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Dynamic Behaviour of Structures and Dynamic Modeling

Le comportement dynamique des constructions et la Simulation dynamique

Das dynamische Verhalten von Bauwerken und dynamische Simulation

JOSEPH G.ILLESSY
C.E., E.E.
Hungary

The constructions are due to the corpuscular nature of matter
mechanical Systems with large degree of freedom. The equations of
motions can be derived from the equilibrium of the forces: in case
of linear Systems this whould lead - however only theoretically -
to the very compact raatrix-formulated set of the differential-equa-
tionsystem

Mx+Cx+Kx=G /!/

äfti
ikUUl

EXCITATION

SYSTEM

OUTPUT

im
(1,1,i)

with N simultaneous equations [11,\.2^.
.To overcome the difficulties caused by the very large, but

nevertheless finite number l<«N<oo, there are two different ways
possible. The infinite increase of the degree of freedom results mo¬

dels of continuously distributed paranAters,
dealt nathematically by partial differential
equations. Conversely the decrease of the
degree is equivalent v/ith the concentrating
of the properties to l<n<H discret points:
models with concentrated parameters. In pra-
xis only the first dominating particular
solutions of Eq./l/ are of interest, being cha—

Fig.l. racteristic for the total dynamic behaviour
of the structure. From this point of
view both type of models can be adapted

equivalently; to that nethod is
given preference, that optiaally se-
cures suitable results for the adapter,

The dynamical oehaviour of a
system /H,C,K/ with excitation G,

nanely F force- and/or x displace-
nent-excitation is characterized by
the response x,x,x /Fig.l/. This
means uethematically the transform
of Eq./l/ to its explicite form. The
modern high-speed electronic compu-
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ters offer due to the rapid flow of information an easy possibility
for solving Eq./l/. In digital Computers the simultaneous

integration is produced by stepwise iteration. In possession of the
elements of the analogue Computers /Fig,2./ the mathematical Eq./l/
can be simulated electrically by a "laboratory model"; the several
differential-equations represent in the logic block-diagram pro-
duct-sums based on integrating chains and are easily realizable by
means of electric circuits.

The internal mass, damping- and spring-forces of a nonlinear
vibrator of unique degree of freedom are in equilibrium with the
external forces of excitation:

?m + ?c * \, m * * V*' * Vx/ FG G /2'/
or after mathematical rearrangement - without altering the
physical information-content -

x/V i c( - J* x/r/dt - k J x/vr/dt G/t/ J
fl/2/

The logic bloct-structure of Eq./2/, Fig.3, is in addition the prineipal

programing plan and switching graph of the equivalent simula-
ting model, the analogue Computer.

One of the simplest mind-model of a springed vehicle with one
degree of freedom is to be seen on Fig.h. /by ignoring the pitching

-xu) .xtw component of the movement/. Jucipes of
JL ji. the two axes at a velocity v can be

*I\\ tfJK * BT7I * k °
—j | ' )—¦ Py i \ represented in the model by tv/in pul-

Lr LK I \ jf ses. In case of linear System the mat¬
rices of Eq./l/ have the actual form:

A =\
G~®—

Fj.g.3.

=fm o"|; £ =[" c -cl; K =f k -k"\;
|o o I \-c cj !-k k J

and G / 3 /
if time-dependent force-excitation is

missing.Expressing the derivatives of the highest order by the
other terms:

-v (-*) -1x - IK)
/3"/

Fig»9Eia illustrates the logic block-diagram of Eq./3A
Constructions loaded by space- and time-variable moving loads

get their new, deformed shape of equilibrium only after the decay
of transient oscillations; the final shape however can be derived
by well-known statical treatments
too. As mentioned above, in pra-
xis the interesting modes of
maximal amplitudes /that of the
lowest natural frequencies/ do-
minate and are characteristic
for the dynamical behaviour of
the structure. The reduction of
the degree of freedom is to be
carried out in such a manner,
that these modes of technical
interest should be'included by
the Selected model.

For illustration let us ta--
ke a special archstiffened sing-
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Fig. 5.

le span bridge construction: a Gerber-truss /Fig.5/, the tv/o side-
extensions of which being cantilevers; only the last secondary lon-
gitudional girders of the deck-plate are on both sides pin-connec-
ted with the bridge and the abutments, respectively, The total
statical informations are involved in the matrix of the displacement
influence-line ordinates; for dynamical behaviour the mass- and the
damping-distributions are needed too.

The derivation of the mass-matrix M implies principally no
difficulties. For the actual damping conditions are hardly to be
seized exactly, consequently for simpler nunerical algorithms it is
assumed, that the daiaping-rnatrix C is diagonal /physically: presence

of only grounded ^dampers/. The~direct determination of the spring-
matrix E is often quite troublesoae indeed; but in statics conveni-
ant metEods are available for tue computction of the displacement-
influence-linesÄ, .1= H, the inversion of H being a submatrix of
K:

H
-1

K
B /V

The missing elements are to be determined by the reciprocity-law of
Maxwell /k..=k../, the equilibrium of the forces erabodied in k.,IJ J S- —J

• fundamental relation: n
jL«r k.j, o respectively.
1=1 ij



1112 VI - DYNAMIC BEHAVIOUR OF STRUCTURES

r A-l
MC

Xi
°IS ¦y,

X,Ü<ht

LH-[>i»L<ht -lts5
°i$ »•Ä

1%,
<%/ °o °o "et aes "ee 's}atle "/b.' 1/a

A'An

Bs-iitäB

ä

SM

A^A_pcss.def. B-A~?
^-i S,'b,.1/an;

Recursion
^ ^ f

Iggj,
Fig. 6.

Fig.6.gives a recoursive procedure for matrix-inversion like
Eq./4/ for symmetrical and positively definite matrices, common in
linear structural engineering. Among others, the given method has
the advantage, that all mathematical steps can be interpreted
mechanically tOOr^i]«

For symmetrical constructions all asymmetrical effects can be
resolved into symmetrical and antimetrical components; applying
this to Eq./l/ :

& I + & I + is v 2 I 2 + 2 Ins *b /5'/

iAä + SAS + ^5 2 I 5 * z Iba 5ß

where
F Y + Z means the force-excitation,
x_= ^B+ zR the displacement-excitation,
x y + z the output displacement-vector, while

k=taik]s= aik + an-(i-l),k
[aikU aik ~ an-(i-l),kI* /5/

are the new matrices of the Symmetrie and antimetric components.
Let us express the accelerations in terms of the other elements:

I Z *~l[i<rb - hl*l I X - 2 Ibs 2b]

I 5 fl\i<rz) - Kfc 5 i 12*2 &A Sa]
/ 5 /
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These new equations represent the prograiaing of the analogue
Computer, the simulation-equations of the analogue dynamic model [2J

»./ .8X93
1

0.989»
0.9726

.9S6o
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0.819J
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f»
5»
?5
f6
?7

993 1 ?8
l.o*s[ 1Ä1

1.82 -
2.81 -

14.91
«7.19 -
ö»,55 -

367.6»
795.22 -
896.01
*o.99

0.41 M
1.82 *2
».95 *3
0.17 **
o.86 *5
2.67 «6

10.75 "7
4o.99 «8
33.38J L*oJ

X ?0.61a2-I -39^»
|o.5«oo 1-3*4.96

o.5o56 65.56
o.51»o
Q.5176J

- 88.32

- 32,??

i ?fo^lö-l
|».5ooo

p~*l.lo
1-198.78

o.5«5* ?121.86

o.51*»| - 29.26

• 0

Table 1.

Table 1, gives the actual values of the selected illustrative
problem of Fig.5. The values are in the normed form of Eq./l/ and

o
Eq./5/, respectively, v/ith the units of m 60 kp s /cm;
k 114,6 kp/cm; x :? 1 cm; te et 0.724- s; Fo 114.6 kp;e

CJ 1.382 r/s; f =o.22o c/s.
The logic block-diagram of the above equations is to be seen

in the lower part of Fig 9b. *
If a moving vehicle is crossing a bridge, the wheel-forces

excite vibrations in the bridge-construction, which conversely ge-
nerates the displacement-excitations of the vehicle /Fig.?/, the
mutual feedback varying with the position of the load nonlinearily,
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INPUT

DEAD LOAD
Et EXCITER

WIND»
EARTHQUAKE

even if the separate Systems
are linear. Tue several components

of the excitation are on
one hand the dead-load weights
and the eventual centrifugal
forces caused by the rotating
excentricities of the motor, the
forced movement of the roling
load along the vertival trace
of the deckplate. On the other
hand there may be dead loads or
vibrators located at fixed points
of the construction; wind- and
earthquake-forces are of this
kind,

The difficulties caused by
the continuous space-variation
of the load in a model of dis-
crete concentration of parameters

can be removed by the
adaptation of the well-known lever-
law approximately, explained in
Fig.3.

