grandes structures.

Un considére aprés:1) l’examen du coefficient de
securité dans la phase du projet de l’ouvrage; 2)1’evaluatior
du dégré de securité d’un ouvrage dejd achevé ocu soumis 3
des actions exceptionelles.

Le rapport termine en souslignant les possibilités des
modéles surtout pour 17étude et l’optimization des structures
hautement hyperstatiques.

ZUSAMMENFASSUNG

Nach einer kurzen Einleitung werden die wirklichen
Moglichkeiten einer Untersuchung des Sicherheitskoeffizienten
eines Bauwerkes an elastischen, strukturellen und
gecmechanischen Modellen beschrieben,

Der untersuchte Sicherheitskceffizient kann sich auf den
Entwqrf,\ein bestehendes oder ein unter ausserordentlichen
Verhaltnissen befindliches Werk beziehen.

Die Wichtigkeit der Modelluntersuchungen fur die
Optimisierung statisch hochunbestimmter Werke wird nachdem
besonders unterstrigchen,
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Kritische Betrachtung der Sicherheitskriterien und ihrer grundsdtzlichen Auffassungen

A. HRENNIKOFF, Sc.D.
Research Professor of Civil Engineering
University of British Columbia
Vancouver, Canada

The subject of structural safety is primarily a matter of common sense
and not of mathematics. This does not mean that mathematics should be ex-
cluded when safety standards are being established,but it means that its
role must be subservient. The conclusions of a most erudite mathematical
derivation are only as valid as the underlying assumptions. With this
thought in view the writer intends to examine closely some of the propos-
itions forming the basis of the author's mathematical development.

The author associates safety of structures with the concept of prob-
ability of failure and he outlines the method of derivation of the necess-
ary relations based on this principle. He is careful however to point out
that his formulae are not suitable for practical use for the reason of
absence of the pertiment statistical data characterising the random variation
of the relevant factors.

Furthermore he freely admits the presence of causes of failure unrelated
to random factors and even holds mistakes in design of details as the usual
cause of failure. In the light of these admissions one cannot see the virtue
of the formulae associating failures solely with the random factors, seldom
if ever responsible for the actual failure, and leaving out of consideration,
of necessity, the really significant non-random causes.

The author's reference to the alleged use of the failure oriented prob-
abilistic concept of factor of safety in the design of aeroplanes poses an
interesting question as to the relevancy of this concept in the design of
bridges and buildings. Once a person steps into an aeroplane the risk of
failure and death, however remote, is tacitly accepted, and so it is not
illogical to associate the design of the aeroplane structure with a probab-
ility of failure. The situation is however different in case of buildings and
bridges. With his probabilistic approach the author in effect proposes an
intentional reduction of safety,however small compared to the one implied in
the conventional design. Neither the society in general nor the engineering
profession in particular would accept this idea. The present practice is,
and hopefully will always remain,that the building should be designed as safe
as humanly possible. This does not insure an absolute safety, because
life is full of hazards. Factors responsible for these hazards are mostly of
a non-random nature and unpredictable, although some of them, such as tornadoes

\. Bg. Schlussbericht
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and earthquakes, excessively severe for a given region, are akin to the
phenomena normally incorporated in design. It is no more ratiomal to
provide for these overviolent actions than for the acts of war, riots,
collision with aircraft, gas and chemical explosions and other factors
always left out of consideratiom.

The kind of reliability required for the design of structures seems
to be provided adequately by the commonly used factor of safety covering the
uncertainties and faults of all types, i.e. of design, construction, loads,
materials and operation. This factor expresses the best collective judgment
of engineering profession, and its value is subject to revision with im-
provement of all aspects of engimeering practice.

The concept of failure as an integral part of the probabilistic theory,
and several aspects of it, as used by the author, warrant close examination.
A natural question is how to analyze a particular structure for failure.

The theory of ultimate or limit design gives in some cases an answer to this
question. But this theory is highly controversial (50)) and the acceptance
of its answer means the endorsement of the theory. In other words, an expert
on probability, and normally not an expert on structural theory, makes a
decision for the designer, that of the two conflicting theories the elastic
and the plastic, he must accept the latter.

Limit design procedure, right or wrong, is available only for low
flexural frames. What should one do for the multitude of structures of other
kinds? Wait until such Solutions by ultimate theory become available, even
if one has no confidence that they may be forthcoming?

No distinction is made in the author's theory between the actual physical
failure and the functional failure, i.e. an excessively large deformation.
This implies that in the author's view it does not matter whether people
get killed in the collapse of a probabilistically designed structure or are
merely inconvenienced by a large deformation,-a proposition, which is not
likely to meet a ready acceptance.

A reader would find difficulty in folldwing the author's argument that
failure of a single member signifies failure of the whole structure irres-
pective of whether the latter is statically determinate or indeterminate.

A major impression which one gathers from the discussion of the probab-
ilistic theory of failure is apparent lack of appreciation by its supporters
of a bewildering multiplicity of causes affecting vitally the reliability of
a structure. The writer wishes to illustrate this point by two examples.

Comparative stress analyses were made by the writer and his colleague (51)

of a reinforced concrete barrel roof by two different methods: firstly,

the theory of finite element, a new and highly effective tool of structural
analysis, and secondly,by the equations of elasticity given in the Manual of
Engineering Practice 31 of the American Society of Civil Engineers. Some
significant stresses determined by the two methods differed greatly. How
then should the choice between different discordant but still admissible
methods be made by a probabilistic designer? By the way of explanation it
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may be pointed out, that in the present design practice, once the dis-
agreement of the existing methods is recognized, concensus is reached in

a course of time leading to the acceptance of one method in preference

to the other. In the meantime the factor of safety covers the uncertainty.

The situation in the example considered is however much more complicated
than mere disagreement of the two sets of numerical results. Both methods
of analysis were based on constant moment of inertia (i.e. an uncracked
section), constant values of the modulus of elasticity and Poisson's ratio
and the absence of creep and shrinkage. These assumptions are obviously
not true. The designer would allow for these unknowable factors by judgment
based on experience. Design is an art as well as a science, and is more
than a mere substitution of numerical values into complicated probability
formulae.

The other example is borrowed from the writer's discussion of a recent
paper on probabilistic theory by the same author (52) .

"A collapse of an important bridge in the course of erection several
years ago (accompanied by loss of life) was found to have been caused by the
wrong design of a detail of the erection structure, accentuated by the con-
tributing factors, including an unfortunate and destructive combination of
the yielding of steel and crushing of plywood (a phenomenon neither described
nor even recognized before), an inadequacy of prescribed allowable stress in
the significant area, and two elementary blunders in calculation. Such
nondescript errors would baffle any classification, yet they are real and not
infrequent, although they are usually less drastic and seldom lead to
failure",

In conclusion the writer recapitulates the reasons for his unqualified
rejection of the probabilistic theory of safety of structures involving
human occupancy.

1. The concept of the probability oriented factor of safety is inacceptable
in principle.

2. The factors which usually cause failure are not of a random type.

3. The data for evaluation of parameters characterizing the random type
factors are mostly unavailable.

4, The failure causing factors are so numerous and varied that they defy any
classification and codification.

5. The value of the intensity of a given load pattern causing failure of a
given structure is usually unknowable by a method of structural analysis
and is questionable when such analysis is available.

6. Distinction between physical and functional failures and between determinate

and redundant structures results in further difficulties for a probab-
ilistic designer.
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7. The usual concept of the factor of safety of the conventional elastic
design is the best one available.

(50).A. Hrennikoff. Plastic and Elastic Designs Compared. Preliminary
Publication. Seventh Congress, Rio de Janeiro, 1964. International
Association for Bridge and Structural Engineering.

(51).A. Hrennikoff and S. Tezcan. Analysis of Cylindrical Shells by the
Finite Element Method. International Association on Shell Structures.
Symposium. Leningrad, U.S.S.R. 1966.

(52)A. Hrennikoff. Discussion. Analysis of Structural Safety by
A. Freudenthal, J. Garrelts and M. Shinozuka. Journal of the
Structural Division of A.S.C.E.

SUMMARY

The writer rejects the probabilistic method of design of
structures involving human occupancy, because (1) it is in-
acceptable in principle, (2) leaves out of consideration the
really significant non-random causes of failure, (3) is based
only on a few random factors whose characteristic parameters
incidentally are mostly unavailable and (4) for most struc-
tures, the condition of failure may not be identified by any
existing method of analysis.

RESUME

L'auteur rejette la méthode de projection de construc-
tions qui se base sur la probabilité et tient compte de
l'occupation humaine.

1l Le principe méme de la méthode est inadmissible

2 Elle néglige les causes de ruine non-accidentelles
vraiment importantes

3 Elle se base uniquement sur quelques facteurs aléatoires
dont les paramétres caractéristiques sont le plus souvent
inutiles

4 Pour la plupart des constructions, les conditions de ruine
ne peuvent étre déterminées par aucune méthode de calcul
existante
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ZUSAMMENFASSUNG

Der Autor verwirft die wahrscheinlichkeitstheoretische
Entwurfsmethode flir Geb&dude, die von Menschen bewohnt werden,
well sie

erstens im Prinzip unannehmbar ist,

zweltens die tatsdchlich wichtigen, nicht zufédlligen Bruch-
ursachen auslésst,

drittens auf wenigen zufédlligen Grossen gegriindet ist, deren
charakteristischen Parameter ibrigens meist unbrauchbar sind,

und schliesslich viertens, weil fir die meisten Bauwerke die
Bruchlast mit keiner bestehenden analytischen Methode be-
stimmt werden kann.
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Kritische Betrachtung der Sicherheitskriterien und ihrer grundsatzlichen Auffassungen

FERNANDOQO VASCO COSTA
Prof.
Technical University, Lisbon

In his brilliant survey of the present status of structural safety problems
Professor Freudenthal makes clear that engineers are not designing structures
close enough to the "state of art" 1limit, that the rational approach to the
problem of safety has to be a probabilistic one, and that absolute safety is no

more than a convenient fiction.

The key to a rational approach to structural safety is in his own words the
concept of an "acceptable risk of failure". But most engineers, because they be-
lieve they can or they have to design absolutely safe structures, are reluctant

to accept such a concept.

The difference between the attitude of accepting or not accepting a risk of
failure, be it a small one, is not an academic question, because structures will
be designed quite differently depending on whether one does or doss not recognigze
the impracticability of building absolutely safe structures. The conseguences of

these two opposite attitudes seem worthwhile emphasizing.

If the existence of risks is to be recognized, accepted and taken into con-
sideratinn in the desinn of engineering structures, instead of trying to have
uniform safety in all elements of a structure - which is an ideal recommended by
several authors - one has to reduce the strength of the elements of which the
failure will have less costly conseguences, with a view to reinforcing those ele-
ments of which the failure wnuld have costlier consequences. Such criteria will

enable the desicn to be improved without increase in cost.

If the existence of risks is to be taken into consideration, one has to

adjust the strenqth of the whole structure to the consequences of possible failures.
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This implies building a dam, if located upstream of a town, stronger than one

located downstream, even if both dams could otherwise be built perfectly alike.

If the existence of risks is recognized and accepted, the structure should
be designed so as to reduce as much as possible the consequences of accidents.
There will even be instances where it may be convenient to increase the probabi-
lity of failure of & structure so as to reduce its cost, the savings being used
to minimize the consequences of a possible failure. This will be the case with
dykes against floods and sea invasions, where transverse dykes are built using
the money that could otherwise be used to increase the height and reinforce the
main dyke. The function of the transverse dykes is the reduction of the area
flooded in case of failure of the main dyke rather than direct protection against

sea invasion.

If the existence of risks is to be recognized and taken into consideration,
structures will have to be designed so as to fail in the less inconvenient way.
In some cases this will imply the use of devices similar in function to fuses,
for instance when a lighter and lower dam is built on a secondary valley as a

protection to a big earth or rock-fill dam on the main valley.

In spite of Professor Freudenthal's well presented arguments against redun-
dant elements, the presence of such elements can, in some particular cases, con-
tribute to increase the safety of the structure. Not only can the failure of re-
dundant elements give warning to halt operation and avoid serious consequences of
accidents, but in some other cases the presence of redundant elements will avoid

complete collaepse, that would, otherwise, have catastrophic conseguences.

Some structures are intended to absorb energy rather than to hold forces.The
amount of energy consumed in the destruction of redundant elements can, at least
in some cases, be sufficient to save the structure. This is apparently the main
reason why ships are always moored with a larcge number of redundant cables, ins-

tead of with a few strong cables.
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SUMMARY

The need to design structures accepting the existence of risks and taking
into account the possible consequences of accidents may, or may not, be reco-

gnized. The practical implications of one or the other attitude are quite dif-

ferent.

If the existence of risks is recognized, the adoption of an uniform safety
factor for all the elements of a structure, and the adoption of the same safety
factor for structures suybmitted to the same loads but whose failure can have
different consequences, should be discontinued.

It is also pointed out how redundant elements can contribute to increase the

overall safety of a structure.

RESUME

Reconnaitre ou ne pas recomnaitre 1'impossibilité de sécurité absolue quand
on projécte une structure peut avoir des cons&quences pratigues tré&s différentes.

Si cette impossibilité est reconnue, on doit choisir le coefficient de sécu~-
rité de chague élément d'une structure, et de chaque structure en elle-meéme, d'apres
les conséquences des possibles accidents.

L'influence des éléments superabondants sur la sécurité d'une structure hy-

perstatique est aussi discutée.

ZUSAMMENFASSUNG

Sehr verschiedene praktische Folgerungen beruhen auf dem Erken-
nen bzw. Nichterkennen der Moglichkeit, Tragwerke mit Ausschluss al-
ler Risiken zu entwerfen.

Wenn das Bestehen von Risiken erkannt wird, muss der Sicher-
heitskoeffizient filr jedes Element des Tragwerkes sowie das Trag-
werk an sich nach dem Umfang der Folgen eventueller Unfdlle gewidhlt
werden, anstatt der iiblichen Wahl von genormten Sicherheitskoeffi-
zienten.

Der Einfluss der Verwendung zusidtzlicher konstruktiver Elemente
zur Erhohung der Sicherheit von statisch unbestimmten Tragwerkssyste-
men wird ebenfalls beleuchtet.
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Some Safety Problems
Quelques questions de la sécurité

Einige Fragen zur Sicherheit

E. MISTETH
Budapest
l,/ Designations
R Internal breaking forces and moments
S Internal forces provoked by load
=R-§S The Basler reserve

Y

& m Probability variables
f(é), ’7(t) Stohastic processes
a= E(f) Expectation value

s=D(E) Deviation
v= —3— Relative deviation, variation coefficient
,a,.tE[( E-G)':] Central moment of the r°’ order
f‘=—’;13- Asymmetry
c=-’;—“£——3 Excess
h-—"sif- Asymmetry of the fifth order
-ﬂ- Risk
t Time
T Iifetime of the construction
9 Interest factor
Cross sectional quantity corresponding to the
w nature of internal forces and moments
é Stress corresponding to the nature of internal

forces and moments
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_ Functional relation of independent probability
= G(ff' fm"\fn) variables

Independent variable of the standardised distribu-

i tion function
C(k) Cost of rebuilding /the bearing element/
Annual maintenance cost of the construction /the
L(k) bearing element/
] Sum of the damage caused by the ruin of the
construction /the bearing element/, profil lost
included

2./ Raising of the problem, liethods applied so far in calculating
of dimensions

In dimensioning engineering structures for stability it is most
essential to determine safety. The first question to be raised is
wether an objective standard of safety can be found and what is the
most economical magnitude thereof, Thus the general question of di-
mensioning is this: In what dimensions should be designed the bearing
structure of an engineering construction at a time t = O, if the
construction is being designed for a lifetime t = T, with rebuilding
cost of the bearing structure being C, and the annual maintenance
cost of the bearing structure being L, sum of damages incurred by
the ruin of the bearing structure, profit lost included, being Q.

The classical dimensioning specifications present safety in
terms of the magnitude of allowable stress. Allowable stress is an
empirical value: it is a quotient of breaking strength and safety.
Present time specifications are threefold.

