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Dynamic Behaviour of Structures and Dynamic Modeling
Le comportement dynamique des constructions et la simulation dynamique

Das dynamische Verhalten von Bauwerken und dynamische Simulation

JOSEPH G. ILLESSY
C.E., E.E.

Hungary

The constructions are due to the corpuscular nature of matter
mecnanical systems with large degree of freedom. The equations of
rotions can be derived from the equilibrium of the forces: in case
of linear systems this whould lead - however only theoretically -
to the very compact matrix~formulated set of the differential-equa=-
tionsystem

MXeCxekx=G Y
with N simultaneous equations [1],{2].
To overcome the difficulties caused by the very large, but ne-
vertheless finite number 1<<<N< oo, there are two different ways
possible. The infinite increase of the degree of freedom results mo-

dels of continuously distributed parameters,
dealt mathematically by partial differential

kel ourpur equations, Conversely the decrease of the
Gt) — degree is equivalent with the concentrating

el w,c.x [Addl. of the properties to 1kn<N discret points:
== models with concentrated parameters, In pra-

xis only the first dominating particular so-
lutions of Eq./1/ are of interest, being cha~
Fig.l. racteristic for the total dynamic behaviour
of the structure. From this point of
view both type of models can be adap-
ted equivalently; to that nmethod is
given preference, that optimally se-
curés suitable results for the adap-
ter,
The dynamical oenaviour of a
system /M,C,K/ with excitation G,

MULTIPLIER
g[nal}

; gita)
namely F force- and/or x displace=~ 7%-—*
nent-excitation is characterized by |
the response Xx,x,X /Fig.l/. This
means methematically the transform SUMMATOR FUNCTION GENERATOR
of Bq./1/ to its explicite form, The
nodern high-~speed electronic compu- Fig.2.
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ters offer due to the rapid flow of information an easy possibili-
ty for solving Eq./l/. In digital computers the simultaneous in-
tegration is produced by stepwise iteration., In possession of the
elements of the analogue computers /Fig,2./ the mathematical Eq./1/
can be simulated electrically by a "laboratory model”; the several
differential-equations represent in the logic block-diagram pro-
duct-sums based on integrating chains and are easily realizable by
means of electric circuits,

The internal mass, damping- and spring-forces of a nonlinear
vibrator of unique degree of freedom are in equilibrium with the
external forces of excitation:

aa - .
P+ Pc + q‘ =mx + Pc/x/ + Fk/x/ = FG =G /2 /
or after mathematical rearrangement - without altering the phy-
gical information-content =

o o)

The logic block~structure of Bq./2/, Fig.3, is in addition the prin-
cipal programing plan and switching graph of the equivalent simula-
ting model, the analogue computer.

One of the simplest mind~model of a springed vehicle with one
degree of freedom is to be seen on Fig.4. /by ignoring the pitching
component of the movement/. Jumpes of
the two axes at a velocity v, can be

- t t ”
x/t/ = %[c(—f x/T/AT -~k J x/T/dc « G/'b/] /2/

represented in the model by twin pul-
sese, In case of linear system the mat-
rices of Eq./1/ have the actual form:

g =‘m o\; c=[c-c|; K =T k ~k\;
1o 0| -C C -k k
= ’
--mg] /37
o
if time-dependent force-excitation is
missing.Expressing the derivatives of the highest order by the

other terms:
x= (%) - SC2)-5(=x)ve oy

-X = (—:‘c) - I-é X - %(—-‘xo)

Fig.9.a illustrates the logic block-diagram of Bq./3/.
Constructions loaded by space- and time-variable moving loads
get their new, deformed shape of equilibrium only after the decay
of transient oscillations; the final shape however can be derived
by well-known statical treatments a)
too. As mentioned above, in pra= G
xis the interesting modes of
maximal amplitudes /that of the

and

U]

Fige3s

lowest natural frequencies/ do-— @ K ¢ ‘6"%
minate and are characteristic L °
for the dynamical behaviour of Bul gt te wd—o] A (Mp0) Z} L%
the structure, The reduction of duvgty—e 3 E

the degree of freedom is to be . l“ghv
carried out in such a manner, 1Bt

that these modes of technical ¢ 1T t—
interest should be’included by a bl

the selected model,
For illustration let us ta--
ke a special archstiffened sing-
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le span bridge construction: a Gerber-truss /Fig.5/, the two side-
extensions of which being cantilevers; only the last secondary lon-
gitudional girders of the deck-plate are on both sides pin-connec-
ted with the bridge and the abutments, respectively, The total sta~
tical informations are involved in the wmatrix of the displacement
influence-line ordinates; for dynamical behaviour the mass~ and the
damping-distributions are needed too,

The derivation of the mass-matrix } implies principally no
difficulties. For the actual damping conditions are hardly to be
seized exactly, consequently for simpler numerical algorithms it is
assuned, that the dawping-matrix C is diagonal /physically: presen~-
ce of only grounded ‘dampers/, The direct determination of the spring-
matrix K is often quite troublesome indeed; but in statics conveni=-
ant wethods are available for the computation of the displacenment—
influence-lines{hkilz H, the inversion of H being a submatrix of
Ks ) - B

-1
i =K Y,

The missing eleuwents are to be determined by the reciprocity-law of
lMaxwell /kij=kji/, the equilibrium of the forces enbodied in Ej,

.fundanmental relationg n .
k.. = o , respectively,
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Fig.6.gives a recoursive procedure for matrix-inversion like

Bq./4/ for symmetrical and positively definite matrices, common in

linear structural engineering. Among others, the given method has
the advantage, that all mathematical steps can be interpreted me—
chanically too[}].
For symmetrical constructions all asymmetrical effects can be
resolved into symmetrical and antimetrical components; applying

this to Eq./1/ 3

where

are the new matrices of
Let us express the accelerations in terms

it

IIE: l

a

-
-
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means the force-excitation,

the displacement-excitation,

/57

the output displacement-vector, while

gﬂ u‘N

N i

+

D= -

+

3k ¥ 8- (i-1),k
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the symmetric and

=
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of the other elements:
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These new equations represent the programing of the analogue

computer, the simulation-equations of the analogue dynamic model [2]

a./ 0.8193 x|+ [1.088 [
l.0000 & 5.”5 x
©.969% Xy 6,896
0.9728 b 6.“5 )
0.9660 3 .976.*5
O-W':‘B%* 5 6.896
) 7 5.993

1.0000 Xg A

104819 ng_ 1.046 :

o[+ 3338 + 80099 - 10,75+ 267 = 086 = 047 ¢ 0,95 = 1,82 - 0/}
le 80099 + 898,01 = 7%-22 + 367,60 - 84455 + ‘?.19 + l“ﬂ * 2,8 - 1.82
| = 10475 = 795422 +1202,06 = 890,79 + 404,87 = 102,70 + 46,96 + WGl + 0,95

4 2,67 + 367,60 = 890,79 +1287,18 = 917,07 ¢ 417,93 - 102,70 - 47,19 = 0.17
= 0486 = BA,55 + K08,87 = 917,07 +1258,06 = 17,07 + 80887 = BAS55 = 0,86
0el7 + 47,19 = 102,70 + 417,93 = F17.07 +1287,18 = 890,79 ¢ 367.68 + 2,67
0e¢95 + 14,91 + 46,9 - 102,70 + 40A .87 = 890,79 +1202,06 = 79522 = 10,75
1682 ¢+ 2,81 + 18,91 + 37,19 = 88,55 + 367,60 = 79522 + B9B,01 + 80,99
Ol - 1.82 + 0.55 = 0,17 - 0486 ¢ 267 = 1075 ¢ 4099 ¢ ’5.’9_

+

VERFRFENKE

1y

(7, )¢~ 65.66 + 1.657-[::]
’2 -.‘5-” - &5.1.8
P3| |+185.37 - 55.66
Faol | =l18.40 = 57.44
’5 - 31,42 = 31.42
Fo| |= 5784 <118,80
?7 - 55.“ 0185.”
'8 = 45,18 =443,.7%
'9_j * 1.68 = 65.66_

Y/ 7 a[elez77 (<g)[= %0.2 = A7.81+ 1196 = 3.05 ¢ 1.5z ”;._6102-1 o[- 39008 - 25
+5.993 = 39,17 - G00,82 + 780,31 = Al4:79 + BALSS 0.5000 204,96
+*6.973 + 9,91 + 788,99 «1262,90 0].00#.5‘ - 889,57 OQM * 65‘”
+7,.161 - 2,57 = 826,39 41021,27 =1711,67 + N2,71 o.n_gl - 88,32
+7.20 ¢+ 1.78 & 175.05 = 838,24 +1896.70 =~1302.34 0451 - 32,53

3 =[+1.277 (=g)e[- a1.28 - 52,25+ 18,28- 347 o T-; +[0.6102-3 o[-_u.u -
+5.993 = 842,81 - 895,20 + 810,13 = 32041 [ ] 095000 -198,78
+6.973 + 11,83 + 819,14 =1167,9% + 796485 ° 0.5056 +121.86
+7.161 - 2,92 = 329,37 + 8l0.12 - 852,44 ® ‘Q”“l -

° _J L (-] [ ] ° -] ([ ] B [ ] _] -]
Table 1.

Table 1., gives the actual values of the selected illustrative
problem of Fig.,5. The values are in the normed form of Eg./1l/ and

Bq./5/, respectively, with the units of my, = 60 kp sz/cm;
ke = 114,6 kp/cm; X, = 1 cmg te = 0,724 s; F, = 114,6 kp;
G% = 1,382 r/s; fe =0.220 c/s.

The logic block-diagram of the above equations is to be seen
in the lower part of Fig 9 b, -

If a wmoving venicle is crossing a bridge, the wheel-forces
excite vibrations in the bridge-construction, which conversely ge-
nerates the displacement-excitations of the vehicle /Fig.?7/, the
mutual feedback varying with the position of the load nonlinearily,

S YRR P

113
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even if the separate systems

are linear. The several coumpo- INPUT

nents of the excitation are on

one hand the dead-load weights DEAD LOAD
& EXCITER

and the eventual centrifugal x

forces caused by the rotating L
RS EXCITATIO

excentricities of the motor, the N Mowmi toab

Xo "E g F

forced movement of the roling

load along the vertival trace VERE K

of the deckplate, On the other

hand there may be dead loads or

vibrators located at fixed points

of the construction; wind- and LOCAL DEAD LOAD
& EXCITER

earthquake-forces are of this

kind, =G
The difficulties caused by { EXCTIATION | CONSTRUCTION
the continuous space-variation X

of the load in a model of dis- auzﬂﬂzm

crete concentration of parame-—
ters can be removed by the adap-
tation of the well-known lever-
law approxinately, explained in
Fig.B.

Should all effects of pos-
sible excitations taken simultancously
into consideration, then the model is
to be build up by the principles shown in
Fig.9 a. and b, The variable, nonlinear
feedback—-systems are based on the applica-
tion of the lever-rule, mentioned above and
can be easily realised electrically by means
of sliding potentiometers., The sliding con-
tacts are to be moved with such a relative
velocity, that the actual vehicle under con-
sideration may have; research studies on mo-
tor accelerations, as well as brakings can
be made without difficulties. If the model
of the moving vehicle has several degrees of
freedom, the feedback-systems are of multi-
channel type, of course,

In practice the several effects can be
studied naturally separately too, but it is
always to be kept in mind, that the systems
with space-variable loads are nonlinear and
the linear law of superposition is not yet

valid,
For practical purposes often only the

eigenvalues of the unloaded structure are of
tecihnical interest, being characteristic pa~
rameters of the total dynamical behaviour,
The spring-matrix may be generally given in
form of displacement-influenceline ordinates,
In this case even the matrix-inversion of

§—1 = Kp is redundant. Pre-nultiplying Eq./1/
by -1

K~ =H , we get another mathematical

form of the Bqg./1l/:

SYSTEM QuUTPUT

—Go
FORCE
FEEDBACK
i
DISPLACEMENT!
FEEDBACK
E X,

Fige7.
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only grounded dampings are assumed again,

Resolving Eq./6/ again into symmetric and antimetric compo-
nents, the logical block-diagram decomposes into two independent
separate parts; for the illustrative problem shown in Fig.lo.

"r—a

E X

it

3

Fig. lo.

The numerical determination of the natural frequencies leads
to the roots of a polinomial with a degree - in our case of the
illustrative problem = n = 9 with relative differences in the
coefficients of 437 dB /namely from the numerical order of the

extrene 10221/ The relative order of the roots however are only yet

about 64 4B, /namely lo / . But the technically interesting naturally

frequencies varies only in the range of f = 1 - 15 ¢/s /See Fige
11/,

With respect to the eigenvalues in analogue computation,
only the approximative shape :\cl’1 of the exact natural mode - is

needed, but not the value of the natural frequency. Giving to the

simulating dynamic

q g model the initial
° i =x'
E 3 3 2 3 condf.t:.ons x(0)= x)

5 lo 15 o -

L N L __r'f‘. . and x(o)= o, then
i=9 ] 7 6 5 3 210 9 dominant oscillati=-
P(Nl‘iai-x'.. 0 ons with the natu=

3‘;’ P ﬂ ral frequency £

2 3

| T » for :’io . . occurs, superposed
il 2 4 5 5 7 9 A; by decaying transi-

1 : — et ! +—  ents of the other

le/s 2 3 & 5 6 8 I 315 s M harmonics.For the
exact, accurate na-

Fig.11, tural mode X /ini-
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tial conditions: E(P) = x and %(p): o/ the system-oscillations

are

g(t) = X e“r!It cos £2$fn§t

without any other harmonic transients. This procedure can be used
for the very easy and very rapid iierative detemination of the un-
known eigenvalues: both mcdes and shapes.
The dynamic benaviour of a structure can be characterized by
the answer given to ideal Dirac-pulses éi(ﬂ
T T

J =J F at miggi(t)dt = mi[:'ci(T\ - :':i(o)] = m A%,
4] o]

The application of ideal puses of the same intensity J at the
mass m, can be expressed mathematically by the initial conditions:

x(0) = o ; é(o): [E,o,...,ii(o)= I/ seees0 ] . The answer func-

tions x(t), the weight-functions contain all the eigenvalues and
thus several natural frequencies can be determined from the dia-
grams of x(t)too.

Applying a constant force Fio suddenly to the mass m, is equi-
valent with the excitation caused by the step-function Fiaiét);
initial conditions: x(0)= o ; x(o0)= o, and generating vector:
G(t):[%,o,...,Gi(t)= Figl(t),...,éf ; oscillations with decaying
transients occur, having the asymptotes T

x(w)= Fo;M; = Foihu"121"""?:11""'%1] ¥

This procedure offers simultaneously an easy and very suit-
able testprogram, controling totally the entire modeling, both the
developed mathematical equations Eq./5/, both their electrical
realization.

The possibility of solving Eq./l/ for general optional exci~
tations necessitates an analogue computer with suitable capacity,
but offers the great advantage of analysing the dynamical beha-
viour by laboratory measurements; cumbersome site measurements are

. .5 1 15 2
1‘-‘ — 'O
"'. : ) V-’V-Vn! i : i Jl Il 1 { ‘L i 1 1 i 1 L -!'ﬁ
Pk Yolitef. — ‘3'{ (ol
odo $U=EL | *irexyflex,(u) x T
- Tus=vt Lal, M|
-alb ‘2;“-0,375’-115{3
(o5§205)
0 - !v
NNV =L 4
] TS| % Vé/
alo N } 3
o T \‘T/ |
1 2 l 0.5|
o.Jo

0 0.5
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to be made only to verify the theoretical results gained by dynamic
modelinge.

Such a pure theortical result is the dynamical effect of a
unique - massless force rolling with different, but constant velo=
city over a simply supported beam 24],[5]. The results of elabo=
rate digital calculations are to be verified easily by analogue
modeling. The several functions of oscillations can be gained
instantly in grafical manner /Fig.l2/. Such methods give sharp in-
side views into an important, but nevertheless vexry complex prob-
lem, covered in statics by the concept of the so called "impact
factor" [6].

If diagrams of the stochastic variations of wind- or earth-
quake effects are available, then these can be considered as the
input force and displacement generation of the structure under dis~
cussion, Dynamic modelifg conversely gives the response by simple
recording of the output.
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SUMMARY

The electric simulation of mechanical systems by means of
analogue computers makes laboratory researches of the actual dyna-=
mic behaviour of structures possible. The influence of space- and
timevariable coupling of load and structure, changes and steps in
vertical trace before or on the bridge, wind and earthquake effects
respectively can be analysed separately or simultaneously.

RESUME

La simulation électrique de systémes mécaniques & l'aide de
calculateurs analogiques permet 1'étude au laboratoire du compor-
tement dynamique réel des structures. Ainsi 1'on peut analyser
séparément ou simultanément 1'influence d'un accouplement (va-
riable dans l'espace et dans le temps) des vibrations de la char-
ge et de celles de la structure, les changements ou les gradins
dans le tracé vertical avant ou sur le pont, les effets du vent
et de tremblements de terre.

ZUSAMMENFASSUNG

Durch die elektrische Simulierung mechanischer Systeme nit
Hilfe von Analogrechner kann das wirkliche dynamische Verhalten
von Bauwerken im Labor untersucht werden., Dabei konnen die Ein-
flisse der im Raum und Zeit verdnderlichen Kopplung der Belastung
und der des Bauwerkes, Gradientendnderungen, Spriinge in der Fahr-
bahn, vor und auf der Briicke, sowie Wind- und Brdbebenwirkungen
gesondert, oder simultan untersucht werden,
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A Model for the Study of Soil-Structure Inetaction
Modéle pour |‘étude de |'interaction dans les composantes du sol

Ein Modell zur Betrachtung von Wechselwirkungen im Boden

M.E. AGABEIN
Lecturer, Civil Engineering Department
University of Khartoum, Khartoum, Sudan

R.A. PARMELEE S.L. LEE
Associate Professor of Professor of
Civil Engineering Civil Engineering

Northwestern University, Evanston, lllinois, U.S.A.

1. Introduction

The seismic response of a multi-story building based on the assumption that
the building rests on a rigid foundation has been considered by several inves-
tigators [1,2]). Observations [3) and studies (4] allowing for the flexibility of
the foundation indicated that the influence of the flexible foundation on the dy-
namic response is significant and recently this dynamic coupling gained consider-
able attention [5,6,7,8].

One way to analyze soil-structure interaction phenomena is accomplished by
utilizing the solutions for the steady state vibration of a rigid plate on the
elastic half space [7,8]. However, the application of this approach to the anal-
ysis of the transient response of the system presents fundamental difficulties
because of the frequency dependent nature of the parameters which characterize
the foundation medium [8].

The object of this study is to investigate the transient response of a long
building resting on an elastic half space using a mathematically consistent
lumped-parameter model [9) of finite size to represent the semi-infinite founda-
tion medium. Appropriate damping elements are introduced at the boundaries to
account for the energy dissipation and to reduce wave reflection. In the con-
struction of the model, the solutions to the harmonic horizontal translation and
rocking vibrations of an infinitely long rigid rectangular body on an elastic
half space presented by Karasudhi, Keer and Lee [10) are used as a basis for the
determination of the properties of the damping elements., In spite of its simpli-
city the model provides a phenomenologically satisfactory representation of the
elastic half plane, as evidenced by a comparison of the results for steady state
motion obtained by the model with the analytical solutions [10].

Also included is a parametric study of the interaction between elastic
multiple-story shear buildings and the flexible elastic foundation media as com-
pared to the response of the same structures on rigid foundation when the sys-
tems are subjected to a strong motion earthquake.



1122 VI — STUDY OF SOIL-STRUCTURE INTERACTION

Rigid Body
¢ £ , S
L B o ree Boundary
0 — o e —= X, Ui
! 3
q ! Mass Point
I — Stress Point
: v - D .
" * . amping
' 92 5y Element
f Side
' _— Boundary
. P Boundary
Layers
l Bottom Bour:icry \L -
Y.V, .
Fig. |
(i-2,j-2) F (i=1,j-1)
Q XH /Fy(i+l,j—l)
Ci-1,1-0)_ Foo li=li-1
xy =iz~ Ry i, =1
(i-2, HQ
(=1,3+0[] [ ] Ffi=h, i+ P Fayli+1, J#1)
(i-2,j+2) O Fli=t,j+) " F (il j+1)
Y,v
Fig.2 Fig.3

2. Formulation of the Model

The lumped-parameter model for planme strain problems introduced by Ang and
Harper [ 9] is used to represent the foundation medium which is assumed to be
elastic, homogeneous and isotropic., The model consists essentially of mass
points and stress points arranged as shown in Fig. 1, where the boundaries of
the model and the reference coordinates, X- and Y-axes, are indicated.

A typical interior mass point shown in Fig. 2 contains the mass m = pbZ /2
of the foundation medium, where b is the mesh size of the model in the x- and
y-axes and p is the mass density of the medium. The displacement, velocities
and accelerations are defined at the mass points. The average stresses and
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strains are defined at the stress points, which are assumed to be in a state of
homogeneous stress and strain. The strains at a stress point are determined
from the displacements of adjacent mass points, and the forces acting on a mass
point are calculated from the stresses at adjacent stress points (Fig. 3).

For small deformation and plane strain conditions, the strain-displacement
relationships for a typical interior stress point (i+l,j+l), as shown in Fig. 2,
take the form

u(i+2,3j4+2) = u(i, i)
b

ey (141, §+1) = v(i,j+2) ; v(i+2,]) (1)

€ (i+1,5+1)

ey GHLIHD) = o (i, 142) = u(@42,3) + v(i42,342) - v(1, D]

In these equations, ¢_, € and €. denote the strain components and u and v the
displacements along the and y-yaxes respectively,

The forces acting on an interior mass point (i,j) are shown in Fig. 3. The
normal forces F_ and F_ and the shearing force Fx exerted by the adjacent stress
points are equaf to the products of the corresponging average stresses and the
effective area on which they act and are given by

F (i+1,5+1) = -‘;: o, (i+1,5+)
P, (141, 541) = 12’ o, (i+1,3+1) (2)
P, (4L, 5+1) = 3 0 (41, 541)

in which o, Oy and Oxy are the normal and shearing stresses along the x- and

y-axes.

From Fig. 3, the equations of motion for a typical interior mass point (i,3)
along the x and y directions are, in view of (2),

0, (1+1,3+1) - 0 _(i-1,j-1) O (i-1,5+1) - 0 (i+1,3-1)

+ = p‘i(i:.])
b b ) (3)
o (i-3,§+1) - o (i+l,j-1) o_ (i+l,j+l) - o (i-1,j-1 )
. — T — = pV(4,5)

Applying Hooke's law to (3) and substituting for the strains from (1), the re-
sulting equations of motion of a typical interior mass point in terms of the
displacements are

% [u(i+2,342) + u(i-2,342) - 4u(i, ) + u(i-2,1-2) + u(i+2,3-2)]

+ 3‘%5— [u(i+2,§+2) - 2u(i,j) + u(i-2,j-2) - v(i-2,3) + v(i,3-2)

- v(it2,§) + v, )] = pu (4,7)

=

g [v(i-Z,j+2) + v(i-2,3-2) - 4v(i,]) + v(i+2,3-2) + v(i+2,§42) | +  (4)
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+-5%§[_v(i-z,j+2) - 2v(i,i) + v(it+2,§-2) + u(i,j+2) - u(i-2,j)
= -
+u(i,j-2) - u@@+2,j) | =p v (i,]) (4)
in which A = 2vG/(1-2Vv), G is the shear modulus and Vv the Poisson's ratio.

It is interesting to note that (1) and (4) are the central finite differ-
ence analogue of the corresponding differential equations for the continuum,
On the free surface, applied stresses are defined at fictitious stress points
adjacent to the boundary, while boundary displacements are defined at the
boundary mass points.

3. Model Size and Damping

To develop the model, the harmonic rocking of an infinitely long rigid rec-
tangular body on an elastic half space is considered. The rigid body is of width
2B with mass M per unit length and the elastic half space is approximated by the
lumped-parameter model as shown in Fig. 1. The boundary conditions are such that
the vertical displacement of the five mass points in contact with the rigid body
is ¥X, where ¥ is the angle of rotation of the body, the free surface beyond the
rigid body is stress free, the surface of contact between the base of the rigid
body and the semi-infinite medium is smooth, and the displacements of the mass
points on the side and bottom boundaries are assumed to vanish.

The equation of motion that governs the harmonic rocking of the rigid body
takes the form

n(5 + 16 1) ;% +6 ['%% BY - 2v(6,0) - 2v(6,2) - v(4,2)

2v(2,2) - 2u(0,0) - 4u(2,0) + 2u(4,0) + 2u(6,0) - 2u(6,2)

u(h,2) - 2u(2,2) | + Q) ET%E BY + 2v(6,0) - 2v(4,2)

3v(2,2) + u(0,0) + 2u(2,0) - u(4,0) - 2u(6,2) - 3u(4,2)

iwt

/B (5)

u(2,2) + u(O,Z)j =2/2 Te

in which J = J/pB* is the non-dimensional inertia, J is the polar inertia of the
body, T and w are respectively the amplitude of the applied torque and frequency
of excitation, and t denotes time.

The optimum size of the model with rigid boundaries is established by vary-
ing the dimensions of the model and solving the system of equations by a high-
speed digital computer for the static case, i.e., w = 0, For each model size
the static rotational stiffness T/Y is determined and compared with the analyti-
cal value [10] given by T/Y = mGB? /2(1-v). It is found that the larger the dimen-
sions of the model, the closer is the agreement; however the computer time re-
quired becomes excessive. The model size X = 4B (i = 16, b =B / /2) and
Y = 3.5B (j = 14) yields a static stiffness with 5% accuracy and requires reason-
able computational time, hence it will be used in the following study. For this
model size, observing the condition of antisymmetry and the boundary conditions,
the model has 104 degrees of freedom.

Next the system of equations for harmonic rocking is solved and the results
obtained showed, as expected, infinitely large amplitudes at resonant frequen-
cies. This is of course physically incorrect since in the infinite medium the
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energy is dissipated by the dispersion of the elastic waves far from the source
of disturbance. This dissipation of energy produces a damping effect which li-
mits the amplitudes at resonant frequencies. To build this damping effect into
the finite-size model, damping elements are placed in parallel to the stress
points along the two boundary layers adjacent to the side and bottom boundaries,
as shown in Fig. 1. Thus the equations of motion for the boundary mass points
contain damping terms which serve the purpose of dissipating the energy and
reducing the reflection of waves from the boundaries. The damping coefficient
c of these elements is determined by matching the amplitudes at resonant fre-
quencies with the analytical solution [10) and depends not only on the proper-
ties of the medium and the size of the model, but also on the frequency. The
value of the non-dimensional damping factor ¢ = c/pBVg, where Vg =./G/p is the
shear wave velocity, given by _

c=9-10v (6)

is found to give reasonably good results for the frequency range of interest.

Using the wvalues of ¢ defined by (6), the results for v = 0 are shown in
Figs. 4,5 and those for v = 0,5 in Figs. 6,7. 1In Figs. 4,6 the non-dimensional

amplitude ¥ = nGB® |¥| / 2T is plotted versus the frequency factor T = Bw/Vg for
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N

(hy*hz.“+hNhP\\ U various values of the non-dimensional
I 1 my inertia J. 1In Figs. 5,7 the non~di-

mensional inertia J is plotted versus

the resonant frequency factor

(h|+h2)¢k

= Bw /V , where w is the resonant
s r'’s P

L frequency. It can be seen that the
approximation of the stiffness and
damping characteristics of the elas-

k2
tic half space by the model give,

o h W
= for practical purposes, results which
jé are in satisfactory agreement with
6? ki those obtained by the analytical
2 solution [ 10] especially in the lower
EE 7 frequency range which is of primary

- Ug >t U° importance in the seismic response of

soil-structure interaction systems.

Fig. 8

4, Multiple-Story Building on Flexible Foundation

A dynamic model for an elastic N-story shear building resting on the
elastic half space is shown in Fig. 8 in the deformed state. Both interaction
rotation ¥ and horizontal translation U, of the base mass my are allowed in con-
trast to rigid foundation. The interfloor damping coefficient c,, taken as a
percentage of the critical damping in the first mode of vibration of the struc-
ture supported on a rigid foundation, is assumed to be proportional to the
flexural stiffness k; of story n to eliminate the dynamic coupling between the
various modes.

The soil-structure interaction system is represented by placing the build-
ing in Fig. 8 on the foundation model in Fig. 1, where the base mass of the
building replaces the rigid body. No slippage is allowed in this instance.
Thus the five mass points at the surface of contact undergo the same displace-
ment as the base mass, i.e.,

vV (i,0) = ¥ xi

(7

U (0,0) = U (2,0) = U (4,0) = U

In view of (7) the degree of freedom of the foundation model is 102 and that of
the interaction system for N stories is (N + 102). The (N + 2) equations of
motion for the building shown in Fig. 8 are
N N N
il 2 E: Y e\ e E: . ¢ T10
i — - 6,0) -~ u(6,2) -
U0(20l+ Otn}+\}'/il0lnhn+ anun+\/‘2mN§_ﬁU° u(6,0) u( )

- u(4,2) - 2u(2,2) - 2u(0,2) - %3 BY - v(6,0) + v(6,2) + v(4,2) + 2v(2,2)

n=0 n=1 n=1
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N
7~.+G “w T
meNszuo-u(62)+f2~y+v(60)-v(42)_i - 8 Z“n
n=0
N N N N (8)
EZaE+~i2 B+§iza+ o« B2l+) e B U
Q n n L4 3 n n n _| n n n
n=1 n=0 n=1 =1

+ GBmN '_%2. BY - v(6,0) - v(6,2) - % v(4,2) - v(2,2) - % Uy + u(6,0) -

- u(6,2) - & u4,2) - u(2, z)_| §_L[27. BY + v(6,0) - v(4,2) - 3 v(2,2)+

+7-UO-u(62)——u(42)-35u(22)+35u(02)-‘ -Uz

=1
ai}+a3i}+aﬁ-c“+16 +(——c“+c“+1)l}-il} Lty
4 o9 H n n oy n+l My noom n~1 oy n+l
(k +k ) k .
P T T =l B
in which R
o =m/m., O =m/m , &=mn/m , hn=zhi
i=1
1% =k =0 SUSEL S R ¥

and h, is the height of the n-th story, m, the mass of the n-th floor, U, the hor-
izontal translation of the n-th story caused by the free field earthquake dis=
placement Uy, and u and v are the interaction displacements of the mass points

of the foundation model.

5. Steady State Response

To examine the influence of the foundation parameters on the dynamic re-
sponse of the interaction systems, five, ten and fifteen-story buildings are
analyzed for both harmonic and transient excitations. These are single bay
shear structures with the flexural stiffnesses taken in accordance with Housner
and Brady [11] but reduced for umit length normal to the direction of vibration.
The buildings have a bay width of twenty feet, equal story heights of twelve
feet, floor unit weight of 100 psf and the values of oy are 1.5, 2 and 2.5 for
the five, ten and fifteen-story buildings respectively. The interfloor damping
coefficient ¢, is taken as one percent of critical damping. 1In addition, the
foundation medium has a unit weight of 110 pcf while Poisson's ratio and the
shear wave velocity are the parameters of this study.

ThP differential equations of motion are solved for the harmonic excitation

= Qel t, where Q is the amplitude. The ratio 8, plotted versus the shear
wave velocity Vg in Fig. 9, is the maximum response U¥ of the interaction sys-
tem divided by the corresponding maximum flexural response U of the same build-
ing resting on a rigid foundation, i.e., Vg = ®. The latter case is obtained
by solving the N equations given by (8c) with Uy, = ¥ = 0.
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Also shown in Fig. 9 are the corresponding analytical results using the
stiffnesses presented by Karasudhi, Keer and Lee [10]). 1In their study of the
harmonic rocking and horizontal vibrations of an infinitely long rectangular
rigid body on an elastic half space, both uncoupled and coupled motions are
considered. It was found, that while the uncoupled stiffnesses are in fairly
good agreement with the diagonal elements of the stiffness matrix for the cou-
pled vibration, the effect of the off-diagonal elements is significant. 1In
Fig. 9 the analytical solution using the coupled stiffnesses shows consistent
agreement with the results obtained from the model, while the uncoupled stiff-
nesses yield results which diverge from the other two solutions, Figure 10
shows the variation of the fundamental frequency f .with the shear wave velocity
given by the model as well as the analytical solution.

As the foundation medium becomes more flexibile, i.,e., as Vg decreases,
the values of 8 and f decrease monotonically as shown in Figs. 9,10. For the
three cases studied it is noted that foundation media with a shear wave velo-
city of 1000 ft/sec closely approximate the rigid foundation, and that the in-
teraction effect is significant only for lower values,

It is evident from Figs. 9,10 that the proposed model is phenomenologically
satisfactory for use in the study of thé dynamic response of soil-structure
interaction systems.
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6. Transient Response

The accelerogram for the N-S component of El Centro, California, earthquake
of May 18, 1940 is used for the.following investigation. The system of differ-
ential equations of motion is solved using the step~by-step numerical integration
procedure suggested by Wilson and Clough [127.

Figures 11 to 16 show the effect of the foundation properties on the maximum
flexural response U* and story shears S when the three interaction systems are
subjected to the above mentioned earthquake excitation in the ranges 300 < Vg <
1000 ft/sec and 0 < v < 0,5. The corresponding results obtained for rigid
foundations are also shown for comparison.

Figure 11 shows the response of the five-story building for v = 0. When
Vg = 1000 ft/sec the base shear is about 6% higher than the rigid case and then
decreases with decreasing shear wave velocity. Unlike the ten and fifteen-
story buildings, shown in Figs. 14,16, the five-story shears increase steadily
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with increasing values of Poisson's ratio as shown in Fig. 12. The high story
shears are characteristic of the response of this building to the particular
earthquake excitation. This type of interrelationship has been observed and
discussed by many investigators [2,13]. It should be noted that the first four
natural periods of the five-story building on rigid foundation coincide with as
many peaks in the velocity spectrum curve for the earthquake. This fact is the
major contribution to the large flexural displacements and high story shears.

