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Vi

Non-Stationary Vibrations of Bridges Under Random Moving Load
Vibrations non-stationnaires de ponts sous une charge en mouvement arbitraire

Nichtstationare Briickenschwingungen unter zufalliger, beweglicher Last

LADISLAV FRYBA
Doc. Ing:Dr.Sc.
Head Research Scientist
Research Institute of Transport
Prague, Czechoslovakia

1, Introduction

It has been assumed up to this time that the traffic loading
of bridges, i.e. the static and dynamic component of the service
load, is 2 well known function of the space and time coordinate (a
deterministic process), see[l],[2]. This paper deals with the essen-
tially opposite case supposing that the traffic loading of bridges
is a random process. This new conception is in better accordance
with observations because the true traffic loading is influenced
by the random composition of the traffic flow, by the random initi-
al conditions when the vehicles enter the bridge, by the irregulari-
ties of unevenness of the road surface etc.

In general the static and dynamic deflection of bridges is de-
scribed by the linear differential equation

LEv(x,t)J = p(x,t) (1)

where v(x,t) denotes the deflection and p(x,t) the load. The random
variation of p(x,t) is assumed not only with respect to the time co-
ordinate t but also to the position coordinate x and in addition the
load p(x,t) is regarded as a nonstationary Gaussian random process
of non-Markov type.

L represents a 1inear2differential operator of the type

L= L T

0 d
+ 2(«, Cdb I (2)
dt? At
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where Lo is a self-adjoint linear operator in the space coordinate x,
M =~ mass per unit length and Wy - circular frequency of viscous

damping.

2. Probability Analysis

2el, Normal - Mode Analysis. Elastic systems described by Eqs.

(1) and (2) are with advantage solved by means of the normal-mode

analysis
vix,t) = Z - V() agy® (3)

plx,t) = Ji;l & v gy ) Qg () (4)

where v(d)(x) are the normal modes of vibration that are obtained
with regard to the boundary conditions from the equation

- 2
LO [V(j)(X)] = M w(J)V(j)(X) ’ (5)
“%J) is the natural circularlfrequency of the system,
1
Q(j)(t) =-;~—— p(x,t) v(j)(x) dx (6)
(3
is the generalized force, )

Viyy = guv%d)(x) dx , jcw V(J)(x)v(k)(x) dx = 0 for j # X
0o
(7)
and q(J)(t) is the generalized deflection that is obtained with re-
gard to the initial conditions from the equation
e L 2
Qry(t) + 2 w,_ q, (1) + w Qray(t) = Q. (t)
(3 b *(J) (3) (3 (3 ®)
The solutlon of Eq.(8) with zero initial conditions is

agy () = fh(d)(t-f)Q(j)(’t) ar = fh(J)(T)Q(J)(t ©) 4

-0

where h( )(t) denotes the impulsive function

(9)

-
1, e % sin G(J)t for t 2 0
w
hepny @) =y () (10)
0 for t < 0O
and w(g) = (J) - lvi + The limits of integration in (9) may

be extended to o© and - , respectively, because Q( )(t—t)
for T > t and h( )(f) O for <7< O, respectively.
The functions h(J)(t) and V(J)(x) are deterministic while
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q(J)(t), Q(J)(t), v(x,t) and p(x,t) are random ones.

to know the statistic characterisites of the input
0
p(x,t) = E[p(x,t)] + plx,t) (11)

) 0
Kpp(xl,xz,tl,tz) = E [p(xl,tl) p(xz,tz)] . (12)
where E represents the mean value linear operator, p(x,t) - the cen-
tred value of the load and Kgp(xl,xz,tl,tz) - the covariance of the
nonstationary function p(x,t).