Should all effects of
possible excitations taken simultaneously
into consideration, then the model is
to be build up by the principles shown in
Fig,9 a. and b. The variable, nonlinear
feedback-systems are based on the application

of the lever-rule, mentioned above and
can be easily realised electrically by means
of sliding Potentiometers. The sliding
contacts are to be moved with such a relative
velocity, that the actual vehicle under
consideration may have; research studies on motor

accelerations, as well as brakings can
be made without difficulties. If the model
of the moving vehicle has several degrees of
freedom, the feedback-systems are of multi-
channel type, of course.

In practice the several effects can be
studied naturally separately too, but it is
always to be kept in mind, that the Systems
with space-variable loads are nonlinear and
the linear law of superposition is not yet
valid.

For practical purposes often only the
.eigenvalues of the unloaded structure are of
tecnnical interest, being characteristic
parameters of the total dynamical behaviour.
The spring-matrix may be generally given in
form of displacement-fllf luenceline ordinates.
In this case even the matrix-inversion of

-1
~ *B

,,-1

SYSTEM OUTPUT

*L
MOVING LOAD

jstt
VERT. TRACE -» 4 *«' ib.

FORCE
FEEDBACK \j x

LOCAL DEAD LOAD
DISPLACEMENT
FEEDBACK A

t EXCITER p *oj -G.
CONSTRUCTION

X

H

* Is©"1- H we get another mathematical

form of the Eq./l/:

Fig.?.

©F4V^4^

Fig.8.

K is redundant. Pre-multiplying Eq./l/

"^
U_e>
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C3u?

Fig. 9 a.
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_1 »

HMx + gHCx + !x Ax + Dx + Ex o /6/
Developing the accelerations to the main diagonal <fA_ "> of A :

| x =<|Tr>"1 [- (4 -<£).,>)§ - D 2 ~ i £] /6'/
only grounded dampings are assumed again.

fiesolving Eq./6/ again into Symmetrie and antimetric components,

the logical block-diagram decomposes into two independent
separate parts; for the illustrative problem shown in Fig.lo.

*

Sirej

&kBis}

rjs)rrtj

i.ioj z.^r '>"> *,-T 's!~L 1

2a

Fig. lo.
The numerical determination of the natural frequencies leads

to the roots of a polinomial with a degree - in our case of the
illustrative problem - n 9 with relative differences in the
coefficients of 437 dB /namely from the numerical order of the

22
extreme lo !/ The relative order of the roots however are only yet
about 64 dB, /namely lo / But the technically interesting naturally
frequencies varies only in the ränge of f s 1 - 15 c/s /See Fig.
IV.

With respect to the eigenvalues in analogue computation,
only the approximative shape x' of the exaet natural mode x is
needed, but not the value of the natural frequency. Giving to the

simulating dynamic
4 model the initial

5 o 8 » »3 conditions x(o\= x*
o ä •>» «s -s 31 — ' —n

and x(o)= 0, then
dominant oscillations

v/ith the natural
frequency f

occurs, superposed
by decaying transi-
ents of the other
harmonics.For the
exaet, accurate
natural mode x /ini-

; (0

-*f-

PISslÄ
Ie/"

+«--f»v«v
2 1 0 l"/l

•V- 17

7 I
II©

Ic/* 5 6 Js

Fig.11.
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tial conditions: xfo) x and x(p)= 0/ the system-oscillations

x(t) x e-P* cos (25tfnH
without any other harmonic transients. j?his procedure can be used
for the very easy and very rapid iterative detemination of the
unknown eigenvalues: both modes and shapes.

The dynamic behaviour of a structure can be characterized by
the answer given to ideal Dirac-pulses ©.(t)TT1J F dt =m. lx.(t)dt nL.lx.^Tt' - ^(0) m.Ax.

o o

The application of ideal pulses of the same intensity J at the
mass m.can be expressed nathematically by the initial conditions:

1
* r iT

xfo^ 0 ; x(o]:lo,o,,..,x.(o)= J/m.,..,,o J The answer functions

x(t), the weight-functions contain all the eigenvalues and
thus several natural frequencies can be determined from the
diagrams of x(t)too.

Applying a constant force F. suddenly to the mass m. is
equivalent with the excitation caused by the step-function F.-l(t);
initial conditions: x(o)= 0 ; x(o)= o, and generating vector:
Gi't,) lo,o,... ,G.(t}= F. >1 (t),... ,ÖT ; oscillations with decaying
transients occur, having the asymptotes „

•<•>¦ Foi3i 'oi&ii-la Tu»—«Tm] '
This procedure offers simultaneously an easy and very suitable

testprogram, controling totally the entire modeling, both the
developed mathematical equations Eq./5/, both their electrical
realization.

The possibility of solving Eq./l/ for general optional exci-
tations necessitates an analogue Computer with suitable capacity,
but offers the great advantage of analysing the dynamical
behaviour by laboratory measurements; cumbersome site measurements are

<
"i
L*L

o.SH VmV-V.
— —' —1—1—1—"—I

Pf — ">-tLJ.
fc •xMslUul *¦k'u>-oJq
l-'L,
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l' i-
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1 v* tonst!
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Fig.12.



1118 VI - DYNAMIC BEHAVIOUR OF STRUCTURES

to be made only to verify the theoretical results gained by dynamic
modeling.

Such a pure theortical result is the dynamical effect of a
unique - massless force rolling with different, but constant velocity

over a simply supported beam £4J, \5~]' Th-e results of elaborate

digital calculations are to be verified easily by analogue
modeling. The several functions of oscillations can be gained
instantly in grafical manner /Fig.12/. Such methods give sharp
inside views into an important, but nevertheless very complex problem,

covered in statics by the concept of the so called "impact
factor" [6],

If diagrams of the stochastic variations of wind- or earthquake

effects are available, then these can be considered as the
input force and displacement generation of the structure under
discussion. Dynamic modeling conversely gives the response by simple
recording of the output.

A.c kno led^ements.
The necessity of the method outlined grew out sind was based

.on researches and nondestructive site investigations, made on the
iniciative of the Council of the Hungarian Capital Budapest and
the Hungarian Ministry of Post and Communication. Considerable
help in assistance was given in analogue computation of the
developed equations by Mr. Gabor Ladanyi, E.E. /Department

for Process Control, Technical University,Budapest/ and in
digital Computing by Mr. György Popper /Computing
Centre of the Ministry of Heavy Industries/. Site investigations
were made on the authority of the Ministry of Post and Communications

and the Council of Budapest in assistance of the Institute
for Quality Control of 3uilding Materials and Constructions.
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SUMMARY

The electric Simulation of mechanical Systems by means of
analogue Computers makes laboratory researches of the actual dynamic

behaviour of structures possible. The influence of space- and
timevariable coupling of load and structure, changes and steps in
vertical trace before or on the bridge, wind and earthquake effects
respectively can be analysed separately or simultaneously.

RESUME

La Simulation eiectrique de systemes mecaniques ä l'aide de
calculateurs analogiques permet l'etude au laboratoire du comportement

dynamique reel des structures. Ainsi l'on peut analyser
separement ou simultanement l'influence d'un accouplement
(variable dans l'espace et dans le temps) des vibrations de la Charge

et de celles de la structure, les changements ou les gradins
dans le trace vertical avant ou sur le pont, les effets du vent
et de tremblements de terre.