Into the first group come those specifications in which' safety
manifests itself in the measure of allowable stresses and the
grouping of loadings. These specifications show, e.g. these grou-
pings as to the combinations of loading forces: operational loading
forces, extraordinary loads, catastrophal loads and influences. To
each of the three groupings pertains a different allowable stress,

The second group comprises those specifications in which safe-
ty is divided in the grouping of loading forces, the dimensioning
stresses and the cross section. These specifications proceed from
the ruin of the construction and take every uncertainty, with a
divided safety sector, at its proper place into consideration; to
a greater relative deviation pertains a higher safety sector, to
a smaller one a lower factor. The theoretical basis of these spe-
cifications was elucidated by Basler [3].

Specifications that come into the third group calculate safety
on the basis of probability theory, with consideration given to
loading forces and their deviation, rupture stress and its devia-
gion. These specificatlons calculate with an undivided safety

actor.

Safety factor is determined by a probability of rupture assu-
med in advance, and probability distribution. The assumption of
the probability of rupture /10 3, 10~ %, etc./ is a result of sub-
jective evaluation, though it is much more perceptible than
saying, that, e.g., a twofold safety is required. The function
of the selected distribution is also based on individual judgement,
The difference between, e.g., the Weibull and lognormal distribu-
tion in the rate of the safety factor can be 10-100 per cent Eﬂ.
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By means of this procedure are calculated airplanes and solved
the dimensioning problems connected with space travel. Theoretical
considerations were set forth by Freudenthal [4] [5].

All of the three procedures, though at different places and in
various ways, give the rate of safety on the basis of individual
deliberation. This rate, the expression of safety, will be further
on considered to include failures of an accidental character only.

Safety only provides an objective rate of measurenent, as it
will be demonstrated further below, together with economical con-
siderations,

3./ A new procedure for dimensioning

The known basic relation for the calculation of dimensions,
based on probability theory is, if the time parameter is also con-
sidered:

; i > > {
hnz_.n_}m {[R(t)—S(é)]=0} =1"T W

Expression 1./ says so much in words that, during the lifeti-~
me of the construction, the Basler reserve j Y/t/ = R4t/-S/t/
must be greater by a probability given in advance /1 --E-[ than

2€eIr0.

The basic relation is not unequivocal without the time variab-
le t /fig.1l,/

R : |
(Q E[f(é)}:O
RE)-R(E)+E()
e \
Yo
R° Rit)
. Rit00
~ N\ o
-m—yatf’\ (k) E[”?(t_)_J=0 -
. Sl | S)=S(ten(t)
1 1 T i' L] L | | L 1
0 0 2 3 4 S 6 T0 8 8% {00 yews
Fig. 1

4,/ Lifetime of the engineering structure

Safety of engineering structures can be related only to a cer-
tain lifetime, If T =00, the ruin of the structure is considered a
certain event. The lifetime of engineering structures, therefore,
has to be determined in advance. In respect of lifetime permanent
and temporary structures can be dealt with.,

For permanent structures lifetime has to be stated in T = 10
years, if it is a vehicle, in T = 100 years if it is an earthwork.
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For temporary structures, when an earthwork is concerned, T = 10
years, for structures of locomotion it may be that T = 1. Largely
speaking, for permanent structures it is reasonable to count with
T = 50 years, for temporary ones with T = 5, From expression 1./
it is perceivable that if T is small, the difference, R/t/-S/t/,is
greater than it is for a long T time. This holds particularl% if
R/t/ and S/t/ are stohastic processes with a notable trend /fig.l/.

5./ loading forces, loading movements

Loading forces which are constant within time /dead load, earth
pressure/, constitute a stohastic multitude, loading forces and mo-
vements which vary within time /useful load, water pressure, snow
or wind pressure, variation of temperature, creeping, etv./ consti-
tute a stohastic process. The periodical /e.g.annual/ maxima of
these latter stohastic processes only form stohastic multitudes,
With the processing of technical data it is reasonable to calculate
four probability characteristics: the expectation value /a/, devi=-
ation /s/, asymmetry /f/ and excess /c/. The processing of the data
must be performed on the basis of some textbook of mathematical sta-
tistics 1 . In order to provide that the relative deviation of
excess itself should not exceed 1B per cent, the number of elements
of the multitude has to be selected ~500 at the least. For the de-
termination of the probability characteristics of the useful load
it must be proceeded, with consideration given also to future deve-
lopment, from the loading spectre. Forces of a meteorological c¢ha-
racter must be processed from statistical data.

6./ Rupture stress, geometrical dimensions

Rupture stress within a t time, which constitutes a stohastic
process with a trend, has to be determined in principle through
precessing a stohastic multitude of rupture tests of the material
taken at different times., In want of data it is supposed, in first
approximation, that at the end of lifetime rupture stress can be
taken as equal to the longtime stress limit and its probability
characteristics are the following:

é712(7)‘ ?o (e.q. d=115) }
SG(T) = SGO V? ) fG(T)=f5°; OG(T)= c% ...2./

Geometrical dimensions always display a normal distribution,
Because of the corrosion effect the geometrival dimensions have to
be diminished at the end of the lifetime by a value 4 , which may
be, in absence of statistical data, 1 to 5 per cent of the dimen-
sion, Deviation of corrosion is taken equal to deviation of dimen-

sion:  _ —
M(T)=po— A

sMM)=s4 Y2, F(T)=1%=0; c*(T)=c%=0 ces3e/
7./ Probability characteristics of the function distribution

Probability characteristics of internal forces which cause
rupture and internal forces which are the result of loading can-
not be determined in a direct way, it is therefore necessary to
determine from the probability characteristics of the components
the probability characteristics of a quantity characterised by a
functional relation, Exact formulation of the problem is this:
the independent probability variables fy, p,....., £, are given,
the probabllity characteristics of thése, a;, 8;, f;, c;
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/i=1, 2, ..., n/ are also independent, and v; £ 0,5; what are the
amounts of the probability characteristics of the functional value
, characterised by the functional relatlonnq-G .f fz,

If the functionm is expanded in a Taylor series and also men-
bers of the third order are considered, the probability characte-
ristics of a rational whole function can be determined according
to the rule

07=E(n)-(3(a,,ag,....., a, )+ —;—'; G st+.....

s,z? ==Dﬂ(f?) =Z [G,' s;]li Z G-G--F- s,-3+.....

o =i [Z G3f s+ 2 ZG" G (c+2)s! +);s s ]\

Cn? “—‘[Z Gh(c +3) 4"’6: (G, GJ S, J) +
+23 66 (hi~f,) s +ez (zc A )

I=1 J 1 I#J

In expression 4./ eege <
< _Generally if v =
Gij=

/ 12, =0,15, it suffices to
/ afl afJ _]fn ‘{* calculate with the first,

i J < in the case of excess,
with the first two members. If 0,15 £ v, = 0,35, all of the members
written here must be counted W1th. 7

If O 35<:v S0 s© it 18 necessary to calculate accordingly further
members which are not written here, If the derivatives of function
G are not limited derivatives but the function can be expanded to
a Taylor series at the places ay, a,, sesy 8,, also members or an
order hidher than the third may be required [].

£ [/ <o, iland [c,(/f? 0,2, the resultant distribution may be consi-
dered norm

8./ Internal forces that cause rupture

They depend in general on rupture stress and cross section
quantity and constitute a stohastical series
-0050/

R(t)=06g(t).- W(t)
R()=H[BR(1), BR (), A2t), .y £710)] .

In expression 5./ internal forces causing rupture can generally
be established as a product of rupture stress and cross section
quantity. Expression 6./ refers to cases in which the bearing
structure is not made of a homogenous material and the type of be-
aring is such as cannot be separated from the geometrical dimensi-

ons of the cross section /e.g. excentrical internal forces within
a r.~c, bearer/,

Probability characteristics of internal forces causing a rup-
ture, if calculation has to be made on grounds of expression 5./,
are
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E[R()] =Ba(t). W(t)
[R)]2= [V [ T+ [ v

3
fRee) =f‘°'(e)[vl:-%§-
2
e*ce) ’D/i_?'n'l‘ [ [+ 31[vEe)] '+ 8 [ ]% 8 [v¥(e) VY]] j-—s
If the internal forces producing a rupture are to be calcula-

ted by expression 6./, probability characteristics must be deter-
mined with the use of formula 4./.

9./ Determination of the cross section guantity

If probability characteristics of the Basler reserve Y/t/ are
to be determined from expression 1./, then, on the basis of expres-
sion 4./

a’(e) = Y(¢) =R(t)-S(¢)
sY(¢) = V[s“(t)]2+[_-s’(e)]2

y :___L___ R 2 3 s s 3 .8,
Pl =y {Profm] i [#e]’] 8./

c’e) = m4{[ck(e)+3][sp(tﬂ‘+ [cs(b)+3][$s(t)]‘*+
+6[s%e)- s10)]* -3

From expression 8,/ it is to be seen that the dimensioning
will be correct if

R(t) ZS(t)+m sy(t)} W
m =m(f ck)

The value of m depends on the selected distribution and the
risk given in advance. Before proposing a type of distribution
for the determination of the value of m, a simple relation can be
given for the cross section quantity at a time t = 0, if internal
forces that provoke rupture are such as according to expression

5./

Wy=a Wy + S 4+ myvSaI% f-Imv i m T4
D Gr(T) 4-m2{[VG(T)]2+ [vWal? ..010./

In expression 10./ the surplus cross section quantity, being
a result of corrosion, AW, , depends on the value m = m/f,c,k/,
S/T/ is the expectation value of the sum of internal forces pro-
voked by loadings, at the end of the service time, Gy /T/ is the
expectation value of the rupture stress of the structural ele-
ment in question, v/T/ are the final values of the variation fac-
tors of the variable quantities.

If internal forces provoking rupture can be calculated by
expression 6./, for the determination of the dimensions expres-
sion 5./ must be satisfied by way of the trial and error method,

coe?e/

where
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10./ The selected type of distribution

The problem is what kind of a distribution function should be
selected for the stohastical process Y/t/ at a time t = T at the
end of lifetime or any time t. From among the internal forces cau-
sed by loading meteorological forces and movements /internal for-
ces caused by wind, snow, modifications of temperature/ can best
be described theoretically with the use of the Weibull distribu-
tion [7]. A great part of useful loads and internal forces provo-
ked by dead load do not follow the Weibull distribution pattern,
The distribution of cross section dimensions is normal. The type
of distribution drawn upon the rupture stress can be treated as
though from among a homogenous multitude of bearers a discretional
one were selected and given to rupture. This problem is, in its
essential conception, an urn-model to which one of the Pearson
distributions will best apply. Since in the resultant distributi-
on it is the rupture stress that generally has the greatest part
and meteorological forces generally play but a slight part, for
a resultant distribution the four parameter Pearson distribution,
Pearson IV, can be recommended.

me—darcfg X= y —R L X Goo 1./
?CJ[M*Trd)*Jﬁ Btk ge g T

The Pearson IV, distribution which is interpreted between
- oofx {+ oo i3 not suitable because effective distribution is no
clear urn model and, because distribution is dimensioned only for
x>0, If the four probability characteristics of distribution,
a¥/t/, s¥/%/, £7/%/, c’/t/ are given, B, o, d and § can be determi-
ned. The value of 4 can be determined from the condition that the
integral of expression 11./ between - ccand +ee is [1].
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From expression 12./ numerous conditions present themselves for
the distribution characteristics which are not dealt with in this
paper. The values of ?, for whole number values of « and Vv are
shown in figur 2,

11./ Optimam risk

The value of m = m/f,c,k/ has furthermore to be determined in
expression 10./ in order that the cross section quantity could be
determnined. The determination from expression 11l./ is unequivocal
if the value of k is given., For the determination of k two condi-
tions can be offered.

The first condition is that the total cost of the installation
should be a minimum. Supposing the interest factor to be q, the
cost of rebuilding of the installation, C/k/, must be written off,
during a service time T, and it is assumed that the installation
will be ruined after a time t{T and the part of the construction
not yet written off at that time will be capitalised to the date
of the ruin. Then the total cost will be

T ¢t
’%f%)*%{fmfﬂ -f;;_—‘j‘—h&j cei13./

A minimum cost can occur where the first derivative by k of
expression 13./ is zero.

The costs of the bearing structure increase in a linear way
with the cross section quantity, C/k/ = A+BW ., This linearity
will hold if the cross section quantity represents an area or if
the ratio of cross section modulus to radius of inertia is cons-
tant, If expression 10./ is expanded to a series, it will hold,
with a good approximation, that W, = W!+wm.

f fy ¢ and s are constant, for the thinkable values of k,
m= A+ k,log ko, A deeper reason for linearity is to be found in
the fact that distribution functions generally are exponential
/For a normal distribution e.g. between 2<log k<6, it is true
with a 3 per cent accuracy that m = 1,22+0,6 log k/. Substitu-
ting the above expressions into eachother, C/k/=/A+BW’+B.Kow/+
+BAw log k that is

Coky = Co (1+b, 109k ) o ltts/

Expression 1l4./ reflects a stohastic relation which can be
verified for a series of numerical examples with a difference less
than 2 per cent, doing regressional calculations, The minimum that
results from expressions 13,/ and 14./ is

d+bilogE T 4 T- 4t
k(0= Mode = | 505 (1+ —;T;_-";—)] sul5ef

The maximum for expression 15./ produces itself at a time t=0,
On an average, if the cost of the bearing structure of a building
based on a % per cent risk, is C,

K max = %G [—g— +2] eel6./

It is apparent from expression 16./ that the more damage will
be caused by the installation when it is ruined, the less will be
the risk permiEFed.to be taken., E.g. if T = 1 and Q = 0, k. ~ 50,

[ ' .
If T = 50 and T = 100, kmax = 5000. Here the risk that is taken,
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varying within a range of 2 per cent and 0,02 per cent, correspond
to the percentage wastes in non damaging industrial production,
which is 1-2 per cent [8].

Another conditionTis that the annual quotient to write off for
the installation is %;—égflé C/k/ and the total of annual mainte-

nance, L/k/ is the minimum of what is referred to as entire cost,
The concept of entire cost was defined by a Congress held on "Pers-
pective of the user and reliability of the system" in the United
States in 1962. It is assumed that maintenance costs take the sum

of b
L(k)=L,,(1+—,0—g3;-) veel7./

Expression 17./ is not proved, it merely appears to be logical
upon the analogy of expression 1l4./ [9]. The minimum of all anual
costs is secured by the expression

y Lobs(g'-1) ceol18./
k=10" Cobs §7(q-1)

being satisfied. Expression 17.,/, if T~ 50 and q-l °T85 where p,
in percentage, is the interest rate, will be

o g
ez 10" o

From the two expressions /15./ and 18./ that one must be sa-
tisfied which gives a larger value for k. From the comparison of
expressions 1l4./ and 19./ results that when the condition

L 019'/

Labz
b P“E—‘
%_—g ZﬁL/Ugfs ED ’p _2 ...20./

is satified, that is, if the ratio of the damage incurred and

the rebuilding costs is greater than the right side of expressi-
on 20./, the value of k must be determined on the basis of expres—
sion 15./ and /or 16./, if it is smaller, expressions 18,/ and/

or 19./ will give the value of k,

It should be noted that in the vicinity of the optimum value
for extremely small differences will result in expression 13./,
therefore the value of k must be determined with a rounding up
and on a rather large scale.

12./ Other probabilities that may be considered

Beside what has been said above it is also essential, how
many uniform structural elements are going to be built in, If n
number of bearing elements are to be fabricated and a risk of
% has to be taken for each of them, for one piece a risk of
ﬂ1<i.must only be taken. The solution of the problem is

-t =(0) () (=) 21/
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Eypression 21./ disp}ays a binomial distribution.

k= 12Vi-L v ee22ef
and/or k = 1K -
- (1 -1
If k)50, then, with a ggod 5p%roximation
k'= nk I 4

Thus, if it is required that no one of the n pieces should
get ruined with a prgbability of - , every piece must be fabrica-
ted with a risk of 3 being taken.

13,/ Conclusions

1./ The following answer can be given to the problem raised: The
correct dimensions are given in expressions 9./ or 10./, the value
of m =m /f, ¢, k/ can be determined through the Pearson IV, dis-
tribution according to expression 11./, the most economical measu-
re of risk taken against failure, 1/k, is given by expressions 16/
or 19./. As to the measure of the assumed risk it must furthermore
be considered, how many uniform elements in question are going to
be fabricated.

The suggested method of calculation does not contain any subjecti-
ve factors, all dimensions and safety can - on the basis of mathe-
matical statistics - be determined solely upon economical conside-
rations.