As followe from the definition of the covariance (12) the co-
variance of the generalized deflection may be evaluated from (9)

K (tq,t) = h, (T )h ey (T,)K (=% ,t,=7,) .

o
- A%y 4T, (13)

the covariance of the deflection from (3)

va(xl,xz,tl,tz) = = E;i v(j)(xl)v(k)(x2)Kq(j)q(k)(t1’t2%14)

and the covariance of the load from (4)

_ oo o0 2
Kop®19%aty,tp) = JZ=1 %:"1!“‘ V(5 ®v (1) (xz)KQ(J)Q(k)(tl":i;)
In Bqs. (13) and (15) the covariance of the generalized force is
calculated from (6) Yy,

1
(3)%(x) ViVaold O PP

00
. dx, ax, (16)

stationary function is defined in[B]and for the generalized deflec-
tion the Wiener-Khinchine relations between the spectral density
and the covariance are as follows

1 -1 (@t -uytg)
S (W ,0,) =—0s=/ (K (t,t,)e 2 17174 at
Uy T PG ) 172 172

K 10257 Y) L a8
th,t = S Wy W W W
a5 122 f/ a(3)a00 “12920€ e
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For the spectral density analysis it is also convenient to in-
troduce the transfer function

-]

1

-iwt _ (19)
H(J)(w) = h(J)(t) e dat = w2 (_O? R Ziwbw 19
(3~

-eo

as a Fourier integral transformation of h(j)(t) given by (10).

Then the spectral density of the generalized deflection may be
evaluated as a function of the spectral density of the generalized

force, see[4]:

(wy195) = H(gy @) Hepy@y) S @1,9,)  (20)

s
()9 (k) Q5%

where ﬁ(J)(w) is a complex conjugate function of H(J)(w Y

Here we used the spectral density S (wl,w2) of the ge-

U
neralized force defined similarly as in (17); this can be adapted

with regard to the Eq., (16)

S ( ) 1| ( ottty
Wa 9 W = t,,t,)e dt.,dt,=
UNUy 172 w2 )] Rt 1 e
1 £ 2 = (21)
= —;———;———-J[j/ v(j)(xl)v(k)(x2)Spp(xl,x2,wl,ab)dxldxz
(3)7 (k) o o
FF 1 (@ytn=@nty )
K (£ 55) =~/;/ S (@0 ° 2 1134 a6, (22)
Q3)Qyy 1772 JJ Q) 172 1992
The spectral density of the deflection is then with respect to
(14) 0o oo
S (Xn g X gt g00) = 2 2o (%1 )% (101 (%, ) (@7 56)
vv X11%219719%2 1 k= V() LV () X2 A3y L’ %23)

from which the covariance of the deflection ecan be calculated simi-
larly as in (18) and (14).

3. Random Moving Load

3+1l. Random Moving Force. As an example we shall golve a simple
beam of span £ loaded ba a massless force P(t) = P + P(t) with con-
stant mean value E [P(t)] = P which is moving with constant veloci-

ty ¢ along the beam. The analogous deterministic case was solved in
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[2] and [4] and it represents the mean value of the present solution
E[v(x,t)], so that we will now investigate the stochastic case only.

The load per unit length and its mean and centred values are
in our case

o
p(x,t) = S(x-ct)P(t) , E[p(x,t)] = d(x-ct)P , plx,t) =

= & (x-ct)B(t) (24)
where J(x) represents the Dirac-delta function. The covariance of
the load can be calculated from (12)

Koo (X a%patyty) = § (x)-cty) Slxy-cty) Kpplty,ty) (25)

where K?P(tl’t2) is the known covariance of the load P(t). Ve sub-
stitute (25) into (16) and then, with regard to the well known
properties of the Dirac function, we obtain the covariance of the
generalized force
o

J)~(k ()7 ()
Using (26) the covariances of the deflection can be calculated
from (13) and (14).

As an example let us assume the covariance of the force P(t)
in the form

Kpp(tysty,) = Kpp(to-ty) = 21Sy S(t,-ty) (27)

where Sp is the constant spectral density (white noise). Then we
obtain from the Eq. (13)

00 c0

1
K (tyrty) =———— [ | h(gy @h gy (m)v e (-7
a(+)a 122 [j()l(k)Z(j)ll
. V(k)[C(t2"T2)] KPP(tl‘Tl,tz- 2) dTl dT’2 =
27{SP
v | P TR Crttet)v gt -n)] -
(3 (k)q,
- Vol (-1 dTy (28)
If for simplification we neglect the cross-correlation of the
generalized deflection, i.e. X (t.,t,) = 0 for j # k, the
’ ATy 72 ’

variance of the deflection can be received from (14)
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> _ .S .2 i}
62 (x,t) = K_(x,%,t,t) Jzzl v i) q(j)q(j)(t,t)
S 2xSy i
= % - v(j)(x)/ h%j)crl) v%j)[c(t-rl)]drl (29)

