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The Treatment of Damping Coefficient on the Dynamic Problem
Sur le coéfficient d'amortissement dans les problémes dynamigues

Die Behandlung des Dampfungskoeffizienten bei dynamischen Problemen

Y. OHCHI
College of Technology
Hosei University
Tokyo, Japan

INTRODUCTION

Recently the use of digital computer having become very popular, a number
of papers dealing with the response analysis of complex structures is published.
Very few of them set apart, however, they do not give detailed explanations
about damping force. The writer having also developed a program for response
analysis of framed structures, computed the responses of various types of them,
and is in every time troubled by how the damping coefficients are selected.

As response displacements depend largely upon them, even it is possible that
we insist on the propriety of the certain damping coefficients obtained
inversely from the required response displacements.

Damping force is a force that suppresses vibrations and comes from various
origins. Though it is quite natural that efforts to catch the causes dominating
the damping forces and to include them in the equation, such a frontal attack
would not be so expected under existing circumstances. In case of complex
structures, it is also very hard to determine the ratios to the eritical damping
coefficient, as in a one-mass-system, because of its complexity.

Then the writer, referring to the results of vibrational experiments about
one-nass-system, and noticing that damping constant is of three terms (first
inversely proportional, second unrelated and third proportional, to the fre-
quency), hag tried to extend the idea to multi-mass-system. There are such four
forces, further saying, as inertie force (M&), damping force (Ci), restoring
force (Kx) and external force {~MX¥e in case of earthquakes) which determine a
vibration, the theme of this paper is then the second force. Restoring force
is determined from the static relation between external force and deformations
of the structure. This gubject is dealt with in other papers of which one is
published by the writerl/2), 1In this paper is shown in another form extended
thereafter. It is inevitable to encounter what type of seismic waves is
selected, but such problem should belong to the field of seismology. Finally,
as for inertia force, it is usual to concentrate the mass to some points, but
as actually the mass is distributed along structural members, this effect must
be introduced. The discussion about this problem is left for another chance.

ONE-MASS~-SYSTEM
The kinetic equation of one-mass-system is
kx= —M (X + Xe) — Cx

Dividing by M and replacing
P = % , )F)‘—'(—:C— Ccr = 2A4AK-M

cr
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Bq.(1) is reduced to

jf‘FZ%Di +p2x = — Xe (3)

in which p is circular natural frequency and h is called damping constant, the
ratio of actual damping coefficient(C) to critical value of that (Cop). The
relation between damping constant(h) and logarithmic decrement Cﬁo is

A ==-7%%%%5 = 27h

The solution of Eq.(3) is

X = P~ Sv (t) (4)

o
Sv (1) :‘L%ﬁ' e-PU-A) . Sin P AT—F2(t —)\) d\

Substituting in Eq9(4) actual seismic waves, and calculating maximum wvalues of
S.(t) for various values of p, we can get a response velocity spectrum by
pIotting Sv(t) against p. To average the values of Sv(t) for a number of cases
of actually occurred earthquakes makes so-called average response velocity
spectrum (Sv proposed by Hausner.

After our simple experiment, h is constant or proportional to p (see
Fig. 1, 2). Making a reference3’, h is in inverse proportion with p. Then, we
shall be able to put

h=hoP'+ A +hp (5)
Substituting this in Bq.(3) and using Eq.(2), Bq.(1l) becomes

Mx + (2foM + 2h IV KM + 282K ) X + KX = — Me (6)
Damping coefficient is then expressed in such a form as

C = 2hoM + 2h VKM + 242K (7)

Using Eq.(5) as damping constant under such condition that fo and A2 have
conatant values, average response velocity spectrum of Hausner is calculated as
shown in FPigs. 3(&),(b§°

MULTI-MASS-SYSTEM (MODAL ANALYSIS)

The kinetic equation of a multi-mass-system is, by using matrices, ex-
pressed as follows,.

Kx = —~M(X+ Fxe) —CX (8)
Now, introducing a linear equation
(MX-K) ¥ =0

let U. be the root other than gzero, and PZ be the value of M° (the number is

as much as the rank of the matrices), that is to say, the eigenvector and
eigenvalue. If \/ denotes the matrix arranging U; in a column, and P? the
matrix arranging PZ? diagonally, the relation between them is

VT KV = UTM v P? (9)
Each element of P is circular natural frequency, and each column of V/ shows

proper mode of vibration. Further, changing the independent variables X; of
Bq.(8) to 4 by the relation
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X = vgq (10)
and multiplying W' from the left side, Eq.(11) is obtained.
VTMVqQ + V'€ Vg + VM V Pq = — V"M Fxe (11)