2./ Safety, consequently, is a mutual and unequivocal function of
the probabllities for the installation that during its scheduled
service time all circumstances provoking ruin can occur simul-
taneously in the most possibly unfavourable arrangement [3].

The lower this probability /the risk taken/ is, the greater is the
safety. We suggest the acceptance, as a measuring value, of logk

the logarythm of the reciprocal value of the risk taken. This
expression has proved suitable in information theory [10], as a
quantity proportional to the measuring number of the information
quantity. For a great safety a large amount of information is
required about the given bearer. Investment expenditures increase
with safety, maintenance costs decrease with it,

3,/ For our bearing structures the principle of equal safety is
in appropriate., The more damage is caused by the structure with
its ruin, with so much more safety must it be designed. Secondary
bearers, the ruin of which causes no damage, must be designed
with a lesser safety. Installation with a short designed service
time can be of smaller divisions, because within a shorter period
the rupture strength of the load-bearing building material shows
a lesser decrease and the probability for the occurrence of the
loads, particularly meteorological ones, is lower within a shor-
ter period.Consequently, if it is to proceed from the safety of
the primary system of bearers of definite installations, the
primary system of bearers of temporary installations can be fab-
ricated with a lesser safety and so can the secondary bearers of
the definite installations, Still lesser safety is required for
secondary bearers of temporary installations.

4,/ General rules for dimensioning are provided by deterministic
interrelations in technical mechanics. By reason of a deviation
of parameters in the functional interrelations the economical di-
mensions have to be determined with the aid of stohastic interre-
lations based on probability theory.
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5./ A processing of statistical data is required. The described me-
thod, however, can be applied even without processing the data, in
that case it has to be proceeded from loading given in the rules
and from nominal geometrical and strength measures. For deviations
there is to be taken, in the absence of data, one half of the tole-
rance., Tolerance, then, is based on statistical experience,

6./ Author considers the application of this procedure absolutely
necessary: in setting up rules for dimensioning, stability calcu-
lations for elements of serial production and structures of high

cost.

7./ Rules in operation at present are over-dimensioned even today.
The degree of over-dimensionedness is, with various rules, in terms
of costs 8-12 per cent for primary bearers at definite installati-
ons, Over-dimensionedness for secondary bearers and for temporary
installations is 11-17 per cent. This can best be helped if calcu-
lations will be made, instead of the minimum values as specified
in the rules, with their expectation values. If this proportion is
considered, there will result economical dimensions /E.g. the
expectable value of the yield point of St., 37 is, on the basis of
statistical data, 11]ﬂwEBOO kp per square cm, whereas the rule
specifies 2400 kp per square cm,
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Summary.

From all factors influencing the dimensions /loading, geomet-
rical dimensions, crushing stress, etc./ the value and the proba-
bility variables of the load capacity reserve, Y/t/, can be de-
termined. By means of the Pearson IV. distribution the geometrical
dimensions can be determined for a risk arbitrarily undertaken,The
undertaken risk can be determined through only economical conside-
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rations. The greater the damage caused, the lesser risk should be
undertaken., If the damages are not significant, dimensions are
influenced by the annual maintenance costs, /L/. For a safety
rate the logarithm of the reciprocal value of risk /log k/ is
suggested,

RESUME

La valeur de la réserve de limite admissible de la charge,
Y/t/, et ses variables de probabilité peuvent &tre déterminés i
l'aide de tous les facteurs gqui sont & méme d'influencer les di-
mensions - tels la charge, les dimensions géométriques, tensions
de rupture, etc. Par moyen de la distribution Pearson IV. les
dimensions géométriques peuvent s'établir pour un risque arbi-
trairement entrepris. Or, le risque entrepris peut étre déter-
miné moyennant des seules considérations économiques. Plus le
dégdt est grand, moins de risque doit &tre entrepris. Si le dé-
gét n'est pas important, les dimensions seront influencées par
les frais annuels d'entretien. Proposition est faite d'employer,
pour mesure de sécurité, le logarithme de la valeur réciproque
de la risque entreprise (log k).

ZUSAMMENFASSUNG

Aus sdmtlichen, die Abmessungen beeinflussenden Faktoren -
wie Belastung, geometrische Abmessungen, Bruchspannungen usw. -
konnen der Wert Y/t/ der Belastungsfdhigkeitsreserve und seine
Wahrscheinlichkeitsverdnderlichen berechnet werden. Mit Hilfe
der Verteilung Pearson IV. konnen die geometrischen Abmessungen
zu einem beliebig unternommenen Risiko bestimmt werden. Das un-
ternommene Risiko kann wieder auf Grund allein wirtschaftlicher
Betrachtungen festgelegt werden. Je grosser der Schaden, ein
um so niedrigeres Risiko darf unternommen werden. Bei nicht be-
deutendem Schaden beeinflussen die jdhrlichen Wartungskosten,
/L/, die Abmessungen. Als Sicherheitsmass wird der Logarithmus
des Kehrwertes des unternommenen Risikos vorgeschlagen (log k).



Safety of Structures as a Problem of Time
Sécurité des constructions en fonction du temps

Sicherheit der Bauten als ein Zeitproblem

C. EIMER
Poland

First attempts of probabilistic approach to safety of struct-
ures were made as early as 1936 (W.Wierzbicki /1/y M.Prot /2/) . The
probabilistic philosophy has been discussed, for a long time, and
gained its devotees and its 8§keptics, the problem being looked upon
mainly from the point of view of a direct applicability to design
and calculation. By the present writer s opinion, too little empha-
sis has ever been laid on the explanation of actual phenomena and
interrelations that, in fact, has been dimmed by traditional methods,
and this is the fundamental purpose of every theory. Once we realize
we operate quantities affected with random scatter, we are induced,
necessarily and at the same time, to the notion of safety and to
probabilistic considerations, irrespective of whether we intend to
establish a pure probabilistic theory of safety or to explain prec-
isely the meaning of conventional coefficients of safety. Similar
development can be noticed in those branches of technical activity
where problems of reliability are of importance.

The present contribution aims at explaining the role of time
in safety which, from the mathematical point of view, means making
a step from random variables to random stochastic processes. So
far, the basic end of the theory consisted in finding the probabil-
ity of the strength criteripm to be fulfilled, i.e. of the inequal-
ity P<R, where, loosely, P is the load and R the strength ( carrying
capacity) « Since every structure is to be reliable during a limited
period of time ( called, in what follows, life time or period of ex-
ploitation), P denotes the maximum load that can occur in the course
of this period and R is assumed to be independent of time and of
previous history of loading. The former assumption presents serious
difficulties as, in general, statistics containing long periods of
time, within a more or less homogeneous population of struccures,
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are not available. The second assumption is only a crude approx-
imation, e.g. it disregards phenomena comnnected with rheologic
strength or fatligue. An attempt to avoid the first of the above
assumpions is given by A.M.Freudenthal /3/. The author considers

a sequence of load applications, the probability distribution of

P in a single application being known. However, it is not always
easy or even possible to say what is a single load application as
the loading is a continuous process. Basides, in order to "locate"
the process in time the intervals between those applications must

be assumed. Thus, in general, the whole of the problem is to be
discussed in the language of stochastic processes, the approximation
with different discrete models being of course possible and valuable
in view of effective calculations.

l. Measures of safety in time

A fundamental merit of the probabilistic approach to safety
is the introduction of a unique and universal probabilistic meas-
ure of safety. We shall descuss here some basic notions following
the very clear exposition of the subject in /3/. The generalization
depends on passing from the discrete model to a continuous time
process.

On the assumption that the carrying capacity R is independent
of time ( which will hold in this point) we define the probability
of safety or the reliability,L, as the probability that the time
to failure tgs 1.e. the effective life time of a structure exceeds
the period of exploitation t =T, T < tR' This is equivalent to the
condition Pmax{ R 1f Pmax denotes the maximum load during Tj; hence
we have

L(t) =Pr (t ¢ tg) = Pr (Pmax<'R), t =" (1.1)
The probability of failure within that period equals
F(t) =1-L(t) = Pr (t > tg) . (1.2)

The a priori probability demsity of failure at the instant t is

£ (¢) = B | (1.3)
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The failure rate, accordingly to /3/, is the probability that a
structure that has survived t will fail in a time unit at t,

h(t) = %-((3 = - & 1o 1(). (1.4)

Obviously, the above formulae correspond to (2.1)% (2.7) in /3/.
Here, tR is a random variable and denotes the time to first sur-
passing the value R by the load.

The load P, being a continuous time process which we denote
by g(t), the results of measurements can, depending on the type
of measuring devices, be obtained in threefold form: (1) as a con-
tinuous graph (self-recording 1nstruments) s Fig.l, (2) as periodic
readings at time intervals §t (points denoted by small circles)
(3) as maximum values at fixed time intervals At, usually related
to cyclicity of load accurrence, e.g. in 24 hours, a year, etc.
(devices recording maximum values denoted by little crosses).

N A

L{ - 1\
|
I
|
L

o ——— — — y——

e — — — ———

5

|
|

Fig.1l

By taking the ratios of the number of points( marked with 1it-
tle circles) in the consecutive intervals Ag 1.e. in consecutive
horizontal bands to their total amount for a sufficiently long ti-
me interval t we obtalin the frequency distribution and for t-> oo the
probability density of load at a given instant, jy(g), as shown on
the left hand side of Fig.l. When the recording is continuous one
can take arbitrary time intervals & t. On "matching" this probabil-
ity density to that of R we arrive at the probability of faillure at
a single load application (pF in /3/).

By considering the time interval At in which we are interest-
ed and a sufficiently long interval n At, and on establishing a con-—
stant value of g, we find the number m of intervals At in which
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the latter has not been surpassed. The ratio m/n provides an ap-
proximate measure (exact for n -> a2 ) of the probability of not
surpassing g in At. This probability is a function of the load,
P = p(g) that can be found empirically by repeating the procedure
for subsequent values of g. At the same time, it represents the
distribution function of maximum load in At, since non-surpas-—
sing of g is equivalent to non-exceeding it by the maximum load.
The probability density ot (g) of maximum load in At can be obtain-
ed as the derivative dp(g)/dg or else directly from the graph,
from the occurrences of "maximum" points in the consecutive in-
tervals Ag (a procedure similar to the one already used for'W(g)) R
If At were equal to the period of exploitation, the function
p(g) would represent directly the distribution required. For pract-
ical purpose, however, it is important to arrive at some conclus-
ions as to the distribution of maximum load in the period of ex-—
ploitation T from the distribution of max g during an interval At
that is, as a rule, shorter or, directly, from the demnsity func-
tion w(g), which implies two possible procedures, discussed in
what follows.
In the first of them we find the probability of not exceeding
g in n intervals At during the time T = n At,

J (@)= p"(8)s (1.5)

valid under the restriction of independence of those events. Here,
@(g) represents the distribution of the maximum load. The probab-
ility density of this load is obtained by taking the derivative of
1.5 ,
n-1 :
g (8) =np "(g) (&)~ (1.6)

The above formula can also be obtained directly on taking into ac-
count that npn”1 represents the probability of not surpassing g in
n - 1 intervals At, whereas 51(g) dg is the probability of the max-
imum load amounting to g in the remaining one interval At.

On establishing the load max g at a sufficiently high level
so that higher values of g will occur but rarely, e.g. once in
several months or even years , the interval At can be so far red-
uced that - without encroaching on the assumption of independent
loads in consecutive intervals - very high values of p (near to 1)
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are attained. The distribution (1.5) now tends to the Poisson
distribution

$(g) =exp [- v(g)T], (1.7)

with ,J(g) denoting here the average number of events when g is
surpassed per unit time (V= l/to, where to is the average time
interval between such events), this number being dependent on the
fixed value of g. The function y’(g) is found experimentally, e.ge.
by computing to for consecutive g (on a graph of the type of Fig.l).

The second procedure we mentioned above does not require de-
termining of the function y (g) or p(g) and is based on Fisher-
~-Tippett asymptotic extremal distribution representing the dis-
tribution of the highest ( or lowest) value in a test, where the
number of particular test readings increases infinitely. Thus, it
is a matter of finding the limiting disturbation, for n > oo of the
largest of n randomly chosen ordinates of points marked by little
circles in Fig.l, at a fixed value of &t (so as to satisfy the
requirement of independent loads). It is this form to which the
distribution of max g tends for t > , since a test of infinite
number of test readings tends to become strictly representative.
For finite n we obtain here Egs. (1.5 and 1.6); albeit, p(8)
and JU (g) have to be repkaced by ﬂ}(g) and (g), respectively
(cf. Fig.l), i.e. by the probabilities of g at a given moment (in
the experiment under consideration).

On introducing the new variables

z = n[} - iﬁ(gﬂ,

-u=1n2=1nn + 1n Tx);(g)dg,

9
we obtain
0(8) dg = Bli gy - n 127 g
g(g) dg =n I Hdg=n(1-7 Ydg —3x
-u
=n e"zgyaz%ag dz = - e 2 dz = ¢ ° (—e—u) du,

whence the variable u is seens to possess the asymptotic density
distribution
w(u) =exp (-u- e ). (1.8)

The variable u is seen to be related linearly to g if zp(g) is ex-
ronential. Consequently, q(g) can be obtained directly from Eq.
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(1.8). It is proved in mathematical statistics that the asymptotic
extremal distribution of Eq. (1.8) holds for normal distribution
of ﬁ’(g), too. Obviously, this is but an approximate calculation,
since the centre of the distribution is shifted proportionally to
ln n, at finite n = /8t (to be calculated from the records),
whereas the form of the distribution (1.8) itself is exact only
for n > o0 and does not depend on n.

Further calculations depend on the particular form of the
distribution Y (g) and, for different theoretical assumptionms,
are developed in the theory of extreme value distributions (cf.
for instance /4/). Once we have found the extremal probability
density @ (g) [from (1.6) or the derivative of (1.7) or else
(1.8)] we insert it into the integral

L = JS(Y(g)-ly(R) dg dR, (1.9)
PLR
q)(R) being the probability density distrubation for the strength
R, where the integral is taken over the part of the plane ( g,R)
determined by the inequality g {R. Since q(g) is a function of

time, so is L = L(t) and our problem is solved.

2, Concept of damage and outline of a general theory

Precedent considerations were based on the assumption that
R 1s constant which is but a crude approximation. We know that
it depends, for instance, on the number of repeating load cycles
in fatigue tests or on the time of loading if rheologic phenome-
na are involved. In order to describe this behavior the notion
of "cumulative damage" i1s introduced in the theory of fatique
of materials and similar notions are also known from the general
theory of reliability.

Let us generalize this notion and assume that the actual
state of a structure (or a material) at a given instant (from
the view~point of its carrying capacity) is defined by a unique
positive number, § , 0. 8¢ 1, called damage, where zero damage
(d = 0) describes a perfect state and 6 = 1 a complete failure.
In general, d increases in the course of time, particularly, in
the course of the loading precess, which means that the ruin sets
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in progressively and results in the "death" of the structure
when § atteains 1. For a simple example (not to be directly ex-
tended) , 6 can represent the reduction of the cross- section
of an axially loaded rod because of an expanding crack. Thus,
our strength condition P< R is to be replaced by a more general

one
d < 1. (2.1)

Now, the problem consists in the prediction of the time t
at which the damage becomes 1 or, in a probabilistic approach
(6 being a random variable), in the determination of the prob-
ability
L(t) = pr(d<1) (2.2)

for a given period of exploitation t = T,

For the classical case J remains 0 as long as P { R,
R being the carrying capacity. On surpassing R for the first
time ¢ suddenly increases to 1 and the structure fails ( Fig.2) .
It is seen that ¢ 1is defined to be a Heaviside function

é (t) = H(t - tR)’

tR denoting the time to first
surpassing R by P = g(t). The
probability (2.2) reduces to
(1.1) and exactly the theory in
point 1 provides the solution,

In general, the hypothesis
that the physical state of a str-
ucture can be determined by a
unique parameter, d , is a con-
- siderable simplification of
[4 actual conditions, albeit it

Fig.2 results in a far reaching gene-

ralization of the former theories of safety. In fact, d can
depend on the whole previous history of loading and, therefore,
is a functional defined on the class of all possible functioms
P = g(t) . Depending on what phenomena are to be included (e.ge
fatigue, rheology, etc.) and for the sake of effective calculation
further restricting hypotheses have to be introduced. First of all,
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we shall assume that dé is cumulative so that we only examine

the increments d 4 (t) which simply integrate in time. If, for the
time being, we abstract from rheologic phenomena, we are able to
make the assumption that dad depends only: (1) on the instantaneous
internal state described by §d , (2) on the external state des-
cribed by P = g(t), (3) on the change of the external state given
by dP = d g(t), (4) directly on time. Taking the increments in a
time unit, i.e. replacing them by velocities ( denoted with dots)

we obtain

C.S = f(d’ g, &, t)' (2'3)

The direct dependence on time reflects corrosion-like phenomena
affecting é and will be neglected in further consideration. If
we assume that damage is irreversible, the function f will be non-
negative with respect to alliarguments. If g approaches the lim-

it strength R the velocity d rapidly increases; if, furthermore,
R depends on § and is independent of %, we have f=> oo for g->R()
Further simplifying assumptions may state that d does not depend
on the sign of dg ( internal friction-like phenomena at fatigue) -
resulting in f symmetric respectively to &, and that it is prop-
ortional to & which gives the form

d =£(d, g)lgl (2.4)

or, equivalently

ad==£(d, p)| apl

Formulae of similar form, where instead of dP appears dn (n - num-
ber of cycles ), can be found in the theory of fatigue (cf., for
instance, /5/); however, those do not include any hypothesis as to
the mechanism of failure and hold only withgin the above theory,
for symmetric oscillations).

