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The Treatment of Damping Coefficient on the Dynamic Problem

Sur le coefficient d'amortissement dans les problemes dynamiques

Die Behandlung des Dämpfungskoeffizienten bei dynamischen Problemen

Y. OHCHI
College of Technology

Hosei University
Tokyo, Japan

INTRODUCTION

Recently the use of digital Computer having become very populär, a number
of papers dealing with the response analysis of complex structures is published«
Very few of them set apart, however, they do not give detaüed explanations
about damping force» The writer having also developed a program for response
analysis of framed structures, computed the responses of various types of them,
and is in every time troubled by how the damping coefficients are selected.
As response displacements depend largely upon them, even it is possible that
we insist on the propriety of the certain damping coefficients obtained
inversely from the required response displacements.

Damping force is a force that suppresses vibrations and comes from various
originso Though it is quite natural that efforts to catch the causes dominating
the damping forces and to include them in the equation, such a frontal attack
would not be so expected under existing circumstances. In case of complex
structures, it is also very hard to determine the ratios to the critical damping
coefficient, as in a one-mass-system, because of its complexity.

Then the writer, referring to the results of vibrational experiments about
one-mass-system, and noticing that damping constant is of three terms (first
inversely proportional, second unrelated and third proportional, to the
frequency), has tried to extend the idea to multi-mass-system. There are such four
forces, further saying, as inertie force (Mä), damping force (Ci), restoring
force (Kit) and external force (-Mife in case of earthquakes) which determine a

Vibration, the theme of this paper is then the second force. Restoring force
is determined from the static relation between external force and deformations
of the structure. Thia subject is dealt with in other papers of which one is
published by the writer^^'. In this paper is shown in another form extended
thereafter, It is inevitable to encounter what type of seismic waves is
selected, but such problem should belong to the field of seismology. Finally,
as for inertia force, it is usual to concentrate the mass to some points, but
as actually the mass is distributed along structural members, this effect must
be introduced. The discussion about this problem is left for another chance.

ONE-MASS-SYSTEM

The kinetic equation of one-mass-system is

Kx= - M EC + "Xe - Cie

Dividing by M and replacing

p /^T 4. jP- Ccr - 2 44~W
¦V M Ccr
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Eq.(l) is reduced to

X + 2-fSpx + P2* -Xe (3)

in which p is circular natural frequency and h is called damping constant, the
ratio of actual damping coefficient(c) to critical value of that (Ccr). The
relation between damping constant(h) and logarithmic decrement (A) is

The Solution of Eq.(3) is

X P"' Sv (t) (4)

s,,t,="lÄre"pM,Sin PVT^Fu-X) dX

Substituting in Eqv(4) actual seismic waves, and calculating maximum values of
S (t) for various values of p, we can get a response velocity spectrum by
plotting S (t) against p. To average the values of Sy(t) for a number of cases
of actually oecurred earthquakes makes so-called average response velocity
spectrum (s proposed by Hausner.

After our simple experiment. h is constant or proportional to p (se«
Fig. 1, 2). Making a reference'/, h is in inverse proportion with p. Then, we

shall be able to put
fl -no P-'+-ni +4P (5)

Substituting this in Eq.(3) and using Eq.(2), Eq.(l) becomes

Mx + (2£oM + 2£i©K©r 4 2-nzK )±+ KX - M% (6)

Damping coefficient is then expressed in such a form as

C 2-foM 4- 2-fii ©KM" + 2-in2K (7)

üsing Eq.(5) as damping constant under such condition that tio and-Fi2 have
constant values, average response velocity spectrum of Hausner is calculated as
shown in Figs. 3(a),(b),>

¦MÜLTI-MASS-STSIEM (MODAL ANALTSIS)

The kinetic equation of a multi-mass-system is» by using matrices,
expressed as followso

IK* - MI(Öt+ Fie -CX (8)

Now, introducing a linear equation
MI X2 - K * 0

let V. be the root other than aero, and P? be the value of Xz (the number is
as much as the rank of the matrices), that is to say, the eigenvector and
eigenvalue. If VI denotes the matrix arranging Vx. in a column, and P2 the
matrix arranging Pi2 diagonally, the relation between them ia

VT IK \ll XHTM V/ P2 (9)

Each element of P is circular natural frequency, and each column of VI shows

proper mode of Vibration. Further^ changing the independent variables%¦ of
Eq.(8) to 1 by the relation
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7C V/q (10)

and multiplying \UT from the left side, Eq.(ll) is obtained.