ZUSAMMENFASSUNG

Durch die elektrische Simulierung mechanischer Systeme mit
Hilfe von Analogrechner kann das wirkliche dynamische Verhalten
von Bauwerken im Labor untersucht werden. Dabei können die
Einflüsse der im Raum und Zeit veränderlichen Kopplung der Belastung
und der des Bauwerkes, Gradientenänderungen, Sprünge in der Fahrbahn,

vor und auf der Brücke, sowie Wind- und Erdbebenwirkungen
gesondert, oder simultan untersucht werden.
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A Model for the Study of Soil-Structure Inetaction

Modele pour l'etude de l'interaction dans les composantes du sol

Ein Modell zur Betrachtung von Wechselwirkungen im Boden

M.E. AGABEIN
Lecturer, Civil Engineering Department

University of Khartoum, Khartoum, Sudan

R.A. PARMELEE S.L. LEE
Associate Professor of Professor of

Civil Engineering Civil Engineering
Northwestern University, Evanston, Illinois, U.S.A.

1. Introduction

The seismic response of a multi-story building based on the assumption that
the building rests on a rigid foundation has been considered by several
investigators [l,2]. Observations [3] and studies [4] allowing for the flexibility of
the foundation indicated that the influence of the flexible foundation on the
dynamic response is significant and recently this dynamic coupling gained considerable

attention [5,6,7,8],

One way to analyze soil-structure interaction phenomena is accomplished by
utilizing the solutions for the steady state Vibration of a rigid plate on the
elastic half space [7,8]. However, the application of this approach to the analysis

of the transient response of the system presents fundamental difficulties
because of the frequency dependent nature of the parameters which characterize
the foundation medium [8].

The objeet of this study is to investigate the transient response of a long
building resting on an elastic half space using a mathematically consistent
lumped-parameter model [9] of finite size to represent the semi-infinite foundation

medium. Appropriate damping elements are introduced at the boundaries to
aecount for the energy dissipation and to reduce wave reflection. In the
construction of the model, the solutions to the harmonic horizontal translation and

rocking vibrations of an infinitely long rigid rectangular body on an elastic
half space presented by Karasudhi, Keer and Lee [10] are used as a basis for the
determination of the properties of the damping elements. In spite of its simplicity

the model provides a phenomenologically satisfactory representation of the
elastic half plane, as evidenced by a comparison of the results for steady state
motion obtained by the model with the analytical solutions [lO].

Also included is a parametric study of the interaction between elastic
multiple-story shear buildings and the flexible elastic foundation media as
compared to the response of the same structures on rigid foundation when the
Systems are subjected to a strong motion earthquake.
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2. Formulation of the Model

The lumped-parameter model for plane strain problems introduced by Ang and

Harper [ 9] is used to represent the foundation medium which is assumed to be

elastic, homogeneous and isotropic. The model consists essentially of mass

points and stress points arranged as shown in Fig. 1, where the boundaries of
the model and the reference coordinates, X- and Y-axes, are indicated.

A typical interior mass point shown in Fig. 2 contains the mass m pb /2
of the foundation medium, where b is the mesh size of the model in the x- and

y-axes and p is the mass density of the medium. The displacement, velocities
and accelerations are defined at the mass points. The average stresses and
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strains are defined at the stress points, which are assumed to be in a state of
homogeneous stress and strain. The strains at a stress point are determined
from the displacements of adjacent mass points, and the forces acting on a mass
point are calculated from the stresses at adjacent stress points (Fig. 3).

For small deformation and plane strain conditions, the strain-displacement
relationships for a typical interior stress point (i+l,j+1), as shown in Fig. 2,
take the form

cx (i+l,j+1) "(i+2,1+2> - MM)

c (i+i,j+D v^^j+2>: v<i+2»j> (i)
y °

exy (i+l,j+1) -~ [u(i,j+2) - u(i+2,j) + v(i+2,j+2) - v(i,j)]

In these equations, e e and e denote the strain components and u and v the
displacements along tne x'- and y-yaxes respectively.

The forces acting on an interior mass point (i,j) are shown in Fig. 3. The
normal forces F and F and the shearing force F exerted by the adjacent stress
points are equal to the products of the corresponding average stresses and the
effective area on which they act and are given by

Fx (i+l,j+1) | ax (i+l,j+1)

Fy (i+l, j+1) | cry (i+l, j+1) (2)

Fxy(i+l,j+D \ °xy (i+l, J+D

in which ax, Q and axy are the normal and shearing stresses along the x- and

y-axes.

From Fig. 3, the equations of motion for a typical interior mass point (i,j)
along the x and y directions are, in view of (2),

a (i+l,j+1) - a (i-l,j-1) a (i-l,j+1) - a (i+l,j-1)
— g—5 + -& g-52 pu(©j)

_Z —L +J£L _22 pv(i,j)

(3)

Applying Hooke's law to (3) and substituting for the strains from (1), the
resulting equations of motion of a typical interior mass point in terms of the
displacements are

Ss [u(i+2,j+2) + u(i-2,j+2) - 4u(i,j) + u(i-2,j-2) + u(i+2,j-2)]

+ ^±r [u(i+2,j+2) - 2u(i,j) + u(i-2,j-2) - v(i-2,j) + v(i,j-2)

- v(i+2,j) +v(i,j+2)] p ü (i,j)

S?[v(i-2,j+2) + v(i-2,j-2) - 4v(i,j) + v(i+2,j-2) + v(i+2,j+2)j + (4)
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+ ^!~v(i-2,j+2) - 2v(i,j) + v(i+2,j-2) + u(i,j+2) - u(i-2,j)
+ u(i,j-2) - u(i+2,j)j p v (i,j) (4)

in which X 2vG/(l-2v), G is the shear modulus and v the Poisson's ratio.
It is interesting to note that (1) and (4) are the central finite difference

analogue of the corresponding differential equations for the continuum.
On the free surface, applied stresses are defined at fictitious stress points
adjacent to the boundary, while boundary displacements are defined at the
boundary mass points.

3. Model Size and Damping

To develop the model, the harmonic rocking of an infinitely long rigid
rectangular body on an elastic half space is considered. The rigid body is of width
2B with mass M per unit length and the elastic half Space is approximated by the
lumped-parameter model as shown in Fig. 1. The boundary conditions are such that
the vertical displacement of the five mass points in contact with the rigid body
is YX, where Y is the angle of rotation of the body, the free surface beyond the
rigid body is stress free, the surface of contact between the base of the rigid
body and the semi-infinite medium is smooth, and the displacements of the mass
points on the side and bottom boundaries are assumed to vanish.

The equation of motion that governs the harmonic rocking of the rigid body
takes the form

m(5 + 16 J) j1- + G [ j| BY - 2v(6,0) - 2v(6,2) - v(4,2)

- 2v(2,?) - 2u(0,0) - 4u(2,0) + 2u(4,0) + 2u(6,0) - 2u(6,2)

- u(4,2) - 2u(2,2)"1 + (X+G) \\-j2 BY + 2v(6,0) - 2v(4,2)

- 3v(2,2) + u(0,0) + 2u(2,0) - u(4,0) - 2u(6,2) - 3u(4,2)

- u(2,2) + u(0,2) 2 /2 T e1U)t/B (5)

in which J J/pB* is the non-dimensional inertia, J is the polar inertia of the
body, T and us are respectively the amplitude of the applied torque and frequency
of excitation, and t denotes time.

The optimum size of the model with rigid boundaries is established by varying
the dimensions of the model and solving the system of equations by a high-

speed digital Computer for the static case, i.e., cu 0. For each model size
the static rotational stiffness T/Y is determined and compared with the analytical

value [10] given by T/Y ttGBs/2(l-v) It is found that the larger the dimensions

of the model, the closer is the agreement; however the Computer time
required becomes excessive. The model size X 4B (i 16, b B / /2) and
Y 3.5 B (j 14) yields a static stiffness with 5% accuracy and requires reasonable

computational time, hence it will be used in the following study. For this
model size, observing the condition of antisymmetry and the boundary conditions,
the model has 104 degrees of freedom.

Next the system of equations for harmonic rocking is solved and the results
obtained showed, as expected, infinitely large amplitudes at resonant frequencies.