The response of the ten-story building in Fig. 13 shows a general reduction
in story shears with decreasing shear wave velocity and even further reduction
in the lower floors (Fig. 14) as Poisson's ratio is increased from zero to 0.5.
However, this pattern of behavior is not observed in the case of the fifteen-
story building (Fig. 15) which shows a decrease in story shears in the lower
floors for Vg = 600 ft/sec, compared with the rigid case, an increase in the
middle floors and again a decrease in the upper floors. On the other hand, as
the shear wave velocity decreases to 400 ft/sec, an increase in story shears is
observed in the lower floors and a decrease in the upper floors. The effect of
increasing Poisson's ratio for V_ = 600 ft/sec results in continued decrease in
the story shears (Fig. 16) while for Vg = 400 ft/sec the decrease is only in the
lower floors followed by an increase in the upper stories,

7. Conclusions

A mathematically consistent lumped-parameter model of finite size to repre-
sent the elastic half plane for the study of initial and boundary-value problems
is presented. The proposed model is used to investigate the effects of the
flexibility of the foundation medium on the seismic response of long multi-story
buildings. Damping elements are introduced along the boundaries of the model to
dissipate the energy and reduce wave reflection. The model can be extended to
the treatment of anisotropic and/or inelastic foundation media by incorporating
the appropriate constitutive equations in the stress points.

It has been shown that the influence of the flexibility of the foundation
on the seismic response of multi-story buildings is significant. The physical
properties that affect the foundation stiffness and damping characteristics are
the shear wave velocity and Poisson's ratio.

For steady state excitations, the flexibility of the foundation results in
continued reduction in the flexural displacements, story shears and frequencies
compared to the values obtained by rigid foundation. Extending these conclusions
to the transient response is unjustifiable since the results for the latter show
no general pattern of behavior with the variation of the foundation properties
for the cases studied. The results clearly demonstrate that the effect of the
flexibility of the foundation on the transient response of multi-story buildings
depends not only on the characteristics and nature of the earthquake excitation,
but also on the physical properties of the building as well as the foundation
medium. This conclusion is in agreement with previous studies [8]. The shear
wave velocity has the effect of changing the natural periods of the interaction
system and thereby altering the energy input to the building indicated by the
ordinates of the spectral velocity curve of the earthquake excitation.
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SUMMARY Summary

A mathematically consistent lumped-parameter model of finite size to simu-
late the elastic half space for investigating the effects of the flexibility of
the foundation on the seismic response of long multi-story buildings is presented.
Appropriate damping elements are introduced at the boundaries to dissipate energy
and reduce wave deflection. The proposed model yields phenomenologically satis-
factory results as evidenced by a comparison with the results obtained by analy-
tical solutions for the steady state response of several soil-structure inter-
action systems.

A parametric study of the transient response of soil-structure systems
shows that the foundation flexibility modifies the response of the structure
in comparison with rigid foundation and that the effects depend on the physical
properties of the structure and the foundation medium, as well as the charac-
teristics of the earthquake excitation.
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RESUME

Cette contribution présente un modéle de grandeur finie,
mathématiquement valable, avec paramétres adéquats, simulant le
demi-espace élastique. Ce modele permet 1'étude de la flexibili-
té des fondations sous des secousses sismiques sur des construc-
tions longues & beaucoup d'étages. Des amortisseurs appropriés
ont été utilisés sur les bords pour dissiper l'énergie et pour
réduire la déflection des ondes. Le modéle proposé donne des ré-
sultats phénoménologiquement satisfaisants, comme le démontre la
comparaison avec les calculs analytiques sur plusieurs systémes.

Une étude paramétrique montre que la réaction de la construc-
tion dépend de la flexibilité des fondations, et que les effets
dépendent des propriétés physiques de la structure et des fon-
dations aussi bien que des caractéristiques de 1l'excitation sis-
mique.

ZUSAMMENFASSUNG

Ein mathematisch vertridgliches Modell endlicher Gridsse mit
"Unfassungs"-Parameter zur Nachahmung des elastischen Halbraums
fiir Untersuchungen der Fundamentsteifigkeit unter BErdbeben wird
flir lange mehrstdckige Bauten angegeben. Es sind an den R&ndern
Dampfungselemente eingefiihrt worden, um die Energie zu verbrau-
chen sowie die Wellenausschl&dge zu vermindern. Das vorgeschlagene
Modell ergibt phinomenologisch befriedigende Ergebnisse im Ver-
gleich mit denjenigen der analytischen Losung.

Eine Parameter-Studie der Uebergangsbestimmung der Boden-—
strukturen zeitigt, dass die Fundamentsteifigkeit die Bestim-
mung der Struktur im Vergleich mit steifen Fundamenten veridn-
dert, und dass die Wirkung von den physikalischen Verhdltnis-
sen der Struktur, des Fundamentes und sowohl als auch von der
Erdbebencharakteristik abhéngt.
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INTRODUCTION

Principles of maximum entropy is used to develop minimally
biased probability distribution functions for maximum value of the
horizontal comnonents of wind velocities. An attenpt is made to
throw some fresh ideas on the formulation of a sound statistical
model for the evaluation of wind velocities and wind pressures on
engineering structures.

Since wind velocities vary with time and space, it is shown
that wind force on a structure is not static in nature, and as
such cannot be obtained from instantaneous wind velocity by a
simple formula of a static wind force. Aan attempt is mzde to
obtain & design wind force, only by changing numerical values
of gust factors referring to size, and structural characteristicse.

In order to obtain the gust factors for determinin: the wind
loading on various structures, the space correlation of velocity
fluctuations is considered in addition to power spectrum. loreover,
the essential procedures used in arriving at the gust factors are
outlined. This evaluation is not intended to be rigorous, however,
it does describe the practical procedures and the essential
assumptions and approximations that can be used to simplify the
results into usable forme.
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2.

V| — PREDICTION OF WIND FORCES

PRINCIPLE OF MAXTHUIM ENTROPY AND ITS APPLICATION IN THE
DEVELOPMENT OF STATISTICAL MCDELS FOR WIND VELOCITIZS AND
WIND PRESSURES

The static wind pressure can be taken to be

- ~2 ;
Y = | z 2 i

f(z) = Zf’u CP() (Z2.i) ~
where PZ) is the mean pressure at a point Z above the ground, u
is the mean velocity at the level at the top of the structure in
the place where the structure will serve, is the density of
the air, and Cp(z) is the pressure co-efficient of point z o Of
course in design, the maximum wind velocity should be used in
place of the mean wind velocity in order to obtain the maximum
wind pressure from equation (2.1).

The maximum wind velocity for a given place should be obtained
by statistical means from a long record of amnuel maximum wind
velocities, For a given averaging tire of thé anmuial maximum wind
velocity record for any place, it is possible to use the principle
of maximum entropy for the estimation of the instantaneaus maximum
wind velocity and hence the evaluation of the maximum wind pressure.
The uncertainty in the value of the maximum wind velocity at any
given height can be evaluated by the specification of its entropy,
which can be expressed mathematically (1) by

o 3 () I g W)
H=-K ? % jL (2.2)

where H is the entropy or uncertainty in the value of maximum wind
velocity, K is an arbitrary constant, SLUJ) is the probability
density function of the maximum wind velocity U for the ith possible
outcome of the maximum value of the wind velocity. BLquation (2.2)
gives a measure of the uncertainty or ignorance of the true state

of the maximum value of the wind velocity. DMaximizing equation (2.2)
leads to the condition of maximum uncertainty, from which can be
derfyed “he minimally biased probability density function for the
maximum wind velocity. The form of the minimally biased probability
density function, can be shown to be giwen (2,3%j$,5) by expression
(2.3) for any given prior estimates of the mean U and the standard
deriviation @7, of the maximum value of the wind velocity.

M
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§U) = exp(- -l - a,U?) (2.3)

In equation (2.3); Qo, @ and Q, are Lagrangian multipliers., Furthermore,
it can be shown that, (4,5 )

2
Go= &) oy + Aa |1 -err(f-'-&z)] +J’“‘2{§u' (2.4)

- 2
u“l’-' —2X“+Z« 2(2.5) &
(33_)'1: 2X*+2xX*2-7Z2" (2.6, ushere z=2 Xexp(-X )-(2.7)
Q!  AX*-4x*Z+ Z* T (1-erf (x))

ay

= —— . (2.8

Thus, using the results of equations (2.4 to 2.9), and Figures 1 and 2,
the values of the Lagrangian multipliers @¢, @; amd A, can be determined
in terms of U and 07, ; and then the minimally biased probability distribution
function for the maximum wind velocity can be evaluated from equation (2.3)s
The results given by this approach are satisfactory enough for the normal
range of wind velocities which are of interest in civil engineering
applications. It has been found that actual data (5) are well-fitted by
this type of distribution. The great advantage of this type of analysis
is that all the recorded extreme values are used and that the best availe
able estimate can be obtained of the speed which is likely to be exceeded
on the average only once in any specified number of years.

Furthermore, it should be realised that wind speeds are affected by
such factors as variations in height, averaging times and topographical
effects. Some of the well-known results, concerning the effects of these
factors, on the maximum velocity distribution which are of interest in
civil engineering applications, can be directly applied, in conjumction
with the results obtained in this paper,

S DYNAMIC CONSIDERATIONS IN STRUCTURAL DESIGN AGAINST WING

In equation (2.1) for mean wind pressure, it can be assumed that
both T and C (z) are affected by the roughness of the surface of the
ground, and En fact several expressions have been developed to show the
relationships between the variations of U and C (Z), and other essential
parameters such as height above the ground, grallient velocity, and the
ground roughness coefficient.

In design, the gust pressure factor is intended to take account of
the superimposed dynamic effects of gusts. The gust factor is used in
conjunction with the mean load, so that the total design wind load should
satisfy the condition,

p@ = Gp&) (5l
mevY

.Ba.  Schlussbericht
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The value of(p(z) max)is chosen such that it corresponds to the value
of meximm design wind velocity, by the help of equation (2.1).
. In equation (3.1), G the gust factor can be expressed

GG = |+3r (B+R) (3.2)

where g is the peak factor which depends on the fundamental frequency

of vibration of the structure and time over which the mean velocity is
averaged (see Figure 3); r is the roughness factor which depends on the
location of the structure and the height of the structure above the ground
(see Figure 4); B is the excitation by background turbulence which depends
only on the height of structure above ground (see Figure 5); and R is the
excitation by turbulence resonant with structure. The quantity R can be

expressed as SF (3 2)

e
where F is the gust energy ratio (see Figure 6); S is the size reduction
factors which depends on the breadth b and the height h of the structure,
and other important parameters (see Figure 7); and p is the critical
damping ratio of the structure, this critical damping ratio, @', comprises
contributions to damping from both mechanical and aerodynamic factors.

as,

Other essential factors which sould be taken into account in design
are the problems arising from unsymmetrical loading, vortex excitation,
and aerocelastic instability. DMoreover, wind tunnel testing and meteoro-
logical tests at the site should be conducted, in order to take necessary
cognizance of aeroelastic model testing in the wind tunnel and of making
meteorological measurements at the site in all instances in which dynamic
factors are likely to be significant.

THE VARTATION OF GUST FACTOR

The wind velocity U(z,%) in a place at a given height z and time

t, can be divided into two parts, namely the mean velocity U(Z) and
the fluctuating velocity ﬁ;(z,t) as follows:
Uzt) = U@ + }J(Z)t) @4.1)

The mean square of the fluctuating velocity can be expressed in terms
of its power spectral dénsity, F(n), which is a function of the frequency n,

. o
—_— ;
U (zt) = 2 F()dn (4.2)
LT
Equation (4.1) shows that since the wind velocity is a vgrying quantity,
the value of the actual wind pressure on the structure will also vary,
and as such the value of the gust factor G can also be shown to vary.
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Some of the important factors which can contribute to this variation
include the effects of analysis time, averaging time, length of the
structure, mechanical characteristics of the structure and the variation
of the turbulent energy of the wind with frequency which can be described
conveniently by the power spectral density F(n).

The rate of decrease of the gust factor G with the length
of the structure, can be obtained by referring to differences of phase
in velocity fluctuations between two points which are apart by more than
the scale of mean eddies in the wind. In other words, it suffices to show
statistically that the air flow with maximum instantaneous velocity will
not act on the whole length of the structure. For the purpose of
mathematical formulation, space correlation between two points must be used
in addition to spectral density, F(n).

For a long structure, wind load will be greatest in the wind
direction perpendicular to the axis of the structure. The space corre-
lation TT('-‘(S) is obtained simply from the velocity fluctuations

p('xo,t) and p(:t°+3£, r ), at two points separated horizontally by a
distance X in the perpendicular direction to the wind, as follows:

TT® = ,,1(9(.,,1:) v M(Xo+ X, t) (4.3)

As shown in (4.3), the space correlation is only a function of distance
between two points, and can be shown to be:

M = peEoep[~E(1— 31)]
(4.4)

where L is the lateral scale of turbulence. When the turbulence is
isotropic, space correlation along mean wind becomes,

M= f&x9exp(-1)

(4.5)

The space correlation can now be expressed as a function of the frequency
n,

T = 2 | [Seom)]an

(4.6)

where '56‘3")‘:‘.3 the absolute value of the cross spectral density. In
homogeneous wind field, the spectral densitfes at two horizontal points
X, and (x°+x) are the same; and the correlation coefficient of
fluctuating velocity of frequency n between two points separated by a
distance C can be defined as follows,

R(x,n) = IS(I,m)I/F(-n.) “4.7)
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Finally, for this case, equation (4.3) and (4.6) can be expressed as:

Mee) = ZJ-F("'\)Q@()TL)d'n (4.8)

It is now possible to use the above results to develop necessary maximum
velocity which is likely to be exceeded on the average only once in any

specified number of years: and also to compute the necessary gust factor
G for any long structure, (see Figure B) for typical results. Also the

use of the size reduction factor S in equation (3.3), (see Figure 7),

has also taken the effect of the size of the structure into account, in

the practical evaluation of the gust factor G for various structures.

CONCLUSION

The problem of estimating maximum design wind forces and pressures
on structure can be divided into the assessments of (a) the maximum
design wind velocity, (b) the shape and pressure
sosfficients wiich are incorporated in the parameter (11),Cp (Z), and
(e) the final evaluation of gust factors and wind pressureso

A considerable degree of uncédrtainty exists in the estimates of both
the design wind speeds, the coefficients and other essential parameters
of this problem. A method of obtaining the design wind speed is described,
which is based on the application of maximum entropy techniquej and an
attempt is made to obtain the design wind force of various structures from
the formula of static wind force, only by changing numerical values of gust
factors, refereing to size and structural characteristics. Codes of
practice are often used for relevant information on factors which are
essential in this problem. However, for many structures the design demands
more detailed and specific wind-loading data than are given in codes. The
conditions under which wind-tunnel tests to obtain more specific data are
carried out required careful consideration., Properties of the local
natural wind, such as shear and turbulence, the Reynolds number of the flow,
and the influence of local topographical factors, grouping of buildings,
etc., may have to be reproduced in the wind tunnel to ensure full
confidence in the accuracy of the data.

Wind effects are important considerations for the design of safe
and economic structures, but their estimation remains subject to consi-
derable uncertainties. These uncertainties will become better understood
as improvements in the experimental facilities and wind tunnel techniques
develop, and also as more meteorological data effect improvements in the
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experimental facilities and wind tunnel techniques develop, and also

as more meteorological data effect improvents in the sgtatistical
evaluation and reliability of the long range prediction of maximum wind
speeds and pressures; and in ocur knowledge of the turbulence and shear
characteristics of the wind.
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SUMMARY

Minimally biased probability distribution functions for
maximum value of the horizontal components of wind velocities
and pressures, acting on engineering structures, are developed
using maximum entropy concepts. In order to evolve a meaningful
design wind force, it is found important to consider the dynamics
of the problem, by considering among other factors, relevant
changes in the numerical values of the gust factors referring to
size, structural characteristics, and the space correlations of
velocity fluctuations in addition to power spectrum.

RESUME

A 1'aide de conceptions d'entropie maximale on a développé
des fonctions de répartition de la probabilité les moins vagues
possibles pour les valeurs maximales des composantes horizonta-
les de la vitesse et de la pression du vent. Pour trouver une
force utile au dimensionnement, il est important de considérer
le c6té dynamique du probléme, en tenant compte entre autres
des changements importants du facteur de rafales, dépendant des
dimensions et des caractéristiques de la structure, ainsi que
des relations dans l'espace des fluctuations de vitesse en ad-
dition aux variations de puissance.

ZUSAMMENFASSUNG

Mit Hilfe Maximal-Entropie-Prinzipien werden Verteilungs-
funktionen kleinster Schiefe flr den grdssten Wert der waag-
rechten Windgeschwindigkeits- und Winddruckkomponente auf Bauten
hergeleitet. Um eine sinnvolle XKraft flr die Bemessung zu be-
stimmen, muss die dynamische Wirkung unbedingt bericksichtigt
werden, indem unter anderem die erheblichen Aenderungen des Blen-
faktors in Funktion der Abmessungen und der baulichen Charakte-
ristiken der Konstruktion sowie die r&@umlichen Zusammenh&nge der
Geschwindigkeits- und Kraftvariationen in Betracht gezogen werden.
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Response of Structures Subjected to Sonic Booms
Influence des détonations supersonigues sur les constructions

Wirkung des Uberschallknalls auf Bauwerke

GEORGE HERRMANN DUSAN KRAJCINOVIC
Professor of Civil Engineering Solid Mechanics Research
Northwestern University Ingersoll-Rand Research Center
Evanston, Illinois Princeton, New Jersey

1. Introduction

The advent of supersonic commercial air-transport operations brings with it
a host of new and different problems, such as the transient pressure generated
by the sonic boom that is associated with the shock waves stemming from the air-
craft. The response problem will involve not only people, but also structures on
the ground, and thus transient response of buildings and other structures to the
supersonic shock has to be studied.

As measurements of the history of the far-field atmospheric pressure (signa-
ture) induced by a sonic boom indicate, the loading on a structure consists of a
sudden overpressure followed immediately by a sharp underpressure. The total
duration of this applied disturbance has been measured to be of the order of a
fraction of a second. Because of the shape of this signature and the relatively
short duration time, the authors are proposing to represent the applied load as a
dipole in time. A dipole has been defined and used extensively as a generalized
derivative of a Dirac delta function only if the independent variable is a spa-
tial coordinate. Even though some work has already been carried out on the ef-
fects of the sonic boom on structures, the proposed representation of the loading
as a dipole in time (called here bipulse) has the advantage that the structural
response may be treated conveniently as a homogeneous initial value problem.

In Section 2 the proposed representation of the sonic boom loading is dis-
cussed, while the response of some simple structures is analyzed in Section 3.

A more extensive treatment of the response of structures to sonic booms,

including problems of continuous structures, will be presented by the authors in
a later study.

2. The Sonic Boom Loading

A large number of measurements of the pressure on the ground generated by
sonic booms has been recorded and published in the last few years 1]. The
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measured diagram showing the variation of the pressure with respect to time (the

Ap

Fig. 1. Pressure signature due to the sonic boom
Ap = 0 corresponds to atmospheric pressure.

signature), Fig. 1, may be closely approximated by two triangles of identical
area, Fig. 2.

|
1o I

2
5T
T >

Fig. 2. Idealized pressure signature due to the
sonic boom.

The two most significant parameters for the structural engineer are the peak
overpressure Ap and the time duration T.

According to the measurements reported in Ref. (1], the duration T is 0.04
sec for the sonic boom generated by the present-day fighters, 0.1 sec for the
largest present-day operational aircrafts, and is expected to be 0.4 sec for the
supersonic transport (SST). It has been established also that Ap is not consid-
erably different for the three cases mentioned.

In analyzing a structure subjected to sonic boom loading, it is necessary
to represent the pressure signature in a mathematically convenient manner. For
loads which have a large intensity and short duration (impulsive loads) it is a
standard procedure to make use of the Dirac delta function defined by

b(t-T) = {2 tfr

t =1

j 6(t-T)dt = 1.

-Co
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It can be shown readily that such impulsive loading may be regarded as the
difference between two step loads of the same intensity P(x) applied immediately
one after another, i.e.,

H(t-1) - H(t-T+At)
At

1lim P(x)At = I(x)6(t-1), (1)

At = 0

where H(t-1) is the Heaviside step function defined by

om0 ST
and
I(x) = 1lim [P(x)At]. (2)
At = 0
P(x) - =

It occurred to the authors that the sonic boom signature may be conveniently
represented by two impulsive loads, opposite in sign, and acting in rapid succes-
sion one after another. This implies mathematically that the signature may be
idealized by a time derivative of a Dirac delta functiom, i.e.,

6(t-1) - 6(t-T+AL) _
At

lim I(x)At - B(x)d(t-T1), (3)

where 5(:-7) is a dipole of positive unit moment applied at t = 7 on the time
axis and is defined by

S(t-T+pAt) - 6(t-T1) _ d6(t-T)
At dt

- b(t-1) = lim
At = 0

The function B(x), having the dimension of the force multiplied by the square of
the time unit, is defined as

B(x) = lim  [I(x)At]. (4)
At = 0
I(x) » =

Spatial derivatives of the Dirac delta function have been used extensively
in various branches of physics and engineering (e.g., acoustics) under the name
dipole of doublet. To distinguish these from the time derivative defined by Eq.
(3), we propose to use the term 'bipulse' for the latter.

Based on these definitions, let us now calculate the bipulse idealizing a
sonic boom signature. The impulse I(x), see Fig. 2, is
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3. Response of a Lumped-Parameter Structure

In this Section we wish to calculate the response of a simple system sub-
jected to a sonic boom loading and compare the results with the responses to
other types of dynamic loads, such as step load and an impulse. The structure
shall be considered to possess only a single mass m and a single stiffness k.
The differential equation of such a system with one degree of freedom is, in
terms of a displacement w,

where

is the natural frequency of free vibrations, t is the time, and F(t) is the ap-
plied load. The static displacement Wi due to the static force F(t) = F, is

FO FO
Vet Tk T 3 (6)
mb

The general solution to Eq. (5), as combined from the transient and steady-
state part, reads

t
w(t) = w(0)coswt + (0) ML 4 1 [ EE) gin0(cor)ar, )
0
where w(0) and w(0) are the initial displacement and the initial velocity, res-
pectively. We will confine our attention to the solution of an initial value
problem with
w(0) = w(0) = 0.

It is well known that the response to a step load results in a maximum dis-
placement

such that the so-called displacement amplification factor A =

v | /1w,
is in this case dyn max st

AH = 2. (8)

Next we calculate the response to a single impulse applied at time t = 0.
The forcing term in Eq. (5) now reads

F(t) _ Lo
B - 2 5(n) 9

resulting in a displacement



72 QA

GEORGE HERRMANN — DUSAN KRAJCINOVIC 1153

I, " I, w "
Vi T oo sinwt iir'wst sinwt. (10)

The amplification factor is now a function of the structural parameters and reads
Iow
= =0

AI o (11)

Finally, for the bipulse loading, the forcing term in Eq. (5) is

E(t) _ _ 3o
- o o(0) (12)
such that the displacement is
2
B g w5 o2 t 13
wp = o cosw T, W p cosw (13)
and the displacement amplification factor is
Bow” 14
Ag = =2, (14)

which again depends on the properties of the structure.

It is useful, now, to define the ratio p between the maximum displacement
due to the bipulse and due to the impulse, i.e.,

iwB maxI Bow

T = . (18)
|w | T
I max
; 2
Since By = 3 T I,
\» can also be written as
o= % Tw. (19)

The limiting value w* of the natural frequency of the free vibrations of the
system, above which the bipulse induces larger displacements than the impulse is,
according to Eq. (19), obtained for p = 1. Using the values of T for the three
different aircrafts mentioned in Section 2, we obtain

3 -1
7(0.05) 37.5 sec (fighters)

* . J 3 __ a =1 .
w < 3(0.1) 15 sec (present-day aircrafts) (20)

= 3.75 sec™! (SST)

LZ(O.A)

It is obvious from the numerical values given above that the representation
of the sonic boom by a simple impulse, as this is sometimes assumed, may lead to

Qrhliicchariche
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results which greatly underestimate the structural response.

As an illustration let us consider a cantilevered beam of length £ and mass
per unit of length m. If only the lowest mode is assumed to contribute to the
response, the corresponding natural frequency of free vibrations is known to be

2 20 EI
w® =3 ==,
9mi

where EI is the flexural rigidity. If w* is taken as 15 zsec-1 (largest present-
day aircrafts), then for

-]% > 33.7 sec:"2
me

the response to a bipulse is larger than that to an impulse.

Note that for w = 1 the duration of the bipulse is almost 1/4 of the natural
vibration period. This means that the proposed idealization leads to an over-
estimation of displacements. Consequently p = 1 may be regarded only as a lower
bound under which sonic boom results in smaller displacements than predicted by
an impulsive load.

4. Conclusions

Having proposed that the effect of the sonic boom on a simple structure may
be represented as a dipole in time ("bipulse'), the authors show that this ideali-
zation leads to convenient mathematical analysis. The commonly used displacement
amplification factor as a measure of the severity of dynamic response is intro-
duced. It is shown that the amplification factor depends on the free vibration
frequency of the structure and that, consequently, some structures undergo larger
displacements due to the bipulse load than due to other types of dynamic loads
(such as impact load). The procedure is exemplified by a simple discrete system.

In a later paper the authors intend to treat the problem in greater detail,
proving that it reduces to an initial value problem and extending it to continuous
systems.
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SUMMARY

It is suggested in this paper that the loading on structures induced by the
sonic boom generated by supersonic aircraft can be represented by a dipole in
time. The term "bipulse" is introduced for this type of transient loading. It is
shown that simple structures subjected to such bipulse loading may be conveniently
analyzed and the response readily compared with that due to other types of dynamic
effects such as, for example, step loading and impulsive loading.
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RESUME

La rédaction suggeére de représenter la charge appliquée &
une construction due a4 une détonation supersonique par un dipdle
du temps. On- introduit le terme “"bipulse" pour désigner ce type
de charge variable. Cette charge "bipulse" peut étre facilement
analysée et son effet comparé & celui d'autres types d'effets dy-
namiques comme charge progressive ou charge impulsive, dans le
cas de structures simples.

ZUSAMMENFASSUNG

In diesem Beitrag wird vorgeschlagen, dass die aus Ueber-
schallknall der Ueberschallflugzeuge entstandene Belastung durch
ein Dipol der Zeit dargestellt werden kann. Der Ausdruck "Bipuls"
ist flir diese Art verdnderlicher Belastung eingefiihrt worden. Es
wird gezeigt, dass einfache Bauwerke unter solcher Bipulslast be-
quem geldst werden konnen, und dass die Antwort leicht f&llt ver-
glichen mit jenen, die anderen dynamischen Wirkungen unterworfen
sind, zum Beispiel Stufenlast und impulsiver Last.
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Untersuchungen iiber den Erregungscharakter winderregter Querschwingungen
kreiszylindrischer Stabe im unterkritischen Reynolds-Bereich

Investigations in the Subcritical Reynolds Range on the Nature of Wind-Induced
Lateral Vibrations of Circular-Cylindrical Tubes

Recherches dans le domaine sous-critique de Reynolds sur la nature des vibrations
latérales, provoquées par le vent dans un tuyau circulaire-cylindrique

W. HOYER G. HOLZEL
Prof.Dipl.-Ing. Dr.-Ing.
Technische Universitdt Dresden
Lehrstuhl fir Technische Mechanik und Baudynamik

1. BEinleitung

Turbulenter Wind kann elastische Stdbe zu Schwingungen in
Windrichtung erregen (Borges [1]). Bei gleichmdBigem Wind und
besonders bei relativ niedrigen Geschwindigkeiten werden oft
starke Schwingungen beobachtet, die senkrecht zur Windrichtung
erfolgen, Schiden infolge derartiger Querschwingungen sind bis-
her von dlinnwandigen, schlanken Stahlkonstruktionen mit geringer
Eigendampfung und kreisformigem Querschnitt bekannt, z.B. von
Stahlschornsteinen, stdhlernen Fernsehtiirmen und sStahlrohrkon-
struktionen.

Fur beliebige Querschnittsformen kommt eine Grenzschicht-
ablosung mit Wirbelbildung und flir aerodynamisch instabile Quer-
schnitte zusdtzlich eine Selbsterregung als Querschwingungsur-
sache in Frage. Der Kreisquerschnitt ist als aerodynamisch in-
different aufzufassen, so daB er nur durch Wirbelablosung erregt
werden kann.

Im unterkritischen geynolds—Bereich Re<<Rekr==_5,5.105 be-
obachtet man filir Re > 10 im Nachlauf hinter einem umstromten
Zylinder eine regelmdBige, alternierende Wirbelschleppe (Karmé&n-
sche WirbelstraBe) mit einer konstanten dimensionslosen Wirbel-
frequenz S = 0,17...0,20 (Bild 1).

Reynoldsche Ahnlichkeitszahl

V_...@._._.___,__ N 1 v = 1,45.10™ n°/s fir
\—WG)__@,V_}‘______@__J_ L'Llft bel 150 C U.D.d
bod e} 70 s
D 1=4D Strouhal—Zahl
Bild 1: KArménsche WirbelstraBe S = S(Re) = 3{,13 (2)

f - Wirbelablosefrequenz
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Auf Grund dieser periodischen Wirbelanordnung wird bisher
allgemein fir die Quertriebserregung eine harmonische Kraft mit
diskreter Frequenz angenommen (z.B. Novdk [6]).

Auftrieb (Quertrieb) A(t) = cA(t).q.D (3)
q = % 9.V2 - Staudruck

. . s . S.v
Quertriebsbeiwert CA(t) = cA.SLn(2IL—5— t) (4)

Der von Drescher [2] am starren Zylinder im Wasserkanal ge-
messene Verlauf der Quertriebskrafte weist zwar eine etwa kon-
stante Periode auf, die Amplituden zeigen aber groBere Schwankun-
gen, Weaver [8] spricht von einer "sinusférmigen" Kraftfunktion
mit zufalliger Amplitude und erfaBt die Amplitudenschwankungen
durch Angabe der Wurzel aus dem statistischen Amplitudenquadrat-
mittel E; = ch ; die in Gleichung (4) formulierte Erregerart be-
halt er “aber “bei,

Im Uberkritischen Stromungsbereich Re > Rekxr beobachtet man
einen regellosen Nachlauf ohne dominierende Wirbelfrequenz. Fung
[3] faBt die Erregung als stationidren stochastischen ProzeB auf
und gibt Spektraldichten an, Damit konnen die winderregten Quer-
schwingungen im uUberkritischen Bereich erklart werden, die kei-
nen Resonanzcharakter aufweisen und in der Eigenfrequenz der Kon-
struktion erfolgen.

Fir Bauwerke mit groBem Durchmesser (z.B. Schornsteine) ist
im allgemeinen der iiberkritische Re-Bereich maBgebend, fiir Bau=-
teile mit kleinem Durchmesser (z.B. Stahlrohrstibe von Fachwerk-
konstruktionen) der unterkritische Re-Bereich.

2+ Widerspriche im unterkritischen Re-Bereich

Fir die zu beobachtenden Amplitudenschwankungen fehlt eine
exakte Erklarung. Die analytische Darstellung einer harmonischen
Kraftfunktion mit regelloser Amplitude ist mathematisch nicht
einwandfrei, Die im Windkanal gemessenen Schwingungsbeanspruchun-
gen zeigen ein resonanzartiges Maximum (Bild 2), wenn die Wirbel-
frequenz f mit einer Eigenfrequenz ny des Stabes ubereinstimmt.
AuBerhalb dieser kritischen Geschwindigkeit treten aber wesent-
lich groBere Amplituden auf, als sie sich theoretisch mit obiger
Annahme (4) ergeben miBten, Die Schwingungsfrequenz miiBte linear
mit der Windgeschwindigkeit ansteigen, beobachtet wird aber vor-
wiegend besonders bei kleiner Eigendampfung die Stabeigenfre-
quenz, Bei kleinen Anblasgeschwindigkeiten V= 0,5.V, , kann man
besonders bei groBerer Dampfung ein Gemisch aus der

igenfre-
quenz und der zu V gehorigen K&rmé&nschen Wirbelfrequenz f fest-
stellen, ebenso im Bereich nahe der kritischen Geschwindigkeit,
wo sich dieses Gemisch als Schwebung &duBert.

Die bisher iibliche Deutung, daB die Wirbelablosung auch
auBerhalb der Resonanzstelle vom schwingenden Stab gesteuert wer-
de und deshalb stets die Eigenfrequenz beobachtet werde, kann fiir
sehr kleine Auslenkungen bzw, fiir Verhdltnisse der Schwingge-
schwindigkeit zur Windgeschwindigkeit von weniger als 0,1 % (z.B.
fur v ==1,5.Vkr) nicht als zutreffend angesehen werden und ist
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CA /
8 nq-0 L0 1 Drescher| .
| ¥ Vir= —5— (Mittelwert)
08 Novdk
E:‘?ot;ucmung im Wind - Wegver=md
200 h 0,6 <
theor. Resonanzkurve
(nach Gl.4) 0k
100 Bishop
0,2 4
50 Penzien™~—_| 1
|
1 i | : n=7-M 'I=l 0 Geqard/ ' I | Re
% o5 1 15 2z 25 Yir M 2 5 0% 2 5 105 Rey

Bild 2: Schwingungsverhalten Bild %: Quertriebsbeiwerte c
fir ¥ ~ 0,01 (Quellenangaben in [5&)

inzwischen experimentell widerlegt, Bei Versuchen im Windkanal
der Technischen Universitat Dresden wurde festgestellt, daB die
Wirbelfrequenz im Nachlauf hinter einem in der Eigenfrequenz
schwingenden Schornsteinmodell linear mit der Anblasgeschwindig-
keit ansteigt. Diese Messung bestadtigt die im Abschnitt 3 vorge-
legte Hypothese,

Versuche mit gelenkig gelagerten Stahlrohren zeigten Reso-
nanz bis zur 4, Eigenfrequenz, Das Auftreten dieser hoheren
Eigenformen setzt voraus, daB in Stablangsrichtung veradnderliche
Quertriebskomponenten wirken. Nach der bisherigen Annahme der
mit der Wirbelabldsung wverbundenen Kraftwirkungen ist diese Er-
scheinung unter Beriicksichtigung des Helmholtzschen Wirbelsatzes
nicht erklarbar.

Die von verschiedenen Autoren angegebenen Quertriebsbeiwer-—
te cp fir Kreiszylinder (im Bild 3 sind einige wichtige Werte
dargestellt) schwanken auBerordentlich stark und sind als Grund-—
lage fir eine Bemessung sehr unbefriedigend.