V©M V/ci + V/TC Jc\ + V/TMI V/ P2q, - V/TMI F -xe (ll)
Because the critioEal damping coefficient matrix of the kinetic equation (8) for
a multi-mass-system is 2 MI V/ P V/ "' (see APPENDIX i), defining, on an analogy of
^.{.7), the damping coefficient matrix of multi-mass-system as

C 2-f.oMI + 2-fiiMlW PV/"' + 2h2 IK (12)

and modifying the second term of läq.(ll) and considering Eq.(9), we find

V/TCV/ 2*oV/TMIV/ + 2*i V/TMIV/P + 2fi2V/TMIVP2

Eq.(ll) is therefore transformed into

q+ 2(*oP-'+*iU +I2P Pq + P2«^ - V/TMI MI >H V/TMI Fxe (13)

When P_lSvi. (t) is the Solution of Eq.(3) in which Eq.(5) and circular
natural frequency P* of multi-mass-system are substituted, Svi(t being the
matrix of diagonal arrangement of Svi (t) » the Solution of Eq.(l3) is

q, P-'Sv (t) V/TMI\<7 r'UrMI F

and the relative displacement is obtained by substituting in Eq.(lO), as follows:
Of V/PHSv(t)( V/TMIV/r' V/TMI F (14)

Sectional forces would be then calculated from the displacement method of
statics.

MULTI-MASS-SYSTEM (DIRECT METHOD)

Damping coefficient of Eq.(8) being substituted by equation (l2), and
replacing

^ # • ^ ~ F * e_(C$+ IKXf) (15)

Eq.(8) would be solved by the numerical integral method ' such as the Runge-
Kutta-Gill or Milne's Method, under the initial condition, -X <j 0 at t=0.
As described at the head, there are so few papers dealing with damping force
that the writer has proposed the equation (l2). But, when using direct method,
the second term of equation (12) seems troublesome. So it would be better to
compute Eq.(l5) after normalizing the eigenvector by using the relation

V/T MI MI E

into the form

C 2-noM + 2fiiMIV/PV/TMI + 2fi2IK (16)

or letting include the influence of the second term to the first and the third
tenü

C 2*0 MI + 2*2IK (16-)
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STIFFNESS MATRIX

For calculation of the responses of multi-mass-system using Eq.(l4) or (15)»
it is necessary to make up mass matrix (Ml) and stiffness matrix (IK in addition
to damping coefficient matrix (C If the mass is concentrated to the structural

nodes, mass matrix is to be diagonal matrix, but actually the mass is
distributed. Though the writer is researching to take into consideration the
influence of distribution, but it is not yet the time to publish.

Stiffness matrix is obtained from the static relation between loads (P)
and displacements (Ot)

KTt P (17)

Many studies in this field being published, their results should be used. The
writer has also published a method^/^^ Afterwards the writer modified to be
able to use for a member with one hinged end. Here is a simple explanation.

The linear equation by which the framed structure is solved statically is
written as follows

Die DTTC= P - A\CTFfa - BCTFfb (l8)
ü-küT is stiffness matrix, ~% is displacement vector and the first term of the

right side is force vector composed of external forces acting on the nodes.
The second and third terms of the right side are vectors composed of external
forces acting on the intermediate members connecting the nodes, Ffa and Ffb
are end reactions of fixed beam (or modified end reactions when hinged), fl© is
transformation matrix of coordinates (local to global), and, A\ and B are also
transformation matrices from sectional forces at the member's end to nodal
forces. The contents of D it are shown in APPENDIX II.

Solving Eq.(l8) with performing an Operation to the supports, sectional
forces of the both ends Fa and Fb would be obtained.

Fa Ta i DTX + Ffa. Fb Tb ik ÜT X + Ffb (l9)
The Operation to the supports is, for example, to sweep out the corresponding
row and column of the stiffness matrix, if the node i is fixed in one direction,
and/or to add a spring constant to the corresponding diagonal element of the
stiffness matrix, if the node j is supported elastically in one direction.

NUMERICAL EXAMPLE

The Suspension bridge shown in Fig.(4) is modelled and shows in Fig.(5).
By substituted various values offio ,"fn fi 2 into equation (12), the numerical
calculations are carried out. If the Suspension bridge and the seismic wave
acting at the both tower bases are Symmetrie, the response of displacements
and/or member forces of the center span are reduced to extremely small. In
order that we increased the masses of the right tower ten per cent more than
that of the left for this numerical example.

Results of the calculations are tabulated in the table 1. The figures in
this table are obtained from eq.(l4) using a seismic wave of the reduced El
Centro NS component (the maximum acceleration is 200 gals). Eere we also
calculated the response of displacements using other types of above seismic
waves, but we can not show the results in this paper because of space limitations.
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APPENDIX I CRITICAL DAMPING COEFFICIENT MATRIX

Supposing qi Qe~ in the expression (ll), let the right side equals
zero, it becomes

(V/T MI MI cj2 - V/T£ MI OJ- 4 V/TMI V/ P2) Q e_ujt 0 (a)

The above equation representsthe system of free Vibration accompanying with
damping,if OJ is real, the system does not vibrate. In order that OJ be of a
value at the border between being real and imaginary, that is to say OJ be

identical rootsP the next expression should stand.

