Zeitschrift: IABSE congress report = Rapport du congres AIPC = IVBH

Kongressbericht
Band: 8 (1968)
Artikel: The wind-induced vibrations of large cylindrical structures
Autor: Novak, Milos
DOl: https://doi.org/10.5169/seals-8877

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-8877
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Vi

The Wind-Induced Vibrations of Large Cylindrical Structures
Vibrations dues au vent dans de grands ouvrages de forme cylindrique

Windschwingungen langer Zylinderbauwerke

MILOS NOVAK
Visiting Associate Professor, Faculty of Engineering Science,
The University of Western Ontario, London, Ontario, Canada; on
leave of absence from the Czechoslovak Academy of Sciences, Prague

The difficulties caused by the wind-induced lateral vibrations
have increased with modern high cylindrical structures and columns
of large bridges. The nature of the excitation and the aerodynamic
damping of lateral vibrations are discussed in this paper.

l. Introduction

In recent years, wind-induced lateral vibrations excited by
the fluctuating lift forces have occurred with some large
cylindrical structures in many countries. These dangerous vibra-
tions are usually excited at low and medium wind velocities and
have their predominant components in a plane perpendicular to that
of the wind. The lateral vibrations have caused serious trouble
in many cases, as described, for example, in papers [6,8,12,16,17,
20]. An illustration of a difficulty of this kind is the lateral
vibration of the high cylindrical columns of a 330 m span arch
bridge [9,12]. The vibration which was much stronger than in the
case described by Kunert [6] produced in th% columns additional
dynamic stresses of up to roughly 780 kg/cm“ that of course highly
compromised their desirable bearing capacity. A similar problem
recently arose with the cylindrical hangers of a large arch bridge
in Canada. So it appears that the possibility of lateral vibration
must be taken into account not only with masts and towers, but
with all structures containing slender cylindrical members and
thus, also with some steel arch bridges.

In general practice, the problem is not usually faced until
the structure is finished and the cure is difficult. The pre-
diction of the lateral vibration already in the design stage is
therefore of major importance.

2. The Nature of Lateral Vibration Excitation

A considerable number of experiments have been carried out
with the aim of elucidating the nature of lateral oscillations.
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Understanding the problem has already had quite an interest-
ing history. For many years, the lateral vibration was considered
to be a response of the structure to fluctuating lift forces which
accompany the regular eddy shedding creating the well-known
pattern in the wake, usually called Karman street. This explan-
ation leads to the solution of the response in terms of determin-
istic vibrations which results in very simple formulae even for
rather complicated structures [8]. This approach seems justified,
especially in the subcritical range; however, already the earlier
measurements in the wake have shown that even in this range the
vortex pattern is not perfectly periodic, with the only exception
of extremely low Reynolds numbers (see Roshko [14]). Thus the
lift is composed of periodic and random parts and the response
should be solved in terms of random vibration. This approach
shows the strong dependence of the intensity of vibration on the
ratio of the random and periodic parts of the 1lift [9].

Later studies of cylinder behaviour in the supercritical range
led to the conclusion that the 1ift is chaotic (see Fung [4]) and
the statistical approach, based on Fung's power spectrum of lift,
became very favourable for the whole supercritical range. Neverthe-
less, this calculation sometimes leads to considerably small
amplitudes with large structures [9].

Finally, investigations in the region of very high Reynolds
numbers proved a reappearance of harmonic component of the lift or
narrow band lift in this domain, sometimes called the transcritical
range. The papers by Roshko [15] and by Cincotta, Jones and Walker
[2] represent very important contributions in this respect.