This is of course physically incorrect since in the infinite medium the
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energy is dissipated by the dispersion of the elastic waves far from the source
of disturbance. This dissipation of energy produces a damping effect which
limits the amplitudes at resonant frequencies. To build this damping effect into
the finite-size model, damping elements are placed in parallel to the stress
points along the two boundary layers adjacent to the side and bottom boundaries,
as shown in Fig. 1. Thus the equations of motion for the boundary mass points
contain damping terms which serve the purpose of dissipating the energy and

reducing the reflection of waves from the boundaries. The damping coefficient
c of these elements is determined by matching the amplitudes at resonant
frequencies with the analytical Solution [10] and depends not only on the properties

of the medium and the size of the model, but also on the frequency. The

value of the non-dimensional damping factor c c/pBV where Vs «/G/p is the
shear wave velocity, given by _c" 9 - 10 v (6)

is found to give reasonably good results for the frequency ränge of interest.

Using the values of c defined by (6), the results for v 0 are shown in
Figs. 4,5 and those for v 0.5 in Figs. 6,7. In Figs. 4,6 the non-dimensional
amplitude Y ttGB!3 |Y| / 2T is plotted versus the frequency factor T| Bcu/Vs for
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various values of the non-dimensional

inertia J. In Figs. 5,7 the
non-dimensional inertia J is plotted versus
the resonant frequency factor
TI Biß IM where tu is the resonantr r s r
frequency. It can be seen that the

approximation of the stiffness and

damping characteristics of the elastic

half space by the model give,
for practical purposes, results which

are in satisfactory agreement with
those obtained by the analytical
Solution [io] especially in the lower

frequency ränge which is of primary

importance in the seismic response of

soil-structure interaction Systems.

4. Multiple-Story Building on Flexible Foundation

A dynamic model for an elastic N-story shear building resting on the
elastic half space is shown in Fig. 8 in the deformed State. Both interaction
rotation Y and horizontal translation U0 of the base mass mb are allowed in con-
trast to rigid foundation. The interfloor damping coefficient cn, taken as a

percentage of the critical damping in the first mode of Vibration of the structure

supported on a rigid foundation, is assumed to be proportional to the
flexural stiffness lc_ of story n to eliminate the dynamic coupling between the
various modes

The soil-structure interaction system is represented by placing the building

in Fig. 8 on the foundation model in Fig. 1, where the base mass of the
building replaces the rigid Body. No slippage is allowed in this instance.
Thus the five mass points at the surface of contact undergo the same displacement

as the base mass, i.e.,
V (i,0) Y Xi

U (0,0) U (2,0) U (4,0) U0

(7)

In view of (7) the degree of freedom of the foundation model is 102 and that of
the interaction system for N stories is (N + 102). The (N + 2) equations of
motion for the building shown in Fig. 8 are

*( a +Iön) + *Zan hn +1% \ + jTT [)l
n=0 n=l n=l

U0 - u(6,0) - u(6,2)

n=l
2

- u(4,2) - 2u(2,2) - 2u(0,2) - jr; BY - v(6,0) + v(6,2) + v(4,2) + 2v(2,2)
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N

+ 72-TL72V° -"(6,2)+^Y + v(6,0) -v(4,2)j -üg ^ «n
n=0

N N N N (8)
üo Y a h + y !~7 a bs + ~ Y a + Y a h 2~] + Y a h üi-^nn i_4 3 L> a Pun^Linntin=l n=>0 n=l n=l

+ yf^r L /2 BY " v(6'0) " v(6'2) " h v(4,2) " v(2,2) " Ji ü° + u(6,0) "

- u(6,2) - % u(4,2) - u(2,2)] + j^^ [^ BY + v(6,0) - v(4,2) - j v(2,2)+
N

+ 70 Uo " "(6,2) - - u(4,2) - % u(2,2) + \ u(0,2)l - Ü Y a h
• z ^ _¦ g .d n n

n=l
c • f c *4" c } c k

a Ü0+a h Y + a Ü - -2±i u ^ + -2 2+1. u - -^ u - -^Ü u +n n n n n m^ n+l m n m n-l in n+l

(k + k k
+ — 2ZL- U - — U ,=-U a (n=l,2,...N)

n^ n m^ n-1 g n

in which n

i=l

ClUo klUo ° ¦ CN+l Vl 0 <9)

and hjj is the height of the n-th story, m_ the mass of the n-th floor, U the
horizontal translation of the n-th story caused by the free field earthquake
displacement Ug, and u and v are the interaction displacements of the mass points
of the foundation model.

5. Steady State Response

To examine the influence of the foundation parameters on the dynamic
response of the interaction Systems, five, ten and fifteen-story buildings are
analyzed for both harmonic and transient excitations. These are Single bay
shear structures with the flexural stiffnesses taken in accordance with Housner
and Brady [ll] but reduced for unit length normal to the direction of Vibration.
The buildings have a bay width of twenty feet, equal story heights of twelve
feet, floor unit weight of 100 psf and the values of Ob are 1.5, 2 and 2.5 for
the five, ten and fifteen-story buildings respectively. The interfloor damping
coefficient cn is taken as one percent of critical damping. In addition, the
foundation medium has a unit weight of 110 pcf while Poisson's ratio and the
shear wave velocity are the parameters of this study.

The differential equations of motion are solved for the harmonic excitation
U Qe1 where Q is the amplitude. The ratio 9, plotted versus the shear
wave velocity Vs in Fig. 9, is the maximum response U* of the interaction System

divided by the corresponding maximum flexural response U of the same building
resting on a rigid foundation, i.e., Vs °°. The latter case is obtained

by solving the N equations given by (8c) with U0 Y 0.
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Also shown in Fig. 9 are the corresponding analytical results using the
stiffnesses presented by Karasudhi, Keer and Lee [io]. In their study of the
harmonic rocking and horizontal vibrations of an infinitely long rectangular
rigid body on an elastic half space, both uncoupled and coupled motions are
considered. It was found, that while the uncoupled stiffnesses are in fairly
good agreement with the diagonal elements of the stiffness matrix for the
coupled Vibration, the effect of the off-diagonal elements is significant. In
Fig. 9 the analytical Solution using the coupled stiffnesses shows consistent
agreement with the results obtained from the model, while the uncoupled
stiffnesses yield results which diverge from the other two solutions. Figure 10
shows the Variation of the fundamental frequency f with the shear wave velocity
given by the model as well as the analytical Solution.

As the foundation medium becomes more flexibile, i.e., as Vs decreases,
the values of 8 and f decrease monotonically as shown in Figs. 9,10. For the
three cases studied it is noted that foundation media with a shear wave velocity

of 1000 ft/sec closely approximate the rigid foundation, and that the
interaction effect is significant only for lower values.

It is evident from Figs. 9,10 that the proposed model is phenomenologically
satisfactory for use in the study of the dynamic response of soil-structure
interaction Systems.
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Transient Response

The accelerogram for the N-S component of El Centro, California, earthquake
of May 18, 1940 is used for the .following investigation. The system of differential

equations of motion is solved using the step-by-step numerical integration
procedure suggested by Wilson and Clough [12],

Figures 11 to 16 show the effect of the foundation properties on the maximum

flexural response U* and story shears S when the three interaction Systems are
subjected to the above mentioned earthquake excitation in the ranges 300 £ Vg £

1000 ft/sec and 0 s v <. 0.5. The corresponding results obtained for rigid
foundations are also shown for comparison.

Figure 11 shows the response of the five-story building for v 0. Whetj

Vs 1000 ft/sec the base shear is about 6% higher than the rigid case and then
decreases with decreasing shear wave velocity. Unlike the ten and fifteen-
story buildings, shown in Figs. 14,16, the five-story shears increase steadily
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with increasing values of Poisson's ratio as shown in Fig. 12. The high story
shears are characteristic of the response of this building to the particular
earthquake excitation. This type of interrelationship has been observed and

discussed by many investigators [2,13]. It should be noted that the first four
natural periods of the five-story building on rigid foundation coincide with as

many peaks in the velocity spectrum curve for the earthquake. This fact is the
major contribution to the large flexural displacements and high story shears.