The simplest possible assumption for (2.4) is

£ (4, g) =/ = const (2.5)

within the admissible region ( Fig.3, shaded area) and f->eo for
g>R({) , that is the actual smomth passage of the surface f(d,g)
is replaced by a singularity. If, in particular, (3 = O, we have
the classical case, with the additional assumption that initial

damage is possible and makes R lower (we are moving along vertica!
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lines in Fig.3). On integrating (2.4) for (2.5) we get ¢ =‘321Ag|

frr————— —— ===

th‘) g('))
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/fz?od

WA A

Fig.3

i.e. § is proportional to the sum of amplitudes of all load cyc-—
les, irrespective of the mean value ( in Fig.5, below, the sum of

segments O + IZ + 23 + ... ). In the case of simple ( symmetric)
oscillations it is proportional to the number of cycles, n,

§ =4npg,

where B is the maximum load at one cycle. The path of loading is
composed of straight segments with constant slope {dé/dg|=f, inde-
pendent of the forms of "waves" in time, and on intersection of

the curve R(4) it jumps horizontally till & = 1 (Fig.3). This as-
sumption is equivalent to the well-known Miner "s hypothesis din

the theory of fatigue of materials about a constant damage in a
single oscillation with given amplitude. If, in particular, the
curve R (8) coincides with the bounding straight segments, R = const
and & = 1 respectively, the equation of Wohler s curve will result
directly from the above formula for d = 1,

which is the equation of a hyperbola. More generally, if the
equation of Wohler s curve 8y = W(N) is available, we obtain the
curve R(ﬁ) solving for R the equation

ne v ()
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However, it must be pointed out that this curve might eventually
not fit other non- zero <values of the mean force, the assump-
tion ( 2.5) being too simple.

The equation of the curve g = R(é) can also be argued theoret-
ically, for instance, in the following way. Imagine a body composed
of grains with variable strength properties and a process of dam=—
age that consists 1n consecutive failing of weaker grains. The vol-
ume proportion of elements at different levels of local strength,

r, can be represented by an integral or differential probability
distrubution ( Fig.4 ) . Define the damage J as the part of the area
(normalised to 1) under the curve ¢ (r) or else as an ordinate of
the curve § (r) . The shaded part of the area, 1-d , represents
the actual carrying capacity (due to stromnger grains) . The equation
sought for is

R(d)=(1 - §)P(S)

where @(5) is the abscissa of the centre of gravity of the shaded

area.
The analysis of safety can be performed similarly to what has

been said in point 1 (Fig.5). For a stationary process of loading

the damage & can be regarded, approximately, as proportiona} to
time and assimilated to a straight line & = Jd,t, where J,=B3|Ag]
is the average damage during a time unit ( obtained from the load
curve by averaging over a sufficiently long time period). The
strength curve is expressed in new units

g =R (éot) (2‘6)

and failure appears at first intersection of this curve with P =
= g(t) , the problem being reduced to the ome of a material with
decreassing strength,
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If strength properties ( represented by (2.6)) are not aftec—
ted with scatter; we can use, for instance, the same reasoning as
for the formula ( 1.5) . Assume, we have got records for a fixed
period At and determined for this period the probability des-—
tribution p(g) (similarly as for (1.5)). Since the strength chan-
ges in time, we obtain

3 = »(Ry) p(Ry) p(Ry).-. (2.7)

where, according to( 2.6), Ry, refers to the k- th sector At
(cf. Fig.l). Taking logarithms of both sides

In & = %‘ In p(Ry)

and taking for 1n p(Rk) its average value in the respective
sector 1.

1n p(Rk) = Z% 5 In p|R(t)] dt

i
we have

and, finally,

(2.8)
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This is an explicit function of parameters describing the func-~
tion R(t). Of course, this is but an approximate calculation,
those parameters and, what more, the curve R(t)by itself being
rendom ( cf. Fig.5 ) .

So far, the analysis was based on the assumptions (2.4)
and (2.5) which is only a first step towards a theory including
time - dependent phenomena. One of serious difficulties to be
surmounted is connected with specifying the functions (2.3), (2.4) .
In general, if VWohler - type curves for different non-zero mean
stresses were available, we could come at a result on comparing
them with respective solutions of the differential equation (2.4)
for sinusoidal forms of load curves and for d = 1, n = §, wt = n,

a,b - constants,

O~

40 = £f(d, b + a sinwt) | awsoswt]| .
d

+

39. Schiussbericht
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Further generalizations could take into account rheologic phenom-
ena and the formulae of the type ( 2.3) would be replaced by func-
tionals, e.g. in an integral or an operational form. The simplified
assumptions would, possibly, tetain formulae of the type (2.3) ,
introducing, however, some characteristic values of the load from
the precedent history( e.g. the next local or the absolute maximum
and minimum values of g). The analysis, however, would be much more
complex and is beyond the scope of this article.

In the present contribution we did not consider conventional
measures of safety (e.g. coefficients of safety), as the methods
of derivation of such measures have been discussed many times (cf.,
for instance, /3/, /5/) and a "pure" theory of safety can (and
ought to) de without them.
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SUMMARY

The contribution is concerned with the problem of safety of
structures on the basis of the theory of cumulative damage. The
actual state of a structure (from the point of view of its carry-
ing capacity) is described with a parameter, variable in time,
depending on the previous course of loads. The latter is regarded
as a stochastic process and a probabilistic measure of safety is
derived.

RESUME

L'auteur a examiné le probleme de la sécurité de construc-
tions du point de vue de la théorie du dommage cumulé. L'état
actuel d'une construction est caractérisé par un paramétre unique
(le dommage) variable avec le temps, dépendant des charges pré-
alables. Celui-ci est considéré comme un processus stochastique
et une mesure probabiliste de la sécurité est dérivée.

ZUSAMMENFASSUNG

Im vorliegenden Beitrag wird die Frage der Sicherheit einer
Konstruktion auf Grund der Theorie der Anhdufung der Besch&di-
gungen behandelt. Der Zustand der Konstruktion vom Standpunkt
seiner Tragfédhigkeit wird durch einen Parameter beschrieben, der
die Besch&ddigung charakterisiert und von dem vorigen Verlauf der
Belastung abhéngig ist. Der obenerwdhnte Verlauf wird als ein zu-
fdlliger Prozess aufgefasst und ein wahrscheinliches Mass der
Sicherheit wird abgeleitet.



Zur Schatzung der Bruchwahrscheinlichkeiten der Tragwerke
Estimation of the Probability of Failure of Structures

L'estimation de la probabilité de rupture des structures

MANFRED KOCH
Dr.-Ing., Leipzig

1. Einleitung

Seit langerer Zeit laufen Bemithungen, die Sicherheitsunter—
suchungen der Tragwerke aussagefahiger zu machen. Hierzu bieten
sich die Methoden der Wahrscheinlichkeitsrechnung und mathemati-
schen Statistik an [1]. Protz zahlreicher Untersuchungen auf die-
sem Gebiet, die im Endergebnis auf eine Bestimmung der Bruch- bzw.
Uberlebenswahrscheinlichkeit der Tragwerke an Stelle der klassi-
schen Sicherheitsberechnung hinzielen, haben diese modernen Metho-
den bisher noch keine oder nur sehr zdgernde praktische Anwendung
gefunden.

Der Grund dafir dirfte in den noch recht erheblichen Schwie-
rigkeiten bei der Anwendung dieser Methoden liegen und in den da-
durch bedingten bedeutenden Umstellungen fiir den Konstrukteur.

Solchen weitgreifenden Umstellungen werden erfahrungsgemil
berechtigte und unberechtigte Widerstinde entgegengestellt, und
es ergibt sich daraus die Aufgabe, Methoden und Moglichkeiten der
Bestimmung von Bruch-~ bzw, Uberlebenswahrscheinlichkeiten zu fin-
den, die dem Konstrukteur fiir die Anwendung zumutbar, Ubersicht-
lich und in ihren Auswirkungen durchschaubar sind.

Diese Arbeit befalt sich daher mit einer Moglichkeit, die
Bruchwahrscheinlichkeit eines Tragwerkes mit moglichst einfachen
Mitteln zu bestimmen. Die akzeptablen Bruchwahrscheinlichkeiten
eines Tragwerkes sind relativ gering, so daB es genugt diese in
der GroBenordnung richtig zu schitzen. Eine groBere Genauigkeit
ist schon wegen der Schwierigkeit in der Prdzisierung der Aus-
gangswerte kaum zu erhalten und filr praktische Belange sicher
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auch von weniger Interesse,

Demgegenuber bleiben die weiteren Probleme, die hiermit im
Zusammenhang stehen und die z. B. FREUDENTHAL [1] ausfihrlich be-
handelt hat, unberihrt.

2. Grundsatzlicher Losungsweg und Schwierigkeiten

Bezeichnet y die Tragfdhigkeit und x die Belastung, so ist
die bisherige Sicherheitskonzeption durch das Verhaltnis

'\7:%)1 (1)

definiert. Ohne auf die Vor- oder Nachteile der einen oder ande-
ren Darstellungsweise einzugehen, kénnte auch

zZ=3y-%x>0 (2)

als ein solches Kriterium betrachtet werden.

Werden, was ihrem tatsdchlichen Charakter besser entspricht,
die Tragfihigkeit als ZufallsgroBe Y und die Belastung als Zu-
fallsgroBe X betrachtet, so ist z selbst eine ZufallsgroBe Z.

Die Gl. (2) stellt hierbei fir alle Zustidnde z = y - X S 0 den
Bruchbereich und fiir z = y -= x > O den Uberlebehsbereich dar. Ge-
lingt es, die Wahrscheinlichkeitsverteilung fur die Zufallsgrole Z
zu formulieren und iiber —eo<z £ O bzw. 0<z< +o0 2zu integrie-
ren, so ist die Bruch- bzw, Uberlebenswahrscheinlichkeit bestimmt
und das Problem geldst.

Ist die Wahrscheinlichkeitsverteilung der Tragfihigkeit G(y)
und der Belastung F(x) bekannt, so wird die Wahrscheinlichkeits-—
verteilung der neuen Zufallsvariablen Z durch Faltung [2] gefunden

#(2) = [[ a2z - 1) ac(). (3)

X~y<Z

Diesem formal einfachen Lésungsweg stellen sich praktische Schwie-
rigkeiten entgegen, die vor allem folgende Grinde haben:

a) Die mathematischen Modelle fiir die Wahrscheinlichkeitsver-
teilungen der Tragfihigkeit Y und der Belastung X sind haufig



b)

d)
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nichtsymmetrische und oft ein- oder zweiseitig begrenzte Ver—
teilungsfunktionen.

Die Belastung auf ein Tragwerk besteht in der Regel aus einer
Summe von Zufallsvariablen

=) X )

iy |

und die Bruchbedingung lautet daher

k
Z=y-—-z xiéo (5)

i=1

Die Belastung auf ein Tragwerk wird im allgemeinen wiederholt,
d. h. haufig eingetragen, so daB nicht die Ausgangsverteilung
der Belastung F(x), sondern die Extremwertverteilungen En(x(n))
fir n Belastungen mafBgebend sind, wobei n auch durch die Zeit t©
ausgedrickt sein kann.

Durch die wiederholte Belastung auf das Tragwerk wird ober-
halb einer Anzahl n, von Belastungen eine Minderung der Trag-
fahigkeit des Tragwerkes auftreten. Daher wird G(y) von der
Zeit t abhidngig und geht in den stochastischen ProzeB G(y,t)

iber.

Hierzu ist folgendes zu bemerken:

zu a) Eine geschlossene Ldsung des Faltungsintegrals (3) gelingt

auBler flir Normalverteilungen bisher nur fur Sonderfalle,
die Jjedoch fir das Bemessungsproblem wenig Bedeutung haben.
Auch Potenzreihenentwicklungen fiihrten bisher nicht zum Er-
fOlgo

zu b) Die Beriicksichtigung der k Zufallsvariablen Xi der Belastung

Z\u

fiihrt zu einer Mehrfachfaltung entsprechend Gl. (3), wo-
durch das mathematische Problem noch wesentlich komplizier-—
ter wird.

c) Die Notwendigkeit, bei wiederholten Belastungen statt einer
Ausgangsverteilung F(x) eine Extremwertverteilung Fn(x(n))
zu verwenden, ist leicht einzusehen, wenn die auftretenden

Belastungen x; nach Ranggrdien x(n) geordnet werden, so dald
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X(1)< ..-(X(i)< ...<X_b<n)

wobel die x(i) der Ausgangsverteilung F(x) entsprechen und

xt(n> die im Zeitraum t aufgetretene grolte Belastung xcn) bedeu-
tet. Unter der Voraussetzung, daB die Tragfihigkeit zeitlich kon-
stant ist, kann nur die groBte Belastung zum Bruch fiihren und es
ist die Extremwertverteilung des groBten Wertes xt(n) maBgebend,
Diese Extremwertverteilung ist abhingig von der Ausgangsvertei-
lung und der Anzahl n der Belastungen [3, 4] .

Wirken mehrere zufdllige BelastungsgroBen Xi, so ist nur
die mafB3gebende Extremwertverteilung mit den librigen Ausgangsver—
teilungen zu falten, da sonst vorausgesetzt wirde, daB mehrere
Extremwerte gleichzeitig auftreten.

Mit der Annahme, daB der gesamte Belastungsablauf als dis-
kreter stationdrer Prozel aufgefaBt werden kann, 1dB8t sich die
Richtigkeit und die Notwendigkeit der Verwendung von Extremwert-
verteilungen in der hier aufgefiihrten Art mit Hilfe der Ubergangs-
wahrscheinlichkeiten beweisen,

3. Die vier Falle der Zuverlidssigkeitsuntersuchung

Die Bestimmung einer Ubérlebenswahrscheinlichkeit unterschei-
det sich von der Sicherheitsuntersuchung und wird als Zuverlas-—
sigkeitsuntersuchung bezeichnet.

Aus dem unter 2. Genannten ergeben sich vier Fdlle der Zuy-
verlidssigkeitsuntersuchung:

1. Statischer Fall

Die Tragfdhigkeit G(y) ist zeitlich unbeeinfluBt; fir die
einmalige Belastung ist die Ausgangsverteilung F(x) maB-
gebend.

2+ Quasi-statischer Fall

Die Tragfahigkeit G(y) ist zeitlich unbeeinfluBt; fir die
n-malige Belastung ist die Extremwertvertellung En(xcn))
malBgebend.

3¢ Betriebsfestigkeitsfall

Die Tragfshigkeit G(y) ist zeitlich beeinfluBt und geht
Uber in G(y,t); fir die Tragwerksschidigung ist das ge-
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samte Belastungskollektiv eines stochastischen Belastungs-
vorganges und fir die Brucheinleitung die Extremwertver—
teilung F_(x‘®)) nasgebend.