Because the critical damping coefficient matrix of the kinetic equation (8) for
a multi-mass-system is2MV PV ' (see APPENDIX I), defining, on an analogy of
Eq.(7?), the damping coefficient matrix of multi-mass-system as

C = 2hoM + 2AMV PV~ + 2h2 K (12)
and modifying the second term of Eq.(ll) and considering Eq.(9), we find

UTCV = 2hoVTMV + 2R VIMVP + 2R MV P2
Eq.(11) is therefore transformed into
q+ 2HoP'+huU+Hh2P) Pq+ Pq=— (VMV )" V'MFxe (13)

When P~'Svi (t) is the solution of Eq.(3) in which Eq.(5) and circular
natural frequency Pi of multi-mass-system are substituted, Svi(t) being the
matrix of diagonal arrangement of Svi (t) , the solution of BEq.(13) is

q = P'Sv(t) (VTMV)'VTMF
and the relative displacement is obtained by substituting in Eq.(10), as follows:
X = VPSSt ) VTMV)'VT™M F (14)

Sectional forces would be then calculated from the displacement method of
statics.

MULTI-MASS-SYSTEM (DIRECT METHOD)

Damping coefficient of Bq.(8) being substituted by equation (12), and
replacing

gk:w,.gf:—ﬁe—(%wm) (15)

qu(e) would be solved by the numerical integral methodz) such as the Runge-
Kutta-Gill or Milne's Method, under the initial condition, X = Yy = 0 at t=0.
As described at the head, there are so few papers dealing with damping force
that the writer has proposed the equation (12). But, when using direct method,
the second term of equation (12) seems troublesome. So it would be better to
compute qu(15) after normalizing the eigenvector by using the relation

vViMV = E
into the form

C = 2hoM + 2BIMVP V™M + 2R2K (16)

or letting include the influence of the second term to the first and the third
tern

C = 2hoM + 2A2K (16')
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STIFFNESS MATRIX

For calculation of the responses of multi-mass-system using Eq.(14) or (15),
it is necessary to make up mass matrix (M) and stiffness matrix (IK) in addition
to damping coefficient matrix (C ). If the mass is concentrated to the struc-
tural nodes, mass matrix is to be diagonal matrix, but actually the mass is
distributed. Though the writer is researching to take into consideration the
influence of distribution, but it is not yet the time to publish.

Stiffness matrix is obtained from the static¢c relation between loads (F’)
and displacements (0¢)

KX = P (17)

Many studies in this field being pu?l}shed, their results should be used. The
writer has also published a methodl/2), Afterwards the writer modified to be
able to use for a member with one hinged end. Here is a simple explanation.

The linear equation by which the framed structure is solved statically is
written as follows

DR D™X=P — AC'Ffa — BC'Fo (18)

D#D" is stiffness matrix, ¥ is displacement vector and the first term of the
right side is force vector composed of external forces acting on the nodes.
The second and third terms of the right side are vectors composed of external
forces acting on the intermediate members connecting the nodes, fFfoc and Ff¢p
are end reactions of fixed beam (or modified end reactions when hinged), CT is
transformation matrix of coordinates (local to global), and, A and B are also
transformation matrices from sectional forces at the member's end to nodal
forces, The contents of D , £ are shown in APPENDIX II,

Solving Eq°(18) with performing an operation to the supports, sectional

forces of the both ends Fg and Fp would be obtained.

Fo = Tof D"X + Fia, Fo=ToAD X+ Frp (19)

The operation to the supports is, for example, to sweep out the corresponding
row and column of the stiffness matrix, if the node ;| is fixed in one direction,
and/or to add a spring constant to the corresponding diagonal element of the
stiffness matrix, if the node j is supported elastically in one direction,

NUMERICAL EXAMPLE

The suspension bridge shown in Fig.(4) is modelled and shows in Fig.(5).
By substituted various values offo ,f ,f2 into equation (12), the numerical
calculations are carried out. If the suspension bridge and the seismic wave
acting at the both tower bases are symmetric, the response of displacements
and/or member forces of the center span are reduced to extremely small., In
order that we increased the masses of the right tower ten per cent more than
that of the left for this numerical example.

Results of the calculations are tabulated in the table 1. The figures in
this table are obtained from eq°(14) using a seismic wave of the reduced El
Centro NS component (the maximum acceleration is 200 gals). Fere we also
calculated the response of displacements using other types of above seismic
waves, but we can not show the results in this paper because of space limita-
tions.
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APPENDIX I  CRITICAL DAMPING COEFFICIENT MATRIX

Supposing q = Qe ' in the expression (11), let the right side equals
zero, it becomes

(VT MV 2 —VCV w+VMVP) Qe%=0 (a)

The above equation representsthe system of free vibration accompanying with
damping,if W is real, the system does not vibrate. In order that W be of a
value at the border between being real and imaginary, that is to say W be
identical roots, the next expression should stand.