The response of the ten-story building in Fig. 13 shows a general reduction
in story shears with decreasing shear wave velocity and even further reduction
in the lower floors (Fig. 14) as Poisson's ratio is increased from zero to 0.5.
However, this pattern of behavior is not observed in the case of the fifteen-
story building (Fig. 15) which shows a decrease in story shears in the lower
floors for Vs 600 ft/sec, compared with the rigid case, an increase in the
middle floors and again a decrease in the upper floors. On the other hand, as
the shear wave velocity decreases to 400 ft/sec, an increase in story shears is
observed in the lower floors and a decrease in the upper floors. The effect of
increasing Poisson's ratio for V 600 ft/sec results in continued decrease in
the story shears (Fig. 16) while for Vg 400 ft/sec the decrease is only in the
lower floors followed by an increase in the upper stories.

7. Conclusions

A mathematically consistent lumped-parameter model of finite size to represent

the elastic half plane for the study of initial and boundary-value problems
is presented. The proposed model is used to investigate the effects of the
flexibility of the foundation medium on the seismic response of long multi-story
buildings. Damping elements are introduced along the boundaries of the model to
dissipate the energy and reduce wave reflection. The model can be extended to
the treatment of anisotropic and/or inelastic foundation media by incorporating
the appropriate constitutive equations in the stress points.

It has been shown that the influence of the flexibility of the foundation
on the seismic response of multi-story buildings is significant. The physical
properties that affect the foundation stiffness and damping characteristics are
the shear wave velocity and Poisson's ratio.

For steady state excitations, the flexibility of the foundation results in
continued reduction in the flexural displacements, story shears and frequencies
compared to the values obtained by rigid foundation. Extending these conclusions
to the transient response is unjustifiable since the results for the latter show

no general pattern of behavior with the Variation of the foundation properties
for the cases studied. The results clearly demonstrate that the effect of the

flexibility of the foundation on the transient response of multi-story buildings
depends not only on the characteristics and nature of the earthquake excitation,
but also on the physical properties of the building as well as the foundation
medium. This conclusion is in agreement with previous studies [8]. The shear
wave velocity has the effect of changing the natural periods of the interaction
system and thereby altering the energy input to the building indicated by the
ordinates of the spectral velocity curve of the earthquake excitation.
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SUMMARY Summary

A mathematically consistent lumped-parameter model of finite size to simulate

the elastic half space for investigating the effects of the flexibility of
the foundation on the seismic response of long multi-story buildings is presented.
Appropriate damping elements are introduced at the boundaries to dissipate energy
and reduce wave deflection. The proposed model yields phenomenologically
satisfactory results as evidenced by a comparison with the results obtained by analytical

solutions for the steady state response of several soil-structure
interaction Systems.

A parametric study of the transient response of soil-structure Systems
shows that the foundation flexibility modifies the response of the structure
in comparison with rigid foundation and that the effects depend on the physical
properties of the structure and the foundation medium, as well as the
characteristics of the earthquake excitation.
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RESUME

Cette contribution presente un modele de grandeur finie,
mathematiquement valable, avec parametres adequats, Simulant le
demi-espace elastique. Ce modele permet l'etude de la flexibili-
te des fondations sous des secousses sismiques sur des constructions

longues a beaucoup d'etages. Des amortisseurs appropries
ont ete utilises sur les bords pour dissiper l'energie et pour
reduire la deflection des ondes. Le modele propose donne des
resultats phenomenologiquement satisfaisants, comme le demontre la
comparaison avec les calculs analytiques sur plusieurs systemes.

Une etude parametrique montre que la reaction de la construction
depend de la flexibilite des fondations, et que les effets

dependent des proprietes physiques de la structure et des
fondations aussi bien que des caracteristiques de 1'excitation
sismique

ZUSAMMENFASSUNG

Ein mathematisch verträgliches Modell endlicher Grösse mit
"Umfassungs"-Parameter zur Nachahmung des elastischen Halbraums
für Untersuchungen der Fundamentsteifigkeit unter Erdbeben wird
für lange mehrstöckige Bauten angegeben. Es sind an den Rändern
Dämpfungselemente eingeführt worden, um die Energie zu verbrauchen

sowie die Wellenausschläge zu vermindern. Das vorgeschlagene
Modell ergibt phänomenologisch befriedigende Ergebnisse im
Vergleich mit denjenigen der analytischen Lösung.

Eine Parameter-Studie der Uebergangsbestimmung der
Bodenstrukturen zeitigt, dass die Fundamentsteifigkeit die Bestimmung

der Struktur im Vergleich mit steifen Fundamenten verändert,
und dass die Wirkung von den physikalischen Verhältnissen

der Struktur, des Fundamentes und sowohl als auch von der
Erdbebencharakteristik abhängt.
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Problem of Prediction of Wind Forces on Engineering Structures and Application to Practice

Problemes de l'estimation des charges de vent sur une construction et application ä la pratique

Probleme der Voraussagung von Windkräften auf Bauwerke und die Anwendung in der Praxis
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Faculty of Engineering
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INTRODUCTION

Principles of maximum entropy is used to develop minimally
biased probability distribution functions for maximum value of the
horizontal components of wind velocities. An attempt is made to
throw 30me fresh ideas on the formulation of a sound Statistical
model for ths evaluation of wind velocities and wind pressures on
engineering structures.

Since wind velocities vary with time and space, it is shown
that wind force on a structure is not static in nature, and as
such cannot be obtained from instantaneous wind velocity by a

simple formula of a static wind force. An attempt is made to
obtain a design wind force, only by changing numerical values
of gust factors referring to size, and structural characteristics.

In order to obtain the gust factors for determining the wind
loading on various structures, the space correlation of velocity
fluctuations is considered in addition to power spectrum. Moreover,
the essential procedures used in arriving at the gust factors are
outlined. This evaluation is not intertded to be rigorous, however,
it does describe the practical procedures and the essential
assumptions and approximations that can be used to siraolify the
results into usable form.
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2. PRINCIPLE OP HAXIHOM ENTROPY AND ITS APPLICATION IN THE

DEVELOPjMEHT OP STATISTICAL MODELS POR WIND VELOCITIES AND

WIND PRESSURES

The static wind pressure can be taken to be

E(z) X pCPCpO) LZ.\)

where pfr) is the mean pressure at a point Z. above the ground, U
is the mean velocity at the level at the top of the structure in
the place where the structure will serve, p is the density of
the air, and Cdfc) is the pressure co-efficient of point Z Of
course in design, the maximum wind velocity should be used in
place of the mean wind velocity in order to obtain the maximum
wind pressure from equation (2,l).

The maximum wind velocity for a given place should be obtained
by Statistical means from a long record of annual Maximum wind
velocities. For a given averaging tief of the annual maximum wind
velocity record for any place, it is possible to use the principle
of maximum entropy for the estimation of the instantaneaus maximum
wind velocity and henae the evaluation of the maximum wind pressureo
The uncertainty in the value of the maximum wind velocity at any
given height can be evaluated by the specification of its entropy,
which can be expressed mathematically (l) hy

" [ J* J*- (2.2)
where H is the entropy or uncertainty in the value of maximum wind
velocity, K is an arbitrary constant, <j'(U) is the probability
density function of the maximum wind velocity U for the Lux possible
outcome of the maximum value of the wind velocity. Equation (2.2)
gives a measure of the uncertainty or ignorance of the true state
of the maximum value of the wind velocity. Maximizing equation (2.2)
leads to the condition of maximum uncertainty, from which can be
«derived the miiiimally biased probability density function for the
maximum wind velocity. The form of the minimally biased probability
density function, can be shown to be gi»en (£> 3,_-4-; 5 by expression
(2o3) for any given prior estimates of the mean U and the Standard
deriviation OT. of the maximum value of the wind velocity.
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ä(ü)= e.-xp(-ao-a,U-a2Uz) (2.3;

In equation (2.3); QojQ^andCI^ are Lagrangian multipliers. Furtliermore,
it can be shown that, {-4,5

/^_\i= 2Xzt2XaZ-Z2 <*.*> ^fre Z l X-exp(-X A^^j
^0© 4X*-4X2Z+Z* 7 ^(l-erfö^y

Thus, using the results of equations (2.4 to 2.9), and Figures 1 and 2,
the values of the Lagrangian multipliers a.0) «-. and ß.% can be determined
in terms of U and 0£t ; and then the minimally biased probability distribution
function for the maximum wind velocity can be evaluated from equation (2.3).
The results given by this approach are satisfactory enough for the normal
ränge of wind velocities which are of interest in civil engineering
applications. It has been found that actual data (5) are well-fitted by
this type of distribution. The great advantage of this type of analysis
is that all the recorded extreme values are used and that the best availi-
able estimate can be obtained of the speed which is likely to be exceeded
on the average only once in any specified number of years.