Gerrard [4] hat an einem starren Kreiszylinder eine Fre-
quenzanalyse des Oberfliachendruckes, allerdings nur fiur einen
einzigen Punkt des Querschnitts, durchgefiihrt und entgegen der
Erwartung ein Spektrum statt einer diskreten Frequenz messen
konnen,

Die angefiihrten Widerspriiche und Unklarheiten fiithren zu dem
SchluB, daB die bisher angenommene harmonische Erregung trotz
der periodischen WirbelstraBe nicht dem tatsdchlichen Erregungs-
charakter entspricht,

%, Hypothese einer schmalbandigen spektralen Erregung

Direkte Messungen der Quertriebskrafte am schwingenden Zy=-
linder sind nicht bekannt., Es muB aus den aus der Literatur be-
kannten Tatsachen und aus den eigenen im Niedergeschwindigkeits-
Windkanal der Technischen Universitidt Dresden durchgefihrten
Versuchen auf die Erregungsart geschlossen werden,
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Alle bekannten Erscheinungen sind nur erkldrbar, wenn fir
die Quertriebskraft A(t) bzw. den Quertriebsbeiwert cp(t) nach
Gl. (3) eine stationdre Zufallsfunktion mit einem schmalbandigen
Spektrum angenommen wird., Mit Hilfe der Enveloppenmethode der
mathematischen Statistik (siehe z.,B. Sweschnikow[?]) 1iBt sich
nachweisen, daB ein derartiger stochastischer ProzeB mit einem
Spektrum 4 S/ = Aw fwrpr << 1 (Bild 4b) als Realisierung eine
sinus-dhnliche Kurve mit etwa konstanter Periode und langsam ver-
anderlicher Amplitude ergibt. Die Frequenz entspricht dabei der
mittleren Bandfrequenzwyre. Die Amplituden sind nur als stati-
stische Wahrscheinlichkeitswerte darstellbagr. Der von Drescher
gemessene Quertriebsverlauf stimmt mit einer solchen Realisie-
rung uberein,

Die Stromungsvorgange am Kreiszylinder und die dabei auf-
tretenden Kraftwirkungen konnen etwa folgendermaBen gedeutet wer-
den: Der Nachlauf in einer gewissen Entfernung hinter dem um-
stréomten Querschnitt ist zwar entsprechend dem Kirmé&nschen Sta-
bilitdtsnachweis periodisch, am Korper selbst sind aber Storun-
gen moglich, die rasch abklingen, Die Kraftwirkungen am umstrom-—
ten KoOorper konnten also zundchst regellos sein, vom Nachlauf
wird rickwirkend ein gewisser Rhythmus aufgezwungen, so daB sich
ein schmalbandiges Spektrum ergibt, dessen Realisierung eine Pe=-
riode entsprechend der Nachlauffrequenz aufweist,

Die Quertriebserregung wird als stationarer stochastischer
ProzeB aufgefaBt, Die statistischen Mittelwerte fiir den Kreis-
zylinder lauten

1/2 172
cy(t) = lim %j cy(t)dt =0 cAz(t) =lim %JcAz(t)dt=const. (5)
T=00 -1/2 T-00 112

Fir die Erregung wird eine Frequenzanalyse mit Hilfe des
Leistungsspektrenverfahrens (Power-Spectral-Method) durchgefiihrt,
die zu einer Spektraldichte ¢ p in Abhingigkeit von der dimen-
sionslosen Frequenz S flihrt., S entspricht formal der Strouhal-
Zahl nach Gl, (2). Um das Einflihren zweier Parameter zu vermei-
den, wird ¢ A(S) nicht wie bei Fung [3] normalisiert, sondern
die oSpektraldichte wird so definiert, daBl der Inhalt des Spek-
trums gleich dem quadratischen Quertriebsmittelwert ist. Eine
ausfiihrliche Darstellung der folgenden Entwicklungen ist in [5]
zu finden.,

§=0

Wenn Realisierungen cp(t) bekannt widren, konnte @p (S) aus der
Korrelationsfunktion Rp(T) ermittelt werden,
Die Schwingungsgleichung eines quererregten Stabes lautet:

y EoJow" )"+ 20w, oWpeW = A(X,t
[y * ) 57 R el = A (D)

[ EJ.D,u w! :aW(§!t2 & :aw(fztz

z'w
M- Massenbelegung
E.J - Biegesteifigkeit
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Durch Entwicklung der Schwingungsauslenkung w(x,t) nach Eigen-
formen wk(x)

Wity 6) = = q () ew () (8)

erhédlt man ein System verallgemeinerter Schwingungsgleichungen,
Fir die k—te Eigenform gilt

i & . (%)

q‘k(t) + ?kwkoqk(t) + wé"lk(t) = Qﬁk (9)
w - k-te Eigenkreisfrequenz
Sy = u%-%gg - logar. Dekrement der Dampfung
Qk(t) = J A(X,t).wk(x)dx Mk "-_'j{l (X)-W]i(x)dx

Die Verteilung der Iuftkraft A(x) bzw. ihres Beiwertes cA(x)
ist auch in Stablangsrichtung x als statistischer ProzeB aufzu-
fassen, Da die Korrelationsfunktion

RA(AX) = CA(X).CA(X+AX) (10)

noch unbekannt ist, wird vorlaufig diese Verteilung determiniert
durch Entwicklung nach den Eigenformen erfalt

o (x) - wi(x)
e (&) = = e p(0)e framTma (11)

Das Spektrum der Systemauslenkung in der k-ten Eigenform
erhdlt man iber die Betrachtung der Belastung als regellose Im-
pulsfolge und iiber die Korrelationsfunktion der Auslenkung zu

2 il
$. g D W S

2 =
Fuok ()= Gl Tt gy i (@) Pak(9) *T e T, (12)

2 1 "
< w) = - Frequenzibertr
k ( U'ﬂfﬂ*ﬁég'ﬂg q agung

Der quadratische Mittelwert der generalisierten Auslenkung er-—
gibt sich damit als Inhalt des Spektrums

2 a2 P Py (S) - dS
g~ D , Ak
@h (- W o Sion-ni)a v (13)

Y - -
9l(t) = [ (w)-dw =

w=0

Da ¢, (S) abhdngig von Re ist, erscheint eine technische Ni-
herungslosung des Integrals der Gl. (13) zweckmdBiger fir die
praktische Anwendung als eine "strenge" Losung fiir eine angenom-—
mene Vergleichskurve. Die Frequenziibertragungsfunktion £2 (w)
nach Gl. (12) kann als sehr schmalbandiger Filter aufgefaBt wer-
den, der im wesentlichen nur die der Eigenfrequenz ny entspre-
chende Erregungsintensitéat Pax (Sx) = Fa(Sy) passieren 1ldBt. Da
die Querschwingungen nur bei schwach gedampften Systemen inter-
essieren, fiir die % £ 0,05 angenommen werden kann, ist der Feh—
ler der Naherungsldsung mit der Annahme ¢p (S) =~ const ("weiBes
Rauschen") klein gegenuber anderen Unsicherheiten (z.B. Dampfung,
Turbulenz, MeBfehler fir ermittelte Spektraldichten ua.). Fur
4= 0,05 betrdgt der Fehler fiir die Amplitude ca. 15 %, er nimmt
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etwa linear mit der Dampfung ab,
Mit dem Amplitudenwert wZ = 2,w’(t) gilt fir die k-~te Eigen—
form an der Stelle x der maximalen Auslenkung

Vk q-0- VS - Yéa(sy) _ ngeD
wo?m,"" 4T pon2 Vo Sk= "V (14)

Zum Vergleich dazu gilt nach der herkommlichen Auffassung im Re-
sonanzfall

Res  q-D-Cay
kWrr:u.x - ‘*IH'"i-@'k (15)

Wenn fiir V £ Vkr die Losung der Gl. (13) vollstdndiger erfaBt
werden soll, kann nach Bild 4 geschrieben werden

1’k . _9:D Sk -84 BkY (Skr)-AS
Wrznax(ﬂ -~ lq.'I'y.-nkz[V 29, ¥ X (1"er|( )] (16)

&Ly o Mit der hier vorgelegten Hypo-
these einer schmalbandigen
statistischen Erregung konnen
alle bisher bekannten Wider-
AJL__ spruche gelost werden. Im Bild
T 10 Nk 4 ist fiir zwei Fdlle angedeu-
’ ' tet, welche Formen das Spek-
Vén Yoa trum der Systemreaktion anneh-

AS men kann. Daraus sind das Vor-
k. herrschen der Eigenfrequenz,

das Auftreten von Schwebungen
S und der K&rm&nschen Frequenz
9 Skr Ske besonders bei grdBeren Diampfun-
gen ersichtbar.

3]
3

A 0 S

Wi Wk
Vi=Vir V< Vip

Bild 4: Zusammenhang zwischen Frequenziibertragsfunktion (a),
Erregerspektrum (b) und Spektrum der Systemauslenkung
(¢) nach Gl, (12)

4, Ergebnisse der durchgefiihrten Versuche

Im Windkanal wurde das Schwingungsverhalten an gelenkig ge=
lagerten Stahlrohren von 32...108 mm Durchmesser und 1,5 m bzw,
2,5 m Lange und an einseitig aufgehangten Stahl- bzw, Holzzylin-
dern von 89 mm bzw. 200 mm Durchmesser gemessen (siehe [5]). Die
Dise hatte einen Durchmesser von 2,0 bzw, 5,0 m., Die Kanalturbu-
lenz in der offenen MeBstrecke betrug ohne Berucksichtigung
einer gewi;sen Pulsation des gesamten Geschwindigkeitsfeldes
0,10000,2 Oe
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Der gesamte Verlauf der registrierten Querschwingungen
konnte nicht durch einen Beiwert nach Gl. (4) dargestellt wer-
den. Aus den MeBwerten einer Vielzahl von Versuchen wurden Spek-
traldichten nach Gl. (14) ermittelt., Fir alle Versuche mit
gleichartig gelagerten Stdben ergaben sich im durchfahrenen un-—
terkritischen Bereich gleiche Kurven fir die Spektraldichten,
Nur die maximalen Ordinaten (fiir die kritische Frequenz Skp) er—-
wiesen sich als Re-abhidngig. Um die Versuchsergebnisse auf St&dbe
normagler Schlankheit im natirlichen Wind {ibertragen zu koOnnen,
wurden bei den Versuchen keine Endscheiben wverwendet. Dadurch
zeigte der Verlauf der Spektraldichten fir beide Modelltypen
Unterschiede., Fir die gelenkig gelagerten Stahlrohrmodelle ist
die Umstromung im Stabmittelbereich maBgebend filir die Schwin=-
gungserregung, wiéhrend bei den auf der einen Seite federnd und
auf der anderen Seite gelenkig gelagerten Zylindern die Stro-
mungsverhdltnisse am beweglichen freien Ende bestimmend sind,
wobeli sich infolge eines Beluftungseffektes qualitative Unter-
schiede ergeben,

Bei den gelenkig gelagerten Sté&ben nahm die kritische Fre-
quenz (Sxp = 0,17...0,20) mit steigender relativer Amplitude
w/D ab. Diese Beobachtung entspricht dem Steinmanschen Verstar-
kungseffekt, der als Wirbelstralenverbreiterung gedeutet wird.
Der Wert nach Steinman

v = 1+1,54.w/D (siehe z.B. Weaver [8]) (17)

wurde bestatigt. Dagegen lag die kritische Frequenz bei den Zy-
lindermodellen konstant bei Skgpr =~ 0,145. Bemerkenswert ist das
Auftreten eines zweiten Maximums bel letzteren Modellen fiur

S < 0,05. In einigen Fallen muBten die Versuche wegen zu groBer
Beanspruchungen (Schwingungen in der Grundfrequenz bei einem
Mehrfachen der ersten kritischen Geschwindigkeit) abgebrochen
werden.

Die Wahrscheinlichkeitsvertei-
Pwo) Rayleigh - Verteilung lung der.Erregung ist nicht be-
W% — —— — — [~ aet kannt. W:_er eine Gau.[ﬂsche Nor-
I/ malverteilung oder eine der
I g Normalverteilung nahekommende
max w, /Dx05% Verteilung angenommen, dann
max wo/Bx1,5% muBte die Systemreaktion eine
50%; wo /D =x25% Normalverteilung aufweisen
! wo /D % 50,/0 (Sweschnikow [ 7]), bzw. wenn
iy nur die Amplituden betrachtet
£ werden, miilte sich eine Ray-
e leigh-Verteilung (Bild 5) er-
0 & == oz "o geben, Fir kleine relative Am-
Vwa 2-Tw plituden w/D < 0,5 %, die durch
=Yz Vol kinstliche Zusatzdampfung er-
. . z zielt wurden, stimmt die gemes-
Bild 5: i}gm&isgge Walér.si:hem- sene statistische Verteilung
d;g A;llfﬁigezl ung mit diesem theoretischen Wert
P etwa iliberein, Bei gréBeren re-
lativen Amplituden, wie sie fiir
Vkr bei kleinen Démpfungswerten stets auftreten, konnte eine zu-
nehmende Amplitudenstabilisierung (Bild 5) beobachtet werden, so
daB statt des Wahrscheinlichkeitswertes Yw,f der determinierte
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Wert wy geschrieben werden kann., Diese Erscheinung kann als
Selbststeuerung oder Rickkopplung gedeutet werden., Eine mathe-
matische Darstellung dieser Kopplung der Erregerkraft mit der
Systemreaktion kann nicht gegeben werden,

5. Berechnungswerte

Von den gelenkig gelagerten Modellen wird auf Stabe, die
an beiden Enden gehalten sind (eingesapnnt oder gelenkigs, eX—
trapoliert und von den einseitig federnd aufgehidngten Zylindern
auf Stdbe mit einem freien Ende (Kragstabe).

57+ Querschwingungen von Staben, die an beiden Enden gehalten
sind,

Die aus den Versuchswerten ermittelten Kurven ¢p(S) wurden
auf eine gemeinsame kritische Frequenz Sk; = 0,19 bezogen (Bild

7). Diese Strouhalzahl S* gilt fiir den“starren® Stab (w = 0).
Die kritische Frequenz und die kritische Geschwindigkeit &ndern
sich beim schwingenden Stab um den Verstarxungsfaktor Y nach
Gl., (17) auf die Werte

DyeeD

1 ox
Ser = y+5kp Vi, xp = Ve Vi kp =V - 0,19 (18)

Fir die praktische Bemessung interessiert meist nur die Bean-
spruchung im "Resonanzfall" (fir die kritische Geschwindigkeit).
Die Spektraldichte wird fiur die zugehorige Reynoldsche Zahl aus
Bild 7 entnommen. Zunachst ermittelt man die Schwingungsaus-
lenkung w¥., Die tatsidchliche Auslenkung in der k-ten Eigenform
an der Stelle x der maximalen Amplitude erh&dlt man durch Multi-
plikation mit dem Verstarkungsfaktor nach Bild 6.

k *
* v 3 Wwg s mox
M =3 Q*. ‘/S:-V@A(S:) kWo:max = vy Dm 'D (19)
V3 Handelt es sich um ein schwingendes

System mit einem winderregten Stab,
kann die Schwingungsamplitude durch
1.6 Multiplikation mit dem Faktor Mf /My
ermittelt werden. Mﬁ ist die genera—
lisierte Masse des erregten Stabes
144 nach Gl. (9), My die generalisierte
Masse aller schwingenden Stabe in
der k-ten Eigenform.

1.2 5.2. Querschwingungen von Kragstidben
" Fir Stdbe mit einem frei um-

10 w/D_  stromten Ende gilt als kritische

0 5% 10% 5% strouhalzahl Skpr =~ 0,745. Die kriti-

sche Geschwindigkeit betragt in der

. ersten Eigenform
Bild 6: Verstarkungsfaktor nq.D

Vi,kr = 0,755 (20)
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YoA (Sc®)'= max V@, Yoa(S*y
I
12 4 : 12 1
*¥<019 :
10 - | 104
|
1
8 - ?Luidfc;\WIngung: 8 1 Re =210 k=1
I
6 I 6
~ o S~ Re=2-105 k=1
~ |
4 ~ 4 A
e k=2...4 |
7] \-J.___‘__ : 2] 4
. i L 01 Sk -
0 2 8 WS 2 Re g 005 Ot O §Fo2 03 §F

Bild 7: Spektraldichten glatter kreiszylindrischer Stdbe mit un-
verschieblichen Stabenden im unterkrit. Re-Bereich

Entsprechend den Messungen wird v 1 gesetzt. Die Schwingungs—
auslenkung betridgt in der ersten Elgenform (MeBwerte fir hohere
Eigenformen liegen nicht vor)

D -V5; - VOa(Sy Ny D
SRS /1 Oy @)
o YOR Y65 uberkritischer
lf a(S) Re-Bereich
6 fm&;qms% .
\ |
bl T~ 4] 4 Re =(4.5...7)-10°
|
! Spitze fur | _ 5
21 L 2Re=(2..3)10f 21 Fe =840
| T 11 . ~.
§ — DRNET R . A e ; Rl e, e
§-10% 10° 2 Re 0 o005 01 02 03 S¢ 0 o 01 02 S

Bild 8: Spektraldichten glatter kreiszylindrischer Kragstidbe

Die hier gemessenen Werte im iiberkritischen Bereich sind
fiir S £ 0,1 etwa 5-fach groBer als die Angaben nach Fung [3],
die allerdings nicht fiur Kragstidbe gelten. Ein Vergleich mit den
Beobachtungswerten an den Stahlrohrpendelstlitzen der Bogenbriicke
bei Zddkov in der CSSR zelgt, daB wesentlich groB8ere Amplituden
auftreten konnen als nach Fung flir gleiche Geschwindigkeiten zu
erwarten waren,

6, Ubertragungsmoglichkeit auf Bauteile im natiirlichen Wind

An einzelnen Stahlrohr-Fachwerkstaben einer Kurzwellen-
richtantenne wurden beil ganz bestimmten, eng begrenzten Windge-
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schwindigkeiten relative Doppelamplituden von 10...15 % beobach-
tet. An einigen Stabanschliissen mit breitgedriickten Rohrenden
sind dabei Risse infolge Dauerbruch aufgetreten, Die beobachte-
ten Auslenkungen stimmen mit den hier angegebenen Berechnungs—
werten unter Zugrundelegung an der Antenne gemessener Dampfungs-
werte liberein, Dagegen ergdben sich mit der Annahme nach Gl, (4)
im Resonanzfall fiir cp = 0,8 (z.B. Novék [6] ) etwa 2,5-fach
groBere Beanspruchungen. Da die Spannungen in einem Rohrstab

fir die kritische Geschwindigkeit etwa linear mit dem Verhalt-
nis D/t (t - Wandstdrke) sowohl nach Gl., (14) als auch nach der
herkommlichen Annahme Gl, (15) anwachsen, ist es unter Beriick-—
sichtigung des angegebenen Beiwertes cp = 0,8 kaum moéglich, Kon-
struktionen aus sehr diinnwandigen Rohren auszufiihren., Aus Grin-—
den der Wirtschaftlichkeit ist es deshalb unbedingt erforderlich,
die bisherige Annahme durch eine Darstellung, die die tatsachli-
chen Verhaltnisse besser zu erfassen versucht, zu ersetzen,

Bei diinnwandigen Stédben kleiner Schlankheit (steife Stdbe),
bei denen die Resonanzgeschwindigkeit im Bereich der maximalen
Windgeschwindigkeit liegt, konnten theoretisch sowohl nach der
bisherigen als auch nach der hier vorgeschlagenen Annahme Bean-—
spruchungen auftreten, die die FlieBgrenze normalen Baustahls
uberschreiten., Beobachtet wurden aber unseres Wissens bei grofen
Windgeschwindigkeiten keine gefdhrlichen Querschwingungen, da
diese im unterkritischen Re-Bereich nach Bild 2 nur in einem
sehr engen Geschwindigkeitsbereich auftreten, Mit groBen Wind-
geschwindigkeiten ist im allgemeinen eine sehr starke Turbulenz
bzw. Boigkeit verbunden, so daB sich groBe Schwingungsamplituden
in Querrichtung nicht ausbilden konnen., Um diesen Erfahrungswer-
ten im natiirlichen Wind nahezukommen, wird vorldufig mangels bes—
serer Kenntnisse vorgeschlagen, von einer bestimmten Geschwindig-
keit ab (z.B. flir V > 15 m/s) die errechneten Querschwingungsbe-
anspruchungen abzumindern.

Eine Voraussage der zu erwartenden Dampfungswerte fiir eine
bestimmte Konstruktion ist bisher nicht méglich, Fir die hier in
Frage kommenden Bauteile wurden an verschiedenen geschweiBten,
diinnwandigen Stahlkonstruktionen stets sehr niedrige Dampfungs-
werte ermittelt. An Stahlrohrstiben einer Fachwerkkonstruktion,
an Stahlrohrpendelstiitzen einer Bogenbricke und an frei hangen-
den Stahlrohr-Pipe-Lines hat man logarithmische Dekremente der

Dampfung in der GroRe
S 2 0,007.4.0,03 (22)

gemessen, Fur die Bemessung von Stahlkonstruktionen wird ein
Wert in dieser GroBenordnung empfohlen,

7. Offene Probleme

Um fir die Ubertragbarkeit auf den natiirlichen Wind bessere
Kriterien als oben angegeben zu finden, ist es erforderlich, die
Spektraldichten in Abhangigkeit von der Turbulenz zu bestimmen,
d.h. die Turbulenz im Kanal muBl planméBig variiert werden konnen,
Im natiirlichen Wind sind Turbulenzmessungen in einem solchen Um-
fang erforderlich, daB fiir jeden Ort und jede Hohe Wahrschein-
lichkeitswerte fir die zu erwartende Windturbulenz angegeben wer-
den konnen.
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Am Stab sind weiterhin Messungen der Korrelation der Quer-
triebskrifte in Stablangsrichtung nach Gl. (10) erforderlich,
d.h. in zwei benachbarten Querschnitten sind im variablen Ab-
stand Ax synchrone Oberflachendruckmessungen erforderlich.

Im natiirlichen Wind ist besonders fiir die Anwendung auf hohe
Bauwerke wie Maste und Tirme die raumliche Korrelation der Wind-
geschwindigkeiten zu messen. Die Werte, die im Windkanal fir
kleine Stdbe und mit einer konstanten Geschwindigkeit liber die
ganze Stablinge gemessen wurden, wirden fir sehr hohe bzw, lange
Bauteile zu unglinstige Beanspruchungen liefern,

Die Untersuchungen sind auch auf nicht kreisformige Quer-
schnittsformen zu erweitern. Es bedarf noch umfangreicher Arbei-
ten, bis das Problem des Schwingungsverhaltens von Stdben im na-
tlirlichen Wind als abgeschlossen betrachtet werden kann,
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ZUSAMMENFASSUNG

Es wird nachgewiesen, daB die bisher libliche Annahme einer
harmoni schen Quertriebskraft im unterkritischen Reynolds-Bereich
im Widerspruch zu dem zu beobachtenden Schwingungsverhalten
steht, Gestutzt auf Windkanalversuche werden die resonanzartigen
Querschwingungen aus dem Wirken einer stochastischen Quertriebs-—
kraft mit einem schmalbandigen Spektrum erklédrt. Berechnungs-—
werte werden angegeben.

SUMMARY

The conventional hypothesis of a harmonic lateral force in
the subcritical Reynolds range has now been proved to be contra-
dictory to the observed behaviour of vibrations. Based on tests
in wind tunnels, the resonancelike transverse vibrations are ex-
plained as results of the action of a random lateral force with
a small-band spectrum. Calculation values are given,

RESUME

L'hypotheése conventionelle d'une force transversale harmo-
nique dans le domaine sous-critique de Reynolds s'*est trouvée
8tre contradictoire au comportement des vibrations observées.
Sulvant les essalis dans le tunnel aérodynamique, les vibrations
transversales, ressemblant aux résonances, sont interprétées
comme l'action d'une force transversale stochastique au spectre
d'une bande étroite. Valeurs pour le calcul sont donnée.
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On the Damping of Vibrations
Amortissement des vibrations

Uber die Dampfung von Schwingungen

LIVIO NORZI
Italy

It is well known that classical elasticity offers to
the structural engineer many valuable results and some po-
werful general methods to calculate the characteristic fre-
quencies of his buildings.

But we have to remember that, from the dynamic view-
point, a world of perfect elasticity would be very unstable
and brittle (with materials of finite strength) whilst, for_
tunately in practice, many resonant frequencies are not at
all dangerous, thanks to damping.

Our knowledge on this subjéct is not as wide as it
should be to answer, at least with a practically sufficient
approximation, to questions like the following:

what is the maximum alternating stress that a given
structure can endure in a definite interval of time?

is it possible to build with materials of higher sta-
tic strength without losing something as to the capability
to withstand dynamic actions?

since the damping coefficients increase with stress,to

4 Rn Srhliiecharicrht
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what extent does abundancy of dimensions really improve dy-

namic safety?

dith a view to bring some contribution towards the solu-
tion of such problems, or of many others that naturally arise
from them, we started in February 1967 a program of systematic
research on the damping of vibrations in the frequency range
1 + 100 hz which is of interest not only for civil engineering
(1 + 10 hz) but also for the design of machines (10 + 100 hz).

This program is carried out at the Building Science In-
stitute of Turin Polytechnic School, with the support of the
Italian National Council for Research (C.N.R.).

Without any claim to have reached final conclusions, I
wish to peint out some results, both theoretical and experi-
mental, that appear to be promising or that deserve at least a
deeper analysis,

1) Deduction of the Equations of Small guasi-Elastic Oscilla-

tions and Discussion on the Relationship between Relaxa-

tion Time and Freguency for Beams in Bending.

From a thermodynamic view point, the simplest hypothesis
that can be made about the dissipation of energy for unit time
and unit volume is the following:

an = . (rate of ,change of elastomechanical

dt
energy) + ,

gz. (local gradient of velocity) (1)

without any "a priori" assumption concerning 841 &5 (but, of

course, for irreversibility g13>0, & 20 )

It is fundamental to observe: first, the logical simme-
try connecting elastic after-work (caused by the variation of
elastomechanical energy with respect to time) and internal fri-

ction (caused by the variation of kinetic energy in space); se-
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cond,that to evaluate the local density of energy and its rate

of change we have to take into account the static stresses pre-

existing to vibratory motion.

If we apply hypothesis (1) to bending of a uniform beam,
neglecting shear and rotatory inertia and denoting with
5 the elastic deplacement

M, the pre-existing bending moment,

the principle of conservation of energy expresses the stationa-

ry property of the forms :

L 2 _ t 3 t 2. 2

a 3 3
[(Eg (——*-g-)2 + pa (35 2, ) g1M§ ( g )2dt+fg2 oA (2L ) atlax
0 3x 9t 0 3x“3t 0 3xdt

(2)
By transformation into a double integral we get a normal

problem of the calculus of variations, and if we put:

g1M§ /o A=2a BI/ p A = b° g, = 2

the indefinite equation may be written (in the case of con-
stant coefficients):

5 4 3 2
S i + b2 Q—Z - 2¢ 32f + o g = (3)
ox ot 3x ox 9ot 2t

2a

For a simply supported beam, of length L, under its own
weight only, it is easy to deduce from (3) the relaxation
time in the form:

A

M2 v2 + 2
€1% €5 12
or, since M, EL2 =1 /v

— (5)
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where A,B ¢,B are constants.

A
B

q

A%

fig.1 S

>

In fig. 1 a comparison is made between different theories
about the relationship 08=6 (V) :

Neglecting internal friction (g2 = 0) and the influence
of pre-existing stresses (g1M§ = const) we have the curve g
that would mean disaster as to antiseismic strength because
by'9V£ const damping would be too low for low frequencies.

If ve put 85" Oy g, = const we get the line p (in agree-
ment, e.g. with P0ZZ0's observations on concrete ('))

By assuming gy = const, g, = const, we find the hyper-
bola s that eliminates the paradox of undamped low fre-
quencies.

However a real curve m¥ look like r (see fig. 2 from
BO and LEPORATI's experiments on Burback tracks ('')) and

this fact can be explained by considering

2) The Influence of Microstructure

As it is reasonable to suppose that energy be dissi-
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pated mainly through weak grains, large enough to have a chan-
ce of undergoing plastic deformation, we are interested in kno
wing the minimum grain size D, that may be "activated" in this
sense and the fraction F(D) of mass constituted by grains of
size D or more (F(0) = 1, F(=) = 0)

D, may be given by a formula as 02 D6= corgsst or the like,
decreases with stress and increases with frequency, whereas
the contrary occurs for F(D,).

Consequently in (4) g0 & that increase with F(D,)

. da aB . ,
will decrease with vand in (5), with gy <05y < 0, it will

be possible to have a maximum for 6 (V),

So we come to think that damping depends chiefly on
stress, especially at low frequencies when the controlling
factor is the number of cycles.

In fig. 2 we see the results of experiments on small
oscillations of uniform beams with the same cross section
vibrating at the same frequency under different end condi-
tions (''). The amplitude of oscillation A was between
1/25th and 1/50th of the static deflection,

Plotting the relaxation time 6=- % A/(g% ) against
frequency seems to demonstrate that the assumption of sei-
smic coefficients depending only on frequency (as prescri-
bed by several regulations) is an over-simplification too
far from reality.

To study the combined effect of stress,frequency and
grain-size we have performed many more experiments using I

beams HE 100 B UNI (5397-64) on

3) The Damping of Large Oscillations

During each experiment the variation of O with A,9 has

been quite evident.
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The results appear in fig. 3 where two dimensionless

paraueters have been introduced: 8 V (a number of cy-

cles) and
o
| = dynamic amplitude of stress oscillation
o
Q pre-existing static stress
(o = o, + o, sin2nv t )

Here again three different geometrical conditions
corresponding to nearly equal frequencies have been con-
sidered. The maximum bending moments are roughly as 1:2:3.

A micrography of every specimen has been kindly pre-
pared and analyzed by prof. BURDESE.

We observe that
a) a hyperbolic law fits well enough with the experimental
curves 8 v = : (6)

A+ B(c1/oo)

So far we are in agreement with (1): the rate of dissi-

pation of energy is proportional to 0, 00 /9 and must
be equalized to the terms of the second member that necessa_
rily comprehend a velocity factor O© 1\’ multiplied by a
function of O'O, Oi which, to a first approximation, can

be expressed as A(b + BO 1

b) the constants of hyperbolae depend on material and end
conditions:
for a given material, the structures under heavier stress
damp out vibrations more rapidly; for a given geometry of
structure damping is quicker in materials with coarse and
larger grains.

Normalized damping tests may be useful in quality

control,
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Finally I wish to draw attention to the influence of
dissimetry in the excitation of vibrations and emphasize the
reasons that cause large variations of the damping coeffi-
cients in the general problem,

Let us consider

4) The Characteristic Equation

2

2 gt +2 (a @2 - @ ) 52 Z + Z = 0 (7)

b
connecting the exponents of the elementary solution
exp (§ x + 2zt ) of eg. (3)

If we put: . .
E = u+ivs=r elcp = =1®

z = - + iw

and consider (7) as an equation of the 2nd degree in z ,we

get, with the assumption, surely acceptable for steel, of

dissipation so modest as to influence frequency but little:
z = €2( c - a §2 + ib )

Writing:

. ie
c +1b = ve a = A Y

and using the inversion to represent long waves at iricrea-
ging distances from the origin, we obtain:

A
- X= —g— [cos (2 w+e) = =, cos 4 v ]

R R (8)

A
w= —~ [gin (2 v+e) = = sin 4 © ]
g2 R®
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In fig. 4 the curves of constant dawping X and their
orthogonal trajectories of constant pulsation W®are traced
in the particular case Y = A = 1,e = 1 /2

S0, in Gauss' plane, we have an immediate representa-
tion of the correspondence between the dissimetrical atte-
nuation of waves in space and time respectively,

It may be seen at once that near points like P, repre-
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senting long slightly unsimmetrical waves, the same value
of X corresponds to very different frequencies; whilst
near Q a minor change in the wave form causes different

damping for egqual frequencies.,

! 1 sec !

fig.5
The aliost undistorted perianence of complicated wa-
ve forms, like the one of Fig. 5 observed (") during more
than 5 minutes of free oscillations of a Burback track,
may be perhaps better understood through these considera-
tions rather than by associating definite damping coeffi-

cients to simple harmonics.
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SUMMARY

Elastic systems with the same frequency may have different
relaxation times. Materials under heavy stresses and coarse-
grained materials damp out vibrations more quickly and so
show a greater reserve of dynamical strength. In propagation
phaenomena the damping factor may be very sensitive to com-
paratively small changes in the shape of waves.

RESUME

Des systémes élastiques de la méme fréquence peuvent avoir
des temps d'awortissement tres différents. Les matériaux
plus sollicités et ceux & gros grains amortissent les vi-
brations plus rapidement et montrent ainsi une plus grande
réserve de résistance dynamique. Dans les phénoménes de pro-
pagation le facteur d'amortissement peut &tre trés sensible
& des modifications relativement petites de la forme des
ondes.

ZUSAMMENFASSUNG

Elastische Systeme mit gleicher Frequenz kbnnen sehr ver-
schiedene Relaxationszeiten zeigen.

Stark belastete sowie grobk¥rnige Materialien ddmpfen die
Schwingungen schneller und zeigen eine grbssere dynamische
Widerstandsreserve. In Verbreitungsph#nomena kann der
DAmpfungsfaktor sehr empfindlich auf relativ geringe Verin-
derungen der Wellenform sein,
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The Treatment of Damping Coefficient on the Dynamic Problem
Sur le coéfficient d'amortissement dans les problémes dynamigues

Die Behandlung des Dampfungskoeffizienten bei dynamischen Problemen

Y. OHCHI
College of Technology
Hosei University
Tokyo, Japan

INTRODUCTION

Recently the use of digital computer having become very popular, a number
of papers dealing with the response analysis of complex structures is published.
Very few of them set apart, however, they do not give detailed explanations
about damping force. The writer having also developed a program for response
analysis of framed structures, computed the responses of various types of them,
and is in every time troubled by how the damping coefficients are selected.

As response displacements depend largely upon them, even it is possible that
we insist on the propriety of the certain damping coefficients obtained
inversely from the required response displacements.