4o Zeit- oder Dauerfestigkeitsfall

Hierunter wird ein Belastungsvorgang mit konstanter Mit-
telspannung, Spannungsamplitude und Frequenz verstanden.
Dieser Fall kann unter bestimmten Voraussetzungen auf den
statischen Fall zurilickgefiihrt werden.

In der angegebenen Form
+e0

Hy(u) = fF(u-y) aG(y)

— 00

gilt Gl. (3) fir den statischen Fall. Fir den quasi-statischen Fall

erhilt sie die Form
+ oo

Hy(w) = Jf R (u-y) d6(y) 3 @)

und fir den Betriebsfestigkeitsfall

+ o

5@ = [ 5,6 4G, (3 1)

- <0

Daraus folgt, daB der statische, der quasi-statische und unter ge-
wissen Voraussetzungen auch der Zeit- bzw. Dauerfestigkeitsfall,
ausgehend von Gl. (3) und Gl. (3 a) losbar sind. Dagegen kann der
Betriebsfestigkeitsfall wegen seines Charakters eines stochasti-
schen Prozesses mit diesen Mitteln nicht geldst werden, weshalb

er hier zunidchst nicht weiter behandelt wird.

4, Losung mit Hilfe der Edgeworth-Reihe

Zur ngherungsweisen Bestimmung der Bruchwahrscheinlichkeit
bietet sich eine Reihenentwicklung aus der Wahrscheinlichkeits~—
rechnung an, die unter dem Namen Edgeworth-Reihe bekannt ist. In
der Form flir die Wahrscheinlichkeitsdichte wird sie auch als
Gram—-Charlier—Reihe bezeichnet.
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Wahrscheinlichkeitsverteilungen
X

F(x) = f £(t)at (6)
-o0
konnen auch durch die Gesamtheit ihrer Momente
+ o
m = f FELGAX 3 Kk = 1,2,3 evee (7
-0

vollstéandig beschrieben werden.

Aus Gl. (7) lassen sich die Momente haufig nur schwer
berechnen. Wendet man auf Gl. (6) eine Fourier-Stieltjes-
Transformation an, so erhdlt man die sogenannte charakteri-
stische Funktion der Verteilungsfunktion F(x):

+ oo

0 (t) = f I (x)ax (8)

Die k-te Ableitung der charakteristischen Funktion nach t er-
gibt den Ausdruck

+ oo

o W) - f 15 r(x)et ™ ax (9)

- 00

woraus durch Nullsetzen von t und nach Division durch ik das
k-te Moment der Verteilungsfunktion (6) folgt:

(k
m, = _Q#l . (10)

i

Die charakteristische Funktion hat u. a. folgende und fur die
Losung unseres Problemes wichtige Eigenschaft:

Die charakteristische Funktion einer Differenz von Zu-
fallsvariablen X1 - X2 - X3 - ... erhdlt man aus der Beziehung

o (t) =91(t)'Q2(t)'g3(t) “uE 3 11)
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wobei Qi(t) die charakteristischen runktionen der Zutalls-
variablen X. und Qiﬁt) die konjugiert komplexe Form von
Qi(t) bedeuten.

AuBerdem ist

logp (t) = logp (t) + 1ogP,(t) + ese (12)
e @4 P

Aus der logarithmischen Form der charakteristischen Funktion
log @ (t) kOnnen analog zu den liomenten m, GréBen x, herge-
leitet werden, die als Semiinvarianten oder Kumulenten in der
Wahrscheinlichkeitsrechnung bekannt sind. Diese haben die glin-
stige Eigenschaft, daB die k-te Semiinvariante der Verteilungs-
funktion einer Summe oder Differenz von Zufallsvariablen als
Summe oder Differenz der k-ten Semiinvarianten der Verteilungs-
funktionen der einzelnen Zufallsvariablen gebildet werden kann,
ds B

A = Ayq + (= Xip + eee o (13)

Die Edgeworth-Reihe beruht auf dem Grundgedanken, die anzu-
néhernde Verteilungsfunktion H(z) durch eine Summe von Glie-
dern darzustellen, die aus geeignet zu bestimmenden Vorzahlen
sowle der Normalverteilung

d(z) =

Z i il
~ (2l
fe 2" 0 du (14)

I]
d V2ﬂ
. i ) : . .
und ihren Ableitungen @ (z) bestehen. Die Reihenentwicklung
lautet:

o )
H(z) = V(z) = 5 ay @v(z) . (15)
V=0

Damit diese Reihe die anzunihernde Verteilungsfunktion moglichst
gut approximiert, werden die Koeffizienten ay so bestimmt, daB
das Integral iliber die Abstandsquadrate der wahren Verteillungs-
funktion H(z) von der Niéherung V(z) ein kiinimum wird.

Un bei der Bestimmung der Bruchwahrscheinlichkeit die ta-
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bellierten Werte der Normalverteilung verwenden zu konnen,
muB3 z normiert werden. '

Wegen der Bruchbedingung z = y — x<0 ist bis z = O
zu integrieren - d. h. eigentlich V(0O) 2zu berechnen,
Die normierte Bruchbedingung lautet aber

r=-O—EE—, (16)

wobeil H = lly all VR Mxp = ¢oe- und

g = de2 + dx’]2 + dxge + «.s ist. AuBerdem miis-

sen alle ay durch dv dividiert werden. Gl. (15) erhdlt
daher die endgultige Form

= ) 1 x " ,
=y S8 @-§ ®-=3F@ on
v=0 !
1 Xy (IV)
+ Z: L () = o0e W

In der angegebenen Form enthdlt die Edgeworth-~Reihe im ersten
Glied die Faltung der betelligten Verteilungsfunktionen als
Normalverteilungen. Die weilteren Glieder sind Korrekturen, die
auf Grund der hoheren Semiinvarianten erfolgen. Diese Korrek-
turen werden wegen der Konvergenz der Edgeworth-Reihe von
Glied zu Glied kleiner und es ist zu Ubersehen, wann die Ge-
nauigkeit der erreichten'Annéherung ausreicht. Hier ist zu
bemerken, daB wegen der besseren Konvergenz bei der prakti-
schen Anwendung der Edgeworth-Reihe die Korrekturglieder um-—
geordnet wurden, also eine etwas andere Form, als hier ange-
geben verwendet wurde [4] .

Die durchgefiilhrten Berechnungen ergaben, deB im allgemei-
nen bereits das erste Glied der Edgeworth-Reihe das Ergebnis in
der richtigen GrdBenordnung angibt. Es sind also nur bel genaue-
ren Untersuchungen die Kofrekturglieder zu beriticksichtigen. Da
in Zuverlissigkeitsanalysen sehr geringe Bruchwahrscheinlichkei-
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ten zu erwarten sind, wird in der Regel die Berechnung des ersten
Gliedes der Edgeworth-Reihe geniigen.

5e SchluBBbemerkungen

Als Ergebnis durchgefiihrter Untersuchungen konnte folgen-
des festgestellt werden:

1.

Die Schitzungen ergaben, daB im allgemeinen bereits das
erste Glied der Edgeworth-Reihe das Ergebnis in der rich-
tigen GroBenordnung angibt. Es sind also nur bei genaue-
ren Untersuchungen die Korrekturglieder zu beriicksichti-
gen. Da in Zuverlassigkeitsanalysen sehr geringe Bruch-
wahrscheinlichkeiten zu erwarten sind, wird in der Regel

-die Berechnung des ersten Gliedes der Edgeworth-Reihe

genigen,was einer einfach durchzufiihrenden Faltung von
Normalverteilungen entspricht.

Die Bruchwahrscheinlichkeiten ausgefihrter Tragwerke
schwanken je nach getroffener Voraussetzungen in weiten
Grenzen und liegen zwischen P = 10—7 bis 10_2; die rich-
tige Verwendung der Extremwertverteilung ist flir das Er-
gebnis von grofer Bedeutung.
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ZUSAMMENFASSUNG

Die Schéatzung der Bruchwchrscheinlichkeiten gelingt relativ
einfach unter Anwendung der Edgeworth-Reihe. Dabei ist es erfor-
derlich, bei mehrfach eingetragenen Belastungen die entsprechen-
den Extremwertverteilungen zu verwenden. Soll die Bruchwahrschein-
lichkeit nur in der GréBenordnung richtig geschitzt werden, so
sind dazu nur die ersten beiden lMomente der beteiligten Vertei-
lungsfunktionen erforderlich. Damit reduziert sich das Problem auf
eine Faltung von Normalverteilungen, die einfach durchzufiihren ist.

SUMMARY

The estimation of the probability of fracture succeeds compa-
ratively easy by the application of the Edgeworth-progression.
Thereby it is necessary to use the corresponding extreme value
distributions, if multiple stresses are inscribed. If the proba-
bility of failure is to estimate right only in the order of magni-
tude, there are necessary only the first two moments of the con-
cerned distribution functions. With that the problem is decreased
to the folding of normal distributions, which is easily to carry out.

RESUME

Le calcul des probabilités de rupture réussit d'une fagon
relativement simple, si l'on emploie la progression d'aprés
Edgeworth., Ce faisant, il est nécessaire d'utiliser, & une
distribution multiple des charges, les répartitions de valeurs
extrémes correspondantes. Lorsque la probabilité de rupture
ne doit &tre exactement &valuée gn'en ordre degrandeur, les
deux premiers moments des fonctions de répartition engagées
sont seulement nécessaires. Ainsi, le probléme est réduit
d une convolution des répartitions normales qui est facile
& effectuer.
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By the methods of rational mechanics and the calculus of probability, we
can now process the probability distributions for loads and material strengths
relating to a proposed structure and calculate the 'probability of failure' to
any desired number of decimal places, regardless of how scanty the data is or
how poorly the curves fit the data. Clearly, the meaning of this calculated
probability needs to be studied critically before it can be used with confidence
in the design process. In particular, we must find ways to assess whether or
not the data is really sufficient to warrant the probability statements used in
the design.

The nature of probability has been studied extensively [1, 2]. 1In relation
to the structural design problem the notion is fairly well defined; in most
studies of the structural safety problem, 'probability' is usually taken in the
sense of "probability-1" defined at length by CARNAP [2] (loosely called 'sub-
jective probability'), or it is left as an undefined notion; "probability=-2"
('objective probability') cannot properly be assigned any meaning in this con-
text.

One way to 3ﬁp10y probability(-1) in problems of structural safety is to
adopt the viewpoint that it is merely a subjective measure of 'degree of
belief,' or 'strength of belief'. The relation of data to the probability of
failure is then very simple; data may rationally be assimilated into the input
probabilities by Bayesian methods [3]. The question of what constitutes a
sufficient amount of data to make a particular statement about the probability
of failure, does not arise. Therefore, this paper is not relevant to 'Bayesian

design,’
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Alternatively, we may consider the probabilities associated with loads and
strengths to be inherently unknown, auxiliary quantities. Objective statements
about the probability of failure can then be made in the usual terms of statis-
tical inference, and the subjective element in the justification of the design
is greatly reduced. The viewpoint in the following, then, is that probability
is not an absolute notion; rather, it has meaning only in relation to a specified
body of evidence which, in this context, means: Actual results of load measure-
ments, materials tests, model tests, prototype tests, etc., called the data. The
advantage of this approach (when it is feasible) over the Bayesian approach is
that it leads to propositions about the probability of failure that can be sub-
jected to scientific inquiry.

Under normal conditions of practical design the data is, unfortunately,
insufficient to make objective statements about the probability of failure of
a proposed structure; for example, future loads must be guessed from measurements
taken in the past. Nevertheless, it is instructive to study the rational inferences
about the probability of failure that are possible under certain idealized condi-
tions as models of reality, permitting us to estimate the amount of data required
under less ideal conditiohs. In the following we will derive such a relationship
(equation 12) between the necessary amount of data and various constants related
to the design value of the probability of failure.

Consider a structure drawn at random from an infinite population of like
structures and submitted to a single scalar load S drawn at random from an
infinite population of loads. Let R denote the resistance of the structure,
defined in such a way that failure is the event R < S. Resistance R and load S
are assumed to be intrinsically positive, independent, continuous stochastic
variables with unknown probability densities pR(R) and pS(S); information about
these functions is assumed obtainable by random sampling. The data D is there-
fore a set of n_ resistance values and n_ load values:

R S

D= {Ri, i=1,..., nps sJ., i=1l,..., nS]. ¢H)

The probability of failure is

pp ~pg (®) pg(S)dsar; @)
R<S

since Pr and pg are unknown, pp cannot be determined. The problem is instead

to compute a suitable estimator C_ called the calculated probability of failure.

F
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R
L LR Resistance
\——V_J
Fig. 1 np

To make inferences about the probability of failure Pp> it is necessary to
derive suitable statistics of the stochastic variable CF.

The simplest way to obtain such an estimator is to draw from the data
D a sample W of n QSnR, sns) pairs (R,S) of resistance and load values, at
random and without replacement, see Fig. 1. Then, W is a random sample of
the parent population{(R,S)}, and the elements of W are stochastically inde-
pendent. Let ng denote the number of outcomes of the failure event R < S

"successes" in n

in the sample W. Evidently, N is the total number of
independent Bernoulli trials with probability Pp of "success'". Therefore,
n, is distributed according to the binomial distribution

b(1,n,p,) = mpg (1-pp)™ 3)

with mean npp and variance on(l-pF). It follows that the estimator fF=nF/n is

similarly distributed with mean m = Pp> variance 02 = (l—pF)/n, and coefficient

P
of variation v = ¢/m = 1[JE;;7?T:;;5. The relative failzre frequency fF is
therefore an unbiased estimator of Ppe It is discrete valued (fF € {0, 1/n,
2/n, ..., 1}), so that in order to get sufficient resolution it is required that
nF be large in comparison with unity. Assuming that ng is greater than 9 and
neglecting Pp in comparison with unity, it can be shown [4] that fF is
approximately normally distributed with mean Py and coefficient of variation
1/ /AP

In this context, the most appropriate way to indicate the precision of
an estimate of pF is by means of confidence intervals [4]. First, a confidence
coefficient « 1is selected. Taking the distribution to be normal with mean C

F
and coefficient of variation 1/\/nCF gives the following approximate confidence
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limits for pF computed from the calculated probability of failure:
- -1 + -1
L = CF(l-N (oz)/\/nCF), L'~ CF(1+N (@)/ nCF); &)

N-l( ) denotes the inverse function of the normal probability integral. 1In
a long sequence of repetitions the confidence interval between L  and L+ will
contain the probability of failure Pp nearly a fraction ¢ of tge time, .
To illustrate, assume that the data D consists of ng = 107 and n, = 10
random samples of load and resistance, respectively. The largest random
sample W of independent elements that can be drawn contains n = 104 (R,S)-
pairs. Assume that n, = nCF = 16 is the number of failure events in such a
sample. If a confidence coefficient @ = 90 per cent is considered suitable,
we get from a table of the normal probability integral that N-l(0.9) = 1.645.
Equations (4) then give L = (1-0.41)0F and L+ = (1+0.41)CF. The following

continued inequality may be written down:
0590 B2r) € po € (LaAL) Bl 5)
-29) (10%) < P -41) (70705 (

it may be asserted that this inequality is satisfied with probability 0.9.