(J)

The following expressions hold true for a simple beam of span £
and of bending stiffness EJ, see[4]
(%) LS al > j4x4 EJ
T Eemer, Vg T 9y 4
Substituting (30) and (10) into (29) we obtain (note that the 1i-
mits of integration may be changed as h( )(T ) = 0 for 1,< 0 and
v(J)[c(t-f )] =0for 7, > t)

(30)

1 t
Z 8nS jrx f —& Ty ‘o jre 2
v (x yt) = iy ﬂ (,2 s n T O[ sm w(j) 1s1n£—(1:-'f1 dz-l-
i 87(3 jrx 1 | W/, +jxc/d ~2@ t
= '>_———sin2 (,3) 5 5 sin 2j7rct/£ + e B .
5 gl £ 16 | (s rime/t) g
, Wy -2Lobt ,
. 8in 20, .yt + ————— (cos 2jact/ - e cos 2u3(.)t) *
w('_)—jvrc/z —20,t , w
+ —] 5> |-sin 2jxct/l + e sin 2w(.)t e
(w(j)"j”C/E) + wb J w(j)"jrC/ﬂ
2wyt , 2 wy, jre/p
.(cos 2jxct/Z - e cos Zw(.)t) - =575, 7 > ( sin 2jnct/l+
J J"‘W’"c /2 +wb an
2w, t p) —2u t A
+ cos 2jTet/l - e L l-e¢ b (cos 20 .\t -—J—).
o (3) A
(3) b
, 2 2w, t
.8in 2w(j)t) *— (1 -e ) (31)

b
As the variance of the deflection is a function of the time
the resulting vibration of the beam appears as a nonstationary pro-
cess although we have taken into account the movement of a statio-
nary random force.

For subcritical velocities ( ¢ < C.n) the greatest static and
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dynamic effects of a moving force appear approximately in the moment
when the force crosses the beam centre. Therefore the coefficient

of variance, defined as C_(x,t) = Gk(x,t)/E[v(x,tﬂ , is to be calcu-
lated for x = 4/2 and t = T/2 = £/(2¢). It represents then the re-
lative dynamic increment of the deflection effected by the random
moving force and it takes the following form (from (31) for j=1 ap-
proximately, see [4])

Cv(,£/2,T/2) = CP. CVP (32)
Here CP is an analogous coefficient of variance of the force P(t)
and CvP is represented graphically in Fig. 1 as a function of the
parameters o« andﬂ where & 18 a velocity parameter and ﬁ a damping

parameter, respectively :

© = cfeg i e = (T/L)(ES/u)M? (33)

/3 ol W w(l) (34)
The same results can be obtained using the spectral density

analysis from the section 2.3. In this case the load (24) must be
taken for a function of the time only, see [4].

shall solve a simple beam loaded by an infinitely long random strip
which is moving with constant velocity c¢ along the beam. The analo-
gous deterministic case was solved in[4] where not only the move-
ment of the continous load p (measured per unit length) but also
the effects of its inertia mass g¢p= p/g were taken into account.

The load is assumed to have the following form
p(x,t) = p(x-ct) r(t) (35)
The first of the components p(x-ct) is a random variable in the mo-
ving coordinate system § = x~ct while the second r(t) is a random
function of time. The mean values of these two functions are assu-
med to be constant
Ep(§)] = p , E[®) =1

so that the load (35) may be written as

p(x,g) =p + o(x,t) = |p + S(E ﬂ. [1 + g(t)] (36)
where p(x,t) = p(f ) + pr(t) + 8(§ )2(t). Then with respect to (12)
the covariance of the load is