Damping force is a force that suppresses vibrations and comes from various
origins. Though it is quite natural that efforts to catch the causes dominating
the damping forces and to include them in the equation, such a frontal attack
would not be so expected under existing circumstances. In case of complex
structures, it is also very hard to determine the ratios to the eritical damping
coefficient, as in a one-mass-system, because of its complexity.

Then the writer, referring to the results of vibrational experiments about
one-nass-system, and noticing that damping constant is of three terms (first
inversely proportional, second unrelated and third proportional, to the fre-
quency), hag tried to extend the idea to multi-mass-system. There are such four
forces, further saying, as inertie force (M&), damping force (Ci), restoring
force (Kx) and external force {~MX¥e in case of earthquakes) which determine a
vibration, the theme of this paper is then the second force. Restoring force
is determined from the static relation between external force and deformations
of the structure. This gubject is dealt with in other papers of which one is
published by the writerl/2), 1In this paper is shown in another form extended
thereafter. It is inevitable to encounter what type of seismic waves is
selected, but such problem should belong to the field of seismology. Finally,
as for inertia force, it is usual to concentrate the mass to some points, but
as actually the mass is distributed along structural members, this effect must
be introduced. The discussion about this problem is left for another chance.

ONE-MASS~-SYSTEM
The kinetic equation of one-mass-system is
kx= —M (X + Xe) — Cx

Dividing by M and replacing
P = % , )F)‘—'(—:C— Ccr = 2A4AK-M

cr
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Bq.(1) is reduced to

jf‘FZ%Di +p2x = — Xe (3)

in which p is circular natural frequency and h is called damping constant, the
ratio of actual damping coefficient(C) to critical value of that (Cop). The
relation between damping constant(h) and logarithmic decrement Cﬁo is

A ==-7%%%%5 = 27h

The solution of Eq.(3) is

X = P~ Sv (t) (4)

o
Sv (1) :‘L%ﬁ' e-PU-A) . Sin P AT—F2(t —)\) d\

Substituting in Eq9(4) actual seismic waves, and calculating maximum wvalues of
S.(t) for various values of p, we can get a response velocity spectrum by
pIotting Sv(t) against p. To average the values of Sv(t) for a number of cases
of actually occurred earthquakes makes so-called average response velocity
spectrum (Sv proposed by Hausner.

After our simple experiment, h is constant or proportional to p (see
Fig. 1, 2). Making a reference3’, h is in inverse proportion with p. Then, we
shall be able to put

h=hoP'+ A +hp (5)
Substituting this in Bq.(3) and using Eq.(2), Bq.(1l) becomes

Mx + (2foM + 2h IV KM + 282K ) X + KX = — Me (6)
Damping coefficient is then expressed in such a form as

C = 2hoM + 2h VKM + 242K (7)

Using Eq.(5) as damping constant under such condition that fo and A2 have
conatant values, average response velocity spectrum of Hausner is calculated as
shown in FPigs. 3(&),(b§°

MULTI-MASS-SYSTEM (MODAL ANALYSIS)

The kinetic equation of a multi-mass-system is, by using matrices, ex-
pressed as follows,.

Kx = —~M(X+ Fxe) —CX (8)
Now, introducing a linear equation
(MX-K) ¥ =0

let U. be the root other than gzero, and PZ be the value of M° (the number is

as much as the rank of the matrices), that is to say, the eigenvector and
eigenvalue. If \/ denotes the matrix arranging U; in a column, and P? the
matrix arranging PZ? diagonally, the relation between them is

VT KV = UTM v P? (9)
Each element of P is circular natural frequency, and each column of V/ shows

proper mode of vibration. Further, changing the independent variables X; of
Bq.(8) to 4 by the relation
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X = vgq (10)
and multiplying W' from the left side, Eq.(11) is obtained.
VTMVqQ + V'€ Vg + VM V Pq = — V"M Fxe (11)

Because the critical damping coefficient matrix of the kinetic equation (8) for
a multi-mass-system is2MV PV ' (see APPENDIX I), defining, on an analogy of
Eq.(7?), the damping coefficient matrix of multi-mass-system as

C = 2hoM + 2AMV PV~ + 2h2 K (12)
and modifying the second term of Eq.(ll) and considering Eq.(9), we find

UTCV = 2hoVTMV + 2R VIMVP + 2R MV P2
Eq.(11) is therefore transformed into
q+ 2HoP'+huU+Hh2P) Pq+ Pq=— (VMV )" V'MFxe (13)

When P~'Svi (t) is the solution of Eq.(3) in which Eq.(5) and circular
natural frequency Pi of multi-mass-system are substituted, Svi(t) being the
matrix of diagonal arrangement of Svi (t) , the solution of BEq.(13) is

q = P'Sv(t) (VTMV)'VTMF
and the relative displacement is obtained by substituting in Eq.(10), as follows:
X = VPSSt ) VTMV)'VT™M F (14)

Sectional forces would be then calculated from the displacement method of
statics.

MULTI-MASS-SYSTEM (DIRECT METHOD)

Damping coefficient of Bq.(8) being substituted by equation (12), and
replacing

gk:w,.gf:—ﬁe—(%wm) (15)

qu(e) would be solved by the numerical integral methodz) such as the Runge-
Kutta-Gill or Milne's Method, under the initial condition, X = Yy = 0 at t=0.
As described at the head, there are so few papers dealing with damping force
that the writer has proposed the equation (12). But, when using direct method,
the second term of equation (12) seems troublesome. So it would be better to
compute qu(15) after normalizing the eigenvector by using the relation

vViMV = E
into the form

C = 2hoM + 2BIMVP V™M + 2R2K (16)

or letting include the influence of the second term to the first and the third
tern

C = 2hoM + 2A2K (16')
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STIFFNESS MATRIX

For calculation of the responses of multi-mass-system using Eq.(14) or (15),
it is necessary to make up mass matrix (M) and stiffness matrix (IK) in addition
to damping coefficient matrix (C ). If the mass is concentrated to the struc-
tural nodes, mass matrix is to be diagonal matrix, but actually the mass is
distributed. Though the writer is researching to take into consideration the
influence of distribution, but it is not yet the time to publish.

Stiffness matrix is obtained from the static¢c relation between loads (F’)
and displacements (0¢)

KX = P (17)

Many studies in this field being pu?l}shed, their results should be used. The
writer has also published a methodl/2), Afterwards the writer modified to be
able to use for a member with one hinged end. Here is a simple explanation.

The linear equation by which the framed structure is solved statically is
written as follows

DR D™X=P — AC'Ffa — BC'Fo (18)

D#D" is stiffness matrix, ¥ is displacement vector and the first term of the
right side is force vector composed of external forces acting on the nodes.
The second and third terms of the right side are vectors composed of external
forces acting on the intermediate members connecting the nodes, fFfoc and Ff¢p
are end reactions of fixed beam (or modified end reactions when hinged), CT is
transformation matrix of coordinates (local to global), and, A and B are also
transformation matrices from sectional forces at the member's end to nodal
forces, The contents of D , £ are shown in APPENDIX II,

Solving Eq°(18) with performing an operation to the supports, sectional

forces of the both ends Fg and Fp would be obtained.

Fo = Tof D"X + Fia, Fo=ToAD X+ Frp (19)

The operation to the supports is, for example, to sweep out the corresponding
row and column of the stiffness matrix, if the node ;| is fixed in one direction,
and/or to add a spring constant to the corresponding diagonal element of the
stiffness matrix, if the node j is supported elastically in one direction,

NUMERICAL EXAMPLE

The suspension bridge shown in Fig.(4) is modelled and shows in Fig.(5).
By substituted various values offo ,f ,f2 into equation (12), the numerical
calculations are carried out. If the suspension bridge and the seismic wave
acting at the both tower bases are symmetric, the response of displacements
and/or member forces of the center span are reduced to extremely small., In
order that we increased the masses of the right tower ten per cent more than
that of the left for this numerical example.

Results of the calculations are tabulated in the table 1. The figures in
this table are obtained from eq°(14) using a seismic wave of the reduced El
Centro NS component (the maximum acceleration is 200 gals). Fere we also
calculated the response of displacements using other types of above seismic
waves, but we can not show the results in this paper because of space limita-
tions.
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APPENDIX I  CRITICAL DAMPING COEFFICIENT MATRIX

Supposing q = Qe ' in the expression (11), let the right side equals
zero, it becomes

(VT MV 2 —VCV w+VMVP) Qe%=0 (a)

The above equation representsthe system of free vibration accompanying with
damping,if W is real, the system does not vibrate. In order that W be of a
value at the border between being real and imaginary, that is to say W be
identical roots, the next expression should stand.

ViCer V= 2 VMV P (b)
This would be confirmed by substituting (b) into the expression (a), which makes
VIMV (Fw?- 2Pw + P2 0e¥Y= 0
or  VIMV (Fw — PPQe“'= 0
From the expression {b), Ccr is obtained.
Cor = 2MWV PV ! (e)

APPENDIX II EXPLANATION OF Eqs. (18) AND (19)

If the structure is constructed in the xy plane of the global co-ordinate
Xy 3 , the elements of matrices which are included in eqso(la and (19) are as
follows.,

'5.Bg. Schlussbericht
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(1) PFor plane framed structure (loads and deflections are restricted to the
inside of the xy plane)

— - -

§ xL™' 8§yL' o0 a o0 o
D= |8 yL™ EXL“ Io £ =| 0O % O
U 0 o | -U 0 0
Ta= 1|0 I U 0 Té =| © " 0
|0 g€a(eu-€ell L | |0 Z&U-EaL ;L
X [PX Nua Nu 8
K = ¢ P = | P& Fa = | Sya F8 =| Své
LS L Mwa Mwe
(2) Por grid-type structure (loads and deflections point to the outside of the
Xy plane)
B} - _ r i
[sXL -yl -8 YL s 0o o0
D =!8YU" puxL'  dxL ft=|0 e 0
{ O —(Ea+E4IL"" O 0 0 f
Y 0 U 0 0|
Ta=| O €a U T¢=| 0 £E4 -U
| 0 -(Ea+E4IL O | 0 -(Ea+E4I'0O
{_efi me_: i_'!'ucfl Tu
X = e,: P=|m%¢‘ fFo =lerc1 Fs = | Mub
I_?' . . Py | LSwoJ Swé
Vhere
o =EAL™" b=3(Ea+EH*{UHEa+ES) Qf EML c=4€0 E4EML
d=GJL" e=3(CatEd—EcEM [UH(Es+E8) QV'EWL™ f= EoE4ELvL™
$=d -8
A Ea(2U—€E8) + BEF (2U-Ea) for plane framed 3.

W=
A Ea+ B E4 for grid-type S.
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3RElw (GAL?) ™! for plane framed S.
52 =

3te Elv (GALZ)™! for grid-type S.
U = unit matrix

E, G, ¥ = diagonal matrices, the {{, () element in diagonal matrix shows the
Young's modulus, the shear modulus and the shear coefficient of member i

A, Iy, Iy, J, L, X, Y = diagonal matrices in which the ({, < ) element
represent the cross sectional area, the moment of inertia of the section
around the local v, w axis, the tortional moment of inertia of the
section, the length and the projection of the length on the global ,
axis respectively.

Ay B = matrices indicating with which member is connected at member's node.
For example, d\i;>= 1 or B%: l, it shows that the end a or b of
member j is connected with the node i; otherwise d i4= 0 or Bif= 0.

€Ea y£4 = diagonal matrices, in which the (L. /J) element equal zero, if a
hinge is located at the end a or b of member i; otherwise equals 1.

Xy s 3 (6x,84,03%) = column vectors, the (th element shows the deflec-
tion (deflection angle) of node <.

Nua , Svo, Swo (Tuo, Mvo, Mwa) = column vectors, the (th element shows the
u ,V ,w component of the sectional forces (moments) at the end a of

member L.
APPENDIX III  NOTATION
C.C = damping coefficient and damping coefficient matrix
Cer,Cer= critical damping coefficient and critical damping coefficient
matrix

A= logalithmic decrement

F = This vector represents the difference of absolute and relative
displacement vector dividing by Xeij while the displacement is
the same direction as seismic acceleration, the values of
elements in this vector are 1, otherwise equal gzero.

4 = damping constant (C/Cc, )
#0 .f f, = constants defining h (see Eq.(7) or (12))
K, K = spring constant and stiffness matrix
M, M = mass and mass matrix
P.P = circular natural frequency and circular natural frequency matrix
§y = average response velocity spectrum
Sv (t). Svlt )= see Eqs.(4) and (14)
LU = unit matrix
wi V = mode vector and mode matrix
X , X = relative displacement and relative displacement vector
Xe = seismic acceleration
A +BrC +DsFo +F4 sFta +Ft4 4R, Py Ta ,T4 = see APPENDIX II
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Table |
he| — |0.628)] — |0.314 he | — |0.628| — [0.314
damping damping
I hi |0.100 —_— — —_— - hi |0.100 — — —
ha | — — |00159| 0.008 ha | — — |0.0159|0.008
NORMAL FORCE (t) SHEARING FORCE (t)
sl 13]11070|1090|1030{1050 1| 575| 566| e611| 570
cable 14| 1080{! 100| 1040|1060 2| 126| 138] 125 e
15{1100|1 120| 1060/ 1080 tower 3| 549 588 523 544
- 16| 57.6 | 70.3 | 56.8 | 55.7 4| 870 878 854, 863
cable |.7| 565 |69.3|557 | 546 5| 1030 1020 I 050| | 030
18| 55.7 | 68.0| 55.0 | 53.9 6 |14 800|14 800| 14 800| 14 800
35| 201 228| 174| 187 DISPLACEMET (cm)
side 36| 88.7 | 95.4 | 85.6 | 86.7 1]16.9 | 3.84|19.0 | 4.88
hanger |37| 556 | 57.1 | 52.5 | 53.7 35|16.2 |148 |17.4 |13.6
38| 42.9 | 487 372| 400 2{16.6 | 162 |16.8 |14.7
39| 444|544 414 | 40.4 lett 3140 |[13.7 | 142 [12.3
tower
center 140| 296 4.0 288/ 280 37| 8.37| 135 | 8.44| 7.24
hanger 4| 550 6.67| 546/ 5.30 4| 3.35| 3.38| 3.29| 2.88
42| 469 5.771 4.6i] 450 5 — — | — —
BENDING MOMENT (t,m) ) 22(132 |23.8 | 154 |39.1
I [2 1 400|21 000 {22 700|21 200 :::Z 23|47.4 | 8.61|54.8 [14.0
2 |24 700(23 500 |26 000| 24200 24(41.5 |11.2 |46.8 |[I15.4
3 16 600/ 16400 17 100| 16600 25| 3.31| 3.30| 3.42| 3.26
fower I 4 112 500|12300] 12 800] 11000 26| 1.67| 1.87| 1.58/ 1.77
5 40 400(41600 |39 100|39800 - 27| 2.60| 0.66| 3.05| 0.51
6 [522000/52200052400016822000| - 28| 3.29| 0.55| 4.04| 0.93
26| | 150 844 | 250 987 29| 3.15| 1.32| 3.61| 1.56
stiff 28 151 154 62| 152 30| 2.68| 222| 2.70| 2.29
girder |29| 70908 | 58.7| 96.1| 62.7 31| 3.42| 3.32| 3.50| 3.34
30| 886 | 28 5 122 42.7
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From our simple experiments about this field, we propose the equation (12)
or (16') for the damping coefficient matrix of the multi-mass-system. Results
obtained from usual method were compared with some series of our numerical
calculations, we find that fio in eq.(l2) is more important and influential than
that of #2 on conforming the result obtained from usual method. We consider
that some questions still exist in adapting damping coefficient matrix to be
used in usual method.

In order to obtain more adequate value of fio~f2 , we conclude that more
field test or more detail of experiment for determining the damping coefficient
matrix is necessary.

RESUME

De nos expériences dans ce domaine nous arrivons a proposer
1'équation (12) ou (16') pour la matrice de co8fficient d'amor-
tissement du systéme & masses multiples. Les résultats regus par
la méthode habituelle ont été comparés avec quelques séries de
nos calculs numériques. Nous trouvons le facteur ho dans 1l'équa-
tion (12) plus grand et influent que h2, en adaptant le résultat
obtenu par la méthode habituelle. Nous pensons gque tous les pro-
blémes ne sont pas résolus dans l'adaptation de la matrice du
coéfficient d'amortissement &4 la méthode de calcul normale.

Nous concluons qu'il est nécessaire de faire plus de tests
sur nature ou de détailler d'avantage les expériences pour obte-
nir des valeurs hosv h2 plus adéquates a la détermination de la
matrice de coBfficient d'amortissement.

ZUSAMMENFASSUNG

Aufgrund unserer einfachen Versuche auf diesem Gebiet empfeh-
len wir die Gleichung (12) oder (16') fiir die Dampfungskoeffizien-
ten-Matrix des Viel-Massen-Systems. Ergebnisse der iblichen Verfah-
ren sind mit einigen S&tzen unserer numerischen Berechnung vergli-
chen worden, und wir finden, dass ho in Gleichung (12) wichtiger
und einflussreicher denn h2 bei Anpassung an die Ergebnisse der
iblichen Verfahren ist. Wir beriicksichtigen, dass einige Fragen
bei der Anwendung der Dampfungskoeffizienten-Matrix im iiblichen
Verfahren noch offen bleiben.

Um mehr hinreichende Werte horvh2 zu erhalten, folgern wir,
dass mehr Felduntersuchungen oder mehr Priifungsdetails zur Be-
stimmung der Da&mpfungskoeffizienten-Matrix notwendig sind.
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Application of Modern Design Techniques to Practical Wind Problems
Application des techniques de projection modernes aux problémes pratiques posés par le vent

Anwendung der modernen Entwurfstechniken auf praktische Windprobleme

E.M. LEWIS R.A. WALLER
W.S. Atkins and Partners
Epsom, Surrey
Great Britain

Introduction

It is clear that the days when wind was considered as a static phenomenon have
gone. Gone also in many cases is the simplicity of the quasi-static load case which has
normally been assumed as applicable to wind loadings.

The equivalent static load concept is adhered to very strongly. It is clearly valid
to express answers as an equivalent static load but it can, if we are not careful, tend to
cover up gross inadequacies in the method of calculation and in the assumptions that have

been made.

This contribution to the prepared discussion describes attempts to apply the latest
concepts and techniques of analysis to dynamic wind loading conditions.

Two major dynamic effects will be considered. There is the problem of aerodyna-
mic instability caused by the formation of regular patterns of vortices in the lee of certain
shaped structures requiring the techniques of dynamic analysis of complex structures.
There is the problem of gusting as it relates to the more flexible structures involving in
addition the techniques of random vibration analysis.

Gusting

Buffeting in a gusty wind occurs largely at random., The random velocity fluctua-
tions are, however, contained within an overall spectrum which defines the amount of
wind energy available (on an average) at various frequencies (Prelim. Publication 8th
Congress IABSE).

All structures have modes in which they naturally vibrate, the sway modes of
vibration being particularly important in the context of wind gusting as they can interact
with the wind and accentuate the dynamic effect.

The work done by Davenport (Davenport 1961) was aimed at producing simplifica-
tions of the basic techniques of random vibration allowing the engineer to take gusting
into consideration. The following is the expression for the effective force which is
applied to a structure taking into account its dynamic response.
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The effective force = hourly wind pressure x gustiness of wind x structural
response x a factor

This last factor is a statistical measure which defines the peak response in which
we are interested; e.g. Davenport suggests taking the average of the peak responses
which occur within periods of an hour. This factor varies little with the characteristics
of the structure. The mean hourly wind pressure and the gustiness of the wind are
clearly also independent of the properties of the structures concerned,

The simplest case to consider is that of the lightly damped structures where the
response is largely governed by movements which take place at the natural frequency of
the structure (fortunately many practical structures respond in this way). In this case

Davenport shows that the response is proportional to/n 5 = where Sn is the spectral density
of the gusting at the natural frequency n of the structure and é the logarithmic decrement,

It happens that the reduced spectral density in the frequency range from 0.1 Hz

upwards is closely given by an algebraic polynomial. Davenport suggests ( l+x2)4/3

X
and Harris (Harris 1968) suggests (2+x2) 5/6 where x in each case is given by 1200 %
where V is the wind velocity in metres/sec. Where x is significantly greater than 1 as

it is when n is greater than 0.1, both these polynomials reduce to > B
Hence the effective force is proportional to:
n—1f3 6_”2.
Clearly, therefore, the lower frequency structures are more susceptible to wind
gusting as the effective force is greater.

A further effect exists in that the lower frequency gusts tend to be more highly
correlated over larger areas than the higher frequency gusts. Conversely, the higher
the gust frequency the smaller the effective area over which the gust pressure is applied.
There comes a point at which the gusts are so small in relation to the structural size that
they do not have a significant effect. Davenport suggests that once the gust frequency
exceeds the ratio of the maximum wind velocity to a typical dimension of the building,
then the effect of gusting can be ignored.

We will now consider a few examples of buildings which have been designed and
constructed where gusting was of sufficient importance to influence their design.

A Building on Springs

A block of flats (Albany Court) was erected in 1966 over the underground railway in
London (Figure 1). The building was supported on a number of laminated rubber springs
to isolate it from the vibrations generated by the

PO T - { railway. This is probably the first complete
I building to be isolated in this way from low
i e =iw  frequency ground-borne vibrations (Waller 1966).
" = Clearly the introduction of springs for this
™ purpose significantly alters the natural frequencies
Reinforced oo ﬂ A of the building. In this case the vertical frequency
concrete ™ ing hail d /wncruuhaun ; - |
»  of the system was designed to be 7 Hz. Itisa
characteristic of the laminated rubber spring that
Mooy l@ :-FT its horizontal stiffness is two orders less than its

—_ vertical stiffness so that in the first instance the
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designed horizontal frequency of the spring system was about 0.5 Hz. This frequency
was sufficiently low for there to be a significant possibility that the building would
respond to gusting especially as this frequency is in the range at which eddies would be
shed from nearby buildings. It would clearly be unsatisfactory if in eliminating the
ground-borne vibrations the building were made significantly sensitive to the wind.

At the low frequencies involved the human sensitivity to vibration can be repre-
sented as proportional to acceleration. No rigorous estimate could be made of the
likely magnitude of the acceleration induced by wind. It was judged however that there
might be a problem at 0.5 Hz as an effective dynamic pressure of 1 1b. /ft.2 was
equivalent to an acceleration of 0.001g for this particular building, a level at which a
significant number of people can perceive low frequency vibration,

Now acceleration is proportional to (amplitude)x(frequency)® and amplitude is
proportional to (effective force)/stiffness. Stiffness in this case is proportional to

(mass)x(frequency)z. Thus acceleration is proportional to:
-1/3  -1/2 -1
n é m

if m is the effective mass of the building,

To reduce this acceleration there are therefore three possibilities: we can
increase mass, damping, or natural frequency. In this particular case it was decided
that the simplest and cheapest course was to increase the natural frequency. It was
found possible to increase the horizontal natural frequency to 2.5 Hz without significantly
reducing the attenuation of the ground-borne vibrations.

The building in this case could be considered substantially as a rigid body on a
number of springs and the analysis was fairly straightforward. There was little coupling
between the various modes although clearly in the vertical planes the horizontal natural
frequencies and the frequencies in sway or rock (6 Hz in this case) are coupled together
to some extent. Indeed it is this coupling which limits the extent to which the so-called
horizontal natural frequency of the spring system can be raised.

Raising the lowest natural frequency to 2.5 Hz eliminated the possibility of inter-
action with eddies from nearby buildings and kept the effective 'matural’ wind energy
likely to interact to a minimum,

The effectiveness of the measure can only be judged by experience. Two years
have elapsed without significant vibrations being reported.

In the case of the taller and more flexible buildings the flexibility of the structure
itself must be taken into account in the analysis. It will often arise that the horizontal
frequencies cannot be raised enough to avoid significant gust action, With the taller
structures which have natural frequencies in sway of the order of 0.5 Hz it will be im-
possible to avoid the problem of gust action by increasing the natural frequencies.
Here it will be useful to consider the addition of damping into the foundation.

Water Tower

The type of water tower that will be described was the subject of an extensive
development programme. The programme was aimed at producing a new form of water
tower which would combine the economics of the cheaper form of towers with the
appearance of the more expensive, The form of water container finally chosen can be
described as an inverted parachute with the fabric made of nylon reinforced rubber and
the cables of high tensile steel. These cables are fixed to a stiff annulus which is
mounted at the top of the tower leg (Figure 2).
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It is well known that the natural frequency of water contained in a tank is low and
it was possible that the tower might respond to gusting and to vortex excitation. One
twentieth scale wind tunnel tests were commissioned at the
National Physical Laboratory (Smith 1964) and indicated that
vortex excited instability was unlikely. Unfortunately it is not
yet possible to simulate gusting conditions in a wind tunnel and
recourse to calculation was necessary in this respect.

The natural frequencies for the tower were difficult to
calculate. The mode of particular importance can perhaps be
best described as the 'sloshing’ mode. Formulae do exist for

oth the 'sloshing’ of water within rigid containers (Housner 1963),

but the nature of the present container was such that no previous
@J‘TF

FIGURE 2

solution could be found that was applicable and it was decided
that scale models would be a better method of establishing the
natural frequencies than a theoretical exercise. The other mode
of vibration of relevance is the vibration of the stalk itself with the water playing little
part, It is easy to show that this frequency is much higher than the 'sloshing' fre-
quency of the water in the tank. From the scale model used in the wind tunnel tests
the natural frequencies were measured with various amounts of water in the tank and
the lowest natural frequency occurred with the full tank. Further it was found that the
system was essentially linear,

% Capacity Natural
frequency
Hz
5 3.78
40 0.82
100 0.81

The ability to scale models for this purpose is of considerable advantage., Analysis
demonstrated that the system could be considered, for scaling purposes, as a compound
1

pendulum for which natural frequency is proportional to (linear scale) 2, Pressure is
proportional to (linear scale) and force is proportional to (linear scale)® when velocity

1
is proportional to (linear scale)®. The model was made to represent as closely as
possible the full scale situation; there remained many uncertainties; however the
logarithmic decrement of 0.025 measured in still air conditions was taken to represent
a full scale tank. The effect of wind was to increase this damping slightly. It was
also considered that the likely effect of foundation damping, joints in the structure,
etc. would be to increase it again and that this figure would be on the safe side.

One other significant factor had to be established in relation to the behaviour of the
tank before its full scale behaviour could be predicted. Not all the wind force is modified
by the dynamic behaviour of the tank, A proportion of it is effectively applied directly to
the top of the tank and stalk which is more rigid. The remaining part of the wind force
can be considered as acting upon the flexible portion of the tank and therefore modified by
the tank's dynamic characteristics. The distribution of the wind force was measured by
displacing the tank in a steady wind stream until it was completely stationary. When
the displacing wind force was suddenly removed the tank and water were set into a state
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TABLE
Steady Wind Overturning Moment
Mean hourly wind speed = 27ms"
Equivalent model speed = 27 /%6
= 6ms

Il

Model overturning moment 0.7 kg m from test (Smith 1964)

1]

Full scale overturning moment 0.7 x 20* kg m

Full scale mean hourly overturning moment = 110, 000 kg m

Additional Moment Due to Gusting

Additional moment = (mean hourly moment)x(gustiness)x(response)x(factor)
(Davenport 1961)
(i) Mean hourly moment as above.
(ii) Gustiness.

Gustiness = 2.45./K 1_26)-a = (0.145 for an open site

When K = surface drag = 0.005
o = power law =0.16
exponent
z = height of centre of pressure = 30m

(iii) Response.

The additional moment due to gusting can be divided into two components, one third
being modified by the dynamic response and two thirds acting on a 'rigid' structure.

velocity spectrum area
Response = 2 \/ Ly Sp
response spectrum area

Unmodified response = 2

Modified response = 2 L Kn\S’n , = 10.6 (ignoring aerodynamic
) 10 magnification)
for == ,008 m™"
v
6 =.025

(iv) Factor.

Factor for unmodified component = 4.
3.

1
Factor for modified component = 3.8

Total Overturning Moment

= mean hourly moment x (1 +§x 0.145x2x 4.1 +%x 0.145 x 10.6 x 3.8)

=110,000 x (1 +0.8 +1.9)kg m
= 400, 000 kg m*

* Using Davenport 1967 Total overturning moment = 360, 000 kg m.
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of motion, The motion took place in various modes simultaneously but predominantly in
the two modes associated with the 'sloshing’ of the tank and contents and the sway of the
stalk, The motion of the stalk decayed quite rapidly but the 'sloshing’ of the water
continued for some time afterwards, By moni-
st o toring the motion of the tank by sensing the dis-
]’""‘""““" £ placement of the stalk and extrapolating the
E behaviour of the water back to zero time, it was
Osiltions dun to a possible to show (Figure 3) that the wind load was
£ distributed approximately two-thirds on to the
‘“ﬁ' , stalk and one-third on to the flexible tank and
VA, water. It is this third of the force which is
W\/ ____v potentially magnified by the dynamic response of
L / the water and the tank.

Oscillations due to M2

& —a

Defiection

It is instructive perhaps now to consider the
E FIGURE & wind loads on a typical full scale tower. Taking a

capacity of 500 cubic metres of water the diameter
the tank would be about 12.2 m. The calculations appropriate to such a tower are
scheduled in the facing table. The wind speed and surface roughness coefficients used
have been estimated for an exposed site.

The total calculated wind loads are roughly double those which would have been
assumed, taking an averaging period of 1 minute as suggested by British Standard Code
of Practice CP3, Chapter V, or 70 percent greater than the loads on a rigid structure
taking account of gust loading.

Drax Chimney

When completed this will probably be the world's largest multi-flue chimney. It
will have a height of 260m and will have a constant outside diameter of 26m. The outer
shell is made of reinforced concrete whose thickness varies from 1.5m at the base to
.37m at the top; the three flues are also of reinforced concrete and they are elliptical
in section, having major and minor axes of 13.7m and 9.2m respectively.

A circular cross-section was chosen for the chimney because it is this shape

which has the lowest level of vortex excitation,
[

Nonetheless there is still considerable doubt as

to the behaviour of tall flexible cylindrical struc-
tures, and it was necessary to carry out a number
of studies and analyses of the potential behaviour,
both under gusting conditions and under potential
vortex cxcitation. As the flues are in 22m
lengths and are carried on expansion bearings
(Figure 4) in order to prevent thermal effects
from inducing unacceptable stresses in the

} Rubber bearil
Rubber, Baarings o concrete shell, the dynamic behaviour of the
FIGURE 4 hebisdptaind chimney as a whole is extremely complex. Too

complex in fact to contemplate a vind tunnel
model. A computational model was therefore built up and one ¢lement >f it is shown
in Figure 5,

The flues are represented as a mass with rotational inertia supported on the
bearings which had a finite stiffness in the horizontal direction but which have been
regarded as infinitely stiff in the vertical (as above, the vertical stiffness is 100 times
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the horizontal). The shell is broken up into an equal number of elements (i.e., 11) to

correspond with the flue sections and here again
—— rotational inertia has been allowed for, Hysteretic
damping has been included both in the bearings and
in the shell. The complete system therefore has
been represented by twenty-two masses with
associated spring and damping systems.

Flues

Shell imass

Shell stifiness Unit sinusoidal forces were applied in turn to

each mass element of the shell and the response of
the whole system calculated. The computer pro-
gramme centres round the 88 square matrix which
was condensed to a diagonal matrix rather than
FIGURE 5 inverted. The total effect is obtained by summing

the effects of the loads on each shell element, This
is done for various frequencies, and the interval between the frequencies was chosen
depending on the sensitivity of the response of the chimney to frequency.

The first calculations were for a chimney with normal laminated rubber expansion
bearings supporting the flues (Figure 6). For comparison, the case without expansion
bearings was calculated and is represented by a

FIGURE 6 Mol curve labelled monolithic. It can be seen that the
behaviour of the two systems is entirely different.
N It was a relatively simple step from knowing the
/) response characteristics of the chimney to calculate
H [\ its behaviour under gust conditions. This was
-3 I N / done by integrating the response spectrum obtained

using these frequency characteristics, and the net
result showed that the chimney with flexible expan-
sion bearings had in fact a dynamic response of
only about half that of the monolithic chimney.

Frequency This was based on the assumption that the damping

in the shell structure, i.e. the quadrature com-

ponent due to damping, was 2 per cent of that due to stiffness. The bearing damping
was taken as 12 per cent, In either case the significance of gusting was small in relation
to the total load, and particularly so when account was taken of the probable lack of
correlation of wind pressure over the height of the chimney. It was estimated that a
gust lasting for at least 15 seconds was required in order to envelope the chimney, and
this compared with the period for the structure of between 1 and 2 seconds. Clearly
there is unlikely to be much dynamic response under these conditions,

Vortex excitation

The second type of dynamic problem discussed in this contribution is that of
vortex excitation, Indeed it is this vortex excitation which is the main problem with
structures like the Drax chimney. The difficulty is that little data exists on the behaviour
of structures of this size. It is also virtually impossible to carry out model tests in a
wind tunnel because of the very high Reynold's number (approximately 108) which prevents
the correct scaling of the dynamic effects. What data there is suggests that the cross-
wind lift coefficient can have any value from 0,7 down to 0.1, and indeed recent papers
at an International Symposium (Wootton 1968) suggested that the force coefficient might
be even less, Whilst it is difficult therefore to calculate in advance the magnitude of the
loads and movements of the chimney, the computer model enabled comparisons to be
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made between the various possibilities, The previous, Figure indicating the response
of the chimney to unit forces (as a function of frequency) is now modified to take account
of the variation of wind force with velocity (a function of frequency via a Strouhal
number of 0,27). Figure 7 then represents the non-dimensionalised response of the
chimney to winds of varying velocity. It was
Heiliced ciilnces clear that the use of the expansion bearings had
a significantly modified the behaviour of the chimney
Expansion bearings
X compared to the monolithic case, Further, the
\ vibration amplitudes were reduced. This
suggested that if the properties of the expansion
Lz bearings were chosen with the dynamic behaviour
‘ in mind then the overall maximum amplitude of
Flegi oy s imysso + the chimney could be further reduced. This was
FIGURE 7 MAXINUM done by decreasing the shear stiffness of the
bearings until the amplitude at the top of the
chimney was less than one tenth of that in monolithic case. There are two peaks in the
amplitude curve., The first is at relatively low wind speed where the frequency of
vortex shedding corresponds with the natural frequency of vibration in the horizontal
mode of the flue segments. The magnitude of their response is limited by the damping
in the bearings. At higher wind velocities and frequencies the shell itself is playing
the major part in the mode of vibration, and its amplitude increases as the wind speed
approaches that corresponding to its natural frequency giving a second amplitude peak,
However, the maximum wind speed likely to occur is somewhat lower than that necessary
to produce a resonant condition here,

Amphitude

It is worth commenting that there are three basic ways of reducing vibration
amplitudes due to vortex excitation in a structure, Firstly there is changing the natural
frequency to avoid resonance; secondly increasing the damping to keep the amplitude to
a reasonable level; and thirdly the prevention of the formation of the vortices by changing
the shape of the chimney. In this case the cheapest solution involved changing the
natural frequency and damping simultaneously to give a better performance, The
possibility of eliminating the vortices at source was also considered and in parallel with
the above computations a test programme was commissioned on behalf of the Central
Electricity Generating Board (Walshe & Bearman 1967). Several methods of preventing
the formation of vortices were considered, including the use of helical strakes and a
perforated shroud. The tests demonstrated that the helical strakes produced a marked
increase in the overturning moment due to wind whilst the perforated shroud did not,
Although the effectiveness aerodynamically of the shroud was not as great as that of the
strakes it was considered in the event of a chimney being subject to vortex excited
oscillations that the shroud represented a more reasonable repair scheme. It reduced
the vortex excitation quite significantly but did not introduce an increase in the wind
drag load.