In other words, chances are nine out of ten that the value of Pp lies between
0.00094 and 0.00226. Independent random pairing of load and resistance values
is clearly a very inefficient way of processing the data, in the present case
using only 104 out of a possible maximum of neng = lO9 combinations of load

and strength.
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Fig. 2 illustrates a sample consisting of a total of npng pairs obtained
by independent random sampling. Fig. 3 shows all the (R,S)- pairs that can
be formed from the data. The ordering of the pairs in this figure suggests a
stochastic dependence which, according to the sign of the correlation between
sample elements, may either increase or decrease the variance of the estimated
probability of failure in comparison with independent random sampling using the
same sample size. Nevertheless, the relative failure frequency, CF’ in the
sample is an unbiased estimator of the probability of failure,

m(Cy) = Pps )

since every sample element was obtained by random sampling. To compute the
variance, consider a sub-sample Ui (Fig. 3) consisting of n pairs formed by
one of the load values, Si’ paired with all the resistance values Rl’ eesy, R
A conditional probability of failure at this load level, p;, may be associatzg
with the sub-sample:

55

P =S pR(R)dR- (7)
0

As before, the elements of the sub-sample constitute a sequence of np indepen-
dent random Bernoulli trials. The number of failure events, n,, at load level
Si is therefore binomially distributed with mean neps and variance ani(l-pi).
However, it is also observed that the ng sub-samples constitute a sequence of
independent random samples, for the np resistance values may be considered to
be drawn a priori, thereby dividing the load range into ne + 1 intervals
establishing for each interval an associated probability that a load value
will fall in the interval. As the loads are drawn independently and at random,

the outcomes ni(i = Ly e ey nS) are stochastically independent. Accordingly,

the estimator
n

1
CF=Z l.nn n, (8)

S
i=1 RS

has the mean value

1
m(CF) ¥ = Zani (9)

. Ba. Schlussbericht
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and the variance

n
S
crz(CF) = —1—-3- S np, (1-3). (10)
(anS) i=1

Neglecting P in comparison with unity for all i =1, ..., n_, eliminating

S
m(CF) from equations (7) and (9), and inserting the result into equation (10)

gives for the estimator CF the coefficient of variation

v(Ccp) = o (Cp)/m(Cy) =~ 1 ’anSpF (11)

Thus, as a good approximation, the coefficient of variation of CF has the
same value as if all npng sample pairs had been obtained by independent random
sampling. We may therefore use equations (4) with n = anS to determine the
confidence limits for the probability of failure. To illustrate, let ng = np = 100,
yielding 104 (R,S)-pairs, and assume that 16 of these pairs represent failures.
This data yields the same confidence interval as found above, equation (5). The
calculated probability of failure, CF = nF/anS according to Fig. 3, is believed
to utilize the data in the most efficient way possible.

The amount of data required for a specified confidence coefficient Q, a
target "design" probability of failure PF’ and a specified maximum width BPF
of the confidence interval (symmetric about PF) is easily computed from equation

(4) to be
nong > (28 T (@)/B)/®, (12)

For example, assume that we seek to design the structure so that the

probability of failure "with 90 per cent confidence" (¢ = 0.9) is a number
between 10_3 and 10-4. We select the target probability of failure

-4
P_ = 5.5 % 10 ~ and choose B = 9/5.5 in order that the confidence limits

F
(1 + B)PF coincide with the specified limits pF = 10 3 and Py = 10 4

Equation (12) gives the result that the product anS must be greater than 7,500.

For example, n must be greater than 150 is nS equals 50. Alternatively, if

R -
we demand that the probability of failure equals 10 & + 5%, with 95% confidence,
the required amount of data is increased to npng > 1.5 x 109 = (50,000) (30,000).
While the specific case studied here is greatly idealized, it serves to
give an idea of the amount of data required in probabilistic design, unless one

is content with giving merely a subjective meaning to the term 'probability of
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failure'. The value of n.n. according to equation 12 may be taken as a rough
lower bound for the data required to make an objective statement about the
probability of failure in the form of a confidence interval. The amount of
data that, as a practical possibility, can be collected does not seem out of
proportion to the amount required in probabilistic design, assuming that

reasonable standards of precision are prescribed.
References

1. R.v Mises: Probability, Statistics and Truth. William Hodge and Co.,
London (1939).

2. R. Carnap: Logical Foundations of Probability. University of Chicago
Press (1950).

3. J.R. Benjamin: Probabilistic Models for Seismic Force Design, Proc.
ASCE, Vol. 94, No. ST5 (May 1968), pp. 1175 - 1196.

4. A. Hald: Statistical Theory with Engineering Applications. John Wiley
and Sons, Inc., New York (1952).

Summary

Statistical considerations must be used to supplement purely
probabilistic considerations in structural reliability studies if concepts
such as the probability of failure are to have more than a mere subjective
meaning. In this contribution, the amount of data required to make
confidence interval statements about the probability of failure is

estimated by the methods of mathematical statistics.

Résumé

Nous voulons ajouter des considérations statistiques aux
considérations probabilistiques des études de sécurité dans le
domaine de la construction, afin d'élever ces derniéres au-dessus
du niveau purement subjectif. Dans cette étude, nous proposons,
3 1l'aide des méthodes de statistiques mathématiques, d'évaluer
la quantité requise de données pour établir les intervalles

de confiance autour de la probabilité de ruine.
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Zusammenfassung

Ueber rein wahrscheinlichkeitstheoretische Ueberlegungen
hinausgeliende statistische Betrachtungen sind fiir die Studien
der Sicherheitskriterien im Hochbau erforderlich, falls Begrif-
fe wie "Bruchwahrscheinlichkeit" usw. mehr als mit bloss sub-
jektiver Bedeutung belegt sein sollen. In der vorliegenden Ar-
beit wird aufgrund eines speziellen Modells eine Abschétzung
flir den Bedarf an Datenmaterial vorgenommen, um Konfidenzgren-
zen fur die berechnete Bruchwahrscheinlichkeit angeben zu

konnen.
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1. Introduction

Within the context of Theme I of the 8th congress,
this paper establishes a method of struccural safety
analysis for the lateral vibration of aerodynamically
stable suspension bridges under stormy winds.

The recent use of the so-called gust response
factor in the dynamic analysis of structures subjected
to gusty winds indicates an achievement of a higher level
of sophistication in the structural safety analysis
compared with the use of conventlonal safety factor,
since the introduction of the gust response factor is
based on the recognition that the wind velocity and hence
the structural response have to be treated realistically
as random processes.

The present paper demonstrates that a further effort
will make it possible to estimate, in approximation, the
probability of survival or failure of the suspension
bridge (in the lateral mode of vibration) which is a more
direct measure of safety in accordance with the proba-
bilistic concept of structural safety! ® .

Since the type of failure considered in this paper
is either buckling or yielding of a chord member of the
stiffening truss due to its lateral bending under the wind
pressurec %this defines a critical bending moment at each
cross-section), the linear equations of motion can be
employed in the response analysis. Such failure modes are
also assumed implicitly or explicitly in the previous
papers** dealing with the same problem.

(*) Numerals indicate references at the end.
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2. Structural Analysis

In the present paper, as in References 2 and 3, the
wind velocity Uit)at the height 2z above ground i{s the
sum of the mean wind velocity (4(t) and the fluctuating
part Ua(t,x) .

The pressure due to the wind velocity'LA@)is, as
usual, assumed to consist of two parts: the pressure due
to the mean wind velocity

P@t) = LscA Ut )
and the pressure due to the fluctuating part

bt,x) = AUr(H) wact, x)

where f is the density of air, ¢ and ¢ the static and
the dynamic drag coefficient and A the exposed area of
the structure considered.

It is usually observed from wind velocity records
that uz(t,yis nonstationary with a larger variance at a
larger mean wind velocity. In the present study, however,
it is assumed that U:;(t,x) is stationary with a (constant)
variance equal _to that associated with the maximum mean
wind velocity (Jy. TFurthermore, (i(t)in Eq.(2) is replaced

(2)

by for simplicity. Hence, the following stationarized
and conservative expression is used for p(t,x). ,
pit,x) = ¢ e A U, uslt, x). (3)

Since the variation of P(t)in time is much slow
compared with the fundamental period of lateral vibration
of the system of the cables and truss, the response Yr(t, 1)
and Ye(t,x) to P(t) is obtained performing a quasi-static
analysis, while the mean square value of Y.*(f,x) and the
bending moment M’(tx) of the truss to pP(f, x) is evaluated
on the basis of the standard equations of motion:

EIY" + 4§y - %) = B (t) (4)

“HY" - k)G, - %)= R@ )
my .);'r* + M7 7.7.* + EI 7T* v + ﬁ(x)()’r,‘]c.) =P7(t)1) (6)

e )'C’ + Mc }c‘ - H 76‘ " - %(1) ()"r*‘ 7C*)=/bc (t,x) (7)
with
bix)y=mr¢ /40 (8)

where the primes and the dots indicate differentiation
with respect to x and t respectively, #(x) is the hanger
length, E] the bending rigidity of the truss in the hori-
zontal direction, H the sum of the horizontal forces in
the cables, m the mass per unit length, 4 the linear
viscous damping with subscripts 7 and C indicating that
the quantities with T are associated with the truss and
those with C are with the cables. The lateral bending
moment of the truss can be obtained from its lateral
displacement in the usual fashion.



ICHIRO KONISHI — MASANOBU SHINOZUKA — HIROSHI ITAGAKI 71

The finite sine transform technique or the sine series
expansion_of Y and Ye can be used to solve Eqs.(4) and
(5) for Yr and % . To evaluate the mean square response
of M2 , the frequency response functions H, (w,x, x,) of
> *(t,x) and Hre(w,x, z) Of J¥(t,x) due to an input

e** §(x-x,) gpplied at x = X, on the truss are first
obtained by emplozing the finite sine transform technique.
After some manipulation, one can show_that the sine
transforms Hrr(J) = Hrr(w, j, %) and  Hre(j) = Hre (@, ], x0)
(with respect to x over x = O~ 2 ) of Hrr( W, x, X,)

and H, (w, x,x,) satisfy the following equations.

oo

2 Fr Gy = 2 HeG) ey = sin T, hdd
(n:f} 2,..- )
—Z ﬁ'r'r(j) C"j M Zf ﬁTc (./) €rj =0, (10)
J=1 J= (?’Z=I, 2, )
where
A"y
dy = (~wimy + iwpr + EIZZ) Sy o+ Gy (11)
e [j-71]
C'lj ="£L rz-aﬁr { S(j-fi),n + _b.— Slj—rl,'n } (12)
enj=(—w=fmc + 1w MU "'H—n%‘z')é\u_j*'c"j (13)

where { 1is the span length, di;j the Kronecker delta,
and #-> the coefficients of cosine series expansion of
R(X)

O=

bix) = f— > Ay cos r; x| (14)

Y=o

Egs.(9) and (10) represent two sets of infinite
number of equations for Hr;(n) and Hr(n). By taking only
first N terms each ofArr(n) and Hrem) (n,j = 1,2,...,
N, and r =1,2,...,2N ), One can obtain a set of zN
equations for ZN unknowns Hrr(n) and Hyc (n) (n =1,
2,.++4,N ). Solving these and applying the inverse sine
transformation, the frequency response function Hr(w, x, X, )

can be written as
N

. R
Hrr(w) X, Xo) = gz; X g (w, x) Sm—f'xa (15)
where N ,
% = 3 o smdly
R(w, x) = e ? (16)

In the Eq.(16) aj;_! is the j - & member of the inverse
matrix of a symmetric 2N x 2N matrix
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D i -C
C with D =[d;;] ,C=[cj] and E =[ey].
. ! E

B
n

The frequency response functions Her (W, X, X0)  of
¥ (t, x) and Hece (w, x,x,) of ¥*(t, x) due to an input
eiwt £(x-x,) on the cable can also be obtained in a
similar fashion.

HC'{(C‘U: Xy Xo) = iz_;pl (w, x) SM%Z, (Ill/)

where
. i T
Balw, x) = .Z e S (18)

The functions Heel(w,x; Xs) and Hye(w, X, x,) are not
needed in the following analysis.

vMaking use of Xg(w,x) and 8% (w, Xx) , one can show
that the mean square spectral density function of M. (¢, x)

is
N N

S(wx) =2, 0 [ 6" (w, xy i (w,x) S7e (@)

T=mt S=t
+ 2Re {ar (w,x) B (w) Sy (w)}

—_u

F R (W, x) B (w, %) SEE (w) ] (19)

in which Re 2 and 2 respectively indicate real part and
complex conjugate of 2

XY LN
Srs (w) = J J thp:(w) 5‘.”1%1! Sim-—zllz dx, dx, (20)

with X and Y standing either for T or C and

XY
Sp. p, (w) being the cross-spectral density of Px(t, x1)
and Py(t xl) 2 * . ¥
The variances O and Ox of Mr(t,X) anda My (, X)
are then obtained as

\6-"”2’ =5 S(w,X)dUJ, O’MZ =J sz(w;Z) da) (21)
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In the following discussion, however, the second and
third terms within the square brackets of Eq.(1y) are
neglected because of their small contributions (as also
done in Refs.2 and 3), and S,), is approximated by

5?'7’;' (w) = EXP(__ 'kw_ II’ - ’) é(w) (22)

2T,

where the exponential term is the square root of the
coherence, 2m(Jz /(#f w) the scale of turbulence at the
wave length 27z J:/w, and &(w) is the mean square
spectral density of p-(t, x) and is given by?

. 4’_“:)
P(w) =4 (P ar T, P K g” il (23)
w 1%
[”(fg,,)}

in which K is the surface drag coefficient, Uss , The
mean wind velocity at the reference height of 33 ft above
ground, is related to (J; by

L—/J = L—/! (-2_3)“ (24)

with & being a constant.

5. Safety Analysis

In previous papers""’5 , one of the present authors
developed a method of estimating upper and lower bounds
of the probability that a Gaussian random process =z (t)
will not be confined in a domain defined by - a(t)<z(t)< act)
in a specified time interval, where a(t) (zo) is a
deterministic function of time.

Consider the standard design procedure for wind
loads where the stiffening truss is designed so that it
can withstand, with a safety factor m , the bending
moment M4(x) produced by a specified (uniform) design
wind pressure #$2 . This implies that the critical
bending moment at cross-section x is nM«(X). Suppose
that the suspension bridge is subjected to a storm with
mean wind velocity J(t) or mean wind pressure ?(t)
producing the bending moment M(t,x) . Then, a(t,x) =M*(x)
~-M(t x) = mMi(x) - M(t,x) is the maximum value of the
bending moment M*(t, x) that the fluctuating part of wind
pressure p(t,x) can produce without fallure. Since the
variances of M¥(t,x) and M*(t. x) are evaluated in the
preceding section, the method developed in References 4
and 5 can be applied to estimate upper and lower bounds
of the probability of failure by or the probzbility that

73
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M*(t,x) will not be confined in the domain defined by
- alt,x)<€M*(t, x) £« alt,x).

Evidently, for a storm with a different mean value
velocity function Uz(t) , a different value of % is
obtained. In fact, (J,(t) itself is usually a random
function of time containing a number of random parameters,
say U, and T ; (,(t) =U,(t; Uz, T.). For example, the
following forms of (; (t, U, 7.) are mathematically expedient
an%lat the same time agree with observations reasonably
well.

Ue (t5 Uay, T ) = Us- e-(t/T) —soctcoo  (25)

and _ _
OXt; 0., T ) =0 (1-1t1/T) -Tét<T

=0 otherwise

(26)

where 7, is a measure of the duration of a storm in Eq.
(1) while it is the duration in Eq.(2). Eq.(1) is used
in Reference 3.
The probability of failure #_ is then computed for

a storm with a particular set of U and 7. ; % =
#(Us, T») . Therefore, the probability of failure A"
due to a single application of a tatistical storm with
(J; &and 7. being random is the expected value of
P(J;, T,) With respect to (J; and 7,

b <[t (O, T) 5O, T) dTi 4 (27)

where (U, T,) is the joint density function of (s and
7. . Hence, one can obtain the upper and lower bounds
of #* from those of b (T, T-) using Eq.(27).

4, Numerical Example

As an example, a suspension bridge of the same
dimension as the Forth Bridge is considered with EI
1.842 x 10" 1b=ft? ,A(x)= 309 - 1200(x/8)( 1- X/¢) f%t,
meg = 2.52 x 10> 1b/ft,m- g = 8.38 x 10° 1b/ft, £ =
3300 ft, H = 4.934 x 10" 1b (Egs.(4) - (8)), and such
values of the linear viscous damping coefficients  «-
and M¢ (Eqgs.(6) and (7)) that the logarithmic damping
decrements of the first mode of independent lateral
vibration of the truss and of the cables are both equal
to 0.05. In Egs.(15) - (19), N = 5 and in Egs.(22) - (24),
£ =7, & = 2000 ft, K = 0.01, « = 0.2 and 2 = 200
ft (height of the truss above ground as in Refs.2 and 3).