To provide further information about the fluctuating forces
acting on the cylinder, pressure measurements on the surface of the
body are useful [5]. Fig. 1 represents an example of such measure-
ments carried out by the author and O. Fisher on a cylinder with a
diameter of 31 cm at Reynolds number R = 265000 and Strouhal number

S = 0.194. The upper trace
is the motion of the cylinder,

- . 3 the lower traces show the

f ‘ , AUATA surface pressures measured at

” | Vo two points situated 2.35

| diameters apart in a plane

perpendicular to the direct-

. ion of the air flow. (The

ANOA sensitivity of the two
vi VA pressure pick-ups Disa Pu2a
, was different, as indicated).
pressures These measurements were made
at a wind velocity, which was
lower than that at the reson-

P : o ance (below the resonance).

J I - NN It can be seen that the
pressures are approximately
in phase with the motion. 1In

Fig. 1. Surface Pressures on a the region of resonance,

Circular Cylinder there was a distinct phase
shift /2 between the pressures

and the vibration. Above the resonance, the periodicity was not so

well pronounced as in the former cases. However, whenever the
periodicity could be recognized, the phase shift between pressure
and motion approached m. These observations of phase conditions

vibration
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between the fluctuating lift force and the response of the
cylinder evidently agree with phase conditions of mechanical
systems excited by an external force. Therefore, the outlined
pressure measurements support the assumption that the lateral
vibration may be considered as excited oscillations.

This conclusion is important because some authors tend to
explain the lateral vibration of circular cylinders as oscillations
induced by negative aerodynamic damping. This explanation does
not seem justified for the following reasons:

1. The existence of fluctuating lift forces has been proven many
times, even with steady cylinders performing no motion.

2. The mentioned phase shift m/2 at resonance (out of phase force)
is typical for excited oscillations.

3. The negative aerodynamic damping, as usually understood, repre-
sents forces which are induced by the motion of a body, the cross-
section of which is aerodynamically unstable. The square cross-
section represents the well-known example of this kind. However,
the instability clearly defined with the square cross-section
cannot be defined in the same way with the circular cross-section.
Furthermore, the self-excited vibration of bodies with unstable
cross-section significantly differs from circular cylinder
sy » 2 oscillations. The
= main feature of self-
excited oscillations
is the monotonous
increase in steady
amplitudes with wind
velocity above a
certain value. An
example of wind-
_~" induced oscillations
~ of this kind is
given by Fig. 2.
This figure repre-
sents the universal
galloping response
of square cylinders
having different
normal modes under
the action of wind
n with constant and
variable mean speed

Fig. 2. Universal Galloping Response of Square ([1l1].
Cylinders Having Different Normal Modes
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This representation holds generally for all bodies with different
mass, damping and normal modes but with square cross-section [11].
In other cases of negative aerodynamic damping, the character of
the response as a function of wind velocity is similar; however,
this character is principally different from that of circular
cylinder vibration. Laberal response of circular cylinders always
implies either a more or less well pronounced resonance peak alike

as curve g in Fig. 3, or a continuous

progressive increase in amplitudes, as

diagrammatically shown by curve b in
a the same figure. According to the
previous, the latter case is typical
for the supercritical range with the
purely random lift.

amplitudes

For all these reasons, the
assumption that the lateral vibrations
- of circular cylinders can be calculated

wind veloeity as excited (forced) oscillations
seems to be well founded. The problem,
Fig. 3. General Character of course, is to know the 1lift forces
of Lateral Vibration as functions of all main factors which
govern the phenomenon. For a reliable
prediction, the 1lift forces should be defined by their power spectra
and cross-spectra as functions of Reynolds number, intensity and
scale of the turbulence and dimensionless amplitude of vibration.

Despite the large amount of experimental work which has been
carried out, a full description of 1lift forces is not available.
The research of ground wind effects in relation to launch vehicles
has recently provided some very interesting information concerning
the range of very high Reynolds numbers inaccessible in standard
wind tunnels. Especially the work of Cincotta, Jones and Walker
[2] must be referred to here because the range of very high Reynolds
numbers is particularly important for large structures. As for the
nature of 1lift forces, these authors came to the following con-
clusions concerning different ranges of Reynolds numbers:

In Reynolds Number Range: The Nature of Lift is:
1.4 to 3.5 million Wide band random
3.5 to 6 million Narrow band random
6 to 18.2 million Random plus periodic

The Strouhal number determined from the autocorrelation
functions increases with the increase in Reynolds number from 0.15
to 0.3, but the value 0.3 remains constant throughout the random
plus periodic range.