The behaviour of the Drax chimney will be monitored during construction so that
the calculations can be compared with actuality, when in the unlikely event of the effects
being underestimated the chimney can be modified accordingly.

Whilst the main theme of this paper has been the use of the more advanced tech-
niques of analysis one lesson which could be drawn from the examples quoted is the need
to monitor the non-standard structure during its erection and immediate post-erection
period to determine the likelihood or otherwise of untoward behaviour,

It is also clear from this paper that whilst modern techniques are being used the
amount of data available and the quality of the data are poor. This has been the subject
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of another paper by one of the authors (Waller 1968) in which the general conclusion was
that more of the research efforts should be directed towards the full scale interaction of
the wind and structures so that the more sophisticated design techniques can be utilised
with confidence.

Notation
a wind power law exponent,
5 logarithmic decrement.
g acceleration due to gravity
K surface drag coefficient,
m effective mass,
n natural frequency.
A% mean hourly wind speed.
x 1200=.
v
z height above ground,
n Sn
2 reduced gust velocity spectrum,
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SUMMARY

Several structures are described which are novel in that dynamic wind
excitation was a significant design parameter. Gust excited vibration is
considered in terms of occupant comfort in a block of flats and the structural
integrity of a water tower. The reduction of vortex excited vibration of a 260 m
chimney is described. The quality of wind data is poor and consequently the
need to monitor the behaviour of such structures during and following erection
is emphasised.

RESUME

On parle de plusieurs structures qui sont nouvelles en ce sens que l'excitation
dynamique par le vent a été un parameétre important de leur dessin. Les vibrations
causées par des coups de vent sont considérées en relation au confort des locataires
d'un immeuble et 2 1'integrité structurelle d'un chiteau d'eau. On décrit la
diminution des vibrations causées par tourbillons d'une cheminée de 260 m de
hauteur. Les data donnés pour le vent ne sont pas trés sirs et on souligne donc
la nécessité de surveiller le comportement de telles structures pendant et apreés
l'érection.

ZUSAMMENFASSUNG

Verschiedene Strukturen werden beschrieben, welche insofern neu sind, als
die dynamische Erregung durch Wind ein massgebender Konstruktionsparameter
war. Durch Windstosse verursachte Schwingungen werden mit Hinblick auf den
Komfort der Bewohner eines Wohnblocks und auf die strukturelle Integritidt eines
Wasserturms bewertet. Ferner wird das Nachlassen der durch Wirbel verur-
sachten Schwingungen an einem 260 m hohen Schornstein beschrieben., Die auf
Wind bezuglichen Daten sind nicht sehr zuverldssig, und es wird daher auf die
Notwendigkeit hingewiesen, das Verhalten solcher Strukturen wihrend des Aufbaus
und danach zu iberwachen.,



Vi

Dynamic Effects on Precast Bridge Structures
Effets dynamiques sur des ponts en préfabriqué

Der dynamische EinfluR auf vorfabrizierte Briickenteile

VLADIMIR KOLOUSEK
Prof.Ing.Dr., Dr.Sc.
Praha

In recent times,prestressed structures assembled of precast
concrete elements are used alao for railway bridges. There is not
much experience about their dynamic properties and therefore
research first theoretical and then experimental on actual bridges
had to be undertaken. '

a +b + +b’ a8
IS
d

b

Fig. 1.

| 1417!‘"

30,50m c 55,00m & 30,50m

The statical syastem of the structure which we have used in
the investigation is a three span
rigid freme.(Fig.l) The cross-

% 7 -section in the middle of the
E§§ R N /4 central span is in fig.2., The
elements of the superstructure which
were manufactured in a central

319

precasting plant were transported
on a trailer, lifted, rectified
1 and prestressed.
314 The object of the research was
l Fig.2 to find theoretically the dynamic
characteristics of the system {i.e.
the natural frequencies and modes,
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and to determine the forced vibrations produced by the load
crossing the bridge. The results were then compared with the
results of measurement on an actual structure.

The theoretical investigation.

The horizontal beams of the frame structure are of box-shaped
cross-section with variable mass and moment of inertia, The theor-
atical analysis of such a system can be executed by various methods
of different accuracy and laboriousness. The differential equation
for the vertical motion in this case becomes

A (x) Pvnat)__ g2 [%(x) -QEEEExilé] =0 (1)
2t2 Ix° P
where the notation is as follows
A{X) seeses is the variably distributed mass
seesse 1s the abscissa of the point 1n question if the origin

is at the left end of each span

V(X )eesees is the vertical deflection of the point x at the time t

I(X) eeeeso the variable moment of inertia

E ¢eecssseomodulus of elasticity

Solution of the equation (1) can be found in the explicit form for

special cases only., The major part of solutions 2)start from the

work by Kirchhoffl) who investigated the vibrations of a conical

cantilever, They are available e.g. for the beams with the

distribution of 4(x) and I(x) as follows

I(x) = I, ( -F- )™2 (2)

Ax) =uy - )" (3)
where(ub and Ib are the mass and moment of inertia on the right end
of the beam and L is the distance of
the right end from the conveniently
chosen origin (fig.3).There are only
four arbitrary constants in express-
ions(2) and (3) and it is evident that
not any distribution of w(x) and I(x) L
can be expressed, Consequently, for an
actual structure this laborious

solution represents, as a rule, an

1) Kirchhoff G.: Vorlesungen liber mat. Physik. Mechanik. Leifzig 1876
2 HKopeneB B.T.: HekoTopHe sajayu Tecpuu ympyroctu. Mocksa 1960.

Fig. 3.
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approximation only.

Bqually, some aproximative methods such as those of Rayleigh,
Stodola, Ritz or Galerkin can be used, but if an adequate accuracy
of calculus is to be attained, all these methods end in tedious
computations.

Therefore, the author of this contribution has used his own
procedure which enables us to determine the dynamical character-
istics in a relatively simple way and with arbitrary required
accuracy. This method, which can be called the simplified slope=-
-deflection method, starts from the following considerations,

Let us consider a beam which
vibrates harmonically, and
merk on it some points (fig.4),
Between the points the
deformed axis of the bar = = o Fﬁg.Aa
creates a curve, whose shape

is determined not only by the position of the points a, b, ¢ ....
and their rotations, but also by the inertial forces which act on
the distributed mass of the vibrating bar between these points.

Let us imsgine now the same beam which, however, does not vibrate
but is statically deformed by some forces and moments acting in the
points a, b, ¢ ... so that the displacements and rotations of these
points are the same as in the first case. It is evident that the
deformed axis of the bar between the marked points will now be
different, owing to the absence of the inertial forces (see the
dotted line in fig.4). The difference between both shapes will
decrease with decreasing both of the frequency of vibrations and
the distance of the points a, b, ¢ .....

Using the slope-deflection method, we divide the system by
Joints into singular bars. The displacements of joints can be
determined by means of slope-deflection equations which are

obtained from conditions of equilibrium of end forces and moments
of all bars connected in singular joints. In our case, the joints
are in the points a, b, s, b?, a! and the bars a-b, b-c, b-s,
s-b?, bl-ct, br-a?,

The first task is the determination of moments and forces
acting on the bar ends if they displace or rotete with anhmplitude
equal to unity. In fig.5 the bar a-b is represented in the case
that the end b rotates harmonically.The amplitudes of end moments
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l‘Eab( §b=1)=nab stat (§b=l)-u2 [{u(x) vl(x) v X dx

i!b.<.1(§ bll)=uba stat (5 b'l)-“’ 2](‘1(") v12(x) dx
where w is the angular frequency and M, ... (

Mab (f-1 Sinwt  Mpg (5,0 sin wt

N . N
Mb

1sin wt
L i
. I .
a—\ Mab(fa=1)5m wt Mba(}‘aq)sblnwt
1sin wt “_/
Vzm sin wt
Fig. 5.

Mab stat (fy-q)=1075223 Mpm \iﬂ(/x)f"l

e

(4)

gb'l) is the end
moment in the point b if this
point is statically deformed
with §b=l. If the first natural
frequency of the system is to
be determined, the dynamical
curves vq(x), vo(x) can be
substituted by the statical

ones ¥y(x), V,(x).The curves
v,(x), V,(x) (statical influen-
ce lines) determined for the
bar a-b of the system represent-
ed in fig. 1, are in fig. 6,

._-—\Mba\imt (fs1)-2927010 Mpm

d
o\ QY] | ®©| o] N wu| © N 0
N ™ g n @cmmmve\t%o
Q v © ~ S| o o & 9 © o | K| 2
o o - %) F| | 8| S| O v F| o <= S
I | [ | e e I T e T R
o i ) 0| ™
22 g8 g R g g gl 3 3 s gs
N 0 s ol ol | N 8 & & ¥ = 2R
5 o ) mNN.—*-—*ddDOOb

s_______.a/
b stat (fa ___1)= 1283123 Mpm

M.

Mba stat (fa-1)=1075223 Mpm

Fig. 6.

3) Kolou8ek V.: Vibrations of Systems with Curved Members.
Publications IABSE.VXXIII. Zurich 1963.P.219-232
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Where also the end moments are indicated supposing E =3850 000 Mp/m?.
The integral in (4) can be evaluated with sufficient accuracy by
numericel summation of finite differences dividing the bar into
strips. Then it is

M =1) = 2 -

bl ep™1) = Mgy gtat( g, =1)-©° Z% V1i Vei (5)
; the vertical
displacementsin the centre of gravity of the strip i. Another

proceeding can be applied for the determination of the end-moments

where m; denotes the mass’of the strip i and v,;, ?2

of piers which are of constant cross-section. The pier and the
horizontal beams penetrate in the upper part of the pier d-b (fig.7)
and the rigidity of the pier increases in this part
substantially. It can be assumed that the moment

of inertia is infinitely large there. The low end
was assumed to be fixed rigidly, which holds only
when the foundation reposes on so0lid rock. The end
moment acting on the upper end can be expressed by
frequency functions F (A) which have been developed
Fig.7. by the author 4)5) | 1t is

2
- EI 28 a 1,/ 3 2
Mbc(gbzl) A ‘FZ (A) = 5 F4 (l)*-e-z F6 (lﬂ ——3—(44-8(0 (6)

The lest term in exp. (6) expresses the moment of inertial forces

of the rigid part d-b of the length a and(diis its mass per unit

of length. It was assumed I =2,286 m

M= @ = 17,31t/m (=1,76 Mps® m™ )

4
2 =fwl7[ & = 0,3354
EI >
E = 2850 000 Mp/m
Further it can be assummed for small values of A
- 1 4 s _ 11 ,4 % _ k3 4
FZ(A) = 4- Iosl F4(/l) 6 + 21-6/1 F6 (A) 12 35 A
Substituting into eq.(6) we obtain
Mbc( b=1)
The values of end moments and forces of all bars which were
determined aceording to exp. (5) or (k) are given in Table I.

= 2143961 ~ 301,15 2

4) Zoloudek V.: Baudyramik der Durchlauftriger und Rahmen.
Fachbuchverlag, Leipzig 1953

5) Kolou3ek V.: galcul des efforts dynemiques dans les ossaturas
rigides. Dunod, Paris 1959
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Table I
5 IS g =1 v, =
u, | 128m123-286,20 07 | 1075223 412,80
M, | 1075223%412,806° | 2927010-1124 A6
My B21740- 819,457 ~168850-57 ,35,,,2
. | Z14361- 30 ,15‘.32 12216404301 ,02@2 )
s | 1075223v412,800% 8497111-2285,060% | 1221648430102 | -168850-57,35 s
M, 1221640% 301,0245% | 1462100-207,56 0%
_T; ~168850- 57,35 9q701,97-15, 1118

Free s8ymmetrical vibrations, The first
naturel mode is represented in fig. 8. The slope-deflection
equations are

lba M “bs + Ibc =0 (7))
Y =0
ab
where
M

ab © ab(s =1) Sa * ab(§ l)'§b

Moo = Hba(sa-l) S uba(s =1)

Mos = Mba(gy,=1) Co* Moy )y, (8)
Mpe = ubc(5b=l) gb

Tep = sb(S =14y, * Yap(vgm) - ¥

ga and gb denote the amplitudes of rotation/in Joints a and b
respectively, ¥ is the amplitude of vertical displacement in the
Joint 8, and Y, 18 the amplitude of end force.

Af ter substituting numerical values into (8) and (7) we obtain
the equations of the Table II, Setting the determinant of the
equations equal to zero, we obtain

w8 _ 16 078w* + 36 17507502 - 9353 402 000 = O
and thereof

P | -1 g
Wiy = 175235 875, W,y =484 &7, W, =116 870

The last two values are of an informative character only. The first
natural mode is given by a? gb and v,; one of them can be chosen
and two other calculated from the equations of Table II,
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Table ll.
sa § b vs
1263123 - 286,20 0° 1075223 + 412,80 w ° =0
1075223 + 412,180° #9211 -2245,06 0 2 | 168850 - 57,35,% = 0
168850 = 57,35 2 9701,97-15,111.2 = 0

Supposing that v, = In ,we have
5a = - 0,02003 sb = 0,02804

The deformations of singular bars can then be obtained using the
statical curves of deformations which for the bar a-b are in fig.
6. The first mode of the system is shown in fig. 8,

N

644 —
759

0:881

0,967

0,998

1,000

0O D
o o
SSSSSSOSS S
fa fb
A 14 141517 18 192021'2223'24 25 [26(127
112 |13 |4 |5 6769,'0111[121‘3 2
S22 S QREtessess
SGS & S3Sa8535ala Vi) &)
(I N N A R
”mr
30,50m 27,50m o 27;50m
Fig.g.
Forced vibrations,. The forced vibrations of

the structure are produced by the movement of vehicles crossing
the bridge. The computation was executed for the case of a two
¢ylinder locomotive of the weight G = 97 t moving at a constant
speed, the driving wheels of which produce the centrifugal force
P=0,3 N° (in Mp, if N denotes the number of revolutions per second)
with angular velocitygzl 2% N. The problem can be solved by expand-

ing the vibrations into a series of natural modes by the same method
which was described in detail in previous works of the suthor 5)6)7)

6) Koloudek V.: Schwingungen der Brficken saus Stshl und Stahlbeton.
Abhandlmen IJVBH, B. XVI.Z8rich 195608.301""3320

7) Kolousek V.: Vibrations of Bridges with Continuous Main Girders.
Publications IABSE.V.XIX.Zfirich 1959.P.111-132,
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The critical speed by which N is equal to the first natural
frequency 1is = =

/4]
- “(1)

where Dy = —sgmc is the first natural frequency of the loaded
bridge and D is the diameter of the driving wheels. It will be
assumed that the alternasting forces of axles act only when moving
along the central span. The time veriation of the deflection in
the middle of the central span produced by the alternating force
is giwen by the formula (45) in the paper 6) p.326

(£/2)ps3
v (-g—it)—--———l —————— S—E:fé-l [}cosont—e u)b-) cobglna)tT

o~
wherew = -%E and @ iz a damping coefficient. A is given by
) maas ?l -------------- (10)
%[(u(x) VT 1) (x) dx
where v

(1)(x) denotes the first natural mode and the summation Z
is to be extended over all the spans of the system. B1 is the

coefficient of the first term in the Fourier series
__X + _3?;{.. 4
v(l)(x) Bl sin 7 B3 sin 7

The angular frequencytvcl) of the bridge loaded by a locomotive
is lower than of an unloaded one, If the centre of gravity of the
locomotive is in x = 4, it can be calculated according toT)p.123

w, . = ‘F:— (11)
(1) - “Q@)
where fb 2
(&u

RRCIRgt e IS (12)
ff{hV(l) (X/) dx

and mp is the mass of the locomotive. In our case it is (see fig.
8) in the central span

[ovel
Ax _3ix
v(l)(x) 0,8766 sin 7 0,0452 sin Z (13)
so that
By = 0,8766
We obtain further by numerical integration (see fig.8)
¢
e _ 2 -1
iof‘lpv(l) (x) dx = 42,103 Mp 8" m ,
In accordance with preceding experience, we can assume that 4 = -5—

Then v(l)(d) = 0,75 and
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Further, it is __ o 1 N
w = 0. . Meo— o - -
(1) (1) kl 132 17,235.0,940 = 16,198 s

n = :J ll = 2,578 H
(1) -~ 727 g 2
A= ——--287%___ = 5 01873 Mp~ts™%n
1,132.42,103

P = 0,3.2,578° = 1,994 Mp
With D = 1,26 m it is
c =2,5718.7 . 1,26 = 10,21 m/s = 36,75 km p . h

W = _'l_Ll'Q.lg;I:_ = 0’583 3-1
W ¢ 55
e can pu >
wt = _/’_.__&__

where a = ¢t is the distance of the load of the beginning of the
central span. Then we have—

- 2 e . Ha_
©C gyt < 27,8 45
w
o t = --B- LB = 0,025253 a
w

The logarithmic decrement was appreciated in the value = 0,1 so
that Wy =‘§ﬁ(1) = 0,258 sﬂl. Substituting into (10) we obtain

0,01873.1,994cos 212318 N
(8/2 1) = cemmeree Fm——————5=—= [b 583(cos Za - eHO’02525a) -
2,16,198(0,583% 0,258%) A
- 0,258 sin —%9{] (14)

The curve (14) is shown in fig.9a. According to our supposition
that the resonance exists only when the locomotive passes the
central span, we can determine the amplitudes A(t) of the curve
v (//2,t) in the span b’ - a’, from the formula

A(t) = C e “b°
where C denotes the amplitude of vibrations when the locomotive
has left the central span. In fig. 9b the curve of fig.%a is
superposed above the curve of statical deflection produced by the
weight of the locomotive moving along the bridge. This curve
represents the theoretical curve of dynamic deflection in the
centre of the bridgse. The dynamic augmentation of the static de-
flection is 20 % .
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30,50

Fig.9.

Results of load-tests,

First of all, the bridge was tested by statical loads. The
measured deflections attained only 70 % of theoretical values., The
real rigidity was consequenty 1,42 times larger than the assumed
one, The attained value E of concrete was larger than was supposed
in the analysis and the moment of inertia was elevated by the
monolithic execution of sidewalks, The naturalfrequency increases
proportionally to the Vﬁi; It can be expected that the actual
first natural frequency and the critical speed will beVi:;E;l,19.‘
multiple of the theoretical value

¢ =1,19.36,75 % 44 km p.h ,
A 97 ton two cylinder locomotive was used for the testis. The
deflection in the middle of the central span was measured by means
of a Stoppani deflection meter., At the same time the stresses in
the lower part of the middle span girder were registered by means
of strain-gsuges and Brilell-Kjaer registration apparatus. The
diagrams recorded at the speed of 44 km p.h. are shown in figs.
10 and 1l. The first of them should be- cempared with the theoretical
diagram of fig. 9. It is evident that the measured dynamic effects
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are larger than the calculated
ones. Themeasured dynamic
augmentation attains about 35 %
of the statical deflection
compared with the 20 % calcul=-
ated. The difference is mainly
the result of the higher
- rigidity of the actual structure,
The centrifugal force P

TS s r Ay r L s L L L T L.

increases with the second power of the critical speed so that
actually P will be 1,42 times larger than as calculated. In the same
proportion, the dynamical augmentation of the deflection will
increase and will theoretically attain the value of 28 %. The
remaining difference between 28 % and 35 % is to be attributed to
the inaccuracy of measurement, of presuppositions e.g. the value

of damping and that of unbalanced masses of driving wheels and
partly also to the inaccuracy of the theoretical analysis which
neglects the movement of the masses glong the bridge, etc.
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SUMMARY

In the paper the dynamic effects of moving load on a railway
bridge of prestressed concrete are discussed, The results of
theoretical investigation are compared with the values obtained
by the dynamic tests on the actual structure. The results are
qualitatively in good accordance but the measured amplitudes of
vibrations are somewhat larger than theoretically assumed.

RESUME

Les effects dynamiques des charges mobiles sur lesponts
rails en béton précontrainte sont analysés dans la contribu-
tion. Les valeurs de la solution théorkjue sont comparées avec
les résultas experimentaux obténus sur la construction actu-
elle. Les amplitudes des vibrations mésurées surpassent un
peu ceux de l?analyse théorique.

ZUSAMMENFASSUNG

In der Arbeit sind die dynamischen Einfltisse der beweg-
lichen Belastung auf die Eisenbahnbriicken aus vorgespannten
Beton untersucht. Die Ergebnisse der theoretischenUnter -
suchung sind mit den experimentellen Werten verglichen, die
bei dynamischen Messungen auf einer fertigen Brlicke erhalten
wurden., Beide Ergebnisse stimmen qualitativ gut fiberein, die
gemessenen Amplituden sind jedoch ei@henig h8her als die
theoretisch gerechnetenWerte.
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Structural Dynamic Considerations in Horizontally Curved Bridges
Quelques considérations sur le comportement dynamique de ponts en courbe

Dynamische Betrachtungen an waagrechtgekrimmten Briicken

SIDNEY SHORE
Professor of Civil Engineering
University of Pennsylvania
Philadelphia, Pennsylvania, USA

1. INTRODUCTION

As the engineer is turning his attention more and more from aercspace
to "geospace" and his enviroament, a more sophisticated understanding of the
response of earthbound structures subjected to natural and other forces assumes
greater importance. In particular with the development of hivh speed transpor-
tation systems, for example in the United States, Japan, and France, it is
essential to consider the dynamic loads caused by the present and future vehi-
cles, and the dynamic response of bridge or elevated structures.

A number of analytical studies have been reported in the past fifteen
yvears of the dynamic response of bridges on straight alignments subjected to
simulated highway or railway loading. However, little or nothing of substance
has been reported for horizontally curved bridges, and as is seen from the results
presented herein, this increasingly used geometry gives rise to substantially
higher dynamic amplification factors for displacements and strzss resultants
( shear, flexural and torsional moments).

This contribution discusses some analytical results obtained for either
a concentrated force or a simulated vehicle traversing a horizontally curved
bridge at constant velocity. The significance of this type of study assumes
greater importance when it is realized that in the next ten years the world wiil
witness new and more efficient and probably automated transportation systems
in which vehicle speeds will approach 500 miles per hour.

2. GURRENT SPECIFICATIONS

In the United States and in many foreign countries the American Railway
Engineering Association Specifications [1] are used to determine the dynamic
effects of all types of moving trains by a Cooper's E-72 loading. In applying
the AREA Specifications to obtain dynamic effects, an impact factor, expressed
as a percentage of the static live load, is calculated on the basis of only one
independent variable, a characteristic length L in feet, which in general is
taken as the loaded length of the member being examined., For example, for the
direct vertical impact of moving trains for beam spans, stringers, girders, ...:

—

2

I,
B0 = s , < o o
3 =60 I 100 ft

1800
Lia0

Impact Percentage = + 10 L > 100 ft, (la)
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and for truss spans
4000
L+25

3

Inpact Percentage + 15 (1b)
A simple calculation shows that the greatest impact percentage can never
exceed 40% of the static live load,

The standard live loading for highway bridges in the United States is
the HS 20 - 44 representing a highway truck-trailer of 72,000 pounds, or
alternately a uniformly distributed lane loading of 640 pounds per linear foot
of lane with either a concentrated force of 18000 pound (for moment) or 26000
pounds (for shear). Again, the dynamic effects are accounted for by utilizing
only one independent variable L, which represents the length in feet of the
portion of the bridge span that is loaded to produce the maximum stress in the
member being investigated, The AASHO formula is:

Impact Factor = £ 0.30 (2)

It must be noted that neigher of these specifications consider other
important parameters such as the velocity of the vehicle, the uneveness of the
deck of the bridge, the initial conditions of the vehicle upon entering the span
(pitching motion for example), or the geometry of the span, that is, a straight
alignment, a vertical curve, or a horizontal curve,

3. STRAIGHT BRIDGES

Comprehensive analytical studies of the dynamic behavior of simple
and multi-span bridgeson a straight alignment have been reported in the
literature [e.g. 3,4,5]. Some of the parameters considered in these studies
involve: the speed of the vehicle; the ratio of the total weight of the vehicle to
the total weight of the bridge; the ratio of the natural frequency of the jthaxle
to the fundamental frequency of the bridge; rotatory inertia of the vehicle in
pitching motion; axle spacing; shape of the roadway profile; initial condition of
the vehicle (vertical and angular displacements) upon entering the span; initial
condition of the bridge (dynamic deflection and velocity) when the vehicle enters
the span. When these parameters are varied through the ranges of values that
describe the vehicle-bridge system of todays dynamic increments as'high as 1.0
are obtained; however, for the more basic parameters ratios involving vehicle
velocity, weights of vehicle and bridge, and natural frequencies of vehicle and
span, the maximum dynamic increments are of the order of magnitude of 0.30.
The term "dynamic increment" is defined as the difference between the dynamic
value of a function (e.g. deflection, shear, moment) at a specified section
and the value of the function for the same force or load statically applied at the
same specified section, this difference being divided by the absolute maximum
static value of the function at the specified section.

Thus, it can be concluded that even though all the parameters upon
which the dynamic response of a bridge depend are not included in the AREA
and AASHO Specifications, the impact values specified by these organizations
appear feasible and reasonable for current design procedures,
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4, HORIZONTALLY CURVED BRIDGES

As horizontally curved bridges (many times approximated by a series of
short straight segments) were being utilized more frequently in highway design,
the University of Pennsylvania initiated, a few years ago, a study to determine
the dynamic response characteristics of such structures, The major objective
of this study was to ascertain the dynamic increments for realistic bridge-
vehicle systems and thus determine whether the specifications in current use

were adequate,

A simply supported, single span, horizontally curved bridge was chosen
(see Figure 1) and two types of input were used: (1) A single force traversing
the bridge along its centerline at constant velocity, and (2) A rigid mass
(sprung mass) connected by a linear spring and a viscous damper to a rigid
mass (unsprung mass) which was always in contact with the bridge deck,
traversing the bridge along its centerline at constant velocity. See Figure 2,
The parameters considered and their corresponding ranges were:

1, Central Angle, 03
0.125 radian ¢ 63 ¢ 1.0 radian

2. Radius of Horizontal Curvature, r
200 ft, <« r < 800 ft,

3. Rigidity Ratio of the Bridge Cross~section, A

A = torsional rigidity + warping rigidity function
Flexural rigidity
0.05 £ A £1.00
4, Speed Parameter, a,,
(velocity of vehicle) (fundamental period of equivalent
- straight bridge*)

®x

2 (length of equivalent traight bridge¥*)
0,06 £ ay € 0.18(20 mph ¢ v ¢ 60mph)

5. Weight Ratio, RV
_ total weight of vehicle

v weight of bridge
0.08 =« R, € 1.00

6. Frequency Ratio, oy
- natural frequency of vehicle
¢v natural frequency of equivalent straight bridge¥*

*The equivalent straight bridge is defined as having the same length as the
curved bridge.

Qrhliiccharirht
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The dispiacement equations of motion representing this system were
coupled, non homogeneous partial differential equations which were solved by
techniques described previously in detail by Tan and Shore [6,7] . The
major conclusions drawn from this study of horizontally curved bridges wsre:
(1) The dynamic increments (as defined in Section 3) for deflections and stress
resultants for the moving constant force were generally higher by at least 10%
than for an equivalent straight beam; (2) The dynamic increments for the moving
vehicle for deflections and stress resultants were significantly higher than for
an equivalent straight beam; (3) When the frequency ratioc and the weight
ratio are 0.30 or less the response of the bridge due to the constant force can
be used; (4) For a rigidity ratio greater than 0.5 and a central angle less than
0.50 radians, the curved bridge response can be predicted by an equivalent
straight bridge; (5) Preliminary results indicate that the dynamic increments
for vertical deflection, w, rotation, 8 , and stress resultants are essentially
the same for a given set of parameters, Two typical response curves for
curved bridges are shown in Figures 3 and 4, In theseFigures the following
notation is used:

DIWSB = dynamic increment for vertical deflection of an equivalent
straight bridge of length L, : DIWCB = dynamic increment
for vertical deflection of the horizontally curved bridge.

On the basis of the results obtained in this study of the response of
horizontally curved bridge the following recommendations appear in order:

(1) An appraisal of the current specified impact and dynamic
factors to determine whether other variables should be
incorporated in addition to only a characteristic length.

(2) Since for curved bridges the dynamic increment is extremely
sensitive to the rigidity ratio parameter, attention should be
given to methods for accurately calculating the torsional,
warping, and flexural rigidities of complex bridge structures.,
It appears necessary and feasible that work on analytical
methods by finite element techniques verified by model tests
should be initiated for predicting these rigidity ratios.

(3) Dynamic response tests on laboratory models of curved beams
appears advisable. These models should simulate as closely
as possible the mathematical model used in References 6 and
7, to verify the analytical results,

(4) Field tests of actual curved bridge structures subjected to
dynamic loads should be initiated to correlate both the
analytical results and model tests,

(5) Further analytical work should be initiated for curved bridges
to include other effects such as superelevation which introduces
an initial twist in the bridge, vehicle speeds up to possibly
500 mph, longitudinal forces due to braking, accelerations, and
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(5) Continued:

decelerations at these high speeds, as well as the other
parameters listed in Section 3 which were reported for straight

bridges, but which were not included in the study reported in
References 6 and 7.
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SUMMARY

Many studies have been reported in the past fifteen years concerning
the dynamic response of bridges on straight alignments subjected to simulated
highway loading. However, little has been reported for horizontally curved
bridges and this rather common alignment on highway and railway systems
gives rise to substantially higher dynamic amplification factors for displace-
ments and stress resultants. Such a study has been made for a simulated
highway vehicle traversing a curved bridge considasring such parameters as
radius of curvature, flexural to torsional rigidity ratio, velocity of the vehicle,
and vehicle mass to bridge mass ratio, Some overall results will be reported
and recommendations made in light of current specifications,

RESUME

De nombreuses études ont été faites ces derniéres 15 annédes
sur le comportement dynamique de ponts droits soumis & une charge
d'autoroute simulée. Cependant, on a presque totalement négligé
les ponts en courbe, beaucoup employés pour routes et chemins de
fers. Pourtant, on a ici des facteurs d'amplification dynamique
considérablement plus grands pour les déplacements et pour des ten-
sions résultantes. Une telle étude a été faite pour un véhicule de
route simulé traversant un pont courbe, considérant des paramétres
tels rayon de courbure, rapport des rigidités & la flexion et & la
torsion, vitesse du véhicule, et rapport des masses du véhicule et
du pont. Quelques résultats universels et des recommandations con-
cernant les exécutions courantes seront publiés.

ZUSAMMENFASSUNG

Viele Untersuchungen sind in den letzten filinfzehn Jahren be-
treffend das dynamische Verhalten von geradlinigen Briicken unter
Verkehrslast angestellt worden. Wie auch immer, wenig ist iber
waagrechtgekrimmte Briicken gesagt worden; diese weniger gebriduch-
liche Ausfilhrung der Strassen- und Eisenbahnbriicken zeitigt er-
heblich hthere Schwingungsamplituden fiir die Verschiebungen und
Spannungen. Eine solche Untersuchung wurde fiir ein simuliertes
Fahrzeug bei folgenden Parametern angestellt: Halbmesser, Drill-
steifigkeit, Geschwindigkeit des Fahrzeugs sowie Ausmass dessel-
ben im Verh&ltnis zu dem der Briicke. Einige Gesamtspannungen und
Empfehlungen aus gebraduchlichen Ausfilhrungen sind aufgefiihrt.
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Non-Stationary Vibrations of Bridges Under Random Moving Load
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Nichtstationare Briickenschwingungen unter zufalliger, beweglicher Last

LADISLAV FRYBA
Doc. Ing:Dr.Sc.
Head Research Scientist
Research Institute of Transport
Prague, Czechoslovakia

1, Introduction

It has been assumed up to this time that the traffic loading
of bridges, i.e. the static and dynamic component of the service
load, is 2 well known function of the space and time coordinate (a
deterministic process), see[l],[2]. This paper deals with the essen-
tially opposite case supposing that the traffic loading of bridges
is a random process. This new conception is in better accordance
with observations because the true traffic loading is influenced
by the random composition of the traffic flow, by the random initi-
al conditions when the vehicles enter the bridge, by the irregulari-
ties of unevenness of the road surface etc.

In general the static and dynamic deflection of bridges is de-
scribed by the linear differential equation

LEv(x,t)J = p(x,t) (1)

where v(x,t) denotes the deflection and p(x,t) the load. The random
variation of p(x,t) is assumed not only with respect to the time co-
ordinate t but also to the position coordinate x and in addition the
load p(x,t) is regarded as a nonstationary Gaussian random process
of non-Markov type.

L represents a 1inear2differential operator of the type

L= L T

0 d
+ 2(«, Cdb I (2)
dt? At
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where Lo is a self-adjoint linear operator in the space coordinate x,
M =~ mass per unit length and Wy - circular frequency of viscous

damping.

2. Probability Analysis

2el, Normal - Mode Analysis. Elastic systems described by Eqs.