With these parameter values, the variances of M*(tx)
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and M*(t,x) can now be evaluated numerically (IBM 7090

is used) following the method described in SectionZ2.
Because of the same assumption on the structure and the
wind, the variance of M*(t,x) computed here is found to be
close to those in Refs.2 and 3. Once these variances

are computed, the bounding technique in Refs. 4 and 5
can be applied for the probability of failure # ((:) with
the time dependent barrier a(t,x) . Since in the present
study, Eq.(26) is assumed for simplicity, a(t,x) becomes

a.(t,x)=&(x)(zlch){nUf-U,’(f-%)} (28)
where %}(x) is the bending moment of the truss at point x
due to # = 1 1b/ft and % = 1/8.9 1b/ft (this value 8.9
is taken from Ref.3 and it is the ratio between the
corresponding values of ¢A for the truss and the cables)
and U« 1is the design wind velocity which is taken as
110 mph in this study. -

If the maximum mean wind velocity U: is assumed to
have the second asymptotic distribution of largest values*
under a further assumption that U; 2 110 mph has a return
period of 3450 years3? , then the demnsity function (U; is
given by

T _ _Z_.. L_J -7-1 Cf -7
JOo =gl 5e) el 1)) @
where ¥ is assumed to be 9.0 and (e = 110 [- Ln (1- 3:50)}’/'

mph.

_ An additional assumption is made at this point that
U and T, are proportional (or the intensity of storm
and its duration are proportional) which appears to
reflect the reality at least in approximation. In fact,
a value Uy /T = 5 £ft/sec® observed from some Japanese
records®* is used here. Because of this assumption, Egq.
(27) becomes a single integration hence considerably
reducing the computational work:

b= [ P(U) (G dG, (30)

It is evident from Eq.(26) that £ (U:) = 1 when Us 2Vn Us.
A further assumption ¢; = Cer (See Eqs.(1) and (2)) is
made here so that the following analysis becomes
independent of the value of fc Ay,

The upper and lower bounds of P* are computed as a
function of the safety factor m (Fig.1). To be precise,
the probability of failure #,(U;) and therefore #! vary
along x . However, the variation is negligible because
the quantities E(x) /0 (x) and £(x) /ey (x) on which the
variation depends, are almost constant according to the
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numerical

computation.
In spite

of the rather

wide differences
. between the
1\ upper and lower

10 bounds, the
‘\\\ result shown

function of safety factor n

upper bound in Fig-’l is
quite useful
in many respects.
10 For example,
% 5 using Fig.1
\ one can examine
lower bound the effect of
B \\\‘5‘\~ increasing the
10 safety factor
\ n . In fact,
Fig. 1 indi-
cates that the
10 probability of
0.5 1.0 1.5 2.0 2.5 failure decreases
by one order
of magnitude
from the order
Fig. 1 Probability of Failure Py 85 & of 10 to that
of 102 by in-
creasing n
from 1.0 to 2.0.
This implies
the increase
of the mean life by one order of magnitude from the order
of 100 years to that of 1000 years, if it is assumed
that significant storms occur on the average once a year.
It is pointed out that from the view point of structural
reliability analysis, the probability of failure esti-
mated even only within the order of magnitude is a
significant information.

5. Conclusion and Acknowledgement

A method of safety analysis by which the probability
of failure of a suspension bridge due to lateral wind
pressure caused by a (statistical) storm can be evaluated,
is presented with a numerical example. The numerical
example indicated that the probability can at least be
estimated within the order of magnitude. This seems
significant and satisfactory enough in view of the various
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assumptions one has to make as to structural response
properties as well as statistical characteristics of
the wind.

This study identified the information that is needed
to make such an analysis more reliable. Other than those
already identified elsewhere (for example, Refs. 2 and 3),
the following quantities have to be known with e
reasonable accuracy; the cross-spectral density Sy,
(Eq.(20)) and more importantly, the mean wind velocity

J:(t) as a function of time t (Egs.(25) and (26)) and
its statistical nature, and the frequency of occurrence
of significant storms.

The authors are grateful to Professor A.M. Freudenthal,
Technical Director of the Institute for the Study of
Fatigue and Reliability, Columbia University for his
support of the study.
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SUMMARY

This study presents a method of safety analysis of
aerodynamically stable suspension bridges subjected to
lateral wind pressure. The pressure is treated as a
random process in space as well as in time. A numerical
example is given under certain assumptions of statistical
characteristics of the wind velocity. Importance of such
a study lies not only in the development of a method of
probabilistic safety analysis but also in the fact that
it indicates what further information, statistical or
otherwise, is needed to make the safety prediction more
reliable.

RESUME

Cette étude présente une méthode d'analyse de sécurite
pour ponts suspendus aérodynamiquement stables soumis & une
pression de vent latérale. La pression est supposée arbitraire
dans 1l'espace et dans le temps. Un exemple numerique a été
calculé 3 partir de certaines hypothéses des ocaractéristiques
statistiques de la vitesse du vent. L'étude ne développe pas
seulement une méthode d'analyse de sécurité probabiliste, elle
indique avant tout quelles informations supplémentaires, sta-
tistiques ou autres, sont requises pour rendre les estimations
de sécurité plus precises.

ZUSAMMENFASSUNG

Dieser Beitrag zeigt ein Verfahren fir die Sicherheits-
betrachtung aerodynamisch stabiler Hangebricken, die seitli-
chem Winddruck ausgesetzt sind. Der Druck wird als zufédlliges
Ereignis in Raum und Zeit behandelt. Ein numerisches Beispiel
fir bestimmte Annahmen der statistischen Charakteristiken der
Windgeschwindigkeit wird angegeben. Die Wichtigkeit solcher
Untersuchungen liegt nicht allein in der Entwicklung der wahr-
scheinlichen Sicherheit, sondern auch darin, dall erkennt wird,
welche statistischen oder sonstigen Auskiinfte kiinftig fiir die
Sicherheitsvoraussage zuverliassig sein werden.
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Abstract - The collapse load of a truss is investigated taking into
consideration the way the bars actually behave, namely the effects
of the strain hardening and the buckling respectively for the bars
under tension and for those under compression.

During the buckling process the diagram which represents load
versus axial deflection, on account of yelding of mid section,due to
the bending, takes the form of a hiperbola branch (fig.1l) [1] [2] [31
At this stage, the bar, whose characteristic is a negative strain har-
dening - softening - becomes unsteble. If, however, it is within a hy-
perstatic system, its buckling does not necessarily cause the collapse
of the structure. Especially for multi-hyperstatic trusses, the collapse
load may be found to be higher by far than the load generating the
buckling condition of the first bar.

The problem has been put up with the restrictions as described
in the following: The bars are pin hinged bars; the stress-strain
relationship, as indipendent from the temperature and time,follows
Prandtl's model [4] ; the deflections are assumed to be infinitesi-
mal, that is finite but small, just that the geometry of the system
and thereby the internal condition of the stresses are not affected
at all: both localized and global bifurcation phenomena are ruled
out. Cf this structure are discussed the stability conditions in the
clessical meaning,that is for infinitesimal perturbances.

This problem has already been dealt with by other authors [5] 5
[6] [7] . From the stability postulate of Drucker's [8][9] the suf-
ficient conditions for stability and uniqueness of the solution ha-
ve been deduced. In the discussion which follows only the first aspect
of the question has been examined closely: By an original procedure,
the necessary and sufficient stability conditions have been formula-
ted.

The problem has been traced back to analysing the development
to which is subjected the structural yield locus,ehich varies with
the varying loads, under the action of incremental plastic deforma-
tions. Upon the external load reaching its critical value, to the
increment of the plastic deformations corresponds a contraction in_
to the yield locus which make it impossible to balance the original

Ta 1
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load. From the discussion is possible to elaborate a graph which ena-
bles making a stability verification immediately, which can be made,
hoverer, for pratical purposes, in the only case of two variables.

In the general case the problem is transferred into algebraic
form: The parameter which indirectly furnishes the answer of the yield
locus to an increase in the plastic deformations is determined by the
energy irreversibly stored into the system: the elastic constrained
energy and the energy dissipated through the plastic phenomena. If,to
an increment whatever in the plastic deformation, the corresponding
variation in the stored energy is still positive then the equilibrium
is stable; if of no value or negative then at least in one case the
equilibrium is neutral or unstasble. The gquestion is restricted to re-
searching the sign of a quadratic form, associated with the matrix of
rigidities, function of the plastic deformations and constrained thus
by the signs of the latter.

These conditions can be brought to some other form as function
of such parameters as are typical of the stability problems, that is
the work done by the disturbing forces or the total energy of the sy-
stem. It is demonstrable that if the variation occurring in the sto-
red energy is either negative or zero the variation of the total ener_
gy of the resulting work done by the disturbing forces will likewise
be either negative or zero. So we again come to a formulation which,
though less praticable because of the further difficulty encontered
in assessing the free elastic energy, connects directly to a principle
which is as a rule normal within the elastic range or Drucker's postu-
late.

The problem is susceptible of generalizations.At this time tte
preference has been given to focussing the attention on the concepts
rather than going deep into a more complex program.

The behaviour of the bars - The assumption is made that the bars,eithe
in tension or compression, follow Prandtl's model f4] , indifferently.
In fig.1l is shown the curve relative to the rélationship existing
between axial force S, elongation or shrinkage d for any bar in general
The bar behaves elastically according to Hooke's law up to stress Se;
Past this point,plastic deformations teke place, such that the linear
trend of the line is changed. Upon relieving the load the representati
ve point of the stress condition moves along the line parallel to O-A,
& Segment O-C indicates the plastic de-

g F‘_‘B formation €,at B,which at the time the
load 18 relieved remains unaltered;seg
Se A ment C-D represents the elastic defor-

mation §,. If the bar is isolated for
S=0,6=§;1if it is within a hyperstatic
o_cl b system,for S=0,§=§+ Se,where d, indica-
d tes the elastic deformation constrai-
ned whithin the system and recoverably
only through cutting the bar.
Area OABD represents the total
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work performed by the external forces which is necessary to achieve
pattern B. In particular OABC is the graphical representation of as
much amount of energy as is absorbed by the system and is dissipated
through the plastic phenomena;the area CBD is the elastic energy which
can be returned only if the bar it is isolated or part of an isosta-
tic system.

Unlike the currently adopted convention on the signs for the axial
forces S, a different one is being introduced here. The starting axial
force S is assumed to be positive in all cases; increments are either
positive or negative whether or not they are in accord with the starting
force.

1 , - For assigned plastic deformation
ctl T S (fig. 2), SS"are meant to be indicati-

' ve of the llmltlng values within whose
range the axial force can oscillate per_

ﬁg forming elastically.Therefore the yield
K locus shall be as established by the re_
v lation: _
d§ (1)~ 5=5 B,
— - where S, generically,indicates the §* 8~

liniting values according to whether
is correspondingly a traction or compres_

‘kn sion. If the verification yelds a dise-
=, quality, the bar under test is in the
_:S : elastic range, whereas the equality pro_

Fig.?2 ves it is in the plastic range.

Where the bar is in the plastic ran
ge, i.e.if 5 = S the stress-strain relationship is linear, when the
increments are 1nf1n1tes1mal° Curve S(§ ) is substituted whlth its tan
gential line at S, Then by differentiating (1) in relation to § or s

(2) dS‘—%? a$ = wd§ = %% a§ = Tad = as
a limitation to the incremental relationship S-§ is obtained. Owing tc
a 4 increment in the plastic deformation the bar, initially stressed
under S, is now capable of taking a stress 1ncrement at the limit, d4S :

Therefore d S determines the dislocation of the 1e1d locus (fig. 2)
In the eq (2§rw_represents the dif

c:‘ ) ferential rigidity, VW the plastic diffe-
- rential rigidity (fig.3): the following
<> d dée is the correlation of the above rigidi_
' ties to the elastic rigidity We:

w ‘l!

$ restricted in sign by the relationship
|
N
: = condition:

w— -
dé * s the requt 1s ®that where W= 0 s Wis 1li-
H——————{N\ } | » Kxewise>0.The plastic deformation dad is
#ign 48 = sign S,which, for the position
of on the forces signs, is reduced to
A48 (3) a
The interva

N

Ll Y|

%.o
within which rigidi-

Ba. Schlussbericht
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ty % is included is so defined:
- L W £ We

By combining eq. (2) with limitations:
as > 0 ds

ad =0 ds = wed$ (W = We)
the stress-strain incremental relationship is thus obtained. The eq.
(2) covers the (4) and in a more general sense may be intended as re-
lating to a cycle. At first, the incrementzl force dS verifies the
equality with the bar being in the plastic range, subsequently is su-
bjected to a reversal and thus verifies the disequality.

ds = ¥al (-0 < W & We)

The behaviour of the system - As a reference, let it be taken a gene_
ral type of reticular pin-hinged, made up by n bars, times r hypersta_
tic truss and let it be subjected to a lcading pattern F: for an Fo
load let Co be the corresponding in equilibrium and compatible pattern,
typified by k number of bars (K 2 r) in plastic range, & ....&k being
the corresponding elogations.

Let the displacements of the system be assumed as being infini-
tesiual, or finite, but such that they cannot affect the originary geo_
metry of the system and, hence, indirectly, the stressed condition.
This supposes that the strain condition which corresponds to Co can be
regarded as borne by the plastic deformations § , intended as distor-
sions, and by loads Fo, as applied to the elastic structure.

This as a reference Sei indicates the stress exercised by load Fo
into bar "i"; Sij the stress transmitted to bar”i” through distorsion

S} = 1 at “j. Then the resulting stress in bar i is:
(5) Si = Sei + =2 sSij& (i = 1....n)
Eq.(5) is substituted in (1) by transferring to the right hand side
the term relative to the distorsions:
(6) sei< Si + 5 sij &j =
on the assumptign that: " .
_ Si = Si 42Sij O3
The Si,different, whethér tractive or compres.ive, are a generaliza-
tion of the Si referred in (1) and define, within the space of the pla-
stic defcrmations, the yield locus for pattern Co. If stresses Sei ve_
rify the inequality,the point representative of the stress condition
falls inside yield locus. On the contraryyif for some of the bars the
equality has been verified the representative point falls onto the edge
of the yield locus and the structure is in the plastic range.

A variation is assigned to pattern Co by attributing to the bars
in the plastic range a d increwent to the initial plastic deforma-
tions.on the assumption that the bars in the elastic range will stay
such. The resulting C'o pattern is described as “perturbed“pattern. By
differentiating (6) for the d& increments assigned and consistent
with (3) we obtain the stress increments which C'o can absorb:

(7) dSey = W4dS i +Z.< sj4aj = as;

]

i
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Eq.(7) is a generalization of eq.(2). The dislocation of the initial
yield locus §,oonsequegt to the assigned plastic deformations ddj is
just supplied by the dS. If the representative point of a new stress
condition comes to fall iaside of or into the edge of the yield locus,
the equilibrium between the stresses and the strength of the bars is
verified for pattern C! ; if outside, that is if for a certain number

o : =

T bars: gy gse; > 484

the equilibrium is impossible: the plastic deforwations continue their
pursuance to a new pattern CJ which may still verify eq. (7).

Stability of the system - A graphica] method for the verification of
the stability, in which the above indicated concepts ore expounded,is
illustrated the problem being dealt with is limited to the case invol-
ving two placicized bars only. It will not be difficult but rather easy
to extend, conceptually at least, the representation to the more gene-
ralized case.

As a reference let us consider a Cartesian system having as many
axes as are the plasticized bars. Let us mark on the axes plastic de-
formations d& : The origin of the axes thus gefines the pattern Co.As
is conventional for the signs on plastic deformations (3),all C§ pat-
terns are comprehended within the quadrant of the positive dé. Chosing
this as reference frame,we now draw as many straight lines d§i= 0 as
are the bars in the plastic range: the enveloping line defines the boun-
dary of the plasticity field for that part which influences the stabi-
1ity of the system; on the perpendiculars are marked the stresses Sej
and the corresponding increments dSej. Therefore point Co sets also the
initial stress condition in which Sej; = Sj.

Fixed the perturbed pattern C'o, the sides of the yield locus tran-
slate: according to d§i20 it will correspondingly expand or contract:
the new yield locus, so obtained, is defined "perturbed". The equili-
brium in this stage is assuredly verified if the transposition to Cj
is considered as effected by forcing a set of supplemental restraints,
non efficient in C,. Point 8§ moreover establishes the elastic stres-
ses dSej, relative to the reactions dF of the additional restraints con-
stituting the,so called,perturbing forces.

The supplemental restraints are then removed and, hence, 4F—+0:
WVhere dSej +0 the elastic stress condition C} has a tendency to resu-
ming the initial position C,. If Co is found to fell inside the area
of the perturbad yield locus, that is, if:

0 = dgi
eq.(7) is verified: the pattern settles in C'o and the system behaves
elastically again. If, on the contrary, for some of the bars eq. (8)
is verified, that is_

O>d§i
Co comes to fall outside the perturbed field and there are no possibi-
lities for an equilibrium. These bars keep being subjected to the pla-
stic phenomenon with the field paralleley evolving in pursuance of a
new pattern Cg which comprehend Co. More forces are supposed to be in_
terfering ot this stage such that a point-by-point equilibrium is as-
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sured.