Kop(X1:%20t 0 tp) = Kpp(§1,§2) +p Kpr(§2,tl) + xppr<§1,§2,t1) +
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2
* prT( §1;2) *p Kfr(tl'tZ) *p Kprr(§l’t1;2) * Kppr(§1’§2’t2) *

+p Kprr(fz,tl,tz) + Kpprr(gl,fz,tl,tz) (37)

where g‘i'- x;~cty, i =1, 2. Let us assume approximately that the
functions p(£ ) and r(t) have no cross-correlation of the second up
to the fourth order; then (37) reduces to

2
Kpp(xl’x2’t1’t2) = Kpp(§1’§2) +p Krr(tl,tz) (38)

where Kpp(gl,;z) is the covariance of the load function in the mo-

ving coordinate systemg and Krr(tl,tz) is the covariance in the
time coordinate.

As an example let us assume the covariances of these functions
in the following form

Kop(§1062) = 228 8(6,-61) ) K (19,1)) = 258 dlt,-t)) (39)

where S_ and Sr are the constant spectral densities (wide-band spec-
tra). Putting (38) and (39) into (13) the covariance of the genera-
lized deflection may be evaluated; hence

ey
i1
Kq(j) Q(k) (tl 1t2) =m h(j) (Tl )h(k) (TE )V(.j) (xl)v(k) (Xz) .
-o0-00 0 (40)
. {2rSp cf[xz-x c(tz-“rz—tlﬂ’l ):l + 27rSrp2 65‘(1:2-1;1—1’2“’1 )} dxldx2d’r1dr2

The 1limits of integration with respect to time T are considered
from O to e in accordance with (10) and because the movement of the
load has an infinitely long duration.

Neglecting the cross-correlation Kq( Y )(tl,tz) = 0 for j #k
k
the variance may be calculated from (40) gnd (13)
2 (x,t) = .S 2 ]
G, (xyt) = K (x,%,t,t) el v(j)( x) Kq(j q(d)(t,t) =
2.2
_ Z AxS e 1 sin2 Jxx (J)M(J)w L J 2‘ c /1;2 =1,
= £ (3)
371 4 2% 37 413(5)@,D e 2
-, ﬂ/c

2. 2 _2 —
+ 4 wb( wb -3 w(j) * j27r2c2/£2) ( l -e b cos &)(J.)E/c.cos jr) -
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2 2 2 T L/c
- b[D v 458y - 3By, - 57 z/ﬁz)] ® " sin 5{yyH/e.con 37} '
2 5
® 45 p°(1 - ) X (41)
M 2l R LB
J=1 ((_szx E(.) J (’]+ 3€)
2 2 2 2
where “—’(j) = j)(l - xPa/52y /v ), S5y = B(s5y- By
- -2 2
C-)b = (a)b/(l + R ) " D = ( w(J) -J 7"202/,22)2+

2
+'4j4'5%wzc2/£2
@y 1 (42)

The result (41) does not depend on time so that the vibration
of the beam is a random process stationary in time. The coefficient
of variance for the centre of the beam can be approximately brought
to the following form, see [4]

Co8/2,t) =6, (£/2,t)/E[v(£/2,0)] = C_ C  +C_.C (43)

of variance

where Cp and C, are the analogous coefficientsYof functions p(§)
and r(t)respectively and the expressions Cvp and Cvr are represehted
in Figs. 2 and 3 as functions ofcx,/? and mass parameter 2¢, see

(33), (34) and (42).

o€

4, Application of the Theory and Experimental Results

The theory presented above can be applied to bridge structures
assuming that their moving load is a random function. The solution
is shown for two typical cases which concern (a) short span bridges
and (b) long span bridges.

(a) The 1load of short span bridges or short longitudinal beams
is ideslized by a concentrated force of random time variation mo-
ving along a beam. Structures of this type are usually loaded by
one axle of the vehicle only.

(b) The load of long span bridges is idealized by an infinite-
1ly long random strip (35). The first component of this load p(f )
expresses the random distribution of the static load in the bridge
span direction while the second component r(t) interprets the true
dynamic effect of the load. The large span bridges are usually loa-
ded by a series of axles resulting either from continous highway
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traffic or from a railway train whose length is supposed to be mugh
longer than the span of the bridge.