V/TCcr MI 2 V/TMV/ P (b)

This would be confirmed by substituting (b) into the expression (a), which makes

V/TMlV/ F OJ2 - 2 P OJ + P2) Oewt 0

or V/T MI MI F OJ - P )2 Oe"wt 0

From the expression (b), (Der is obtained.

Ccr 2MIV/PV/"1 (c)

APPENDIX II EXPLANATION OF jSqs. (18) AND (19)

If the structure is constructed in the Xu plane of the global co-ordinate
x<p$- the elements of matrices which are included in eqs„(l8) and (19) are as
follows.

Schlussbericht
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(l) For plane framed structure (Loads and deflections are restricted to the
inside of the xy plane)

D

Ta

S x L-1 8 Y L© 0
8 Y I©1 8 X 1©' 0

0 4 /»L ±8

u 0 0
0 u 0
0 ^-£a(2U-£*>L 2"L

¦ß

T«

a 0 0
0 4 0
0 0 c

-u 0 0
0 -u 0
0 -^a(2U-cEa)L iL

Ot

frj

Px

Lmi
Fa

Nua
Sva
Mwa

U
Nu«

Mw<?

(2) For grid-type structure (Loads and deflections point to the outside of the
xij- plane)

Ta -

8 XL© -/iYL"1 -8YL -1 d 0 0

8YI© //.XL© 8 XL© & 0 e 0

0 -(£0+ ££).© 0 _° 0 fJ

u 0 0 -u 0 0

0 Ea U u 0 £* -u
0 -.Ec + E-*-)L© 0 0 -(Ea + E^)C'0

0%~j [m* ' Tua Tu-*

0i* P m^ Fa Mva F* Mv£
i

Saio
L-.

Sw#

Where

a=EAL" b 3(cEa+£;^)2{u+(£a+£^)2 ß}"'Eh»L"" c 4<f a £*EIw L"3

d GJL~' e=3(£a+£4-£a £U {u +(£3 + ^)2 ßf'EluL-' f- «f o «©«-Elvi©1

8 dL --S
'
cl 6a (2U- f-* + ßth- 2U - £a

cA £0 + /3 E4

for plane framed S.

for grid-typ« S.
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ß
'3feEIw (GAL2©1 for plane framed S.

3HZ Elv (GAL2 )"' for grid-type S.

U unit matrix
E, G, KL diagonal matrices, the (i, i) element in diagonal matrix shows the

Young's modulus, the shear modulus and the shear coefficient of member L

A, Iv, Im, J, L, X, Y diagonal matrices in which the [i, *¦ element
represent the cross sectional area, the moment of inertia of the section
around the local 17, ui axis, the tortional moment of inertia of the
section, the length and the projection of the length on the global
axis respectively.

al ,ß matrices indicating with which member is connected at member's node.
For example, ckif-a 1 or P*j= 1, it shows that the end a or b of
member j is connected with the node i} otherwise d, iL* 0 or ß*f** 0.

€a »£*= diagonal matrices, in which the (-£,-0 element equal zero, if a
hinge is located at the end a or b of member i; otherwise equala 1.

X ^ j. (0x,9ij.,9j) column vectors, the ith element shows the deflec¬
tion (deflection angle) of node £.

Nuo Svo Swa (Tua, Mva Mwa) column vectors, the <Cth element shows the
U ,V ,w component of the sectional forces (moments) at the end a of

member L.

APPENDIX III NOTATION

C, C damping coefficient and damping coefficient matrix
Ccr,Ccr= critical damping coefficient and critical damping coefficient

matrix

A= logalithmic decrement

f m This vector represents the difference of absolute and relative
displacement vector dividing tsyZei, while the displacement is
the same direction as seismic acceleration, the values of
elements in this vector are 1, otherwise equal sero.

rs

damping constant /Ccr

'fio.'ni,'n2 " constants defining h (see Eq.(7) or (12))

spring constant and stiffness matrix

¦ mass and mass matrix
circular natural frequency and circular natural frequency matrix
average response velocity spectrum

Sv(t). Sv(t)= 8ee Eq8» (4) and (14)

i yl unit matrix

u; 1 yj mode vector and mode matrix
X ,X relative displacement and relative displacement vector

Xe seismic acceleration
A\ B CT .(D »Fa »F* ,Ffa rFf-* ,fo P» Ta ,1-t- see APPENDIX II

*
fii fiz

K IK

M Ml

P P

S V
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Table I

damping

Const.