For example, in the case illustrated in figura 4, what C'o might
be, the resulting system is in any case that of equilibrium. Being tha
at all times dS7>0,dS» >0, eq.(7) is verified, even where dSe—>0:The
perturbed yield locus shall alwais com-
prehend the originating pattern CO' In
this case the equilibrium of pattern Co
is stable.

A diametrally dpposed case, is that
shown in figura 5. "hatever Cj the resul
is alwais d5;< 0 dSg< 0. Hence by eli-
minating the perturbing forces eq.(8) is
verified: within the two bars the pla-
stic deformations increase. However,wha-
tever the Cg pattern which one can come
to,during the unloading stage, the situa
tion repeats itself again: the plastic
deformatihons have a tendency to become
infinitely great. Parallelely the edge
- - of the yield locus, originally S moves
to S - d4S: for dé—'ao S - aS—»0: the plasticity field for at least one
its sides shrinks gradually up to becoming null. At C, the equilibrium
is therefore unstable.

Figures (6) and (7) report some in-
termediate situations. The first shows a
se of stable equilibrium, the second one
a case of instability.

In fig. 8 is then illustrated a si-
tuation of neutral equilibrium. “hatever
Cy the system is apt to assuming an equi.
librium pattern Cg coincident or not
whith the former. rrom this viewpoint
the system is apparently stable. Cn the
other hand, though, all_patterns C'p fal.
Fig.5 ling on straight line d57 = dSp = O are

also corresponded by dSeq = dSep= 0.All
these patterns and, to the limit, the in
finity one, are then attainable without the aid of a perturbing set-
up for forcing the system, ond hence without any energy dissipation.
Along this directrix the system is see-
mingly worn out, unfit to counteract the
modification of the original pattern Cg,.
The situation as illustrated in fig.7
is ungtable although still presenting
an indifference directrix.

Fven if hardly usable, owing to the
unpratical possibility of exténding it
tc an n dimension system, this graphi-
cal representation helps to clarify the
problem and affords a comparison whith

i
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the analogus elastic problem.

In the elastic range, if the equi_
librium is stable, C'g*C, once elimina-
ted the perturbation. In the elastic-pla-
stic range we find that €'y, apart from
not returning in C, at all, may further-
ly move away from it and reach C",,which
alike C'g, is very close to C,. It fol_
lows that lacks the clear differentia_
tion between a stable and a neutral equi_
librium, as is found in the elastic ran_
ge. The distinguishing point that dif_
ferentiates the latter from the former
lies only in the fact that.,for transla-
ting the system from one pattern to ana_
ther along the indifference directrix,
there is no need of any external work.

Fig.7

The system energy - The stability conditions are algebraically expres_
sed as functions of the energy. As an introduction some hint is the_
refore made about the energy stored in the system and its variations.
In an intermediate stage of the loading process 0-F,, the work
done by forces F in equilibrium with the
pa internal stresses S, under the action
Ceo of a d increment in the dispacements as-
sociated with an increment in the bar
deformazion d 1is: _
(9) 4L =Zqu=§Sid&i =Z(Sei -%Sij (SJ)

0
deii+d6?-i+d£ i) =2Sej aSe; +2(Z Sij
§j+51) a8y =ZSej d ej+Zse; af 4
i the assumption having been made that in
this stage too, K bars are plastici-
zed.

The total work L, spent by the
external forces for the developtment
of pattern 005131

(10) L =de-q_= 22Se; Sej+ 2(s51 gj)gié_[sidgi: Eg + Ey + Ep

The right hand side indicating the energy absorbed by the structure.

In detail the first term, Fg, signifies the free elastic energy, in other
words that quantity of energy which totally returns to the external
forces at the unloading stage. The second term, Ey, the elastic ener
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gy constrained within the system by the plastic deformations which can
be released to the outside only by making cuts in such a way that the
structure becomes isostatic. The third term, Fp, the irreversible ener_
gy absorbed by the sysitem, used to produce those alterations in the in-
ternal structure of the material which give origin to the plastic di-
slocations.

For translating the system from pattern Cop to C,' the work, dzL,
of the second order, done by the perturbing forces, taking into account
the linearity o{ the stressisﬁfain relation hip,.is _ _ -

(11) dpL = 5-2 dFdm = a=iE dieidéei + ?%(%sijdsj + wiasi) ds 4

=ansei s ¢y + z_K‘_dSei 481 = dpEq+d o Ev+dpEp = dpFa+ dp E

d2E being the global constrained energy of the system both elastic and
plastic.

The constrained energy doE is expressed by a homogeneous quadra-
tic polynomial whose varkables, howewver, are conditioned, in sign, by
eq (3). For that part relative to the hiperquadrant 0O this polynomisal
coincides with the quadrantic form, associated to the matrix of fhe ri_
gidities (7) and may result positive, null or negative: the last cir-
cumstance being possible in the sole case that, at least one bar be cla.
racterized by softening. The E3j and Ey polinomials are instead always
positive.

Generalizing the notion of the total energy of the system 10 by
adding, in addition to the positional energy of the external agencies,
and the free elastic energy, also the constrained energy, eq.(ll),after
transferring to the right hand side the external work, defines the va-
riation prime, dEt, of the total energy, stationary for the Cpequili-
brium pattern. Variation second doEt is furnished instead by the right
hand side of eq.(11).

Stability conditions - Let us suppose that the quadratic form dzﬁ; de-
vised for pattern Co, is always positive for all the d& consistent
with (3), but not simultaneonaly nought, that is:_ _

(12) aE = 2.d5; 46 =2(ZSij d35 + Wi aSi) a§ 1>0

In particu arp let for C§ De:
ds; E—gl (dgE)JCE,), 0
Eq (7) verified at the beginning in respect to the interference of the
perturbing forces still rests verified for dSei—+0: thpough the unloa-
ding stage the system behaves in an elastic way. In the space of the
d& the pattern settles in Cp.
Its aupposed,dinstead, that for C}

dsS; =[-d—3_i (d2E_)]C|>%O

In this case, although as a whole eq. (12) is verified, same of
the addenda result as being negative. Whith the eliminzation of the
perturbing forces for some of the bars eq.(8) is verified. For such

bars the plastic phenomenon then progresses spontaneously a@nd the
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system moves away passing from C', to C",. The second principle of the
thermodynamics, as formulated by Lewis, Lll] affirms that any sponta-
neaus phenomenon is corresponded by a decrease in the system energy
which is transformed into the work of the balancing forces, that 1is ar,
in the present case. Thus, if with d>E. we designate the energy corre-
sponding to travel Co-C'y,, and dgFC: that relative to Co-C'0-C"o, the
result will always yield:

(13) doEu > ALy

But, for the supposition made in eq. (12), the verification of this re-
lationship can only be ascertained where C"o within the space of the

& - comes to falling around C', and, hence Cy. The pattern C%, defi-
nes a relative extreme (minimum) of function dgf, conditioned by eq (3)

and therefore:

ds; =["?— dE]_E?_O
Hence at C§, also for dSei—~0, eq (7) is verified. So eq (12) represents

a condition sufficient for Co being a pattern of stable equilibriun.
As a substitute of (12) let us assume:
(12" dE = 0

In particular then let,for C'o,be doE = O: In the other case we come
to fall again within the preceding situation.
Allowing for eq.(12') the risult will alvays yielad:

d5q = [%31_ ( doF )JJ:‘O
Thus C'qg is a2 pattern of equilibrium with no interference of pertur_
bing forces and as such are all those other patterns which fall into
directrix Co-C'o which is justly typified by d2§=0. The system moves
along this direction with no external work being done. Then the follo-
wing is particularly to be verified:
d 'Si >0 for d_6i =0
a3y =0 for 453 > 0
Pattern Co, which is corresponded by (12'), is then a pattern of neu-
tral equilibrium.
For (12) let us assume as substitute:
(12") 4> E 2 0
In_particular is assumed as the assigned pattern C) that for which
d2E<O. In_this_.ease for some of the bars:
dsi:%'?—i (d2E)JC:O
The perturbing forces eliminated, the plastic phenomenom then progress:
the energy relative to a successive pattern Cy is related to the ener-
gy at C4 by eq.(13). In C3, and so for the successive patterns, is thus
repeated the like situation as is found in C). The plastic phenomenon
keeps continuing indefinitely with the mystem never reaching a pattern
of equilibrium with load Fo. Therefore if the pattern Co is associa-
ted to eq.(12") the equilibrium is unstable.
Thé considerations on the eq.(12'), (12") follows that eq.(12) re_

presents also a condition necessary for the stability of the system.
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Drucker's second stability postulate LBJ L9] , @s applied in the
"small", fully confirms this result. In order that the system is sta-
ble the closed cycle work accomplished by the perturbing forces,applied
at first and removed afterward, is to be positive. As this cycle termi-
nates_this work is found again under the form of stored energy: thus
if d2F >0 the equilibrium is stable. On the contrary, if dpE<O the re-
sult is that the cycle cannot be closed, that is the equilibrium is not
verifiable without the introduction of an equilibrating system dF:then
the equilibrium is unstable.

From the above it can be easy to deduce that, where the bars behav
in an ideally plastic way (W=C), unjer the collapse load the equilibriu
is neutral. True, in general doE 20 (doEp = 0), particularly it nulli-
fies for that d& set which is corrisponded by the collapse uechanism.,
If the bars are instead strain hardened (W>0), d>E >0 as dpEp>0: In
this case the equilibrium 48 stable.

The stability according to Drucher's postulate - The first postulate

of Drucher's gtates that a system is stable, in the "small",if the work
accomplished by whatever forces dF yields always a positive result. If
these forces are supposed as acting in a proportional way,the work ac_
complished by forces 4F is coincident with the energy stored by the sy-
stem, (11),that is the total energy variation. In the following is the
demonstration that this principle and the one expounded in the prece-
ding paragraph match perfectly at least as far as concerns the speci-
fic case under consideration. It is demonstrated particulary that if
d2E >0 or d,F=0, parallely,always does exist at least one perturbing
pattern 4F for which d2Et >0 or dpEt = O.

Let us assume that d2E >0 and as dF a system of forces proportio_
nate to load Fo acting in Co, characterized, thus, by a proporzionali-
ty factor dA, infinitesimal. Since the system results being unstable
for a given number of bars dSj< 0. In order that C'p be an equilibrium
pattern, eq.(7) must be verified and the result dSej <O must thus be
yielded. Since, for convention, stresses Sejy are positive, factor g,
must be negative, or:

dASey = - dSey
The perturbing rattern 4F must then result opposite to that Fo. In
these conditions, at all times, eq.(7) is verified, even if plastic
deformations are absent, in which case dSej O. Among the C§{ solutions
which verify eq.(7) there exists at least one, C4 which verifies also
eq.(4) in its generalized form, or:

(14) - ¢Sey = d§y ds i >0

- dSej <« dSi dd3 =0 _ _ .
This solution defines one extreme of function dg E [12] LIBJ L14] con-
ditioned by eq. {7) and in particular for the assumption adopted on
the sign,(12"), it defines a maximum. The work accomplished by fcrces
dF, in moving the system from pattern Co to that C'p, is then supplied
by €q.(11) agress with eq.(9) multiplied by the 5 dA negative factor.
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Since is always: dL >0
- 3 dA 4L = dL< O

Obviously, if do L<O0, such is also the right hand side of eq. (11)
that is the variation d,E{ of the total energy. This implies that in
Co if (12") is verified, Ft definies a maximum and there exists, at
least, one perturbed pattern C'y, for which d»L <O.

Cn the contrary if doE = O, for the patterns C'y falling on the
indifference directrix:

dSey x4dF = O
then: dF¥F =
doEt

If finally:

doE >0
since dpFy> 0;also d2FE4>0. In Co the function Et{ defines a minimum.

In the following a very simple example has been evolved. The stru_
cture is that as shown in fig.9. In figg.9, 9-a, 9-b, 9-c the graph
shows plotted, in the upper part, the Ft force versus the slope §,at
C, for the beam, whose behaviour is suprosed to bé infinitely elastic;
in the lower part of the same graph for the stanchion subjected to a
buckling at A, assuming three different values for rigidity Wa. Star_
ting from pattern Co, to ®hich corresponds lcad Fo = Fy + Fg, an incre-
ment d& 1s attributed to the plastic deformation and pattern C'oy is
reached. Addenda d» E;, d2Ey, dng, all coming within the energy ba-
lance, hold as follows.

N oun

0

F dpEe = 2 (Wg + Wi)d& e = CBE area
l d2Fy = & (W adeal = ACD area
FAY C Pas 1 -— 7 2
doEp = % Wy ad = ABD area
Fig.9

7

In particular, for.chart in fig.(9-a):

A é
Fig.9-a ol
e
F, s
'l -
*: doF = ACD-AED = ACB >0
§ W) dpEg= ACB+CBE = ABE > 0
! 'dzﬂ The equilibrium is stable.
d&ri'_,”//
e :?“] & ?i_TE
(Jd' _.O— ﬁ = Cj—
t‘&f"'Wa B, IWJ :
v A d
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For chart in fig.(9-b):
A

i Fig.9-b doE = ACD-ABD = O
t
g £ Gofy= O
. z o The equilibrium is neuter .
J+ 4ogs, d5
. czB:zE
b B -
d¢& ;
\ | A D

For chart in fig. (9-c¢)

doFE = ACD-ABD = - ABC K O
dpEy= ABC-CBE = « ABE < 0

v

The ¢quilibrium is unstable,

Conclusions
The stability analyis of an olonomous system, whdse components are
stressed axially and are typified by positive and negative rigidities
is led back to the study of function do E, that is the quadratic form
associated to the matrix of the differential rigidities within the hy-
perquadrant of the positive dd . If, within this boundary, dpE >0 then
the equilibrium is stable: on the contrary it is neutral or unstable.

By the avail of the matrices theory (14] some conclusions cdn be
drawn. If the cuadratic form,associated to the matrix of the rigidi-
ties,is definite positive, such it will be also in the hyperquadrant
d5>0: therefore the result is do E >0. Hence the equilibrium is sta_
ble. Instead if the quadratic form is definite negative, in like man_
ner, d2E<iO: the equilibrium is then unstable. The same holds true if
the quadratic form is semi-definite negative: the range of the matrix
can never be less than one, and thus the indifference direction,at the
linitycan only occupy a subspace of the positive hyperquadrant, the
quadratic form in the complementary subspace remaining negative.

More complicated the question presents itself where the quadra_
tic_form is semidefinite positive or indefinite: In the first case
dp E>0 or d, E=0, in the second case dpE 20 or the intermediate
cases. The research of an algorism for the solution of this problem
will be the subyect of a forthcoming information.
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SUMMARY

The stability analysis of an olonomous system, whose com-
ponents are stressed axially and are typified by positive and
negative rigidities is led back to the matrix of function d. E,
that is the quadratic form associated to the matrix of the s
differential rigidities within the hyperquadrant of the posi-
tive a6 . If, within this boundary, d,E >0 then the equilibrium
is stable: on the contrary it is neu%ral or unstable.

RESUME

L'analyse de la stabilité d'un treillis, dont les barres ne
subissent que des efforts axiaux, est déduite & 1'étude de la
fonction dy E. 831 dp E>O le systéme est stable, sinon, il est
neutre ou instable. Avec l'aide de la théorie des matrices [14]
on peut tirer des conclusions sur la forme guadratique associée
4 la matrice. Le probléme est plus ou moins simple, selon gque
cette forme quadratique est définie positive ou négative, ou
semi-définie négative, ou alors si elle est semi-définie posi-
tive ou indéfinite. Ces derniers cas seront traités dans une in-
formation ultérieure.

ZUSAMMENFASSUNG

In diesem Beitrag wird die Stabilit&dt unter Berlicksichtigung
der Traglast an einem Fachwerk, deren Stdbe achsialer Krafte un-
terworfen sind, untersucht und mit Hilfe der Matrizenrechnung die
Fdlle des stabilen, labilen oder instabilen Gleichgewichts beschrie-
ben.
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