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VI

Non-Stationary Vibrations of Bridges Under Random Moving Load

Vibrations non-stationnaires de ponts sous une Charge en mouvement arbitraire

Nichtstationäre Brückenschwingungen unter zufälliger, beweglicher Last

LADISLAV FRYBA
Doc. Ing.Dr.Sc.

Head Research Scientist
Research Institute of Transport

Prague, Czechoslovakia

1. Introduction

It has been assumed up to this time that the traffic loading
of bridges, i.e. the static and dynamic component of the service
load, is a well known function of the space and time coordinate (a

deterministic process), see [lj [2], This paper deals v/ith the essentially

opposite case supposing that the traffic loading of bridges
is a random process. This new coneeption is in better accordance
with observations because the true traffic loading is influenced
by the random composition of the traffic flow, by the random initial

conditions when the vehicles enter the bridge, by the irregulari-
ties of unevenness of the road surface etc.

In general the static and dynamic deflection of bridges is
described by the linear differential equation

L[v(x,t)J p(x,t) (1)

where v(x,t) denotes the deflection and p(x,t) the load. The random

Variation of p(x,t) is assumed not only with respect to the time
coordinate t but also to the position coordinate x and in addition the
load p(x,t) is regarded as a nonstationary Gaussian random process
of non-Markov type.

L represents a linear differential Operator of the type
L Lo V^-H" + 2^"b-^ (2)

at* at
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where LQ is a seif-adjoint linear Operator in the space coordinate x,
& - mass per unit length and cofe - circular frequency of viscous

damping.

2. Probability Analysis

I±lt_Norml_r_Mode_Anal£Sis. Elastic Systems described by Eqs.
(1) and (2) are with advantage solved by means of the normal-mode
analysis «,

V(x't} ?iV(J)(x) q(J)(t) (3>

p(x,t) XI p. v(j)(x) Q(j)(t) (4)

where v(J)(x) are the normal modes of Vibration that are obtained
with regard to the boundary conditions from the equation

LoL>(j)(x>] ^ wW*(j)fr> (5)

W(j) is the natural circular frequency of the System,

Qü)(t) " / p(x,t) V/,x(x) dx (6)
Vcj)0/

J

is the generalized force,

V(j) =/^^J)(x)dx> j^ v(j)(x)v(k)(x) dx 0 for j / k
° '

(7)
and q(J)(t) is the generalized deflection that is obtained with
regard to the initial conditions from the equation

V(J)(t) + 2 cüb;(j)(t) +«2J)q(J)(t, Q(j)(t)g)
The Solution of Eq.(8) with zero initial conditions isX oo

Q(j)(t) ^h(j)(t"r)Q(j)(r) ** * /h(j)(T)Q(j)(^) äv

where h,.©t) denotes the impulsive function
f 1 "VUpr- e einölt for t * 0

h(j)(t) & (10)

l ° for t < 0

and co^ w^} - wj # The limits of integration in (9) ^ybe extended to oo and -oo respectively, because Q, .»(t-*) 0
for rr > t and h(j)(r) 0 for r< 0, respectively.

The functions h(j)(t) and v(j)(x) are deterministic while
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q(*)(t), Q/^Ct), v(x,t) and p(x,t) are random ones.

2t2t_Co^elatign_Anal£sis. The probability analysis recquires
to know the statistic characterisitcs of the input

p(x,t) E [p(x,t)] + p(x,t) (11)

Kpp(xl'X2,tl,t2) E [P(acl»tl) P(x2'V] (12)

where E represents the mean value linear Operator, p(x,t) - the
centred value of the load and kDT)(3Cti3C2»*1,*2^ ~ the covar:1-ance o:f the
nonstationary function p(x,t).