So far, the previous measurements by Fung [4] and Roshko [14]
agree with these results.

However, the measurements by Schmidt [18] in the range of
Reynolds numbers up to 5 million led to another result. His power
spectrum for lift force at R = 5 million has no well-pronounced
peak. Contradictions of this kind occurred with other measurements
too. It seems likely that these contradictions have their reason
in differences in surface roughness of the body and the intensity
and scale of the turbulence of the flow.
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2.1 The effect of turbulence

1241

The extent to which the behaviour of bluff bodies in wind can

depend on turbulence is demonstrated by Fig. 4.
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the vibration difficult.
columns with granulated gra

1)

vel.

The sharp peak
caused by vortices in
smooth flow completely
disappeared due to turbu-
lence and the character
of response is quite
different in both cases.

The turbulence and
the surface roughness
thus highly affect the
nature of aerodynamic
forces acting on the
cylinder. These factors
therefore also affect the
value of the critical Rey-
nolds number which divides
the subcritical range from
the supercritical one.
Some information of this
kind is provided by
Simon [19]. Uncertainty
in the estimation of the
critical Reynolds number
is sometimes very
unpleasant.

For example, the
columns of the large arch
bridge mentioned in the
introduction performed the
strongest vibration at
R = 551000. It was not
quite clear in which
regime the columns vibrated
at this R. This made the
decision of how to suppress

Vibrations were decreased by filling the
The efficiency of such a method

depends on the regime of the flow round the body as discussed in

paper [12].

This explains why this approach to the cure of vibrat-

ion may fail in some cases, as was exXperienced with a Canadian
bridge, whereas the same cure may be successful in other very

similar cases [6,9,12].

This example indicates that the elucidation of the effect of
atmospheric turbulence on the 1lift nature is really desirable.

2.2 Dependence of lift on t

he motion

The influence of the motion on the 1lift forces is a further

important factor.
be used:
the structural damping.

To study it experimentally two approaches can
the motion is controlled by an exciter, or by changing
The former way has been used more often.

In the range of random plus pericdic lift at very high Reynolds

numbers (6-18.2 million), Cincotta and asscciates [2]

found a very

strong increase in the lift with the amplitude at the coincidence
of the frequency of excitation with the frequency determined by the
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pertinent Strouhal number. (This resonance case is of major
importance). Assume that with small vibration amplitude v (with
structures usually v/D < 0.1, even in very serious cases) this
increase can be expressed by a linear law CL

v

= 1 + k=
c D
LS

Here CL is the 1lift coefficient at vibration with the amplitude v,
CLS the 1lift coefficient of a stationary cylinder, k¥ a constant and

D the diameter. Then a coefficient kX = 47.0 can be derived from
data contained in paper (2], which means a considerable increase in
lift with the amplitude.

In subcritical range, a much lower increase was found by
Bishop and Hassan [l1]. From their data a coefficient of k = 2.25
can be calculated for R = 6000 and small dimensionless amplitudes.

Finally, in supercritical range, characterized by random lift,
Fung [4] did not find any remarkable increase in lift with the
amplitude of motion. (See also [10]).

All these authors applied external excitation of the vibration.
There is also a possibility of controlling the amplitude of the
vibration without any interference with the mechanism of the
excitation by changing only the intensity of damping. Plotting the

resonance amplitudes against
a structural damping can provide some
information about the character of
B excitation; however, even this
involves complications. If the
dependence of resonance amplitudes
on the inverse value of the
structural damping is linear (Fig. 5
curve a) the excitation may be
supposed harmconic and independent of
the amplitude. 1If this dependence
- — has character, as curve b in Fig. 5,
1/struct. damping the reason for this may be the
random nature of the fluctuating
Fig. 5. Dependence of Reson- 1lift or the presence of positive
ance Amplitudes on Inverse aerodynamic damping. The latter
Value of Structural Damping factor is discussed in the next
paragraph.

resonance
amplitudes

2.3 Positive aerodynamic damping

Severe lateral vibrations usually occur with structures having
extremely low structural (system) damping. In such cases the
resistance of the air flow to the motion of the structure can
result in a positive aerodynamic damping which is comparable with
the structural damping. The intensity of the aerodynamic damping
can be estimated as follows.