Furthermore, it should be realised that wind speeds are affected by
such factors as variations in height, averaging times and topographical
effects. Some of the well-known results, concerning the effects of these
factors, on the maximum velocity distribution which are of interest in
civil engineering applications, can be directly applied, in conjunction
with the results obtained in this paper.

3. DYNAMIC CONSIDERATIONS IN STRUCTURAL DESIGN AGAINST WING

In equation (2.l) for mean wind pressure, it can be assumed that
both tj and C_(z) are affected by the roughness of the surface of the
ground, and In fact several expressions _have been developed to show the
relationships between the variations of U and C_(r), and other essential
parameters such as height above the ground, graaient velocity, and the
ground roughness coefficient.

In design, the gust pressure factor is intended to take aecount of
the superimposed dynamic effects of gusts. The gust factor is used in
conjunction with the mean load, so that the total design. wind load should
satisfy the condition,

b(z) ^ GfU) <*•»)
m«vy

!.Ba. Schlussbericht



1138 VI - PREDICTION OF WIND FORCES

The value of(p(z) mas) is chosen such that it corresponds to the value
of maximum design wind velocity, by the help of equation (2.l).

In equation (3.l), G the gust factor can be expressed
asf r—

G I + 3^(b+r) (3.2;

where g is the peak factor which depends on the fundamental frequency
of Vibration of the structure and time over which the mean velocity is
averaged (see Figure 3); r is the roughness factor which depends on the
location of the structure and the height of the structure above the ground
(see Figure 4); B is the excitation by background turbulence which depends
only on the height of structure above ground (see Figure 5); and R is the
excitation by turbulence resonant with structure. The quantity R can be
expressed as « C"

where F is the gust energy ratio (see Figure 6); S is the size reduction
factors which depends on the breadth b and the height h of the structure,
and other important parameters (see Figure 7); and B is the critical
damping ratio of the structure, this critical damping ratio, & comprises
contributions to damping from both mechanical and aerodynamic factors.

Other essential factors which sould be taken into aecount in design
are the problems arising from unsymmetrical loading, vortex excitation,
and aeroelastic instability. Moreover, wind tunnel testing and meteorological

tests at the site should be conducted, in order to take necessary
cognizance of aeroelastic model testing in the wind tunnel and of making
meteorological measurements at the site in all instances in which dynamic
factors are likely to be significant.

4. THE VARIATION OF GUST FACTOR

The wind velocity Lii'Zjt) in a place at a given height_z and time
t, can be divided into two parts, namely the mean velocity U(ZJ and
the fluctuating velocity txQptyt) as follows:

u(z>*; * ügo + AtO,t) (4.0

The mean square of the fluctuating velocity can be expressed in terms
of its power spectral density, F(n), which is a function of the frequency n,

2 ¦

Equation (4.l) shows that since the wind velocity is a varying quantity,
the value of the actual wind pressure on the structure will also vary,
and as such the value of the gust factor G can also be shown to vary.
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Some of the important factors which can contribute to this Variation
include the effects of analysis time, averaging time, length of the
structure, mechanical characteristics of the structure and the Variation
of the turbulent energy of the wind with frequency which can be described
conveniently by the power spectral density F(n).

T"he rate of decrease of the gust factor G with the length
of the structure, can be obtained by referring to differences of phase
in velocity fluctuations between two points which are apart by more than
the scale of mean eddies in the wind. In other words, it suffices to show

statistically that the air flow with maximum instantaneous velocity will
not act on the whole length of the structure. For the purpose of
mathematical formulation, space correlation between two points must be used
in addition to spectral density, F(n).

For a long structure, wind load will be greatest in the wind
direction perpendicular to the axis of the structure. The space
correlation TTW is obtained simply from the velocity fluctuations

W^ojfc and <jU(30-V oc j Jt at two points separated horizontally by a
distance X in the perpendicular direction to the wind, as follows:

Tf"6) ^uO«,*; /UCa0 + ^±) (4.3)

As shown in (4.3)» the space correlation is only a function of distance
between two points, and can be shown to be:

(4.4)
where L is the lateral scale of turbulence. When the turbulence is
isotropic, space correlation along mean wind becomes,

TT2(*) üa(?c«;exp(-2L)
(4.5)

The space correlation can now be expressed as a function of the frequency
n»

(4.6)
where JSfoiülis the absolute value of the cross spectral density. In
homogeneous wind field, the spectral densitjtes at two horizontal points
Xc and (lo+x) are the same; and the correlation coefficient of
fluctuating velocity of frequency n between two points separated by a
distance "XL can be defined as follows,

RCx>-n) |SC*^j|/Fc>; &-V
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Finally, for this case, equation (4.3) and (4.6) can be expressed as:

fco
TT(?0 2- FM $(-*>-")<*•» C4'&)

•Jr-,

It is now possible to use the above results to develop necessary maximum

velocity which is likely to be exceeded on the average only once in any
specified number of years: and also to compute the necessary gust factor
G for any long structure, (see Figure 8) for typical results. Also the
use of the size reduction factor S in equation (3.3), (see Figure 7),
has also taken the effect of the sixe of the structure into aecount, in
the practical evaluation of the gust factor G for various structures.

5. CONCLUSION

The problem of estimating maximum design wind forces and pressures
on structure can be divided into the assessments of.(a) the maximum

design wind velocity?(b) the shape and pressure
coefficients which are incorporated in the parameter (ll)^Cp (z), and
(c) the final evaluation of gust factors and wind pressures»

A considerable degree of uncertainty exists in the estimates of both
the design wind speeds, the coefficients and other essential parameters
of this problem. A method of obtaining the design wind speed is described,
which is based on the application of maximum entropy techniquej and an
attempt is made to obtain the design wind force of various structures from
the formula of static wind force, only by changing numerical values of gust
factors, refereing to size and structural characteristics. Codes of
practice are often used for relevant information on factors which are
essential in this problem. However, for many 3tructures the design demands
more detailed and specific wind-loading data than are given in codes. The
conditions under which wind-tunnel tests to obtain more specific data are
carried out required careful consideration. Properties of the local
natural wind, such as shear and turbulence, the Reynolds number of the flow,
and the influence of local topographical factors, groupj-ng of buildings,
etc., may have to be reproduced in the wind tunnel to ensure füll
confidence in the accuracy of the data.

Wind effects are important considerations for the design of safe
and economic structures, but their estimation remains subject to
considerable uncertainties. These uncertainties will become better understood
as improvements in the experimental facilities and wind tunnel techniques
develop, and also as more meteorological data effect improvements in the
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experimental facilities and wind tunnel techniques develop, and also
as more meteorological data effect improvents in the Statistical
evaluation and reliability of the long ränge prediction of maximum wind
speeds and pressures; and in cur knowledge of the turbulence and shear
characteristics of the wind.
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SUMMARY

Minimally biased probability distribution functions for
maximum value of the horizontal components of wind velocities
and pressures, acting on engineering structures, are developed
using maximum entropy concepts. In order to evolve a meaningful
design wind force, it is found important to consider the dynamics
of the problem, by considering among other factors, relevant
changes in the numerical values of the gust factors referring to
size, structural characteristics, and the space correlations of
velocity fluctuations in addition to power spectrum.

RESUME

A l'aide de conceptions d'entropie maximale on a developpe
des fonctions de repartition de la probabilite les moins vagues
possibles pour les valeurs maximales des composantes horizontales

de la vitesse et de la pression du vent. Pour trouver une
force utile au dimensionnement, il est important de considerer
le cöte dynamique du probleme, en tenant compte entre autres
des changements importants du facteur de rafales, dependant des
dimensions et des caracteristiques de la structure, ainsi que
des relations dans l'espace des fluctuations de vitesse en
addition aux variations de puissance.