ho __ 0.628 — 0.314
damping

Const

ho — 0.628 — 0.314

h i 0.100 — — — h i 0.100 — — —'

h2 — — 0.0159 0.008 h2 — 0 0159 0.008

NORMAL FORCE (t) SHEARING FORCE (t)

side

cable

13 1 070 1 090 1 030 1 050

tower

1 575 566 61 1 570
1 4 1 080 1 IOO 1 040 1 060 2 126 136 125 116

15 1 IOO 1 120 1 060 1080 3 549 588 523 544

center
cable

16 57.6 70.3 56.8 55.7 4 870 878 854 863

1 7 56.5 69.3 55.7 546 5 1 030 1 020 1 050 1 030

1 8 55.7 68.0 55.0 53.9 6 14 800 14 800 14 800 14 800

side

hanger

35 201 2 28 174 187 DISPLACEMET (cm

36 88.7 95.4 85.6 86.7

left
tower

1 16.9 3.84 19.0 4 88

37 55.6 57. 1 52.5 53.7 35 16.2 14.8 17.4 13.6

38 42.9 487 372 400 2 16.6 16.2 16.8 14.7

center

hanger

39 44.4 54.4 41.4 40.4 3 14.0 13.7 14.2 12.3

40 2.96 4.06 2.88 2.80 37 8.37 13.5 8.44 7.24

41 5.50 6.67 5.46 5.30 4 3.35 3.38 3 29 2 88

42 4.69 5.77 4.61 4.50 5 — — — —
BENDING MOMENT t nn

side

span

22 132 23.8 154 39. 1

tower

1 2 1 400 21 000 22 700 21200 23 47.4 8.6 1 54.8 14.0

2 24 700 23 500 26 000 24200 24 41.5 1 1.2 46.8 15.4

3 16 600 16400 17 IOO 16600

center

span

25 3.31 3.30 3. 42 3.26
4 12 500 12 300 12 800 1 1000 26 1.67 1.87 1.58 1 .77

5 40 400 41600 39 IOO 39800 27 2.60 0.66 3.05 0.5 1

6 522000 522 000 524000 522000 28 3.39 0.55 4.04 0.93

stiff
girder

26 1 150 844 1 250 987 29 3. 15 1.32 3.61 1 .56

28 151 154 162 152 30 2.68 2.22 2.70 2.29

29 79.8 58.7 96. 1 62.7 3 1 3.42 3.32 3.50 3.34

30 88.6 28 5 122 42.7
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SUMMARY 1191

From our simple experiments about this field, we propose the equation (12)
or (16') for the damping coefficient matrix of the multi-mass-system.. Results
obtained from usual method were compared with some series of our numerical
calculations, we find thatfio in eq.(l2) is more important and influential than
that of -P-2 on conforming the result obtained from usual method. We consider
that some questions still exist in adapting damping coefficient matrix to be
used in usual method.

In order to obtain more adequate value of fio~"f2 we conclude that more
field test or more detail of experiment for determining the damping coefficient
matrix is necessary.

RESUME

De nos experiences dans ce domaine nous arrivons ä proposer
l'equation (12) ou (16') pour la matrice de coefficient
d'amortissement du Systeme ä masses multiples. Les resultats regus par
la methode habituelle ont ete compares avec quelques series de
nos calculs numeriques. Nous trouvons le facteur ho dans l'equation

(12) plus grand et influent que h2, en adaptant le resultat
obtenu par la methode habituelle. Nous pensons que tous les
problemes ne sont pas resolus dans 1'adaptation de la matrice du
coefficient d'amortissement a la methode de calcul normale.

Nous concluons qu'il est necessaire de faire plus de tests
sur nature ou de detailler d'avantage les experiences pour obtenir

des valeurs hör* h2 plus adequates a la determination de la
matrice de coefficient d'amortissement.

ZUSAMMENFASSUNG

Aufgrund unserer einfachen Versuche auf diesem Gebiet empfehlen
wir die Gleichung (12) oder (16') für die Dämpfungskoeffizienten-Matrix

des Viel-Massen-Systems. Ergebnisse der üblichen Verfahren
sind mit einigen Sätzen unserer numerischen Berechnung verglichen
worden, und wir finden, dass ho in Gleichung (12) wichtiger

und einflussreicher denn h2 bei Anpassung an die Ergebnisse der
üblichen Verfahren ist. Wir berücksichtigen, dass einige Fragen
bei der Anwendung der Dämpfungskoeffizienten-Matrix im üblichen
Verfahren noch offen bleiben.

Um mehr hinreichende Werte ho^vh2 zu erhalten, folgern wir,
dass mehr Felduntersuchungen oder mehr Prüfungsdetails zur
Bestimmung der Dämpfungskoeffizienten-Matrix notwendig sind.
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