In reality the traffic loading is - generally speaking - an un-
known random process. Therefore a solution was given also for the
problem inverse to that given in the present papéﬁt5]. The probabi-
1lity analysis[5]starts with the known statistic characteristics of
the response v(x,t) giving the input characteristics for p(x,t) as
a result. The statistic characteristics of any particular bridge
(i,es the beam deflections or stresses in some points) can be measu-
red without difficulties under service conditions and on this basis
the load characteristics can be evaluated.

As an example the Fig. 4 shows a covariance function measured
on a railway bridge.
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Figs4. The exrerimental covariance measured from the stresses in the longitudinal
beam on a steel-railway bridge
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SUMMARY

The traffic loading of bridges is considered as a nonstationa-
ry random process. Starting from the statistic characteristics of
the load the theory supplies information as to the statistic charasc-
teristics of the deflections or stresses in a bridge , i.e. the
mean value, the covariance, the spectral density, the variance or
the coefficient of variance.

The solution is shown for two typical cases which concern small
and large span bridges.In the former case the load is idealized by
a concentrated force of random time variation moving with constant
velocity along a simply supported beam. The random effects of this
load are decreasing with increasing velocity and damping (Fig. 1).

In the latter case the load is idealized by an infinitely long
random strip which is moving again with constant velocity along a
simple beam. This type of load induces in the beam a stationary ran-
dom vibration the amplitudes of which are increasing with decrea-
8ing damping and for velocities approaching the critical speed which
depends also on the mass of the traffic load (Figs. 2 and 3).

RESUME

Le traffic sur un pont est considéré comme une charge stochas-
tique non-stationnaire. En partant des caractéristiques statistiques
de cette charge, la théorie donne des informations concernant les
caractéristiques statistiques des déformations ou des tensions dans
un pont, c-a-d. la valeur moyenne, la covariance, la densité.spec-
trale, la variance ou le cobBfficient de variarce.

Deux cas typiques ont été traités pour un pont court, resp.
long. Dans le premier cas, la charge est idéalisée par une force
concentrée, variable arbitrairement avec le temps et voyageant avec
une vitesse constante le long d'une poutre simple. L'effet arbitrai-
re de cette charge décroit avec vitesse et amortissement croissant
(fig. 1).

Dans le deuxiéme cas, la charge est idéalisée par une charge
répartie stochastique infiniment longue voyageart sur la poutre
simple avec une vitesse constante. Cette charge provoque une vi-
bration stationnaire arbitraire, dont les amplitudes croissent
inversément avec l'amortissement et augmentent avec des vitesses
approchant la vitesse critique, qui dépend également de la masse
de la charge de traffic (voir fig. 2 et 3).
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ZUSAMMENFASSUNG

Die Verkehrslast von Briicken wird als nichtstationdrer, zu-
fdalliger Vorgang aufgefasst. Ausgehend von den statistischen Cha-
rakteristiken der Last liefert die Theorie Auskunft iiber die sta-
tistischen Charakteristiken der Verformungen oder Spannungen einer
Briicke, die da sind der Hauptwert, die Kovarianz, die Verteilungs-
dichte, die Varianz oder der Koeffizient der Varianz.

Die Losung wird an zwei ausgepridgten Beispielen mit einer
kurzen und einer langen Briicke gezeigt. Im ersterwdhnten Fall ist
die Belastung durch eine Einzellast idealisiert, die sich bei zu-
fdalliger Zeitvariation mit konstanter Geschwindigkeit entlang des
einfachen Balkens bewegt. Die zufdllige Wirkung dieser Last ist
verschwindend bei wachsender Geschwindigkeit und Dampfung (Fig. 1).

Im letzteren Fall ist die Belastung durch einen unendlich lan-
gen Streifen idealisiert worden, der sich wiederum mit konstanter
Geschwindigkeit bewegt. Dies bewirkt im Balken eine stationédre, zu-
fdllige Schwingung, deren Amplitude mit abnehmender D&mpfung und
mit Geschwindigkeiten, die sich der kritischen ndhern, welche von
der Lastmasse abhidngt, widchst.
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