ZUSAMMENFASSUNG

Mit Hilfe Maximal-Entropie-Prinzipien werden Verteilungsfunktionen

kleinster Schiefe für den grössten Wert der
waagrechten Windgeschwindigkeits- und Winddruckkomponente auf Bauten
hergeleitet. Um eine sinnvolle Kraft für die Bemessung zu
bestimmen, muss die dynamische Wirkung unbedingt berücksichtigt
werden, indem unter anderem die erheblichen Aenderungen des Böen-
faktors in Funktion der Abmessungen und der baulichen Charakteristiken

der Konstruktion sowie die räumlichen Zusammenhänge der
Geschwindigkeits- und Kraftvariationen in Betracht gezogen werden.
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Response of Structures Subjected to Sonic Booms

Influence des detonations supersoniques sur les constructions

Wirkung des Überschallknalls auf Bauwerke

GEORGE HERRMANN DUSAN KRAJCINOVIC
Professor of Civil Engineering Solid Mechanics Research

Northwestern University Ingersoll-Rand Research Center
Evanston, Illinois Princeton, New Jersey

1. Introduction

The advent of supersonic commercial air-transport Operations brings with it
a host of new and different problems, such as the transient pressure generated
by the sonic boom that is associated with the shock waves stemming from the
aircraft. The response problem will involve not only people, but also structures on
the ground, and thus transient response of buildings and other structures to the
supersonic shock has to be studied.

As measurements of the history of the far-field atmospheric pressure (signa-
ture) induced by a sonic boom indicate, the loading on a structure consists of a

sudden overpressure followed immediately by a sharp underpressure. The total
duration of this applied disturbance has been measured to be of the order of a

fraction of a second. Because of the shape of this signature and the relatively
short duration time, the authors are proposing to represent the applied load as a

dipole in time. A dipole has been defined and used extensively as a generalized
derivative of a Dirac delta function only if the independent variable is a
spatial coordinate. Even though some work has already been carried out on the
effects of the sonic boom on structures, the proposed representation of the loading
as a dipole in time (called here bipulse) has the advantage that the structural
response may be treated conveniently as a homogeneous initial value problem.

In Section 2 the proposed representation of the sonic boom loading is
discussed, while the response of some simple structures is analyzed in Section 3.

A more extensive treatment of the response of structures to sonic booms,
including problems of continuous structures, will be presented by the authors in
a later study.

2. The Sonic Boom Loading

A large number of measurements of the pressure on the ground generated by
sonic booms has been recorded and published in the last few years LlJ« The
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measured diagram showing the Variation of the pressure with respect to time (the

Api

Fig. 1. Pressure signature due to the sonic boom

Ap 0 corresponds to atmospheric pressure.

signature), Fig. 1, may be closely approximated by two triangles of identical
area, Fig. 2.

Ap

'I
Ap

-5-T

Fig. 2. Idealized pressure signature due to the
sonic boom.

The two most significant parameters for the structural engineer are the peak

overpressure Ap and the time duration T.

According to the measurements reported in Ref. [l], the duration T is 0.04
see for the sonic boom generated by the present-day fighters, 0.1 see for the
largest present-day operational aircrafts, and is expected to be 0.4 see for the
supersonic transport (SST). It has been established also that Ap is not considerably

different for the three cases mentioned.

In analyzing a structure subjected to sonic boom loading, it is necessary
to represent the pressure signature in a mathematically convenient manner. For
loads which have a large intensity and short duration (impulsive loads) it is a

Standard procedure to make use of the Dirac delta function defined by

Kt-r) {° t t T

t T

J
f6(t-T)dt 1
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It can be shown readily that such impulsive loading may be regarded as the
difference between two step loads of the same intensity P(x) applied immediately
one after another, i.e.,

lim P(x)At H(t-T) - H(t-T+At) I(x)6(t.T)> (1)
At - 0

where H(t-T) is the Heaviside step function defined by

"<-> - {, \ >:
and

I(x) lim [P(x)At]. (2)
At - 0

P(x) - <»

It oecurred to the authors that the sonic boom signature may be conveniently
represented by two impulsive loads, opposite in sign, and acting in rapid succession

one after another. This implies mathematically that the signature may be

idealized by a time derivative of a Dirac delta function, i.e.,

lim I(x)At 6<Ü-T> -^-T-Mt) ¦ B(x)6(t-T), (3)

where 6(t--r) is a dipole of positive unit moment applied at t t on the time
axis and is defined by

- 6(t-x) lim 6(t-T+At)t- »<t-T? d6^rl

The function B(x), having the dimension of the force multiplied by the square of
the time unit, is defined as

B(x) lim [l(x)At]. (4)
At - 0

I(x) - »

Spatial derivatives of the Dirac delta function have been used extensively
in various branches of physics and engineering (e.g., acoustics) under the name

dipole of doublet. To distinguish these from the time derivative defined by Eq.

(3), we propose to use the term "bipulse" for the latter.

Based on these definitions, let us now calculate the bipulse idealizing a

sonic boom signature. The impulse I(x), see Fig. 2, is

Ap(x)TI(x) —g—

while the bipulse is the "moment" of the two impulses, i.e.,

B(x) | TI(x) 1 Ap(x)T2.
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3. Response of a Lumped-Parameter Structure

In this Section we wish to calculate the response of a simple System
subjected to a sonic boom loading and compare the results with the responses to
other types of dynamic loads, such as step load and an impulse. The structure
shall be considered to possess only a single mass m and a single stiffness k.
The differential equation of such a system with one degree of freedom is, in
terms of a displacement w,

dt

where

d2w 2 F(t) ,,«,—- + uu w -*—L (5)
Z m

2 k
iss —

m

is the natural frequency of free vibrations, t is the time, and F(t) is the
applied load. The static displacement w due to the static force F(t) F0 is

F°
_

F° ."Alwst=T=— • (6)
mm

The general Solution to Eq. (5), as combined from the transient and steady-
state part, reads

t
w(t) w(0)cosu)t + w(0) -^f^ + 1 J && sinu)(t-T)dt, (7)

0

where w(0) and w(0) are the initial displacement and the initial velocity,
respectively. We will confine our attention to the Solution of an initial value
problem with

w(0) w(0) 0.

It is well known that the response to a Step load results in a maximum

displacement

w 2w
max st

such that the so-called displacement amplification factor A= |wdvn max|/|wstJ
is in this case

AH=2. (8)

Next we calculate the response to a Single impulse applied at time t 0.
The forcing term in Eq. (5) now reads

^ ^6(t) (9)
m

resulting in a displacement
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Io lo*0
wT — sinout —— w ,_ sincut. (10)I müD r0 st

The amplification factor is now a function of the structural parameters and reads

Finally, for the bipulse loading, the forcing term in Eq. (5) is

(12)

coscut (13)

IUI
m

-
m

such that the displ acement is

w
B

•=
Bo
— costut
m

„ 2
B0i»
~sZ— W

and the displacement amplification factor is

B m

which again depends on the properties of the structure.

It is useful, now, to define the ratio p, between the maximum displacement
due to the bipulse and due to the impulse, i.e.,

(18)
1 B max1

v- -¦. ,¦-¦
1 I max1

Since Bo f T I0

\s, can also be written as

2 Tp. ¦ -r T iss. (19)

The limiting value IU* of the natural frequency of the free vibrations of the
System, above which the bipulse induces larger displacements than the impulse is,
according to Eq. (19), obtained for \s, 1 Using the values of T for the three
different aircrafts mentioned in Section 2, we obtain

r 3 „., c -1

2(0.04) "37-5 °CC

<
3 _ 1C -1

2(0.1)
15 °CC

3 -,c -1

2(0.4)
3-75 °CC

(fighters)

(present-day aircrafts) (20)

(SST)

It is obvious from the numerical values given above that the representation
of the sonic boom by a simple impulse, as this is sometimes assumed, may lead to

Crolili irohori/.ht
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results which greatly underestimate the structural response.

As an Illustration let us consider a cantilevered beam of length l and mass

per unit of length m. If only the lowest mode is assumed to contribute to the
response, the corresponding natural frequency of free vibrations is known to be

2 20 EI
°> ¦ 3 Ä »

9mi

where EI is the flexural rigidity. If u>* is taken as 15 see" (largest present-
day aircrafts), then for

EI -2
—t > 33.7 see
mi

the response to a bipulse is larger than that to an impulse.