Assume a cylinder under two dimensional flow conditions
moving with the velocity » perpendicularly to the direction of the
wind blowing with the velocity V (Fig. 6), which is the situation
with lateral vibration. Then the resultant relative wind with the
velocity VreZ acts on the body under the angle of incidence «c.

Neglecting the mass effect, the drag force on a unit of length
has a component in the direction of the motion
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1 2 4
Fy = EDCDDVreZ sin « (1)
Here p is the air density and (¢ the drag coefficient; with small
angles o sin a = tan o = »/V and VreZ = V.
v The mean wind speed increases
rel — with the height of the structure
_=::jj£::::]b F which may be taken into account by
14 D putting
Viz) = Vw(x) (2)
: Now V means the wind speed at a
v Y,v(t) reference point z, and w(x) a
function describing the mean wind
Fig. 6. Vibrating Cylinder in increase, so that w(z,) = 1. Then
the Flow the air resistance which acts on a

differencial unit of length of a
structure at position x is

flb)da = %pCDDVw(x)bdx (3)

Under the assumption that this holds even during vibration (quasi-
steady approach) this resistance of the wind to the lateral
vibration evidently has a nature of viscous damping.

The exciting aercdynamic forces are small during the lateral
vibration. Therefore steady lateral vibration cannot differ too
much from the normal mode of free vibration v, (x) and may be
expressed as

v(z,t) = av (z)cos w t (4)

where g is the amplitude at the reference point xz,, and w, the
circular frequency of the n-th mode. The mode v,(z) is cﬁosen in
such a scale that v,(x,) = 1.

The work done during a period T of steady vibration by
aerodynamic damping forces (3) on the whole structure is

W o= gf{ff(a)dxdv(t) (5)

After substitution from (3) and (4)

1.1 1 2 2 2 . 2
W = &)Io EpCDDVw(x)a wnvn(m)szn wntdmdt (6)
and after integration with respect to ¢
1 2 [/ 2
W = 3mpC DVa mnéjw(x)vn(x)dx (7)

The maximum potential energy calculated as maximum kinetic
energy for the deflection (4) is

i . & 1 2 2.1 2
L = fogu(x)v dx = 3a wnfou(m)vn(m)dm (8)
where p(x) is the mass of the structure per unit of length.
Logarithmic decrement of damping can be defined as § = %%'

This yields for log. decrement of aerodynamic damping with
lateral vibration in variable mean wind

100, 0Vf o (z) v () de o)
§ = 9
a A 2
anﬁgu(x)vn(x)dx
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Here the Strouhal number

el

w

may be introduced. s = _n (10)
anv
With constant mass u(x) = p and constant mean wind speed
w(x) = 1 the log. decrement of aerodynamic damping is simply
ﬂpCDD p CD D2
e~ T 'TTTF W ald

In variable mean wind but with constant mass, the log.
decrement of aerodynamic damping

6& = 6ac (12)
where the constant fzw(x)vi(x)dx
- s )
J vi(x)dx
o n

expresses the decrease in aerodynamic damping due to variable mean
wind velocity. This is calculated for some simple normal modes in
Table 1.