(1) and (2) are with advantage solved by means of the normal-mode

analysis
vix,t) = Z - V() agy® (3)

plx,t) = Ji;l & v gy ) Qg () (4)

where v(d)(x) are the normal modes of vibration that are obtained
with regard to the boundary conditions from the equation

- 2
LO [V(j)(X)] = M w(J)V(j)(X) ’ (5)
“%J) is the natural circularlfrequency of the system,
1
Q(j)(t) =-;~—— p(x,t) v(j)(x) dx (6)
(3
is the generalized force, )

Viyy = guv%d)(x) dx , jcw V(J)(x)v(k)(x) dx = 0 for j # X
0o
(7)
and q(J)(t) is the generalized deflection that is obtained with re-
gard to the initial conditions from the equation
e L 2
Qry(t) + 2 w,_ q, (1) + w Qray(t) = Q. (t)
(3 b *(J) (3) (3 (3 ®)
The solutlon of Eq.(8) with zero initial conditions is

agy () = fh(d)(t-f)Q(j)(’t) ar = fh(J)(T)Q(J)(t ©) 4

-0

where h( )(t) denotes the impulsive function

(9)

-
1, e % sin G(J)t for t 2 0
w
hepny @) =y () (10)
0 for t < 0O
and w(g) = (J) - lvi + The limits of integration in (9) may

be extended to o© and - , respectively, because Q( )(t—t)
for T > t and h( )(f) O for <7< O, respectively.
The functions h(J)(t) and V(J)(x) are deterministic while
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q(J)(t), Q(J)(t), v(x,t) and p(x,t) are random ones.

to know the statistic characterisites of the input
0
p(x,t) = E[p(x,t)] + plx,t) (11)

) 0
Kpp(xl,xz,tl,tz) = E [p(xl,tl) p(xz,tz)] . (12)
where E represents the mean value linear operator, p(x,t) - the cen-
tred value of the load and Kgp(xl,xz,tl,tz) - the covariance of the
nonstationary function p(x,t).

As followe from the definition of the covariance (12) the co-
variance of the generalized deflection may be evaluated from (9)

K (tq,t) = h, (T )h ey (T,)K (=% ,t,=7,) .

o
- A%y 4T, (13)

the covariance of the deflection from (3)

va(xl,xz,tl,tz) = = E;i v(j)(xl)v(k)(x2)Kq(j)q(k)(t1’t2%14)

and the covariance of the load from (4)

_ oo o0 2
Kop®19%aty,tp) = JZ=1 %:"1!“‘ V(5 ®v (1) (xz)KQ(J)Q(k)(tl":i;)
In Bqs. (13) and (15) the covariance of the generalized force is
calculated from (6) Yy,

1
(3)%(x) ViVaold O PP

00
. dx, ax, (16)

stationary function is defined in[B]and for the generalized deflec-
tion the Wiener-Khinchine relations between the spectral density
and the covariance are as follows

1 -1 (@t -uytg)
S (W ,0,) =—0s=/ (K (t,t,)e 2 17174 at
Uy T PG ) 172 172

K 10257 Y) L a8
th,t = S Wy W W W
a5 122 f/ a(3)a00 “12920€ e
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For the spectral density analysis it is also convenient to in-
troduce the transfer function

-]

1

-iwt _ (19)
H(J)(w) = h(J)(t) e dat = w2 (_O? R Ziwbw 19
(3~

-eo

as a Fourier integral transformation of h(j)(t) given by (10).

Then the spectral density of the generalized deflection may be
evaluated as a function of the spectral density of the generalized

force, see[4]:

(wy195) = H(gy @) Hepy@y) S @1,9,)  (20)

s
()9 (k) Q5%

where ﬁ(J)(w) is a complex conjugate function of H(J)(w Y

Here we used the spectral density S (wl,w2) of the ge-

U
neralized force defined similarly as in (17); this can be adapted

with regard to the Eq., (16)

S ( ) 1| ( ottty
Wa 9 W = t,,t,)e dt.,dt,=
UNUy 172 w2 )] Rt 1 e
1 £ 2 = (21)
= —;———;———-J[j/ v(j)(xl)v(k)(x2)Spp(xl,x2,wl,ab)dxldxz
(3)7 (k) o o
FF 1 (@ytn=@nty )
K (£ 55) =~/;/ S (@0 ° 2 1134 a6, (22)
Q3)Qyy 1772 JJ Q) 172 1992
The spectral density of the deflection is then with respect to
(14) 0o oo
S (Xn g X gt g00) = 2 2o (%1 )% (101 (%, ) (@7 56)
vv X11%219719%2 1 k= V() LV () X2 A3y L’ %23)

from which the covariance of the deflection ecan be calculated simi-
larly as in (18) and (14).

3. Random Moving Load

3+1l. Random Moving Force. As an example we shall golve a simple
beam of span £ loaded ba a massless force P(t) = P + P(t) with con-
stant mean value E [P(t)] = P which is moving with constant veloci-

ty ¢ along the beam. The analogous deterministic case was solved in
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[2] and [4] and it represents the mean value of the present solution
E[v(x,t)], so that we will now investigate the stochastic case only.

The load per unit length and its mean and centred values are
in our case

o
p(x,t) = S(x-ct)P(t) , E[p(x,t)] = d(x-ct)P , plx,t) =

= & (x-ct)B(t) (24)
where J(x) represents the Dirac-delta function. The covariance of
the load can be calculated from (12)

Koo (X a%patyty) = § (x)-cty) Slxy-cty) Kpplty,ty) (25)

where K?P(tl’t2) is the known covariance of the load P(t). Ve sub-
stitute (25) into (16) and then, with regard to the well known
properties of the Dirac function, we obtain the covariance of the
generalized force
o

J)~(k ()7 ()
Using (26) the covariances of the deflection can be calculated
from (13) and (14).

As an example let us assume the covariance of the force P(t)
in the form

Kpp(tysty,) = Kpp(to-ty) = 21Sy S(t,-ty) (27)

where Sp is the constant spectral density (white noise). Then we
obtain from the Eq. (13)

00 c0

1
K (tyrty) =———— [ | h(gy @h gy (m)v e (-7
a(+)a 122 [j()l(k)Z(j)ll
. V(k)[C(t2"T2)] KPP(tl‘Tl,tz- 2) dTl dT’2 =
27{SP
v | P TR Crttet)v gt -n)] -
(3 (k)q,
- Vol (-1 dTy (28)
If for simplification we neglect the cross-correlation of the
generalized deflection, i.e. X (t.,t,) = 0 for j # k, the
’ ATy 72 ’

variance of the deflection can be received from (14)
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> _ .S .2 i}
62 (x,t) = K_(x,%,t,t) Jzzl v i) q(j)q(j)(t,t)
S 2xSy i
= % - v(j)(x)/ h%j)crl) v%j)[c(t-rl)]drl (29)

(J)

The following expressions hold true for a simple beam of span £
and of bending stiffness EJ, see[4]
(%) LS al > j4x4 EJ
T Eemer, Vg T 9y 4
Substituting (30) and (10) into (29) we obtain (note that the 1i-
mits of integration may be changed as h( )(T ) = 0 for 1,< 0 and
v(J)[c(t-f )] =0for 7, > t)

(30)

1 t
Z 8nS jrx f —& Ty ‘o jre 2
v (x yt) = iy ﬂ (,2 s n T O[ sm w(j) 1s1n£—(1:-'f1 dz-l-
i 87(3 jrx 1 | W/, +jxc/d ~2@ t
= '>_———sin2 (,3) 5 5 sin 2j7rct/£ + e B .
5 gl £ 16 | (s rime/t) g
, Wy -2Lobt ,
. 8in 20, .yt + ————— (cos 2jact/ - e cos 2u3(.)t) *
w('_)—jvrc/z —20,t , w
+ —] 5> |-sin 2jxct/l + e sin 2w(.)t e
(w(j)"j”C/E) + wb J w(j)"jrC/ﬂ
2wyt , 2 wy, jre/p
.(cos 2jxct/Z - e cos Zw(.)t) - =575, 7 > ( sin 2jnct/l+
J J"‘W’"c /2 +wb an
2w, t p) —2u t A
+ cos 2jTet/l - e L l-e¢ b (cos 20 .\t -—J—).
o (3) A
(3) b
, 2 2w, t
.8in 2w(j)t) *— (1 -e ) (31)

b
As the variance of the deflection is a function of the time
the resulting vibration of the beam appears as a nonstationary pro-
cess although we have taken into account the movement of a statio-
nary random force.

For subcritical velocities ( ¢ < C.n) the greatest static and
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dynamic effects of a moving force appear approximately in the moment
when the force crosses the beam centre. Therefore the coefficient

of variance, defined as C_(x,t) = Gk(x,t)/E[v(x,tﬂ , is to be calcu-
lated for x = 4/2 and t = T/2 = £/(2¢). It represents then the re-
lative dynamic increment of the deflection effected by the random
moving force and it takes the following form (from (31) for j=1 ap-
proximately, see [4])

Cv(,£/2,T/2) = CP. CVP (32)
Here CP is an analogous coefficient of variance of the force P(t)
and CvP is represented graphically in Fig. 1 as a function of the
parameters o« andﬂ where & 18 a velocity parameter and ﬁ a damping

parameter, respectively :

© = cfeg i e = (T/L)(ES/u)M? (33)

/3 ol W w(l) (34)
The same results can be obtained using the spectral density

analysis from the section 2.3. In this case the load (24) must be
taken for a function of the time only, see [4].

shall solve a simple beam loaded by an infinitely long random strip
which is moving with constant velocity c¢ along the beam. The analo-
gous deterministic case was solved in[4] where not only the move-
ment of the continous load p (measured per unit length) but also
the effects of its inertia mass g¢p= p/g were taken into account.

The load is assumed to have the following form
p(x,t) = p(x-ct) r(t) (35)
The first of the components p(x-ct) is a random variable in the mo-
ving coordinate system § = x~ct while the second r(t) is a random
function of time. The mean values of these two functions are assu-
med to be constant
Ep(§)] = p , E[®) =1

so that the load (35) may be written as

p(x,g) =p + o(x,t) = |p + S(E ﬂ. [1 + g(t)] (36)
where p(x,t) = p(f ) + pr(t) + 8(§ )2(t). Then with respect to (12)
the covariance of the load is

Kop(X1:%20t 0 tp) = Kpp(§1,§2) +p Kpr(§2,tl) + xppr<§1,§2,t1) +
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2
* prT( §1;2) *p Kfr(tl'tZ) *p Kprr(§l’t1;2) * Kppr(§1’§2’t2) *

+p Kprr(fz,tl,tz) + Kpprr(gl,fz,tl,tz) (37)

where g‘i'- x;~cty, i =1, 2. Let us assume approximately that the
functions p(£ ) and r(t) have no cross-correlation of the second up
to the fourth order; then (37) reduces to

2
Kpp(xl’x2’t1’t2) = Kpp(§1’§2) +p Krr(tl,tz) (38)

where Kpp(gl,;z) is the covariance of the load function in the mo-

ving coordinate systemg and Krr(tl,tz) is the covariance in the
time coordinate.

As an example let us assume the covariances of these functions
in the following form

Kop(§1062) = 228 8(6,-61) ) K (19,1)) = 258 dlt,-t)) (39)

where S_ and Sr are the constant spectral densities (wide-band spec-
tra). Putting (38) and (39) into (13) the covariance of the genera-
lized deflection may be evaluated; hence

ey
i1
Kq(j) Q(k) (tl 1t2) =m h(j) (Tl )h(k) (TE )V(.j) (xl)v(k) (Xz) .
-o0-00 0 (40)
. {2rSp cf[xz-x c(tz-“rz—tlﬂ’l ):l + 27rSrp2 65‘(1:2-1;1—1’2“’1 )} dxldx2d’r1dr2

The 1limits of integration with respect to time T are considered
from O to e in accordance with (10) and because the movement of the
load has an infinitely long duration.

Neglecting the cross-correlation Kq( Y )(tl,tz) = 0 for j #k
k
the variance may be calculated from (40) gnd (13)
2 (x,t) = .S 2 ]
G, (xyt) = K (x,%,t,t) el v(j)( x) Kq(j q(d)(t,t) =
2.2
_ Z AxS e 1 sin2 Jxx (J)M(J)w L J 2‘ c /1;2 =1,
= £ (3)
371 4 2% 37 413(5)@,D e 2
-, ﬂ/c

2. 2 _2 —
+ 4 wb( wb -3 w(j) * j27r2c2/£2) ( l -e b cos &)(J.)E/c.cos jr) -
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2 2 2 T L/c
- b[D v 458y - 3By, - 57 z/ﬁz)] ® " sin 5{yyH/e.con 37} '
2 5
® 45 p°(1 - ) X (41)
M 2l R LB
J=1 ((_szx E(.) J (’]+ 3€)
2 2 2 2
where “—’(j) = j)(l - xPa/52y /v ), S5y = B(s5y- By
- -2 2
C-)b = (a)b/(l + R ) " D = ( w(J) -J 7"202/,22)2+

2
+'4j4'5%wzc2/£2
@y 1 (42)

The result (41) does not depend on time so that the vibration
of the beam is a random process stationary in time. The coefficient
of variance for the centre of the beam can be approximately brought
to the following form, see [4]

Co8/2,t) =6, (£/2,t)/E[v(£/2,0)] = C_ C  +C_.C (43)

of variance

where Cp and C, are the analogous coefficientsYof functions p(§)
and r(t)respectively and the expressions Cvp and Cvr are represehted
in Figs. 2 and 3 as functions ofcx,/? and mass parameter 2¢, see

(33), (34) and (42).

o€

4, Application of the Theory and Experimental Results

The theory presented above can be applied to bridge structures
assuming that their moving load is a random function. The solution
is shown for two typical cases which concern (a) short span bridges
and (b) long span bridges.

(a) The 1load of short span bridges or short longitudinal beams
is ideslized by a concentrated force of random time variation mo-
ving along a beam. Structures of this type are usually loaded by
one axle of the vehicle only.

(b) The load of long span bridges is idealized by an infinite-
1ly long random strip (35). The first component of this load p(f )
expresses the random distribution of the static load in the bridge
span direction while the second component r(t) interprets the true
dynamic effect of the load. The large span bridges are usually loa-
ded by a series of axles resulting either from continous highway
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traffic or from a railway train whose length is supposed to be mugh
longer than the span of the bridge.

In reality the traffic loading is - generally speaking - an un-
known random process. Therefore a solution was given also for the
problem inverse to that given in the present papéﬁt5]. The probabi-
1lity analysis[5]starts with the known statistic characteristics of
the response v(x,t) giving the input characteristics for p(x,t) as
a result. The statistic characteristics of any particular bridge
(i,es the beam deflections or stresses in some points) can be measu-
red without difficulties under service conditions and on this basis
the load characteristics can be evaluated.

As an example the Fig. 4 shows a covariance function measured
on a railway bridge.
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SUMMARY

The traffic loading of bridges is considered as a nonstationa-
ry random process. Starting from the statistic characteristics of
the load the theory supplies information as to the statistic charasc-
teristics of the deflections or stresses in a bridge , i.e. the
mean value, the covariance, the spectral density, the variance or
the coefficient of variance.

The solution is shown for two typical cases which concern small
and large span bridges.In the former case the load is idealized by
a concentrated force of random time variation moving with constant
velocity along a simply supported beam. The random effects of this
load are decreasing with increasing velocity and damping (Fig. 1).

In the latter case the load is idealized by an infinitely long
random strip which is moving again with constant velocity along a
simple beam. This type of load induces in the beam a stationary ran-
dom vibration the amplitudes of which are increasing with decrea-
8ing damping and for velocities approaching the critical speed which
depends also on the mass of the traffic load (Figs. 2 and 3).

RESUME

Le traffic sur un pont est considéré comme une charge stochas-
tique non-stationnaire. En partant des caractéristiques statistiques
de cette charge, la théorie donne des informations concernant les
caractéristiques statistiques des déformations ou des tensions dans
un pont, c-a-d. la valeur moyenne, la covariance, la densité.spec-
trale, la variance ou le cobBfficient de variarce.

Deux cas typiques ont été traités pour un pont court, resp.
long. Dans le premier cas, la charge est idéalisée par une force
concentrée, variable arbitrairement avec le temps et voyageant avec
une vitesse constante le long d'une poutre simple. L'effet arbitrai-
re de cette charge décroit avec vitesse et amortissement croissant
(fig. 1).

Dans le deuxiéme cas, la charge est idéalisée par une charge
répartie stochastique infiniment longue voyageart sur la poutre
simple avec une vitesse constante. Cette charge provoque une vi-
bration stationnaire arbitraire, dont les amplitudes croissent
inversément avec l'amortissement et augmentent avec des vitesses
approchant la vitesse critique, qui dépend également de la masse
de la charge de traffic (voir fig. 2 et 3).
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ZUSAMMENFASSUNG

Die Verkehrslast von Briicken wird als nichtstationdrer, zu-
fdalliger Vorgang aufgefasst. Ausgehend von den statistischen Cha-
rakteristiken der Last liefert die Theorie Auskunft iiber die sta-
tistischen Charakteristiken der Verformungen oder Spannungen einer
Briicke, die da sind der Hauptwert, die Kovarianz, die Verteilungs-
dichte, die Varianz oder der Koeffizient der Varianz.

Die Losung wird an zwei ausgepridgten Beispielen mit einer
kurzen und einer langen Briicke gezeigt. Im ersterwdhnten Fall ist
die Belastung durch eine Einzellast idealisiert, die sich bei zu-
fdalliger Zeitvariation mit konstanter Geschwindigkeit entlang des
einfachen Balkens bewegt. Die zufdllige Wirkung dieser Last ist
verschwindend bei wachsender Geschwindigkeit und Dampfung (Fig. 1).

Im letzteren Fall ist die Belastung durch einen unendlich lan-
gen Streifen idealisiert worden, der sich wiederum mit konstanter
Geschwindigkeit bewegt. Dies bewirkt im Balken eine stationédre, zu-
fdllige Schwingung, deren Amplitude mit abnehmender D&mpfung und
mit Geschwindigkeiten, die sich der kritischen ndhern, welche von
der Lastmasse abhidngt, widchst.



Vi

The Wind-Induced Vibrations of Large Cylindrical Structures
Vibrations dues au vent dans de grands ouvrages de forme cylindrique

Windschwingungen langer Zylinderbauwerke
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The University of Western Ontario, London, Ontario, Canada; on
leave of absence from the Czechoslovak Academy of Sciences, Prague

The difficulties caused by the wind-induced lateral vibrations
have increased with modern high cylindrical structures and columns
of large bridges. The nature of the excitation and the aerodynamic
damping of lateral vibrations are discussed in this paper.

l. Introduction

In recent years, wind-induced lateral vibrations excited by
the fluctuating lift forces have occurred with some large
cylindrical structures in many countries. These dangerous vibra-
tions are usually excited at low and medium wind velocities and
have their predominant components in a plane perpendicular to that
of the wind. The lateral vibrations have caused serious trouble
in many cases, as described, for example, in papers [6,8,12,16,17,
20]. An illustration of a difficulty of this kind is the lateral
vibration of the high cylindrical columns of a 330 m span arch
bridge [9,12]. The vibration which was much stronger than in the
case described by Kunert [6] produced in th% columns additional
dynamic stresses of up to roughly 780 kg/cm“ that of course highly
compromised their desirable bearing capacity. A similar problem
recently arose with the cylindrical hangers of a large arch bridge
in Canada. So it appears that the possibility of lateral vibration
must be taken into account not only with masts and towers, but
with all structures containing slender cylindrical members and
thus, also with some steel arch bridges.

In general practice, the problem is not usually faced until
the structure is finished and the cure is difficult. The pre-
diction of the lateral vibration already in the design stage is
therefore of major importance.

2. The Nature of Lateral Vibration Excitation

A considerable number of experiments have been carried out
with the aim of elucidating the nature of lateral oscillations.
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Understanding the problem has already had quite an interest-
ing history. For many years, the lateral vibration was considered
to be a response of the structure to fluctuating lift forces which
accompany the regular eddy shedding creating the well-known
pattern in the wake, usually called Karman street. This explan-
ation leads to the solution of the response in terms of determin-
istic vibrations which results in very simple formulae even for
rather complicated structures [8]. This approach seems justified,
especially in the subcritical range; however, already the earlier
measurements in the wake have shown that even in this range the
vortex pattern is not perfectly periodic, with the only exception
of extremely low Reynolds numbers (see Roshko [14]). Thus the
lift is composed of periodic and random parts and the response
should be solved in terms of random vibration. This approach
shows the strong dependence of the intensity of vibration on the
ratio of the random and periodic parts of the 1lift [9].

Later studies of cylinder behaviour in the supercritical range
led to the conclusion that the 1ift is chaotic (see Fung [4]) and
the statistical approach, based on Fung's power spectrum of lift,
became very favourable for the whole supercritical range. Neverthe-
less, this calculation sometimes leads to considerably small
amplitudes with large structures [9].

Finally, investigations in the region of very high Reynolds
numbers proved a reappearance of harmonic component of the lift or
narrow band lift in this domain, sometimes called the transcritical
range. The papers by Roshko [15] and by Cincotta, Jones and Walker
[2] represent very important contributions in this respect.

To provide further information about the fluctuating forces
acting on the cylinder, pressure measurements on the surface of the
body are useful [5]. Fig. 1 represents an example of such measure-
ments carried out by the author and O. Fisher on a cylinder with a
diameter of 31 cm at Reynolds number R = 265000 and Strouhal number

S = 0.194. The upper trace
is the motion of the cylinder,

- . 3 the lower traces show the

f ‘ , AUATA surface pressures measured at

” | Vo two points situated 2.35

| diameters apart in a plane

perpendicular to the direct-

. ion of the air flow. (The

ANOA sensitivity of the two
vi VA pressure pick-ups Disa Pu2a
, was different, as indicated).
pressures These measurements were made
at a wind velocity, which was
lower than that at the reson-

P : o ance (below the resonance).

J I - NN It can be seen that the
pressures are approximately
in phase with the motion. 1In

Fig. 1. Surface Pressures on a the region of resonance,

Circular Cylinder there was a distinct phase
shift /2 between the pressures

and the vibration. Above the resonance, the periodicity was not so

well pronounced as in the former cases. However, whenever the
periodicity could be recognized, the phase shift between pressure
and motion approached m. These observations of phase conditions

vibration
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between the fluctuating lift force and the response of the
cylinder evidently agree with phase conditions of mechanical
systems excited by an external force. Therefore, the outlined
pressure measurements support the assumption that the lateral
vibration may be considered as excited oscillations.

This conclusion is important because some authors tend to
explain the lateral vibration of circular cylinders as oscillations
induced by negative aerodynamic damping. This explanation does
not seem justified for the following reasons:

1. The existence of fluctuating lift forces has been proven many
times, even with steady cylinders performing no motion.

2. The mentioned phase shift m/2 at resonance (out of phase force)
is typical for excited oscillations.

3. The negative aerodynamic damping, as usually understood, repre-
sents forces which are induced by the motion of a body, the cross-
section of which is aerodynamically unstable. The square cross-
section represents the well-known example of this kind. However,
the instability clearly defined with the square cross-section
cannot be defined in the same way with the circular cross-section.
Furthermore, the self-excited vibration of bodies with unstable
cross-section significantly differs from circular cylinder
sy » 2 oscillations. The
= main feature of self-
excited oscillations
is the monotonous
increase in steady
amplitudes with wind
velocity above a
certain value. An
example of wind-
_~" induced oscillations
~ of this kind is
given by Fig. 2.
This figure repre-
sents the universal
galloping response
of square cylinders
having different
normal modes under
the action of wind
n with constant and
variable mean speed

Fig. 2. Universal Galloping Response of Square ([1l1].
Cylinders Having Different Normal Modes

=N la, 2, 30, 40 [ Vix)= V|
a

s . x
16,3b 1 Vix) = v (-1
0.4}

o2r

1
0.372

a = % - reduced amplitude of displacement
h - length of side of the prism

U = ﬁ% - reduced air velocity

4 - air velocity

w - natural circular frequency

=

2
=§E—-— mass parameter

- mass per unit of length
air density
- reduced damping coefficient (log. decrement/27)

O = S
|
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This representation holds generally for all bodies with different
mass, damping and normal modes but with square cross-section [11].
In other cases of negative aerodynamic damping, the character of
the response as a function of wind velocity is similar; however,
this character is principally different from that of circular
cylinder vibration. Laberal response of circular cylinders always
implies either a more or less well pronounced resonance peak alike

as curve g in Fig. 3, or a continuous

progressive increase in amplitudes, as

diagrammatically shown by curve b in
a the same figure. According to the
previous, the latter case is typical
for the supercritical range with the
purely random lift.

amplitudes

For all these reasons, the
assumption that the lateral vibrations
- of circular cylinders can be calculated

wind veloeity as excited (forced) oscillations
seems to be well founded. The problem,
Fig. 3. General Character of course, is to know the 1lift forces
of Lateral Vibration as functions of all main factors which
govern the phenomenon. For a reliable
prediction, the 1lift forces should be defined by their power spectra
and cross-spectra as functions of Reynolds number, intensity and
scale of the turbulence and dimensionless amplitude of vibration.

Despite the large amount of experimental work which has been
carried out, a full description of 1lift forces is not available.
The research of ground wind effects in relation to launch vehicles
has recently provided some very interesting information concerning
the range of very high Reynolds numbers inaccessible in standard
wind tunnels. Especially the work of Cincotta, Jones and Walker
[2] must be referred to here because the range of very high Reynolds
numbers is particularly important for large structures. As for the
nature of 1lift forces, these authors came to the following con-
clusions concerning different ranges of Reynolds numbers:

In Reynolds Number Range: The Nature of Lift is:
1.4 to 3.5 million Wide band random
3.5 to 6 million Narrow band random
6 to 18.2 million Random plus periodic

The Strouhal number determined from the autocorrelation
functions increases with the increase in Reynolds number from 0.15
to 0.3, but the value 0.3 remains constant throughout the random
plus periodic range.

So far, the previous measurements by Fung [4] and Roshko [14]
agree with these results.

However, the measurements by Schmidt [18] in the range of
Reynolds numbers up to 5 million led to another result. His power
spectrum for lift force at R = 5 million has no well-pronounced
peak. Contradictions of this kind occurred with other measurements
too. It seems likely that these contradictions have their reason
in differences in surface roughness of the body and the intensity
and scale of the turbulence of the flow.
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2.1 The effect of turbulence

1241

The extent to which the behaviour of bluff bodies in wind can

depend on turbulence is demonstrated by Fig. 4.
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the vibration difficult.
columns with granulated gra

1)

vel.

The sharp peak
caused by vortices in
smooth flow completely
disappeared due to turbu-
lence and the character
of response is quite
different in both cases.

The turbulence and
the surface roughness
thus highly affect the
nature of aerodynamic
forces acting on the
cylinder. These factors
therefore also affect the
value of the critical Rey-
nolds number which divides
the subcritical range from
the supercritical one.
Some information of this
kind is provided by
Simon [19]. Uncertainty
in the estimation of the
critical Reynolds number
is sometimes very
unpleasant.

For example, the
columns of the large arch
bridge mentioned in the
introduction performed the
strongest vibration at
R = 551000. It was not
quite clear in which
regime the columns vibrated
at this R. This made the
decision of how to suppress

Vibrations were decreased by filling the
The efficiency of such a method

depends on the regime of the flow round the body as discussed in

paper [12].

This explains why this approach to the cure of vibrat-

ion may fail in some cases, as was exXperienced with a Canadian
bridge, whereas the same cure may be successful in other very

similar cases [6,9,12].

This example indicates that the elucidation of the effect of
atmospheric turbulence on the 1lift nature is really desirable.

2.2 Dependence of lift on t

he motion

The influence of the motion on the 1lift forces is a further

important factor.
be used:
the structural damping.

To study it experimentally two approaches can
the motion is controlled by an exciter, or by changing
The former way has been used more often.

In the range of random plus pericdic lift at very high Reynolds

numbers (6-18.2 million), Cincotta and asscciates [2]

found a very

strong increase in the lift with the amplitude at the coincidence
of the frequency of excitation with the frequency determined by the
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pertinent Strouhal number. (This resonance case is of major
importance). Assume that with small vibration amplitude v (with
structures usually v/D < 0.1, even in very serious cases) this
increase can be expressed by a linear law CL

v

= 1 + k=
c D
LS

Here CL is the 1lift coefficient at vibration with the amplitude v,
CLS the 1lift coefficient of a stationary cylinder, k¥ a constant and

D the diameter. Then a coefficient kX = 47.0 can be derived from
data contained in paper (2], which means a considerable increase in
lift with the amplitude.

In subcritical range, a much lower increase was found by
Bishop and Hassan [l1]. From their data a coefficient of k = 2.25
can be calculated for R = 6000 and small dimensionless amplitudes.

Finally, in supercritical range, characterized by random lift,
Fung [4] did not find any remarkable increase in lift with the
amplitude of motion. (See also [10]).

All these authors applied external excitation of the vibration.
There is also a possibility of controlling the amplitude of the
vibration without any interference with the mechanism of the
excitation by changing only the intensity of damping. Plotting the

resonance amplitudes against
a structural damping can provide some
information about the character of
B excitation; however, even this
involves complications. If the
dependence of resonance amplitudes
on the inverse value of the
structural damping is linear (Fig. 5
curve a) the excitation may be
supposed harmconic and independent of
the amplitude. 1If this dependence
- — has character, as curve b in Fig. 5,
1/struct. damping the reason for this may be the
random nature of the fluctuating
Fig. 5. Dependence of Reson- 1lift or the presence of positive
ance Amplitudes on Inverse aerodynamic damping. The latter
Value of Structural Damping factor is discussed in the next
paragraph.

resonance
amplitudes

2.3 Positive aerodynamic damping

Severe lateral vibrations usually occur with structures having
extremely low structural (system) damping. In such cases the
resistance of the air flow to the motion of the structure can
result in a positive aerodynamic damping which is comparable with
the structural damping. The intensity of the aerodynamic damping
can be estimated as follows.

Assume a cylinder under two dimensional flow conditions
moving with the velocity » perpendicularly to the direction of the
wind blowing with the velocity V (Fig. 6), which is the situation
with lateral vibration. Then the resultant relative wind with the
velocity VreZ acts on the body under the angle of incidence «c.

Neglecting the mass effect, the drag force on a unit of length
has a component in the direction of the motion
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1 2 4
Fy = EDCDDVreZ sin « (1)
Here p is the air density and (¢ the drag coefficient; with small
angles o sin a = tan o = »/V and VreZ = V.
v The mean wind speed increases
rel — with the height of the structure
_=::jj£::::]b F which may be taken into account by
14 D putting
Viz) = Vw(x) (2)
: Now V means the wind speed at a
v Y,v(t) reference point z, and w(x) a
function describing the mean wind
Fig. 6. Vibrating Cylinder in increase, so that w(z,) = 1. Then
the Flow the air resistance which acts on a

differencial unit of length of a
structure at position x is

flb)da = %pCDDVw(x)bdx (3)

Under the assumption that this holds even during vibration (quasi-
steady approach) this resistance of the wind to the lateral
vibration evidently has a nature of viscous damping.

The exciting aercdynamic forces are small during the lateral
vibration. Therefore steady lateral vibration cannot differ too
much from the normal mode of free vibration v, (x) and may be
expressed as

v(z,t) = av (z)cos w t (4)

where g is the amplitude at the reference point xz,, and w, the
circular frequency of the n-th mode. The mode v,(z) is cﬁosen in
such a scale that v,(x,) = 1.

The work done during a period T of steady vibration by
aerodynamic damping forces (3) on the whole structure is

W o= gf{ff(a)dxdv(t) (5)

After substitution from (3) and (4)

1.1 1 2 2 2 . 2
W = &)Io EpCDDVw(x)a wnvn(m)szn wntdmdt (6)
and after integration with respect to ¢
1 2 [/ 2
W = 3mpC DVa mnéjw(x)vn(x)dx (7)

The maximum potential energy calculated as maximum kinetic
energy for the deflection (4) is

i . & 1 2 2.1 2
L = fogu(x)v dx = 3a wnfou(m)vn(m)dm (8)
where p(x) is the mass of the structure per unit of length.
Logarithmic decrement of damping can be defined as § = %%'

This yields for log. decrement of aerodynamic damping with
lateral vibration in variable mean wind

100, 0Vf o (z) v () de o)
§ = 9
a A 2
anﬁgu(x)vn(x)dx
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Here the Strouhal number

el

w

may be introduced. s = _n (10)
anv
With constant mass u(x) = p and constant mean wind speed
w(x) = 1 the log. decrement of aerodynamic damping is simply
ﬂpCDD p CD D2
e~ T 'TTTF W ald

In variable mean wind but with constant mass, the log.
decrement of aerodynamic damping

6& = 6ac (12)
where the constant fzw(x)vi(x)dx
- s )
J vi(x)dx
o n

expresses the decrease in aerodynamic damping due to variable mean
wind velocity. This is calculated for some simple normal modes in
Table 1.

1
x (x) vn(x)
0
Mode v (x)= 1 &/ o |

~

1 XL 4 1 1 &
wind incr. w(z)=|(x/2)¢ |(2/1)% [(2/2)6 |(2/2)° (27206 (/1) ®

b~

8

Constants e g ool 9
7 19 10

NN

0 | 1s
31 16

Table 1. Decrease in Aerodynamic Damping ¢ Due To Variable Mean
Wind Velocity

The wind increase w(x) is taken here, as recommended by
Davenport [3]. The exponent 1/6 corresponds to conditions in
open country, 1/3 to centres of large cities. The top x=1 is
considered the reference point. In other cases, the reduction e
can be calculated from (13) or estimated according to Table 1,
because its value is not too sensitive to the exact form of the
normal mode and very little to changes in the wind profile with
cantilevered structures.

The existence of the positive aerodynamic damping has been
recognized and experimentally proven. From the point of view of
structures, Scruton [16] and Davenport (e.g. [3]) pay a great deal
of attention to this damping. Davenport experimentally studied it
in detail and presented its general discussion [3]. However, the
aerodynamic damping has found little application with lateral
vibration of cylindrical structures, where it should be considered
at least in two directions: when estimating the effect of changes
in damping, and when evaluating the experiments.
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The practical importance of the first application is evident
from the numerical value of the aerodynamic damping.

The expression (l11l) provides constant damping for resonance
vibration in regions in which Cp and S may be considered constant.