As follows from the definition of the covariance (12) the co-
variance of the generalized deflection may be evaluated from (9)

^(jW*1'*2' =//h(J)(rl)h^)(T2)KQ(j)Q(k)(tl-Tl'VT2) '

•dridr2 (13)

the covariance of the deflection from (3)

o« CO

K™(x-, |Xo>t, .O Z Z_ v/^(x, )v/v\(x9)K (t,,t?)w l'^'1!.» 2 j=i k=1 <J> 1 (W 2 <l(j)<l(k) 1 2(14)

and the covariance of the load from (4)
00 00

Kpp(x1,x2,t1,t2) Z Z A(j)(x1)v(k)(x2)KQ( )Q(k)(*l»t2>
(15)

In Eqs. (13) and (15) the covariance of the generalized force is
calculated from (6) n

KQ(J)Q(k)(tl,t2) =v V~//VU)(xl)v(k)(x2)KW)(xl»X2'tl't2) '
)V(kWJ(j)v(k) 00

dx1 dx2 (16)

2.3._§pectral_Densitj_AJnal^8i8. The spectral density of a

nonstationary function is defined in[3j and for the generalized deflection

the Wiener-Khinchine relations between the spectral density
and the covariance are as follows

OC 00

1 // -K^tp-OLt,
Sn n Klö? " ö Kn n (t,ft,)e X A dt, dt,q(j)q(k) 1' 2 4x7J qü)qU) X 2 T 2(1?)

-00 -ec

rr i(«2t2-«it,)
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For the spectral density analysis it is also convenient to in-
troduce the transfer function

Ott

[ -it>t 1
H(J)(W) /h(j)(t)e dt =_1 ö (19)

X w(j)"° + 2iaV°

as a Fourier integral transformation of h(.j(t) given by (10).

Then the spectral density of the generalized deflection may be

evaluated as a function of the spectral density of the generalized
force, see [4] :

S„ n (cü,,6>9) HMx(ä, H/Vx(w?) SG Q («-,,<©) (20)
°-(j)q(k) X 2 (J) X (k) 2 Q(j)Q(k) X 2

where H(.\(k>) is a complex conjugate function of H/.n(w).
Here we used the spectral density Sn n (<JJn ,o>„) of the ge-Q(j)Q(k) 1 2

neralized force defined simüarly as in (17); this can be adapted
with regard to the Eq. (16)

1 ff -KsUSt-Ssltr)
S (cj^Wp) ö-/ / Kq 0 (t,,t2)e dt,dt?Q(j)Q(k) 1 2 Ax2 J J ^(j)Q(k) 1 2 x 2

l 2 — (21)

~ // v(j)(xl)v(k)(x2)SpP(xl»x2'CJl»aJ2Jdxldx2
i)V(k)7 7(j

0 0
oo oe

i(w2t2"<altl^
K0 0 <W / / S0 O Kiw2)e ^ x x do d«2 (22)
Q(j)Q(k) X 2 ^V Q(j)Q(k) X 2 1 2

The spectral density of the deflection is then with respect to
(14)

txS CO

Svv(x1,x2,co1,^) II v(j)(xl)v(k)(x2)Sq(.)q(k)("l»w2)

from which the covariance of the deflection can be calculated simi-
larly as in (18) and (14).

3. Random Moving Load

3tl._Random_Moving_Force. As an example we shall solve a simple
beam of span £ loaded ba a massless force P(t) P + P(t) with
constant mean value E [P(t)J P which is moving with constant velocity

c along the beam. The analogous deterministic case was solved in
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[2] and [4] and it represents the mean value of the present Solution
E[v(x,t)] so that we will now investigate the stochastic case only.

The load per unit length and its mean and centred values are

in our case

p(x,t) ^(x-ct)P(t) E[p(x,t)] (5(x-ct)P p(x,t)
<£(x-ct)£(t) (24)

where <£(x) represents the Dirac-delta function. The covariance of
the load can be calculated from (12)

K (x1,x2,t1,t2) cf(x1-ct1) 6(x2-ct2) Kpptt^tg) (25)

where Kpp(t,,t2) is the known covariance of the load P(t). We

Substitute (25) into (16) and then, with regard to the well known

properties of the Dirac function, we obtain the covariance of the

generalized force
1

K_ 0 (t. ,t,,) vr .©et, )vfv©ctp)Kpp(t, ,tP) (26)
Q(j)Q(k) 1 l V(j)V(k)

(J) ^ Ck) 2 PP X 2

Using (26) the covariances of the deflection can be calculated
from (13) and (14).