ViCer V= 2 VMV P (b)
This would be confirmed by substituting (b) into the expression (a), which makes
VIMV (Fw?- 2Pw + P2 0e¥Y= 0
or  VIMV (Fw — PPQe“'= 0
From the expression {b), Ccr is obtained.
Cor = 2MWV PV ! (e)

APPENDIX II EXPLANATION OF Eqs. (18) AND (19)

If the structure is constructed in the xy plane of the global co-ordinate
Xy 3 , the elements of matrices which are included in eqso(la and (19) are as
follows.,

'5.Bg. Schlussbericht
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(1) PFor plane framed structure (loads and deflections are restricted to the
inside of the xy plane)

— - -

§ xL™' 8§yL' o0 a o0 o
D= |8 yL™ EXL“ Io £ =| 0O % O
U 0 o | -U 0 0
Ta= 1|0 I U 0 Té =| © " 0
|0 g€a(eu-€ell L | |0 Z&U-EaL ;L
X [PX Nua Nu 8
K = ¢ P = | P& Fa = | Sya F8 =| Své
LS L Mwa Mwe
(2) Por grid-type structure (loads and deflections point to the outside of the
Xy plane)
B} - _ r i
[sXL -yl -8 YL s 0o o0
D =!8YU" puxL'  dxL ft=|0 e 0
{ O —(Ea+E4IL"" O 0 0 f
Y 0 U 0 0|
Ta=| O €a U T¢=| 0 £E4 -U
| 0 -(Ea+E4IL O | 0 -(Ea+E4I'0O
{_efi me_: i_'!'ucfl Tu
X = e,: P=|m%¢‘ fFo =lerc1 Fs = | Mub
I_?' . . Py | LSwoJ Swé
Vhere
o =EAL™" b=3(Ea+EH*{UHEa+ES) Qf EML c=4€0 E4EML
d=GJL" e=3(CatEd—EcEM [UH(Es+E8) QV'EWL™ f= EoE4ELvL™
$=d -8
A Ea(2U—€E8) + BEF (2U-Ea) for plane framed 3.

W=
A Ea+ B E4 for grid-type S.
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3RElw (GAL?) ™! for plane framed S.
52 =

3te Elv (GALZ)™! for grid-type S.
U = unit matrix

E, G, ¥ = diagonal matrices, the {{, () element in diagonal matrix shows the
Young's modulus, the shear modulus and the shear coefficient of member i

A, Iy, Iy, J, L, X, Y = diagonal matrices in which the ({, < ) element
represent the cross sectional area, the moment of inertia of the section
around the local v, w axis, the tortional moment of inertia of the
section, the length and the projection of the length on the global ,
axis respectively.

Ay B = matrices indicating with which member is connected at member's node.
For example, d\i;>= 1 or B%: l, it shows that the end a or b of
member j is connected with the node i; otherwise d i4= 0 or Bif= 0.

€Ea y£4 = diagonal matrices, in which the (L. /J) element equal zero, if a
hinge is located at the end a or b of member i; otherwise equals 1.

Xy s 3 (6x,84,03%) = column vectors, the (th element shows the deflec-
tion (deflection angle) of node <.

Nua , Svo, Swo (Tuo, Mvo, Mwa) = column vectors, the (th element shows the
u ,V ,w component of the sectional forces (moments) at the end a of

member L.
APPENDIX III  NOTATION
C.C = damping coefficient and damping coefficient matrix
Cer,Cer= critical damping coefficient and critical damping coefficient
matrix

A= logalithmic decrement

F = This vector represents the difference of absolute and relative
displacement vector dividing by Xeij while the displacement is
the same direction as seismic acceleration, the values of
elements in this vector are 1, otherwise equal gzero.