In subcritical range with S = 0.2, CD = 1.2 and p = 1/8 kg m-4g2
3 D2
Se =T W (14)
In transcritical range for S = 0.3, CD = 0.54 (see [2])
2
_ 0.90% :
6a T 16 u (15)

In supercritical range the damping must be calculated with respect
to the wind velocity.

The columns of the mentioned arch bridge have D = 1 m,
H = 29.9 kg m-2s52 and the aerodynamic damping (14) is &, = 0.0063.
The log. decrement of structural damping was of the same order,
namely 85 = 0.0078. Thus the total damping §, + S, should be intro-
duced into calculations. On the other hand, the increase in §, by
application of strakes (spoilers) due to the increase in Cp (see
[10]) contributes to the total damping and thus to the effective-
ness of such advices.

As for the evaluation of vibration experiments, this task is
complicated by the simultaneous presence of three factors: the
aerodynamic damping, the randomness of lift (even when dominant
frequency is well pronounced), and the dependence of excitation on
the amplitude of motion. Neglecting the aerodynamic damping can
therefore affect the result concerning the two latter factors.

3. Structural Damping - - "'

The structural damping represents a further factor, the
estimation of which is always uncertain. It is very small with
modern structures, often 56 < 0.01, which is the main reason for
the frequent occurance of strong lateral vibration, especially with
all welded structures. Finding suitable devices to provide a
considerable increase in structural damping would, therefore, be
the most important contribution to the practical part of the problem.
(Reed and Duncan's [13] hanging chains represent an example of this
kind.) Some effective coating or other means without any additional
construction would be desirable.
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SUMMARY

Despite the increasing understanding of the lateral vibration
of cylindrical structures, the preciseness of a quantitative cal-
culation necessary for a reliable prediction is limited. For pre-
diction of dynamic behaviour of large structures in wind, experi-
mental investigation on models in wind tunnels is therefore most
recommendable.

RESUME

Malgré les connaissances croissantes sur les vibrations laté-
rales des structures cylindriques, la précision requise pour une pré-
vision valable n'est guére obtenue par un calcul quantitatif. C'est
pourquoi on ne peut assez recommander des essais expérimentaux sur
modeles réduits dans le tunnel aérodynamique quand il s'agit de pré-
voir le comportement dynamique d'une grande structure soumise au
vent.

ZUSAMMENFASSUNG

Trotz des wachsenden Verstdndnisses seitlicher Schwingungen zy-
lindrischer Bauwerke ist die Genauigkeit fir eine quantitative Rech-
nung notwendig zu einer wirklichen Voraussage, beschrinkt. Deshalb
ist flur die Voraussage ilber das dynamische Verhalten langer, wind-
ausgesetzter Bauwerke die experimentelle Untersuchung im Windkanal
am Modell das wohl empfehlenswerteste.
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Dynamic Wind Response of Guyed Masts
Mats haubannés dans le vent turbulent

Abgespannte Maste unter dem Einflul3 von
turbulentem Wind

MICHAEL SHEARS C.A. FELIPPA R.W. CLOUGH J. PENZIEN
University of California, Berkeley

1. INTRODUCTION

Engineering interest in the analysis of guyed masts was stimulated by the
introduction of radio transmission, and one of the earliest contributions, by
Walmsley (1) in 1924, was concerned with the static loeds applied to stay-ropes
used to support wireless masts. Problems associated with the dynamic behavior
of cebles have received much attention in classical texts for well over s cen-
tury. The motion of inextensible loose cheins and the small oscillations of
tight elaestic strings have been discussed extensively by Routh (2) in 1860, and
Rohrs (3) in 1851. Probably the earliest detailed method for the static and
dynamic analysis of guyed masts under the action of wind forces, however, was
due to Kolou¥ek (4) in 1947. 1In more recent years, due largely to the increased
heights end importance of telecommunications masts, there has been considerable
interest in this field of study, with notable contributions by Cohen (5), Dean
(6) and Davenport (7).

In the pest, the static analysis of guyed maests has usuelly been accom-
plished by treating the shaft as a continuous beam-column resting on non-linesar,
elastic supports using solution techniques based on modified slope-deflection
equations. Generally, the solution methods employed and the description of the
system have been rether cumbersome end not entirely suited to the enalysis of
the fully integrated guyed mast system. For this reason, various approximations
have been made in both the guy cable representation and in the manner of appli-
cation of the steady wind forces, the result being the evolution of a number of
similaer methods of analysis differing only in the number, or degree of epproxi-
mations to the resl system.

The dynsmic analysis of guyed masts has received very limited attention to
date, and those methods proposed are often quite unsuiteble for any deteiled in-
vestigation of the dynamic responses to fluctuating wind excitetions. An excep-
tion was the report by Hartmenn and Devenport (8) in 1966, which described the
spectral response aneslysis of a tall, guyed mast utilizing a single degree of
freedom, discrete parameter model to represent the cables. Even in this case,
however, the effect of the wird on the cables was neglected in the analysis.

The purpose of this paper is to report on detailed computer studies made
using a suitable discretized model to investigate the response characteristics

Schlussbericht
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of guyed masts under the action of turbulent wind influences (9). The model
representing the system is fully integrated geometrically and structurally, and
may be used to study both the static and dynamic behavior of the system. Esti-
metes of the dynsmic responses of a tall, guyed mast are evaluated deterministi-
cally using actusl wind velocity date, and non-deterministically using the
theory of random vibrations and incorporating available wind velocity spectra.

A comparison between the deterministic and non-deterministic responses, and a
discussion of the relative merits of the two procedures are also presented.

2. THE CABLE MODEL
2.1 Finite Element Discretization

The real csable is represented by an assembly of one-dimensional cable ele-
ments (CE) interconnected at nodal points located on the initial cable profile,
utilizing & lumped mass idealization for the dynamic znalysis.

_ _ The stiffness properties of the CE are derived in a local cartesian system
(x,¥,2z) where x is the chord axis and y is in the plane of the element. Three
degrees of freedom are defined at each node: the two displacements u and v in
the x and y directions, respectively, and the rotation ¢ sbout z. The CE stiff-
ness matrix includes the conventional axial stiffness and the geometric stiff-
ness, which accounts for the effect of the cable tension T. The secant CE axial
stiffness (along the x ax1s), which results from the assumption that the CE
profile is a shallow parabola, is given by (5)

- w e -1
N S L 1, (2T+AT) ]
EA 2k (T+AT)2 2

A Ac c
where c is the chord length of the element, W, is the total epplied loed normal
to the chord, E is the elastic modulus and A the cross-sectional area of the
cable materisl. Since AT and Ac are not known a priori, the tangent axial
stiffness

(2-1)

W -1
¢ ¢ 127

is used for each linearized step of the iterative static solution (Section 3.3).
The (6 x 6) CE stiffness matrix is completed with the geometric stiffness,
which is obteined by assuming a cubic v(x) variation defined in terms of the
nodal values of v and o.

2.2 Cable Frequency Studies

In order to test the convergence properties of the finite element idealiza-
tion as the number of elements is increased, the lowest natural frequencies of
a single cable were computed and compared with the results obteined from a
series solution for an assumed overall parabolic profile. Before presenting the
numerical examples, the parabolic cable solution is outlined for clarificstion.

Parabolic Cable Series Solution: The undamped equation of motion of an end-
fixed, inclined parabolic cable under a uniform dead load per unit of chord
length w, (Fig. 1), vibrating about the parabolic equilibrium position y(x) is
given by

W d2v d2
g dx dx

By expressing v(x,t) as a Fourier sine series
-]

vix,t) = ;i Yh(t) sin ng (2-1)
n=1
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and taking account of orthogonality, Eq. (2-3) may be reduced to two infinite
systems of ordinary differential equations representing the symmetric and
antisymmetric modes (8,9) of vibration.

For the symmetric modes (n odd)

Yn * 5n2 (1 + QE) Yn to i e zz
s=

I
3. Y, - g (2-5)

n-s

n

1,3...
T+dT sfn

where En =n n/(Ta/w c2) is the n-th taut
string frequency and

= —T 3 c:os2 e (2-6)

is a dimensionless constant providing the
cross coupling between the symmetric modes and
:Zig(xJ) hereafter termed the '"cable parameter". The
/ symmetric mode natural frequencies w, can be
computed from (2-5) using standard eigenvalue
techniques. For a relatively taut cable, the
cross coupling becomes negligible and ay, ap-
proaches o, whereas for a slack cable con-
siderable coupling develops, especially be-
FIG. | tween the first (n = 1) end second (n = 3)
symmetric modes.

For the sntisymmetric modes (n even), the frequency equation is identical
to that of a teut string ({ = 0) and w, = @, (n = 2,k....).

(@) TAUT CABLE , (b) SLACK CABLE
> E=24000 ksi 300
| =450k iam.=2in H=112.5K
L M Tromsv. Load=02kIf & %7 5
i) Y A A
—5 7?0‘
[=.19 2nd ANTISYMMETRIC £=12.18 2nd ANTISYMMETRIC
o T G T 5 R~
w,=11.26 (11.26) ty w,=5.60 (5.63)
= - | = —1~
o 4 2nd SYMMETRIC & 2nd SYMMETRIC
L 19 L B Wy
S /u -8.46 (8.46) S gy
° — 3 o w.=5.41 (5.51)
oy Ist ANTISYMMETRIC | “NIst SYMMETRIC
///‘..-'Aﬁmﬂhb ;// 1@&‘..-'AQP
° w,:563(563 w,= 3.83 (3.84)
5 “ S EE N e
Z 4 Q2 st ANTISYMMETRIC
3 s R A5
2 o 3
e pf—1I o | w,=2.77 (2.82)
[T o
o
S a— 8 16 32 % 8 & =
NUMBER OF CABLE SUBDIVISIONS NUMBER OF CABLE SUBDIVISIONS

FIG. 2 CABLE MODEL FREQUENCY CONVERGENCE STUDY
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Comparison of Results: A 300 ft. horizontal

17 cable under w = 200 plf was selected for the
16 comparison. Two midspan sags were assumed:
154 - INITIAL_TENSION 5 ft. for the taut case ({ = 0.19) and 20 ft.
BREAKING SIRENGTH for the slack case ({ = 12.16). Fig. 2 pre-
141 sents the results of the finite element fre-
LﬁIS- quency analysis for various subdivisions. The
-12- convergence is very fast in the case of the
{5||+ taut cable, and slower for the slack cable.
E] The frequencies obtained for the parabolic
3'0“ cable are indicated in parentheses.
& 4 Other Guy Cable Characteristics: To further
o 8 ensure that the cable model adequately repre-
w 7 sents the properties of guy cables, a numeri-
& 6 cal investigation of the fundamental frequen-
= cies was performed for a series of cables with
51 chord lengths verying between 250 and 1000 ft.
41 and initial tension levels between 10-20% of
3 the breaking strength. The range of cables
) investigated was intended to include most of
e the cables likely tc be used in the construc-
1 tion of guyed masts. A curve illustrating the
0 ——————— relationship between the cable parameter { and
0 20 40 60 80 100 the chord length to normal sag ratio is given
SPAN TO SAG RATIO in Fig. 3, which clearly shows that most prac-
FIG. 3 tical guy cables lie within a closely bounded

region. It was also found that for a given
initiel tension all cables considered fell on the same curve, indicating that
the cable parameter is a direct measure of the tautness irrespective of the
cable dimensions. The frequencies calculated using a six-element ceble model
were found to agree with the analytic solutions obtained from (2-4) to within
5%, see Fig. 4, indicating that the commonly assumed parabolic cable profile is
satisfactory for most guy cables.

3. THE GUYED MAST MODEL
3.1 Finite Element Discretization

In order to complete the finite element idealization of a guyed mast struc-
ture, a beam-column element (BCE) is required. The BCE stiffness matrix is also
generated in the local element system (x,y,z) defined in Section 2.1, end in-
cludes both the axial and geometric stiffness_contributions (as descrlbed for
the CE) plus the flexural stiffness in the x-y plane. The bending stiffness is
obtained by assuming a fifth-order v(x) expansion in terms of the transverse
displacements v, rotations @ and curvatures O@/Ox at the end nodes, the latter
two degrees of freedom being eliminated by static condensetion. Elements with

varieble section and inertia may be specified.

The BCE mess discretization results from static lumping of the element
mass at both end nodes.

The complete structure can be idealized as an assembly of both cable and
beam-column finite elements. The stiffness matrix, nodal force vector and
lumped mass matrix of the discretized structure are obtained by direct super-
position of the stiffness matrices, applied nodal forces snd lumped masses, re-
spectively, of the individual elements, after a transformation to common or
global coordinate systems at all interconnecting nodal points.

In this investigation, the guyed mast structure waes assumed to be symmetric
and symmetrically loaded with respect to a vertical X-Y plane, where Y is the
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FIG.4 FIRST NATURAL FREQUENCY w, (rad/%ec) OF GUY CABLES
INCLINED AT 8° CROSS-COUPLING BETWEEN MODES INCLUDED

vertical shaft axis. A finite element may represent either a single structural
component in the X-Y plane, or two members initially located in two vertical
planes X'-Y and X"-Y symmetrically placed with respect to the X-Y plane, and
which remain symmetrically located after deformation. Thus the actual three-
dimensional problem is reduced to a two-dimensional problem.

3.2 ILoading Actions

Static Loading: In the static analysis, the structure is subjected to its own
weight and the mean or steady wind pressure. The dead load is converted to
nodal forces by static lumping at the nodal points. The wind forces are calcu-
lated by assuming that the wind acts in the direction of the horizontal X axis
defined in Section 3.1, and that the meen velocity Vy(Y) at any height Y is
given by the well-known power law (10). The wind pressure on each finite ele-
ment is assumed to be uniform and determined by the velocity at the midheight
and the geometric and aerodynamic properties of the member (exposed width and
drag-1ift coefficients). The resultant element wind forces are then lumped at
the end nodes. In addition, concentrated wind forces intended to represent cer-

tain concentrated areas such as insulators, reflectors, etc., may be specified
at any nodal point.

Gust Loading for Deterministic Dynamic Analysis: The deterministic gust analy-
sis requires the specification of a wind velocity history from a set of digi-
tized velocity records Vx(t,Y;) taken at several heights Y;. This input can be
conveniently reduced to a dimensionless or '"reduced" pressure fluctuation
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p (6,Y) = — -1 (3-1)

where q, is the dynamic pressure corresponding to Vy and Ei is the average over
the sample used. Interpolation may be used if Y # Y;. In order to simplify the
analysis procedure in the present case, however, & reduced pressure fluctuation
Hye(t) = ux(t,Ym) computed from a sample taken at height Y, was used over the
entire structure as a multiplier on the actual static wind force distribution.
This assumption is probably conservative, since the vertical correlstion decay
is neglected.

Gust Loading for Non-deterministic Dynamic Analysis: The following assumptions
were made for the non-deterministic gust analysis:

(2) The horizontal gust component Vgx(t,Y) = Vi(t,Y)-Vx(Y) is a stationary
Gaussian random variable and small with respect to V..

(b) The cross-spectral density function proposed by Danvenport (10) and de-
scribed by Ferry Borges in the theme paper (11) represents the vertical
correlation of horizontal gustiness.

(c) The drag and 1lift coefficients are independent of the vibration frequen-
cies.

(d) The peak intensity level (o-level) of the response components is a function
of both the response spectra and the wind sample duration, as proposed by
Davenport (12), but extended for multi-degree of freedom systems.

3.3 Analysis Procedure

This Section describes briefly the main steps of the computer analysis of
the discretized structure.

Static Solution: Because of the presence of the guy cables, the structure is
geometrically non-linear. The static equilibirum position (SEP) under the
static loading is determined by a matrix iterative procedure of Newton's type.
A typical linearized step includes the following sequence of operations:

(a) Calculate the external nodal forces on the present geometry and the inter-
nal nodel force resultants from the element forces (exial forces and bend-
ing moments) determined at the previous step (in the first step, the only
internal element forces are the initial cable tensions specified on the
initial geometry). The unbalanced nodal forces are the difference of the
external and intermal forces.

(b) Evaluate the tangent structural stiffness and solve for incremental nodal
displacements, which, when added to the previous displacements, define the
new structure configuration.

(¢) Calculate the internal element forces in the new geometry (for each cable
element, the cubic equation (2-1) must be solved for T). Then repeat
steps (a) through (c).

The convergence to the SEP can be conveniently measured by the masgnitude of
the unbalanced nodal forces corresponding to the unconstrained nodal displace-
ments. Usually 4 to 6 iteration cycles are found to be sufficient for most
problems.

Frequency-mode Analysis: For the dynamic analysis, the structure is assumed to
oscillate linearly about the SEP. This assumption permits standard matrix mode-
superposition techniques to be used for both the deterministic and the non-

" "

deterministic cases. A set of "m" significant lowest frequencies w, and associ-
ated vibration modes {@r} is obtained by solving the vibration eigenvalue

problem:
(k] {o.} - of [u]{o} (r = 1,2...m) (3-2)
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where [K] is the tangent stiffness matrix at the SEP and [MJ the lumped mass
matrix. This is accomplished by reducing (3-2) to a standard eigenvalue problem
form after elimination of all rotational degrees of freedom.

Deterministic Gust Analysis: The normal response amplitudes Yf(t) are obtained
by solving the modal response equations

'Y'r(t) + 2 7rmra'fr(t) + mf, Y (t) = P& (t) (r =1,2,...m) (3-3)

vhere P. = < RT > {®,.} are the static generalized wind forces calculated using
the static wind forces {RW} at the SEP, and 7, are the modal damping coeffi-

cients. The time history of any desired quantity z(t) about its SEP value is

given by 5

z(t) = Z B . Y.(¢) (3-1)
r=1

where By, are the modal influence coefficients of z., The program generates
time response plots of nodal displacements, nodal accelerations and internal
element forces, as well as the peak or envelope values.

Non-deterministic Gust Analysis: The gust response spectra of the discretized
structural model are evaluated for each contributing vibration mode using stan-
dard random vibration techniques (13). This procedure requires a double inte-
gration to be performed over the structure, the integration being reduced to a
double summation over the model elements using a Gauss-Legendre numerical quad-
radure formula for a set of conveniently spaced frequencies (from w = O to

w = Qwr). The modal variances op are then computed by numerical integration of
the response spectra over the significant frequency range. A program option
allows the cable elements to be excluded from the analysis for the purposes of
comparison.

The variance or mean square oscillation cg of any desired quantity z(t) is
easily calculated by mean square superposition of the modal variances weighted
by the modal influence coefficients B,,.. Finally,oz is multiplied by the
peak value or g-level of z(t), which is computed as proposed by Davenport (12).

L, GUYED MAST EXAMPLE

4,1 Description

A tall guyed mast having four sets of three-way guy cables and a cantilever
antenna was chosen for the present example. The dimensions and structural prop-
SHAFT erties of the system, see

ANTENNA | 968'v_[A(ft3)[Ift*)]| Fig. 5, were based on the CFPL
> 902'v [0.420|0.05| mast described by Hartmann and
CABLEI—U%"¢ Davenport (8) with certain
modifications.

67I'v |0.672|2.87

7|l
CABLEZ-Ig b The fluctuating wind ve-

locities used in the determin-
440 v |0.672|3.45| istic dynamic studies were ob-
tained from the NASA 150-meter
\\>Q& . meteorological tower located at
215 v [0.78214 20| the Kennedy Space Center (KSC)
in Florida. The data was re-
' corded on magnetic tape and
[ 320° © 160’ | Ov 058415.30 then digitized at 10 records
‘ 494’ 247 per second (14), although in
the present investigation data
intervals of 0.5 seconds only

FIG.5 MAST PROPERTIES AND GEOMETRY were used, the velocity at

CABLE 3-1%" ¢

CABLE 4-13" ¢
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FIG.6 WIND VELOCITY RECORD FROM I8 m AND 150m KSC MET TOWER

each interval being the average of five digitized values. A plot of a 12 min-

ute segment of the wind velocity record measured at the 18- and 150-meter levels
is shown in Fig. 6, which clearly indicates the increase of the mean velocity
with height and the randomly fluctuating nature of the gusts. It is also noted
that the fluctuations are somewhat more intense at the lower elevation, and, for
this reason, the wind records used to evaluate the system responses were taken
from the 150-meter level, corresponding to about mid-height of the mast. Wind
velocity inputs of ebout 2 minutes deviation were considered sufficient to give

estimates of the responses, since the longest periods of the system rarely ex-
ceed 5 seconds.

mAAA
o
o

The mast was assumed to be located in open country, for which the mean wind
velocity was taken to follow a 1/7th power law variation with height. The para-
meters required to completely define the cross-spectral density of the horizon-
tal wind velocities proposed by Davenport (10), namely the ground drag coeffi-
cient and exponential decay coefficient, were taken to be 0.00l and T, respec-
tively.

4.2 Refinement of the Guyed Mast Model

To avoid excessive computer analysis time, tests were mede to determine the
least refined model, which still gives uniform responses compared with more re-
fined models. Three models were considered, see Fig. T, with the properties
shown in Fig. 5 and also with the shaft elements considerably stiffened. The
initial cable tension level was taken to be about 11.5% (standsrd) of the break-
ing strengths for each test, and the mean wind velocity +75 mph at the 1O-meter
elevation. The viscous damping of the system in this and subsequent tests was
taken to be 0.6% of critical for all modes.

REFINED MODEL INTERMEDIATE MODEL SIMPL:FIED MODEL
FIG. 7 NODAL POINT ARRANGEMENTS FOR GUYED MAST MODELS
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The results of the static and deterministic analyses showed that the inter-
mediate model responded in a uniform manner compared to the refined model (which
should be used to obtain the responses in the final analysis of a real problem),
whereas the simplified model responses suffered considerable variability. The
intermediate model was then used to study the influence of a number of parame-
ters on the system responses, with a saving in computer time of the order of
60% for a full static and frequency-mode analysis, and up to about 35% for a
deterministic dynamic analysis. The parameters studied include shaft stiffness,
initial cable tensions, the mean and fluctuating wind velocities, and the wind
on the cables.

4,3 Results of the Guyed Mast Studies

Static Responses: The results of numerous tests on the intermediate model for
the influencing parameters outlined above indicate that the shaft responses are
controlled largely by the cable sizes and spatial arrangements, and, once these
have been selected, the shaft displacement and bending moments are little in-
fluenced by changes in the initial cable tensions or the shaft stiffness. In-
creasing the cable sizes by 50% resulted in reductions in the shaft displace-
ments of up to 30% for identical initial tensions. The shaft moments in this
case were redistributed, but still little changed in magnitude, indicating that
the flexural behavior of the shaft 1s a relatively unimportant design parameter
for a given cable arrangement. For initial tensions between 10-20% of the
breaking strengths it was also found that, although the guy cables exhibit non-
linear properties locally, the overall guyed mast behavior is closely linear
for wind velocities up to about 60 mph, beyond which linearity is lost.

In the above tests the E—displacements (see 2.1) of the CE were neglected,
and further tests using & revised program to include these effects showed that
the shaft displacements had been underestimated for positive winds and overesti-
mated for reversed winds, resulting in_s loss of linearity of the system for
positive winds. The influence of the z-displacements of the CE emphasizes the
importance of including the wind on the cables in any analysis.

Deterministic Dynamic Responses: Increasing the shaft stiffness was found to
have little effect on the cable modes of the system, since the static cable ten-
sions at the SEP are themselves unaffected, but has a direct influence on the
predominent shaft mode frequencies, which results in some increase in the shaft
displacements and a rapid imcrease in the shaft bending moments. Increasing the
initisl cable tensions, however, had the opposite effect snd the predominant
cable modes only were influenced. The result in this case was a slight overall
reduction in the shaft displscements and moments, although these effects were
somevhat variable, particularly for the antenna cantilever, which tends to act
as an independent appendage and has a considersble influence on the shaft modes.

As steted earlier, a two minute fluctuating wind input teken from the 150-
meter level of the KSC met. tower wes used to evaluate the deterministic dynamic
responses in the tests to study the various influencing psrameters. The re-
sponses due to records of one, two and three minutes duration taken from the
150-meter level sre listed in Table 1 for comparison, since it may be postu-
lated that, for a record of duration less than 20 minutes or so, the proba-
bility of higher intensity wind gusts occuring in the record increases with
increased length of the record. To illustrate the effect of the apparent in-
creased gustiness at lower elevations of the KSC tower data, the responses due
to a two-minute input taken from the 30-meter level are also tabulated. In
each case the responses are based on the SEP due to & +75 mph mesn wind veloci-
ty et 10-meters, with the z-displacements neglected. Effective "gust factors"
based on response are presented for comparison with the non-deterministic re-
sults and the quasistatic procedures commonly used in design offices. Shaft
exial force and cable tension responses are not tabulated, since the dynamic



1258

VI — DYNAMIC WIND RESPONSE OF GUYED MASTS

contributions were found to be generally small, usually less than 30% of the
corresponding static maxima.

Table 1 ;
KSC met. wind record . (duration/elevation)
Hospenae 2 min/30m 1 min/150m 2 min/150m 3 min/150m
x-acceleration
*Node 1 0.7lg 0.27g 0.31g 0.35g
2 0.29¢ 0.09g 0.10g ~0.10g
x-displacement (ft)
Node 1 3.93 1.29 1.77 1.94
2 1.48 0.59 0.76 0.88
3 0.92 0.28 0.57 0.59
k| o8 | o2 Cod2 | ot
Gust factor on
x-displacement
Node 1 2.88 1.62 1.85 1.93
2 2.11 1.45 1.57 1.66
3 2.16 135 1.72 1.74
s | 259 1.47 1.8 | L2
Bending moment (kft)
Node 2 355.0 128.5 161.0 171.5
3 530.5 230.5 271.0 201.9
h 316.0 11k4,.5 127.0 194.0
I > _Lb1.5 119.0 201l.5 222.9
Gust factor on
bending moment
Node 2 4,6k 2.32 2.65 2.76
3 2.16 1.50 1.60 1.64
b 2.68 1.61 1.68 2.03
5 2.76 1.47 1.80 1.89
*¥See Fig. 5

Due to the coupling between the system modes and the dependence of modal
sequence on the overall system stiffness, it is difficult to preselect the im-
portant modes influencing the responses. Further tests to study the modal con-
tributions showed that the choice of modes for the dynamic response calcula-
tions can be made on the basis of the magnitudes of the modal generalized
forces, and this procedure was adopted for the non-deterministic analyses.

Non-deterministic Dynamic Responses: The non-deterministic responses of the
intermediate model listed in Table 2 were evaluated from the SEP's due to the
+75 mph basic mean wind velocity, first with the z-displacements of the cables
neglected, for comparison with the deterministic results in Table 1, and then
with the z-displacements included. Also tabulated are the mean peak intensity
levels (see 3.2) and the effective "gust factors" for each response. The axial
force responses are agein omitted, due to the relatively small dynemic influ-
ences involved.

The effect of ignoring the z-displacements of the cables is seen to over-
estimate the system responses by up to about 20%, although it was found in
further tests that the corresponding responses mey be underestimsted by as much
es 40% if the wind pressure on the cables is ignored completely in both the
static end dynamic enalyses. It is noted from Table 2, however, that the shaft
acceleration responses are not affected by the z-displacements of the csbles,
since they are meinly influenced by the predominant antenna-shaft modes.

The shaft displacement responses obtained by neglecting the z-displace-
ments of the cables are seen to compasre fairly closely with the corresponding
deterministic responses due to the 30-meter wind record, which is clearly
conservative since the same gustiness is assumed over the full height of the
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mast. The average gustiness of the 150-meter record provides the more realis-
tic deterministic responses, which tend to maximum values somewhat less than
the non-deterministic responses.

Table 2
z-displacements z-displacements
Seaponse i neglected ] al included e
X-acceleration
Node 1 0.57g L.42 0.57g 4 ho
2 .. .| .._0O.c6g k.ho 0.26g .50
x-displacement (ft)
Node 1 3.60 L.35 3.28 b.37
2 1.62 4,3k 1.34 4,37
3 0.kl L4k 0.37 4 45
| oo ] 0,33 | hhs | 0.31 .46
Gust factor on
x-displacement
Node 1 2.73 1.95
2 2.22 1.55
3 1.52 1.33
N B 1.65 o 1.52
Bending moment (kft)
Node 2 280.7 L. k2 278.5 L. 42
3 458.5 L2 375.0 4,40
L 221.0 L. 52 209.0 4,51
5 228.5 L.49 229.5 L. kg
Gust factor on
bending moment
Node 2 3.88 3.81
3 2.00 1.58
i 2.18 2.02
5 1.91 1.84

*P = peak intensity level (sigma level)
5. CONCLUSTIONS

The finite element model is shown to provide a suitable representation of
the guyed mast and allows detailed static and dynamic analyses to be performed
on a fully integrated system. Several hitherto ignored factors, such as the
wind effect on the cables and concentrated areas, and the use of the deflected
static equilibrium position as the mean dynamic configuration, can be naturally
included. The behavior of the actual structure can be arbitrarily epproximated
by a mesh refinement process limited only by the capacity of the computer
program, and the incorporated static and kinematic assumptions.

The computer program has been used in the analysis of a number of complex
guyed mast systems, but can also treat arbitrary two dimensional structures, in-
cluding suspension bridges. Moreover, the methods described in this paper can
be extended to include any conceivable structural system by constructing the
appropriate finite element models.

The deterministic responses due to a single wind record sample depend on
the duration of the sample, as well as the atomospheric conditions at the time
and place of measurement. These observations suggest that wind record samples
are not a useful means of determining the probable maximum responses, unless an
ensemble of such samples is used and the resulting responses evaluated on a
statistical basis. This procedure is tedious and uneconomic, and, due to the
random nature of the wind gusts, the use of stochastic procedures is clearly
the more rational approach. Deterministic methods, however, do have useful
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applications in providing time-histories of response, particularly if used in
conjunction with actual response measurements.
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SUMMARY

This paper reports deteiled computer studies made using a suitable dis-
cretized model to investigate the response characteristics of guyed massts under
the action of turbulent wind influences. The actusl structure is idesalized in
the form of & finite element model, which is fully integrated geometrically and
structurally. Estimates of the dynamic responses of a tall, guyed mast are
evaluated deterministically using actual wind velocity records and non-deter-
ministically using the theory of raendom vibretions and incorporating available
wind velocity spectra. A comparison between the deterministic and non-deter-
ministic responses, and a discussion of the relative merits of the two
procedures is presented.

RESUME

On présente ici une technique detaillée d'analyse sur ordina-
teurs de la réponse de midts haubannés sous l'action du vent turbu-
lent. La structure est représentée par un modele discret d'élé-
ments finis qui tient compte de tous les paramétres géométriques
et structuraux actuels. La réponse dynamique d'un mAt haubanné
élevé est obtenue de deux fagons: par une méthode déterministique
utilisant des vitesses du vent réellement enregistrées; et par un
modéle statistique qui utilise la théorie des vibrations aléatoires
et des spectres de réponse au vent probables. On compare les solu-
tions obtenues par les deux méthodes et 1l'on discute leurs mérites
respectifs.

ZUSAMMENFASSUNG

Dieser Bericht enthdlt detaillierte Computer-Analysen des
charakteristischen Verhaltens abgespannter Maste unter dem Ein-
fluss von turbulentem Wind. Das eigentliche Bauwerk ist durch end-
liche Elemente idealisiert, das alle geometrischen und baulichen
Parameter enth&lt. Das dynamische Verhalten von hohen abgespann-
ten Masten wurde mit zwei Methoden ermittelt: Die erste basiert
auf eigentlichen Windgeschwindigkeitsmessungen und die zweite
verwendet statistische Methoden unter Zuhilfenahme von vorhande-
nen Windgeschwindigkeitsverteilungen. Ein Vergleich dieser beiden
Verfahren mit ihren jeweiligen Vor- und Nachteilen wird erl&utert.
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Wind Resistant Design of a Cable-Stayed Girder Bridge
Le calcul de la résistance au vent pour le pont & haubans

Uber den Windwiderstand der seilverspannten Briicke

EIICHI MURAKAMI TADAYOSHI OKUBO
Dr. Eng., Manager Chief, Structure Section
Japan Highway Public Public Works Research Institute
Corporation Ministry of Construction
Japan Japan

1. Introduction

Because of the development of structural analysis methods,
computation measures, available materials and construction techni-
que, dimensions and flexibility of recent bridges have been
increased and the damping capacity of them has been decreased.
As a result of these, recent bridges are liable to be subjected
to not only static wind effects but dynamic ones. Cable-stayed
girder bridges are one of the examples of them.

The authors consider that structures have to be designed
against wind effects shown in Table-1. When a structure 1s rigid
enough, only the aerodynamic wind forces shall be considered; but
for a flexible structure, dynamic effects together with the static
instability phenomena shall be cconsidered. In the case of cable-
stayed girder bridges, aerodynamic wind forces, aeolian vibration,
galloping and/or torsional flutter among the wind effects listed
in Table-1 will have a prime importance.

Table - 1 Wind Effects on Structures

3 : Aerodynamic wind forces Drag, 1ift, pitching moment
tatic Static instabilit D
effects atic instability ivergence
problem Lateral buckling of girder
Wind Woroad wibratden Random vibration
effects Dynanic Aeolian vibration
Ny — Galloping
Self-excited vibration Torsional flutter
Coupled flutter

As pointed out by J.F. Borges in his introductory report on
the subtheme "Dynamic Loads", the estimation of wind velocity is
a fundamental problem for the wind-resistant design of structures.
The life time and height of structure, the local condition of
structure site and the turbulence in wind mainly govern the esti-
mation of wind velocity.
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Among these factors wind turbulence will have two aspects in
its influence on the estimation of wind velocity. The first is
the spatial distribution of turbulence and the second is the
structural response caused by turbulence. By considering the
spatial distribution of turbulence, wind velocity on shorter
bridges shall be greater than those on longer ones. The relation
between wind velocity and the dimension of structures has already
been derived in the tentative design criteria against wind
effects for proposed Honshu-Shikoku bridges (1). On the other
hand, effects of random vibrations excited by wind turbulence may
be substituted by increasing the wind velocity so as to represent
the expected maximum stress conditions in the structure, but, so
far as the authors know, the quantitative modification of wind
velocity has not yet been obtained.