As an example let us assume the covariance of the force P(t)
in the form

Kpp(t1,t2) Kpp(t2-t1) 2xSp efttg-t^ (27)

where Sp is the constant spectral density (white noise). Then we

obtain from the Eq. (13)
oooo

K (t-,t,) llh(*4XTy>h(v4T?)V(.-i\c(U-Tr)\.
q(j)q(k) x 2 vC)v(k)j/i

" -WO-0O

V(k)[c(t2-f2)] Kppd^-^.tg-^) är1 dr2

2xST I r

v h(j)(rl>h(k)(rl+t2wtl)v(jic<Vrl)J-
V(J)V(k) J

¦ '(k^VVJ dTl (28)-«

If for simplification we neglect the cross-correlation of the
generalized deflection, i.e. K (t, ,t0) 0 for j ^ k, the

q(j)q(k) 1 d

variance of the deflection can be received from (14) :
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<<*,t> Kvv(x,x,t,t) Z v2^x)K (t,t)j^— Vi. \y. /Ps

j=i G> q(j)q(j)

- y 2*sp 2

j x (j) >»

(29)

The following expressions hold true for a simple beam of span l
and of bending stiffness EJ, see[4]

jxx
V(.)(X) sin—, V(j)

<^l
' W(J>'

j4*4 EJ
(30)

2 ^' ^ ^
Substituting (30) and (10) into (29) we obtain (note that the
limits of integration may be changed as h, • \(r1) 0 for t; < 0 and

v(,)[c(t-r1)] 0 for r1> t
*r- 8xS

cr(x,t) 2_-
j=i ^«3)2,/2 oi" /

jwcp 2 jxx / r -«. r^ sin —7- / I e sin cj(j)riSin_(t_ri) dr1=

V8xSp 2 Jxx x
©_ j-70" sin
j=l ^«(j) i 16

sin 2co©.t +

r rU(rt+3*c/4 \ -2«it-^ —2 2 sin 2^ct/i + e •

wh _2wh't 1

f^t + -7 (cos 2j7rct/i - e
D

cos 2w. ..t) +Cj) «(.}+jxc/i (J} J

+ -^ ^- -si
-2o>,t

(«(jj-j'c/i)2*«^
sin 2jTct/i + e sin 2co©.t + —

"(^-J'e/i
-2«bt,(co3 2jxct/£- e cos 2<-o©.,t)

JTc/i2^b

j TCCVi +«£ \6Jfe
3in 2jirct/i-

-2w.t\ 26V -2«. t+ cos 2jrct/i - e
D --?_|l - e

b (cos 2co('j)t - -iii.
US(j)

1

.sin2co(.)t)
2 -2-vvt

+ 1 - e
b

(31)

As the variance of the deflection is a function of the time
the resulting Vibration of the beam appears as a nonstationary process

although we have taken into aecount the movement of a stationary
random force.
For subcritical velocities c < ccr) the greatest static and



LADISLAV FRYBA 1229

dynamic effects of a moving force appear approximately in the moment

when the force crosses the beam centre. Therefore the coefficient
of variance, defined as Cv(x,t) S" (,x,t)/E [v(x,t)j is to be calculated

for x 1/2 and t T/2 i/(2c). It represents then the
relative dynamic increment of the deflection effected by the random

moving force and it takes the following form (from (31) for j=l
approximately, see [4] :

Cv(i/2,T/2) Cp. Cvp (32)

Here Cp is an analogous coefficient of variance of the force P(t)
and Cp is represented graphically in Fig. 1 as a function of the
parameters ot and ß where nX is a velocity parameter and ß a damping

parameter, respectively :

<* c/cCT ; Ccr (T//)(EJ/u )1/2 (33)

ß ' % / "(1) (34)

The same results can be obtained using the spectral density
analysis from the section 2.3. In this case the load (24) must be

taken for a function of the time only, see [4].

312._Random Moving_Distributed_Load. As a next example we

shall solve a simple beam loaded by an infinitely long random strip
which is moving with constant velocity c along the beam. The analogous

deterministic case was solved in[4] where not only the movement

of the continous load p (measured per unit length) but also
the effects of its inertia mass ja. p/g were taken into aecount.