1
x (x) vn(x)
0
Mode v (x)= 1 &/ o |

~

1 XL 4 1 1 &
wind incr. w(z)=|(x/2)¢ |(2/1)% [(2/2)6 |(2/2)° (27206 (/1) ®

b~

8

Constants e g ool 9
7 19 10

NN

0 | 1s
31 16

Table 1. Decrease in Aerodynamic Damping ¢ Due To Variable Mean
Wind Velocity

The wind increase w(x) is taken here, as recommended by
Davenport [3]. The exponent 1/6 corresponds to conditions in
open country, 1/3 to centres of large cities. The top x=1 is
considered the reference point. In other cases, the reduction e
can be calculated from (13) or estimated according to Table 1,
because its value is not too sensitive to the exact form of the
normal mode and very little to changes in the wind profile with
cantilevered structures.

The existence of the positive aerodynamic damping has been
recognized and experimentally proven. From the point of view of
structures, Scruton [16] and Davenport (e.g. [3]) pay a great deal
of attention to this damping. Davenport experimentally studied it
in detail and presented its general discussion [3]. However, the
aerodynamic damping has found little application with lateral
vibration of cylindrical structures, where it should be considered
at least in two directions: when estimating the effect of changes
in damping, and when evaluating the experiments.
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The practical importance of the first application is evident
from the numerical value of the aerodynamic damping.

The expression (l11l) provides constant damping for resonance
vibration in regions in which Cp and S may be considered constant.

In subcritical range with S = 0.2, CD = 1.2 and p = 1/8 kg m-4g2
3 D2
Se =T W (14)
In transcritical range for S = 0.3, CD = 0.54 (see [2])
2
_ 0.90% :
6a T 16 u (15)

In supercritical range the damping must be calculated with respect
to the wind velocity.

The columns of the mentioned arch bridge have D = 1 m,
H = 29.9 kg m-2s52 and the aerodynamic damping (14) is &, = 0.0063.
The log. decrement of structural damping was of the same order,
namely 85 = 0.0078. Thus the total damping §, + S, should be intro-
duced into calculations. On the other hand, the increase in §, by
application of strakes (spoilers) due to the increase in Cp (see
[10]) contributes to the total damping and thus to the effective-
ness of such advices.

As for the evaluation of vibration experiments, this task is
complicated by the simultaneous presence of three factors: the
aerodynamic damping, the randomness of lift (even when dominant
frequency is well pronounced), and the dependence of excitation on
the amplitude of motion. Neglecting the aerodynamic damping can
therefore affect the result concerning the two latter factors.

3. Structural Damping - - "'

The structural damping represents a further factor, the
estimation of which is always uncertain. It is very small with
modern structures, often 56 < 0.01, which is the main reason for
the frequent occurance of strong lateral vibration, especially with
all welded structures. Finding suitable devices to provide a
considerable increase in structural damping would, therefore, be
the most important contribution to the practical part of the problem.
(Reed and Duncan's [13] hanging chains represent an example of this
kind.) Some effective coating or other means without any additional
construction would be desirable.
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SUMMARY

Despite the increasing understanding of the lateral vibration
of cylindrical structures, the preciseness of a quantitative cal-
culation necessary for a reliable prediction is limited. For pre-
diction of dynamic behaviour of large structures in wind, experi-
mental investigation on models in wind tunnels is therefore most
recommendable.

RESUME

Malgré les connaissances croissantes sur les vibrations laté-
rales des structures cylindriques, la précision requise pour une pré-
vision valable n'est guére obtenue par un calcul quantitatif. C'est
pourquoi on ne peut assez recommander des essais expérimentaux sur
modeles réduits dans le tunnel aérodynamique quand il s'agit de pré-
voir le comportement dynamique d'une grande structure soumise au
vent.

ZUSAMMENFASSUNG

Trotz des wachsenden Verstdndnisses seitlicher Schwingungen zy-
lindrischer Bauwerke ist die Genauigkeit fir eine quantitative Rech-
nung notwendig zu einer wirklichen Voraussage, beschrinkt. Deshalb
ist flur die Voraussage ilber das dynamische Verhalten langer, wind-
ausgesetzter Bauwerke die experimentelle Untersuchung im Windkanal
am Modell das wohl empfehlenswerteste.
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