4 = damping constant (C/Cc, )
#0 .f f, = constants defining h (see Eq.(7) or (12))
K, K = spring constant and stiffness matrix
M, M = mass and mass matrix
P.P = circular natural frequency and circular natural frequency matrix
§y = average response velocity spectrum
Sv (t). Svlt )= see Eqs.(4) and (14)
LU = unit matrix
wi V = mode vector and mode matrix
X , X = relative displacement and relative displacement vector
Xe = seismic acceleration
A +BrC +DsFo +F4 sFta +Ft4 4R, Py Ta ,T4 = see APPENDIX II
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Table |
he| — |0.628)] — |0.314 he | — |0.628| — [0.314
damping damping
I hi |0.100 —_— — —_— - hi |0.100 — — —
ha | — — |00159| 0.008 ha | — — |0.0159|0.008
NORMAL FORCE (t) SHEARING FORCE (t)
sl 13]11070|1090|1030{1050 1| 575| 566| e611| 570
cable 14| 1080{! 100| 1040|1060 2| 126| 138] 125 e
15{1100|1 120| 1060/ 1080 tower 3| 549 588 523 544
- 16| 57.6 | 70.3 | 56.8 | 55.7 4| 870 878 854, 863
cable |.7| 565 |69.3|557 | 546 5| 1030 1020 I 050| | 030
18| 55.7 | 68.0| 55.0 | 53.9 6 |14 800|14 800| 14 800| 14 800
35| 201 228| 174| 187 DISPLACEMET (cm)
side 36| 88.7 | 95.4 | 85.6 | 86.7 1]16.9 | 3.84|19.0 | 4.88
hanger |37| 556 | 57.1 | 52.5 | 53.7 35|16.2 |148 |17.4 |13.6
38| 42.9 | 487 372| 400 2{16.6 | 162 |16.8 |14.7
39| 444|544 414 | 40.4 lett 3140 |[13.7 | 142 [12.3
tower
center 140| 296 4.0 288/ 280 37| 8.37| 135 | 8.44| 7.24
hanger 4| 550 6.67| 546/ 5.30 4| 3.35| 3.38| 3.29| 2.88
42| 469 5.771 4.6i] 450 5 — — | — —
BENDING MOMENT (t,m) ) 22(132 |23.8 | 154 |39.1
I [2 1 400|21 000 {22 700|21 200 :::Z 23|47.4 | 8.61|54.8 [14.0
2 |24 700(23 500 |26 000| 24200 24(41.5 |11.2 |46.8 |[I15.4
3 16 600/ 16400 17 100| 16600 25| 3.31| 3.30| 3.42| 3.26
fower I 4 112 500|12300] 12 800] 11000 26| 1.67| 1.87| 1.58/ 1.77
5 40 400(41600 |39 100|39800 - 27| 2.60| 0.66| 3.05| 0.51
6 [522000/52200052400016822000| - 28| 3.29| 0.55| 4.04| 0.93
26| | 150 844 | 250 987 29| 3.15| 1.32| 3.61| 1.56
stiff 28 151 154 62| 152 30| 2.68| 222| 2.70| 2.29
girder |29| 70908 | 58.7| 96.1| 62.7 31| 3.42| 3.32| 3.50| 3.34
30| 886 | 28 5 122 42.7
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SUMMARY 1191

From our simple experiments about this field, we propose the equation (12)
or (16') for the damping coefficient matrix of the multi-mass-system. Results
obtained from usual method were compared with some series of our numerical
calculations, we find that fio in eq.(l2) is more important and influential than
that of #2 on conforming the result obtained from usual method. We consider
that some questions still exist in adapting damping coefficient matrix to be
used in usual method.

In order to obtain more adequate value of fio~f2 , we conclude that more
field test or more detail of experiment for determining the damping coefficient
matrix is necessary.

RESUME

De nos expériences dans ce domaine nous arrivons a proposer
1'équation (12) ou (16') pour la matrice de co8fficient d'amor-
tissement du systéme & masses multiples. Les résultats regus par
la méthode habituelle ont été comparés avec quelques séries de
nos calculs numériques. Nous trouvons le facteur ho dans 1l'équa-
tion (12) plus grand et influent que h2, en adaptant le résultat
obtenu par la méthode habituelle. Nous pensons gque tous les pro-
blémes ne sont pas résolus dans l'adaptation de la matrice du
coéfficient d'amortissement &4 la méthode de calcul normale.

Nous concluons qu'il est nécessaire de faire plus de tests
sur nature ou de détailler d'avantage les expériences pour obte-
nir des valeurs hosv h2 plus adéquates a la détermination de la
matrice de coBfficient d'amortissement.

ZUSAMMENFASSUNG

Aufgrund unserer einfachen Versuche auf diesem Gebiet empfeh-
len wir die Gleichung (12) oder (16') fiir die Dampfungskoeffizien-
ten-Matrix des Viel-Massen-Systems. Ergebnisse der iblichen Verfah-
ren sind mit einigen S&tzen unserer numerischen Berechnung vergli-
chen worden, und wir finden, dass ho in Gleichung (12) wichtiger
und einflussreicher denn h2 bei Anpassung an die Ergebnisse der
iblichen Verfahren ist. Wir beriicksichtigen, dass einige Fragen
bei der Anwendung der Dampfungskoeffizienten-Matrix im iiblichen
Verfahren noch offen bleiben.

Um mehr hinreichende Werte horvh2 zu erhalten, folgern wir,
dass mehr Felduntersuchungen oder mehr Priifungsdetails zur Be-
stimmung der Da&mpfungskoeffizienten-Matrix notwendig sind.
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