In this contribution, the authors describe the wind-resistant
design process of the Onomichi Bridge, including the estimation of
wind velocity, results of the wind tunnel model tests and the
vibration tests on the completed bridge. It is already shown that
cable-stayed girder bridges not always possess a satisfactory
stability against dynamic wind actions (2) (3). The wind tunnel
model tests for the original design of Onomichi Bridge showed an
unsatisfactory aerodynamic stability., too. However, fabrication
of the bridge had been simultaneously progressed during the model
tests and only a limited change in the sectional shape of girder
was possible. Among several alternatives, a plan to install a
lane of open grating at the center of bridge floor showed an
improvement in increasing the critical wind velocity and was
adopted.

Vibration tests on the dynamic characteristics of the
completed bridge such as natural frequencies, vibration modes and
structural damping were conducted. The measured structural
damping was comparatively low which showed the possibility of
wind excited vibration.

In the conclusion, the authors emphasize the necessity of
the thorough investigation by wind tunnel model tests in the
designing process of cable-stayed girder bridges.

2. Outline of the Onomichi Bridge

The Onomichi Bridge, which is located in the Seto-Inland Sea
and spans a sound of about 200 meter wide between Onomichi City
and Mukaijima, is a cable-stayed continuous girder bridge of 215
meters center span and 85 meters two side spans. The continuous
girder of the bridge consists of two plate girders 3.2 meter high
and steel plate deck 10.4 meter wide.

As shown in Figure-1l, the girder is stayed at both sides by
locked coil ropes in a fan shape. The ropes are supported by two
towers of 72.6 meter high and are fixed at the girder ends and
tower ends.

Natural frequencies of the bridge are approximately calcu-
lated as shown in Table-2. The ratio of fundamental natural
frequencies in torsional mode and flexural mode is about 2.93.
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Table - 2 Natural Frequencies of the Onomichi Bridge

1266

(c/s)
Mode Symmetric Mode Asymmetric Mode
QOrder 1st. 2nd. 3rd. 1st. 2nd. 3rd.
Vertical flexural vibration 0.581 1.385 1.795 0.914 1.562 2,249
Torsional vibration 1.706 | 3.942 | 4.536 3.055 | 3.978 | 5.543
. 386.450 10.800
gsd 85000 215000 85.000 _/ 500 8.024 ‘1200
|
4.
Fixed Support i 10.200
@ 4) ” 000
{b) Section

(a)
Elevation and Section of Onomichi Bridge

Elevation

Figure-1

5. Estimation of expected wind velocity

By reason of the importance and the life time of the Onomichi
Bridge, 100 years period was chosen as the return period for
estimating wind velocity.

About 5 kilometers apart from the bridge site, a meteorologi-
cal observatory station exists and observed wind velocity data of
10 minutes duration after 1942 are available. Assuming the
double exponential distribution of probability density of the
annual maximum wind velocity, the return values in period of 50
and 100 years at the station are estimated as 21.5 and 22.8 m/s,
respectively. The values should be modified by considering the
difference of topographical condition between the bridge site and
the station.

On the other hand, in connection with the meteorological
survey for the proposed Honshu-Shikoku bridges. multi-regression
analysis upon return values of wind velocity in the area of Seto
Inland Sea were conducted. In the analyses, the influences of
local topographical conditions such as the openness and undula-
tion of topography, rate of sea area and others were taken into
account. As the estimated values at the bridge site, 29.6 and
31.8 m/s for 50 and 100 years return periods were obtained by
this method. However, because the multi-regression analyses
were conducted for applying the wide area of Seto Inland Sea and
it was not so sufficient to apply for the estimation of wind
velocity in the local area, the values obtained by this method
were ignored and 22.8 m/s was chosen as the fundamental value for
estimating wind velocity at the bridge site.

By taking into account of the effect of convergence of wind
in a narrow channel and other topographical conditions, wind
velocity at the bridge site was estimated 1.2 times of those at
the station, that was 27.4 m/s. It was considered that the
comparatively low value of wind velocity was resulted from the
greater roughness of ground surface around the bridge site.
Therefore, 1/4 was assumed as an exponent of the power law for
the vertical profile of wind velocity, which resulted in the

modification factor of 1.377 at the altitude of the bridge girder
of %6 meters.

CSrhliiecharinrht
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As described in the introduction, wind velocity should vary
according with the dimension of structure. The modification
factor for the span length of 215 meters is 1.208 according to
the design criteria for the proposed Honshu-Shikoku bridges.

As the result of modification of wind velocity mentioned
above, 45.5 m/s was obtained. The aerodynamic stability of the
bridge was judged by this value.

4, Wind loads and calculated critical wind velocities

In design of the Onomichi Bridge, horizontal wind loads of
1680 kg _per linear meter of the girder and of 300 kg per unit
area (m2)of towers were taken into account according to the
"Design Specifications for Steel Highway Bridges'". As shown
later, the wind tunnel model tests showed smaller value of drag
acting on the girder than the above mentioned value.

The critical wind velocity for the lateral buckling was
calculated by a formula derived by Hirai and Okauchi (4). 1In the
calculation, values of drag and 1lift coefficients obtained by the
wind tunnel model tests were used. The calculated value was
148.5 m/s and was far beyond the above mentioned wind velocity of

45.5 m/s.

Also, the critical wind velocity for the coupled flutter
was calculated by introducing aerodynamic forces on the flat
plate derived by Theodorsen, for the purpose of reference,
though the air flow around the bridge girder usually separated
from the surface of structure and the theory based on the poten-
tial flow could not be applied. The calculated value was 78 m/s
and exceeded the above mentioned value of 45.5 m/s.

5. Wind tunnel model tests

Measurements of three components of aerodynamic forces and
instability tests were conducted on section models of 1/25.6
scale. A wind tunnel of Gottingen type was used for the tests,
which had the test section of 3.0 meter high and 1.8 meter wide.
The maximum wind velocity of the tunnel was 23 m/s. A detailed
description of the tunnel is shown in the reference (5).

In the measurements of aerodynamic forces, an electrical beam
balance was used. In the instability tests, the model was
mounted horizontally on a spring system with its spanwise axis
normal to the wind flow. The model was allowed vertical and/or
pitching motions separately or in coupled motion.

The polar moment of inertia and the mass of model per unit
span were simulated to those of the prototype. No reliable value
of structural damping of the actual bridge was available for the
authors, those of the prototype in flexural and torsional motion
were assumed to be O 05 and 0.0%5%, respectively. Damping of the
model were kept as low as possible and, for the model of modified
final design, an additional damping was given by a set of electro-
magnetic dampers. The ratio of torsional frequency to the
flexural ones of the prototype in the fundamental mode was about
2-93, but because of the installation mounting the model, the
ratio of the model was about 2.
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The similitude on the reduced velocity was used in the
conversion of wind velocity from model to prototype. In other
words, the value of reduced velocity V/NB, in which V, N and B
were the wind velocity, the frequency of vibration and the repre-
sentative linear dimension of model and prototype, was assumed
same for model and prototype.

As the wind tunnel model test on the original design pro-
gressed, it was revealed that a negative slope of 1lift coefficient
curve was found in the measurement of aerodynamic forces and
galloping vibration started in comparatively low wind velocity in
the instability test; so, changes in external shape of the bridge
girder were required. However, at that time, fabrication of the
girder was simultaneously progressed and only a slight change was
possible.

Several alternative plans were proposed and tested in the
wind tunnel and finally a plan to install a lane of open grating
at the center of girder was adopted. Table-3 shows the required
and actual values of models for the original and modified final
design. For the brevity, results of the model tests only for the
original and modified final design are shown in this contribution.

Aerodynamic coefficients of the girder sections are shown in
Figure-2. The negative slope of 1ift coefficient appeared in the

original design could not be diminished even in the modified

final design. However, as seen in Figure-3, the dynamic behavior
of model was improved. Figure-3 (a) shows relations between
amplitude and wind velocity in flexural vibration when models were
subjected to horizontal wind. Conditions of models were different,
so wind velocity converted to the prototype is shown in the

figure.

Table — 3 Values of Model

Weight Polar moment of inertia Structural damping
Model ; flexural tortional
required actual required actual ; 3
2 a2 h o
s gr. gr. gr-cm-s4 | gr-cm-s
URLEEL |  apey 7648 3620 3430 0.060 0.022
- .029 0.008
Modified 6 620 3650 (O 0 (
final 7667 7679 3 0.065* 0.050%
Frequency Frequency ratio
flexural torsional required actual ¥ Witk afditional
L1 Nee damping by electro-
c/s c/s magnetic damper
1.55 3.48 2.93 2.25 anite.
1.80 3.90 2.93 2.17
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In the case of original
design, vertical vibration of
restricted amplitude set on at
9.6 m/s wind velocity and held
out to the wind velocity more
than 30 m/s. Beyond 35 m/s,
the amplitude grew rapidly and
the vibration became catastro-
phic. The predicted critical
wind velocity of the prototype
was about %8 m/s The tests on
modified final design were con-
ducted with two different damp-
ing values as shown in Table-3.
The value of logarithmic decre-
ment in vertical mode with

Co

Cl

-404

h:QS ‘Q\F

“tal- 008

additional damping were almost :?;33{ .l

same with the test on original —— : Originol Design | ° o+ & iiff

design. However, in the modi- —— : Moditied Finol ' Coefficient
. . . * ) -Q87 - 0.16

fied design, a restricted Design N x : Cm Moment

vibration set on at the wind e i

velocity of about 13 m/s and
s W Tt P L L Figure -2 Aerodynamic Coefficients
vertical fle}_cural vibration of Girder Section
occurred again and the vibra-

tion became catastrophic with the increase of wind velocity. Thus,
the critical wind velocity of 48 m/s was predicted for the modi-
fied design. The restricted vibration in the modified design

seems to be an aeolian vibration and the catastrophic one a gal-
loping. In the case of original design, it can be considered

that overlaping of aeolian vibration and galloping have occurred.
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(a) Flexural mode (b) Torsional mode

Figure—3  Amplitude and Wind Velocity of Model Vibration

Figure-3 (b) shows relations of torsional amplitude and
wind velocity. 1In this case, too, the manncr of vibration was
similar to those of flexural vibration. But the model of
modified design with éa = 0.050 showed a noteaworthy behavior in
the range of wind velocity 67 to 80 m/s. In this range, when a
small disturbance less than 2 degrees was given to the model, then
the vibration died out, but when the initial disturbance exceeded
2 degrees, then the vibration diverged.
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As seen in Figure-3, the value of structural damping influ-
ences the aerodynamic behavior of bridge. So the necessity of
measuring the value of prototype was acutely felt and the
vibration test of the Onomichi Bridge after its completion was
scheduled during the model tests were progressed. For serving
the prediction of aerodynamic behavior of the bridge after find-
ing the value of structural damping of the completed bridge, a -’
special analysis was applied to the records of wind tunnel model
tests on the modified final design.

In general, the value of damping consists of structural
damping and aerodynamic one and the aerodynamic damping varies
according to wind velocity, amplitude of vibration, sectional
shape of the structure and incidental angle of wind. From the
diagrams showing the amplitude and numbers of vibration, we can
obtain the values of damping corresponding to each amplitude and

each velocity and can draw contour lines which show the reclation
among the values of damping, amplitude and wind velocity.
Figure-4 shows such contour lines of flexural and torsional
vibrations for the model of modified design with and without
additional damping.

In Figure-4, (a) and (b) show contour lines in flexural
motion without and with additional damping, respectively. The
structural damping, which means the damping in still air, of the
former is 0.029 and that of the latter is 0.065. The difference
is about 0.03%35. If the superposition of structural damping was
possible, zero contour in (b) must coincide with - 0.035 contour
in (a). The comparison of (a) and (b) shows that this is
corr=ct qualitatively but not in the strictly guantitative
meaning.

A v e o

Amplitude (mm) ——
Amplitude (degree) ——

Wind velocily (m/A)——

Wind valocity (m/s) ——

(a) Flexural mode (8h=0029) (c) Torsional mode (8a=0008)

I3

Amglitude (degree) ——

-1

Amplitude (mm) ——

\ W\ |

Wind velocity (m/s) —= Wind  velocity (ms)—
(b) Flexural mode (8h=0065) (d) Torsional mode (8a=0050)

Figure-4 Contour of Aerodynamic Damping

FPigure-4 (c¢c) and (d) show contour lines in torsional
motion. The structural damping of the former is 0.008 and that
of the latter is 0.050 and the difference is about 0.04. 1In
torsional vibration, too, zero contour line in (d) roughly
coagree with - 0.04 contour line in (¢). From the above facts,
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the authors consider that these contour lines offer an effective
supplementary measures for predicting the aerodynamic behavior of

prototype.

6. Vibration tests of the complested bridge

After the completion of the bridge, vibration tests for sur-
veying mainly structural damping were conducted. In the tests,
the bridge was vibrated by
specially devised twin excitors
which were able to generate
reciprocating forces in phase or
out of phase and thus able to
excite the bridge in any of
flexural and torsional moctions.
Figure-5 shows a plan of twin
excitors. The exciting
frequency is wvariable from 0.2 550
to 10 ¢/s. The maximum excitineg
force per each unit at 10 c¢/s is . ; .
15 tonls). A remarkable featt/zre Figure-5 Plan of Twin Excitors
of the excitors is that the
position of unbalanced weights can be changed during the operation
so as to k=ecp constant exciting forces regardless of frequency.
The other remarkable feature of them is that the exciting forces
can be eliminated within short period by moving unbalance weights
into zero output position. The former is useful for recording
resonznce curves and the latter for causing a damped free
vibration.

AS Motor 40 HP
1250~125 RPM (50~)
1500~150 RPM (60~)

4

znnﬂD! zxnﬂo’znmﬂ45x

01127

‘I.“'I e pd
W o
— 060} o ™
_S ° . % - Legend
= Q50 - x o | Excitors at center
2 o4t * &t = * : Excitors of a4 pt
g 030} ¢ g =
2 - ¢ H .
B ok
= . T o} o:
-g aiof . = % :.3:
(4 o0 . °
> o o o .l,sheﬂ]-i 2’ ‘&D
1 2 3 4 g 1 2 3 4 5
Frequency  (c/s) Frequency (c/s)
(a) Flexural Vibration (b) Torsional Vibration
Figure-6 Resonance Curve
Table - 4 Measured Natural Frequencies
c/s)
Mode Symmetric mode Asymmetric mode
First Second First Second
Vertical flexural 0.58 1.38 0.92 1.62
Torsional 1.66 - 2.94 -
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The excitors were ,/<77W§Q\\, //177W§:\\\

installed at the center 4 |
or at the quartesr point
of the center span.

Motion of the bridge at ]

every 1/8 point in the o.oz— TN
center span, every <! Q05 —— 4 \
quarter point in the side 8 O 7 e
spans and at the top of ‘§ Qo NN

the fowar were measured § oozs

by using temporary _ e
installed accelerometers. (b} Torsional Vibration
Figure-6 (a) shows a
resonance curve in verti-
cal flexural vibrations
and (b) shows those in
torsional vibrations.
Figure-7 shows modes
of viktration in the
fundamental symmetric
and asymmetric modes of
\éert@callflgguri% and ~~— Symmetric Mode
orsional vibrations. "y .
Table-4 shows measured ~-+ Asymmetric Mode

values of natural , Figure=7 Modes of Vibration
frequency. The compari-

son of Table-4 and 2 shows good coincidence of the calculated
frequency and measured ones.

g

Amplitude (mm)
n
oo
\
1
[}
i
7/
j

(a) Flexural Vibration

Figure-3 shows diagrams of amplitude and number of vibration
cycle in the damped free vibration of the bridge. The

logarithmic decrements of the
bridge were obtained by averag-
ing the slopes in the diagram

and were 0.05 for the vertical | G
flexural motion and 0.035 for _ oof— —
the torsional motion. The 8 | 403,
measured values are somewhat £ o |
smaller than those assumed in 3 ! R§Q¥5%§\\
the wind tunnel model tests. Zoof a =]
7. 0b & - i . afo " '.30 P 50 so—‘
" servation o.of vibrations = ——

As the results of wind (b) Tomfmm Vibration
tunnel model test show, the ! g S
critical wind velocity of the E s A
Onomichi Bridge for the aero- 8 33— I -
dynamic instability is not so 2 - . . e
high and possibly the restricted & | . ~—
vibration occurs in low wind D o o o S N M B T
velocity. In fact, during the No.of vibration ~——
vibration tests, the bridge was {a) Flexurol Vibration
subjectzd to wind velocity of Figue-8 Decrement of Amgplltude

about 1% m/s and a vertical

flexural vibration of about 20

cm/s? acceleration, which was

stationary, was caused by wind

and was recorded. The observed

frequency was almost equal to the natural frequency of vertical
flexural vibration in the first symmetric mode.
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For inspecting the dynamic behavior of the bridge under the
wind action, two anemometers and ten accelerometers have been
installed. One of the anemometers has been installed at the top
of tower and the other at the center of main span. When wind
velocity exceeds a certain amount, say 20 m/s, recording papers
of these run fast and wind velocity of every two or three seconds
can be obtained. Accelerometers are coupled with the anemometer
at the center of main span, and when wind velocity exceeds the
above amount, they start to record vibrations of the bridge.
Vertical flexural, torsional and swaying vibrations can be
observed.

Also, accelerometers can start to record vibrations caused
by earthquake when ground acceleration exceeds a certain amount,
say 5 cm/s?.

8. Conclusion

In the introduction, the authors have classified wind
effects on structures as shown in Table-1. The wind tunnel model
tests on the Onomichi Bridge in gteady wind have shown that
aeolian vibration, galloping and torsional flutter of the bridge
girder possibly occur and that cable-stayed girder bridges are
liable to vibrate under wind actions as similar as other flexible
structures.

When a structure is rigid enough, static wind loads such as
drag, lift and pitching moment are enough to be taken into
account in designing it. On the contrary, when a structure is
flexible, not only static wind loads but dynamic wind effects on
it should be considered. So it can be concluded that two major
problems in the wind resistant design of structures are to
estimate the design wind velocity and to consider dynamic wind
effects on them.

There are several methods for estimating wind velocity, to
which structures are subjected, but sometimes return wvalues
obtained by different methods differ from each other. The
difference is considered to be mainly caused by the evaluation
of influences of the local topographical condition at the
structure site. On the local distribution of mean wind velocity,
multi-regression analyses on return values, numerical calcu-
lation method based on the fluiddynamic equations, wind tunnel
tests for topographical models and instrumental observation of
the actual distribution are the evaluating methods. Studies for
establishing an effective method of statistically estimating
return values of maximum wind velocity taking into account the

local topographical conditions of the structure site will be
necessary.

At present, it is very difficult to represent dynamic wind
effects on structures in terms of wind loads. In the near
future, dynamic wind effect causing aeolian vibration on
structures may be represented by a stationary external force
acting on them and those causing random vibration (buffeting)
may be represented by the equivalent increase of wind velocity.
Howevar, it would be essentially impossible to represent the
dynamic wind effects causing self-excited vibrations in terms of
wind loads, even in the case of soft flutter. Therefore from the
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view point of wind resistant design of structures, especially
flexiblz ones, "wind effect" instead of "wind loads" shall be
consider=d.

The value of critical wind velocity, which governs the
dynamic instability of structures, should be investigated for
self-excited vibrations. Only the wind tunnel model test is the
measures for predicting the critical wind velocity for the proto-
type. Besides the critical value of wind velocity, dynamic
responses of structures such as the amplitude and frequency of
vibration can be revealed by the model test.

From a functional point of view, Selberg (6) proposed three
kinds of critical wind velocity in the scft flutter problems
according to their torsional amplitudes. 1In this case, pre-
diction of vibratory amplitude of structures is indispensable for
evaluating the critical wind velccity of them. Because the
vibratory amplitudes in the soft flutter are governsd by the
value of structural damping, contour lines of aerodynamic damping
related to amplitude and wind velocity as shown in Figure-4 offer
an effective measures for predicting the critical wind velocity.

From the reasons mentioned above, the authors conclude that
the design of flexible structures such as cable-stayed girder
bridges or suspension bridges should be investigated by the wind
tunnel model tests in the region located in zone of strong wind
like our country.

In addition, measurements of structural damping, especially
those in torsional mode, of completed bridges have an important
meanine on the aerodynamic stability of structures and are
desirable. Those values obtained in our test on the Onomichi
Bridge were considerably low. The accumulation of values of
structural damping measured on presenting structures is quite
necessary.

Finally, the author emphasize that the observation on the
dynamic behavior of structures under wind action contributes to
the progress in wind resistant design method of them as same as
it contributes to the inspection of structural safety.

References

(1) A. Hirai and T. Okubo: On the Design Criteria Against Wind
Effects for Proposed Honshu-Shikoku Bridges.

Symposium on Suspension Bridges, Lisbon, Nov. 1966.

(2) D.E. Walshe: The Aerodynamic Investigation for the Proposed
Kniebrucke, Dusseldorf. NPL Aero Rep.l1149, June 1965.

(3) D.E. Walshe and N. Narita: The Aerodynamic Investigation for
the Proposed Lower Yarra Bridge. NPL Aero Spec.
Rep.008, Feb., 1968.

(4) A. Hirai, I. Okauchi and T. Miyata: On the behaviour of
suspension bridges under wind action. Symposium on
Suspension Bridges, Lisbon, Nov., 1966

(5) T. Takata, T. Okubo and N. Narita: The performance of a wind-
tunnel for bridge testing. J. of Res. Public Works
Res. Inst. (unpublished)

(6) A. Selberg: Aerodynamic Stability of Suspension Bridges.
IABSE. 17, Zirich, 1957.



1274 VI — WIND RESISTANT DESIGN OF A CABLE-STAYED GIRDER BRIDGE

SUMMARY

This paper describes the design considerations of the Onomichi
Bridge against wind effects such as the estimation method of design
wind velocity, results of wind tunnel model test, vibration tests
of the Bridge and installations observing the aerodynamic response
of bridge. Basing on their classification of wind effects, the au-
thors point out the possibility of causing a cable-stayed girder
bridge aeolian vibration, galloping and torsional flutter and the
necessity of considering dynamic wind effects besides wind loads
in the design.

RESUME

Cet article décrit les considérations de dimensionnement faites
pour le pont Onomichi contre les effets du vent: Méthodes d'estima-
tion de la vitesse du vent, résultats d'expériences faites sur mo-
déle au tunnel aérodynamique, tests vibratoires sur le pont et ins-
tallations observant le comportement aérodynamique du pont. Se ba-
sant sur leur classification des effets du vent, les auteurs re-
léevent la possibilité d'obtenir des vibrations sur un pont a hau-
bans, des galoppades et des flottements tordants. Ils montrent
la nécessité de considérer les effets dynamiques a cd6té des char-
ges de vent dans le dimensionnement.

ZUSAMMENFASSUNG

Der Beitrag beschreibt die notwendigen Betrachtungen iuber den
Windeinfluss, die bel den Studien der Onomichi-Briicke gemacht wur-
den, wie Schétzungsmethode fir die in die Berechnung einzusetzen-
de Windgeschwindigkeit, Modellversuche im Windkanal, Vibrations-
tests an der Briicke und Einbauten zum Beobachten des aerodynami-
schen Verhaltens der Briicke. Die Autoren stiitzen sich auf ihre
Klassifizierung der Windeinfliisse, um die Moglichkeit von Schwin-
gungen, Galoppieren und Torsionsschlingern an seilverspannten
Bricken zu betonen. Sie weisen auf die Notwendigkeit hin, beil der
Bemessung neben den ruhenden Windlasten auch die dynamischen Ein-
fliusse zu bericksichtigen.
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SCOPE OF THE STUDY

This investigation is based on studying the response of ten
actual reinforced concrete chimneys varying in height from 352
ft. to 1200 ft. The physical properties of these ten chimneys
are tabulated in Table 1. Accelerograms for the three actual
earthquakes tabulated in Table 2 have been selected for the ana-
lytical study. All tabulated results are based on the average
values obtained from the response due to these three accelerograms.
It should be mentioned that the average response due to the three
earthguakes has been found to be very close to the average re-
sponse due to seven strong motion earthquakes which include the
three used in the paper {1).

METHOD OF SOLUTION

The modal analysis techniques are used in finding the re-
sponse of a chimney to the earthquake accelerations at the base
of the chimney. The steps will be stated very briefly.

1. Determine the mode shapes and the shears and moments
associated with each mode. The Stodola process com-
bined with numerical integration is used [1]1 , [2].
For practical purposes three or four modes of vibra-
tion will be enough.

2. The displacements, Y(x,t), in the chimneys as well as
the shears, V(x,t), and bending moments M(x,t) at any
section and at any time are then computed by the follow-
ing equations [2], [3]:

Y(x,t) = F @.(x) - q.(t) (1)
J=l J J

Vix,t) = S V.(x) + q.(t) (2)
J-;} J J

M(x,t) = %M.(x) - q.(t) (3)



Table 1 - Data for Chimneys Used in Study
Chimney Height OutSl?Et?;ameter $ZEZit (zziéggs (kigs/ Remarks
e (£5=) Top Bottom (kips) per cycle) sq.in.)
1 352 23.58 30.90 4532 1.74 3500 Corbel supported
brick lining
2 450 16.33 35.79 6743 2.12 3500 Corbel supported
brick lining
3 534 18.67 35.03 8374 2.26 3500 Independent liner
622 2333 47.26 12526 2433 4000 Independent liner
707 19.98 69.14 26236 2.91 3500 Corbel supported
brick lining
6 797 31.33 62.50 23392 3.29 3625 Steel liner
7 825 25.00 63.96 22970 3.44 3625 Steel liner
8 840 41.66 74.42 40976 3.33 3630 Three steel liners
9 997 33.67 83.00 42440 3.64 3625 Steel liner
10 1200 37.00 95.29 65955 4.68 3820 Steel liner
Table 2 - List of Earthquakes
Designation Location Date Direction
A El-Centro, Cal. May 18, 1940 West
B Oolympia, Wash. April 13, 1949 N 10° w
c Taft, cal. July 21, 1952 s 21°w

9.2
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in which x is the distance along the chimney, t is the time,
g:(x) is the mode shape in the 3jth mode and g;(x) and Mj(x) are
tﬂe shears and moments associated with the jYI mode.

The value of g:(t), which is a multiplier for the modal dis-
placements, shears gnd moments, is obtained from the following

equation: H
~a(t) [ mlx) g4 (x) ax

[”m(x) 92 (x) ax

in which /3 is the fraction of critical damping, #j is the fre-
quency in radians/sec., a(t) is the acceleration of the earth-
quake and m(x) refers to the mass per unit length.

Gy (£) +2A4G, (8) + S (8) (4)

Equation (4) is solved numerically [1] using a third order
Runge-Kutta process.

3. Although the solution of equations (1), (2), and (3) will
give displacements, shears and moments at all intervals
of time, yet the maximum values at any section are the
only ones that are of interest. These maximum values are
computed for each earthquake and the average is then
obtained.

RESULTS
Base Shear

Many codes express the value of the maximum shear at the

base of a chimney due to earthquakes as a function of the first

mode period and of the total weight of the chimney. For this rea-
son the maximum base shear has been computed for each chimney due
to earthquakes A, B, and C and the average of these three maximums
has been plotted as a ratio of base shear to total weight in Fig-
ure 1. It should be emphasized that the maximum base shear (Fig-
ure 1) is the maximum of the algebraic sum of four-mode responses.

Base Moment

A dimensionless plot of the maximum base moment, My, is given
in Figure 2. The ratio of Mp divided by the product of the base
shear times the height, H, is plotted against the first mode peri-
od of the ten chimneys considered in this study.

Shear Distribution from Accelerograms

The distribution of the maximum shears along the chimneys is
presented in Figure 3 in normalized form for five of the ten chim-
neys considered. The numerical value of the maximum shear for any
height above the base can be calculated from the value of the base
shear recorded in the Figure.

Maximum Bending Moment Curves

The maximum bending moments in five of the ten chimneys are
presented graphically in normalized form in Figure 4. These bend-
ing moments are the average value of the maximum moment curves
due to earthquakes A, B, and C.

PROPOSED ACI EARTHQUAKE PROVISIONS [4]

1. Base shear. In the proposed chimney code of the American
Concrete Institute, the base, Vy, is given by the
empirical equation:
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vb = ZUCW or v, = ZUCWl (5)

where

Z = a zone factor which shall not be less than 0.30
for Zone 1, 0.5 for Zone 2 and 1.0 for Zone 3.
Zones are indicated on a map for the United
States Uniform Building Code.

U = Use factor varying from 1.3 to 2.0.

5
1

Total weight of chimney without lining
W.= Total weight of chimney with lining

The period, T (secs. per cycle), may be approximated by:
2 w

_ 1.8 H 1
T = 13,0 VE . W (7)
H = Height of chimney in feet
D;= Outside diameter of chimney shell at base (ft)
D = Outside diameter of chimney shell at top (ft)
E = Modulus of elasticity of concrete (lbs./sq./

in.)

2. Distribution of Lateral Forces. Fifteen percent of the
base shear, Vy, is considered concentrated at the top of
the chimney and the remainder is distributed in accord-

ance with the following requirement:

Top
W F
h o -
w, h
H h
F, = 0.85 V, ———— (8)
h h ’ b w, h
. s
h
X
Base ; \ \ \

3. Bending Moments. The bending moment at any level as
provided by the proposed code is:

H
= 9, [0.15 vmon) ¢ 2 F (h-h) | (9)
X
where 3 = 3+(1-3) (b /H) 3 (10)
J = 0.6/3\/JT (But not less than 0.45 nor
more than 1.0) (11)

COMPARISON OF PROPOSED ACI PROVISIONS WITH
THE ACTUAL RESPONSE DATA

The comparison with the proposed ACI Code will be presented
under three parts:

1.Bg.  Schlussbericht
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(a) First Mode Period T

Both the computed values and those obtained from the
ACI formula (equation 7) are tabulated in Table 3.

Table 3 - Comparison of the Computed First
Mode Period, T (secs. per cycle),
with the ACI T

Chimney No. Height Computed T ACI T
| 352 1.74 1.98
2 450 2.12 2.34
3 534 2.26 3.18
4 622 2.33 2.9%4
5 707 2,91 3.03
6 797 3.29 3.92
7 825 3.44 4.02
8 840 3,33 3.86
9 997 3.64 4.43

10 1200 4.68 5.38

(b) The Base Shear or Total Lateral Force

The shape of the proposed ACI curve for base shear is
plotted in Figure 1 to compare it with the data obtained from the
mathematical analysis. This curve is a plot of Equation (5) for
Z =0.,8 and U = 2,0,

(c) The Bending Moment Curves

To compare the ACI bending moment curve with the com-
puted curve it is necessary to use the same base shear. Therefore
the maximum base shear that was obtained by the actual response is
distributed according to the ACI provisions and the ACI bending
moment curve is obtained from such distributions by using Equation
(9, These ACI moments are compared with those obtained from the
actual response in Figures 5, 6, and 7 for chimneys #4, #7, and
#10 respectively.

IMPORTANCE OF MAXTMUM STRESS INVESTIGATION

The non-linear variation of the stress in the reinforcing
steel of a typical reinforced concrete chimney with respect to
the change in the bending moment is clearly shown in Figure 8.
The values given have been calculated for a cross-section with a
center line diameter, d, and thickness, t, of 51.97 ft. and .833
ft. respectively. The variation is affected considerably by the
percentage of reinforcing steel. Procedures for design have been
presented in a previous paper by the authors EB] and will not be
repeated here. However, it is recommended that a load factor of
at least 1.5 times the working load bending moments be used in
the maximum stress design with upper stress limits of 0.8 f4 for
concrete and F,, for steel. The value of f! is the specified com-
pressive strength of the concrete and Fy, is the yield strength of
the steel. The above remarks do not apply to an ultimate strength
design.
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CONCLUSIONS

Only certain pertinent facts of reinforced concrete chimney
design for earthquakes have been presented in this paper. From
the data given it seems reasonable to draw the following conclu-
sions:

1. Although procedures that are presented in chimney codes
are useful for preliminary designs they are not always sufficient-
ly accurate for a final design.

2. A response analysis in which from three to seven carefully
selected accelerograms are used is recommended for investigating
the final design.

3. Both a working stress and a maximum stress investigation
of the stresses should be made.

4, Although not discussed in this paper maximum shearing
stresses should also be determined. These stresses may occur
in the upper one-fifth of the chimney.
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SUMMARY

This paper is primarily concerned with presenting some
results of the response of actual reinforced concrete chimneys
to recorded accelerograms of actual earthquakes. The results are
based on an elastic response using the first four mocdes with a
damping coefficient of .05 of critical.

The analytical results are then compared with those proposed
by the American Concrete Institute Code (1968) for Earthqguake
Design of Chimneys. The provisions of this Code are summarized
in the paper.

The last part of the paper emphasizes the necessity of de-
signing reinforced concrete chimneys for both a working stress
and a maximum stress condition as the stresses, especially in
the steel, do not vary linearly with the bending moments.

RESUME

Cette rédaction présente quelques résultats de réactions
de cheminées en béton précontraint sur les accélérations mesu-
rées de plusieurs tremblements de terre.

Ces résultats analytiques sont comparés avec le Code de
1'Institut Américain du Béton, dont les prescriptions sont ré-
sumées ici. Enfin, la rédaction démontre la nécessité de di-
mensionner les cheminées en béton précontraint et pour une char-
ge de service et pour des conditions de charge maximales, vu que
les tensions ne varient pas linéairement avec le moment, surtout
dans l'acier.

ZUSAMMENFASSUNG

Dieser Beitrag ist hauptsdchlich bemiiht, einige Ergebnisse
zu zeigen, die man aus der Aufzeichung der Beschleunigungen von
Erdbeben als Wirkung auf Stahlbeton-Schornsteine erhdlt.

Die Ergebnisse stiitzen sich auf elastische Bestimmung, die
ersten vier F#lle beniitzend, mit einem D&ampfungsbeiwert von 0.05
des kritischen. Die analytischen Ergebnisse sind &nn mit denjeni-
gen verglichen worden, die durch die Normen des amerikanischen
Betoninstitutes fir den Entwurf von Schornsteinen bei Erdbeben
vorgeschlagen wurden. Der letzte Teil des Beitrags betont aus-
dricklich die Notwendigkeit, Stahlbetonkamine fiir Gebrauchs- und
maximale Spannungsbedingungen zu entwerfen, da die Spannungen,
insbesondere jene des Stahles, nicht linear mit dem Biegemoment
géndern.
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