The load is assumed to have the following form
p(x,t) p(x-ct) r(t) (35)

The first of the components p(x-ct) is a random variable in the
moving coordinate System £ x-ct while the second r(t) is a random

function of time. The mean values of these two functions are assumed

to be constant
E[p(| )] p E[r(t)] 1

so that the load (35) may be written as

p(x,t) p + g(x,t) [p + p(| )]. [l + r(t)] (36)
where p(x,t) p( + pr(t) + p(| )£(t). Then with respect to (12)
the covariance of the load is
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+ PKpr(^l*2) + p2lW(tl»t2) + P Vr(^l'V2) + «ppr^l'^V +

+ P Wfe'W + Vr^'^'H»^1 (37)

where £ x.-ct., i 1, 2. Let us assume approximately that the
functions p(| and r(t) have no cross-correlstion of the second up
to the fourth order; then (37) reduces to

VXl,X2,tl»t2) Sp(^^2> + ^ Kw(tl^ (38)

where KDD(fi>f2^ ^s ^e covariance 0x* the load function in the
moving coordinate system i and K (t,,t© is the covariance in the
time coordinate.

As an example let us assume the covariances of these functions
in the following form

VM2> atV(fe-fl) Krr^,t2) 2xSrCf(t2-t1) (39)

where S and S are the constant spectral densities (wide-band spectra).

Putting (38) and (39) into (13) the covariance of the generalized

deflection may be evaluated; hence
sssstssU

KQ(J) QCK, (tl»t2) =7^/|/^ '
-»-»)o (40)

/ 2jtS cf[x2-x1-c(t2-T2-t1+tL)] + 2vTSrp2ö,(t2-t1-T2 + ri)|dx1dx2dT1dr0

The limits of Integration with respect to time r are considered
from 0 to 00 in accordance with (10) and because the movement of the
load has an infinitely long duration.

Neglecting the cross-correlation K (t,,t© 0 for j ^k

the variance may be calculated from (40) and (14) :

ESO

<<*>*> Kvv(x,x,t,t) 2E v2(.)(x) Kq(j)q(j)(t,t)

j^^iW^jÄ'.uV l 1 c D % D +

— t — —
*2 2

+ 4 wb b " 3 w(j) + Pe«)
-ö) i/c _,1 - e cos w©v<t/c.cos jtf)
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<Ä>,

0 0 /
D + 4 wj j( <3{ - 3^b - j2x2c2//2) b --¦- 60/' i/c.COS j*ft+sm '(J)'

y- 4Srp2(l - cos jx)
3-1 ^2j2x s\^0^*4

sin
JTCX (41)

where co(j) w2,j(l - cx2at/j2)/(l + « tO,h)
2 _2

CJf .s- Cd.
Ki) b

U,
2,2.2/e.2%2.

<«>b/(l + ae D 3( j - j x'di/jti)'+

+ 4iASi?c2/l2

X <u /^ (42)

The result (41) does not depend on time so that the Vibration
of the beam is a random process stationary in time. The coefficient
of variance for the centre of the beam can be approximately brought
to the following form, see [4]

CT(!/2,t) =0;(i/2,t)/E[v(i/2,t)] CpCvp +^.0^ (43)
of variancr?

where C and C are the analogous coefficientsVof functions p(5
and r(t)respectively and the expressions C and C are represented
in Figs. 2 and 3 as functions of«: ,ß and mass parameter ae, see

(33), (34) and (42).

4. Application of the Theory and Experimental Results

The theory presented above can be applied to bridge structures
assuming that their moving load is a random function. The Solution
is shown for two typical cases which concern (a) short span bridges
and (b) long span bridges.

(a) The load of short span bridges or short longitudinal beams

is idealized by a concentrated force of random time Variation
moving along a beam. Structures of this type are usually loaded by
one axle of the vehicle only.

(b) The load of long span bridges is idealized by an infinitely
long random strip (35). The first component of this load p(i

expresses the random distribution of the static load in the bridge
span direction while the second component r(t) interprets the true
dynamic effect of the load. The large span bridges are usually loaded

by a series of axles resulting either from continous highway
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traffic or from a railway train whose length is supposed to be mufch

longer than the span of the bridge.

In reality the traffic loading is - generally speaking - an
unknown random process. Therefore a Solution was given also for the
problem inverse to that given in the present paper?[5]. The probability

analysis [5] Starts with the known statistic characteristics of
the response v(x,t) giving the input characteristics for p(x,t) as
a result. The statistic characteristics of any particular bridge
(i.e. the beam deflections or stresses in some points) can be measured

without difficulties under service conditions and on this basis
the load characteristics can be evaluated.

As an example the Fig. 4 shows a covariance function measured
on a railway bridge.
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SUMMARY

The traffic loading of bridges is considered as a nonstationa-
ry random process. Starting from the statistic characteristics of
the load the theory supplies information as to the statistic char*c-
teristics of the deflections or stresses in a bridge i.e. the
mean value, the covariance, the spectral density, the variance or
the coefficient of variance.

The Solution is shown for two typical cases which concern small
and large span bridges.In the former case the load is idealized by
a concentrated force of random time Variation moving with constant
velocity along a simply supported beam. The random effects of this
load are decreasing with increasing velocity and damping (Fig. 1).

In the latter case the load is idealized by an infinitely long
rnndom strip which is moving again with constant velocity along a

simple beam. This type of load induces in the beam a stationary random

Vibration the amplitudes of which are increasing with decreasing

damping and for velocities approaching the critical speed which
depends also on the mass of the traffic load (Figs. 2 and 3).

RESUME

Le traffic sur un pont est considere comme une Charge stochastique

non-stationnaire. En partant des caracteristiques statistiques
de cette Charge, la theorie donne des informations concernant les
caracteristiques statistiques des deformations ou des tensions dans
un pont, c-ä-d. la valeur moyenne, la covariance, la densite.spec¬
trale, la variance ou le coefficient de variance.

Deux cas typiques ont ete traites pour un pont court, resp.
long. Dans le premier cas, la charge est idealisee par une force
concentree, variable arbitrairement avec le temps et voyageant avec
une vitesse constante le long d'une poutre simple. L'effet arbitraire

de cette Charge decroit avec vitesse et amortissement croissant
(fig. 1).

Dans le deuxieme cas, la charge est idealisee par une charge
repartie stochastique infiniment longue voyageant sur la poutre
simple avec une vitesse constante. Cette charge provoque une
Vibration stationnaire arbitraire, dont les amplitudes croissent
inversement avec l'amortissement et augmentent avec des vitesses
approchant la vitesse critique, qui depend egalement de la masse
de la charge de traffic (voir fig. 2 et 3).
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ZUSAMMENFASSUNG

Die Verkehrslast von Brücken wird als nichtstationärer,
zufälliger Vorgang aufgefasst. Ausgehend von den statistischen
Charakteristiken der Last liefert die Theorie Auskunft über die
statistischen Charakteristiken der Verformungen oder Spannungen einer
Brücke, die da sind der Hauptwert, die Kovarianz, die Verteilungsdichte,

die Varianz oder der Koeffizient der Varianz.
Die Lösung wird an zwei ausgeprägten Beispielen mit einer

kurzen und einer langen Brücke gezeigt. Im ersterwähnten Fall ist
die Belastung durch eine Einzellast idealisiert, die sich bei
zufälliger Zeitvariation mit konstanter Geschwindigkeit entlang des
einfachen Balkens bewegt. Die zufällige Wirkung dieser Last ist
verschwindend bei wachsender Geschwindigkeit und Dämpfung (Fig. 1).

Im letzteren Fall ist die Belastung durch einen unendlich langen

Streifen idealisiert worden, der sich wiederum mit konstanter
Geschwindigkeit bewegt. Dies bewirkt im Balken eine stationäre,
zufällige Schwingung, deren Amplitude mit abnehmender Dämpfung und
mit Geschwindigkeiten, die sich der kritischen nähern, welche von
der Lastmasse abhängt, wächst.
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