Note that for u. 1 the duration of the bipulse is almost 1/4 of the natural
Vibration period. This means that the proposed idealization leads to an over-
estimation of displacements. Consequently u. 1 may be regarded only as a lower
bound under which sonic boom results in smaller displacements than predicted by
an impulsive load.

4. Conclusions

Having proposed that the effect of the sonic boom on a simple structure may
be represented as a dipole in time ("bipulse"), the authors show that this idealization

leads to convenient mathematical analysis. The commonly used displacement
amplification factor as a measure of the severity of dynamic response is introduced.

It is shown that the amplification factor depends on the free Vibration
frequency of the structure and that, consequently, some structures undergo larger
displacements due to the bipulse load than due to other types of dynamic loads
(such as impact load). The procedure is exemplified by a simple discrete system.

In a later paper the authors intend to treat the problem in greater detail,
proving that it reduces to an initial value problem and extending it to continuous
Systems.

5. Acknowledgment

The authors are very grateful to Professor C. Dyrbye of the Technical University

of Detmiark for a most constructive discussion of this work. They also wish
to acknowledge the support of the Air Force Office of Scientific Research under

grant AF-AFOSR-100-67.

Reference

1. "Proceedings of the Sonic Boom Symposium," J. Acoust. Soc. Am. 3JL No. 5, Part
2, S1-S80 (1966).

SUMMARY

It is suggested in this paper that the loading on structures induced by the
sonic boom generated by supersonic aircraft can be represented by a dipole in
time. The term "bipulse" is introduced for this type of transient loading. It is
shown that simple structures subjected to such bipulse loading may be conveniently
analyzed and the response readily compared with that due to other types of dynamic
effects such as, for example, step loading and impulsive loading.
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RESUME

La redaction suggere de representer la Charge appliquee a
une construction due a une detonation supersonique par un dipole
du temps. On-introduit le terme "bipulse" pour designer ce type
de Charge variable. Cette Charge "bipulse" peut etre facilement
analysee et son effet compare ä celui d'autres types d'effets
dynamiques comme charge progressive ou Charge impulsive, dans le
cas de structures simples.

ZUSAMMENFASSUNG

In diesem Beitrag wird vorgeschlagen, dass die aus Ueber-
schallknall der Ueberschallflugzeuge entstandene Belastung durch
ein Dipol der Zeit dargestellt werden kann. Der Ausdruck "Bipuls"
ist für diese Art veränderlicher Belastung eingeführt worden. Es
wird gezeigt, dass einfache Bauwerke unter solcher Bipulslast
bequem gelöst werden können, und dass die Antwort leicht fällt
verglichen mit jenen, die anderen dynamischen Wirkungen unterworfen
sind, zum Beispiel Stufenlast und impulsiver Last.
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Untersuchungen über den Erregungscharakter winderregter Querschwingungen
kreiszylindrischer Stäbe im unterkritischen Reynolds-Bereich

Investigations in the Subcritical Reynolds Range on the Nature of Wind-Induced
Lateral Vibrations of Circular-Cylindrical Tubes

Recherches dans le domaine sous-critique de Reynolds sur la nature des vibrations
laterales, provoquees par le vent dans un tuyau circulaire-cylindrique

W. HOYER G. HÖLZEL
Prof.Dipl.-Ing. Dr.-Ing.

Technische Universität Dresden
Lehrstuhl für Technische Mechanik und Baudynamik

1. Einleitung
Turbulenter Wind kann elastische Stäbe zu Schwingungen in

Windrichtung erregen (Borges [1]). Bei gleichmäßigem Wind und
besonders bei relativ niedrigen Geschwindigkeiten werden oft
starke Schwingungen beobachtet, die senkrecht zur Windrichtung
erfolgen. Schäden infolge derartiger Querschwingungen sind bisher

von dünnwandigen, schlanken Stahlkonstruktionen mit geringer
Eigendämpfung und kreisförmigem Querschnitt bekannt, z.B. von
StahlSchornsteinen, stählernen Fernsehtürmen und Stahlrohrkonstruktionen.

Für beliebige Querschnittsformen kommt eine Grenz
Schichtablösung mit Wirbelbildung und für aerodynamisch instabile
Querschnitte zusätzlich eine Selbsterregung als QuerSchwingungsursache

in Frage. Der Kreisquerschnitt ist ads aerodynamisch
indifferent aufzufassen, so daß er nur durch Wirbelablösung erregt
werden kann.

5
Im unterkritischen Reynolds-Bereich Re <Re]cr 3,5*10

beobachtet man für Re > 10^ im Nachlauf hinter einem umströmten
Zylinder eine regelmäßige, alternierende Wirbelschleppe (Kärmän-
sche Wirbelstraße) mit einer konstanten dimensionslosen
Wirbelfrequenz S « 0,17...0,20 (Bild 1).

Reynoldsche Ähnlichkeitszahl

A(t) VNÄ0,8-V h*1,3D Re Vs» (1)
v ,4p® Ä i" «5

JL^.fL© _
l

v 1,45.10-:> vT/s für^O^L .q.^ (@>- -f Luft bei 15° C und

-d4- 4 •la*40-
760 mmHg

Bild 1: Kärmänsche Wirbelstraße S S(Re) t^ (2)
Strouhal-Zahl

Wirbelablö sefrequenz
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Auf Grund dieser periodischen Wirbelanordnung wird bisher
allgemein für die Quertriebserregung eine harmonische Kraft mit
diskreter Frequenz angenommen (z.B. Novak [6]).

Auftrieb (Quertrieb) A(t) c.(t).q.D (3)

q ^ y,V2 - Staudruck

S VQuertriebsbeiwert CA^^ c. ,sin(2X.-Äp- t) (4)

Der von Drescher [2] am starren Zylinder im Wasserkanal
gemessene Verlauf der Quertriebskräfte weist zwar eine etwa
konstante Periode auf, die .Amplituden zeigen aber größere Schwankungen.

Weaver [8] spricht von einer "sinusförmigen" Kraftfunktion
mit zufälliger Amplitude und erfaßt die Amplitudensehwankungen
durch Angabe der Wurzel aus dem statistischen Amplitudenquadrat-
mittel cE V©? ; die in Gleichung (4-) formulierte Erregerart
behält er aber bei.

Im überkritischen Strömungsbereich Re > Re^-r beobachtet man
einen regellosen Nachlauf ohne dominierende Wirbelfrequenz. Fung
[3] faßt die Erregung als stationären stochastischen Prozeß auf
und gibt Spektraldichten an. Damit können die winderregten
Querschwingungen im überkritischen Bereich erklärt werden, die keinen

Resonanzcharakter aufweisen und in der Eigenfrequenz der
Konstruktion erfolgen.

Für Bauwerke mit großem Durclamesser (z.B. Schornsteine) ist
im allgemeinen der überkritische Re-Bereich maßgebend, für
Bauteile mit kleinem Durchmesser (z.B. Stahlrohrstäbe von
Fachwerkkonstruktionen) der unterkritische Re-Bereich.

2. Widersprüche im unterkritischen Re-Bereich
Für die zu beobachtenden Amplitudenschwankungen fehlt eine

exakte Erklärung. Die analytische Darstellung einer harmonischen
Kraftfunktion mit regelloser Amplitude ist mathematisch nicht
einwandfrei. Die im Windkanal gemessenen Schwingungsbeanspruchungen

zeigen ein resonanzartiges Maximum (Bild 2), wenn die
Wirbelfrequenz f mit einer Eigenfrequenz n^ des Stabes übereinstimmt.
Außerhalb dieser kritischen Geschwindigkeit treten aber wesentlich

größere Amplituden auf, als sie sich theoretisch mit obiger
Annahme (4) ergeben müßten. Die Schwingungsfrequenz müßte linear
mit der Windgeschwindigkeit ansteigen, beobachtet wird aber
vorwiegend besonders bei kleiner Eigendämpfung die Stabeigenfrequenz.

Bei kleinen Anblasgeschwindigkeiten T« 0,5.V^ kann man
besonders bei größerer Dämpfung ein Gemisch aus der Eigenfrequenz

und der zu V gehörigen Kärmänschen Wirbelfrequenz f
feststellen, ebenso im Bereich nahe der kritischen Geschwindigkeit,
wo sich dieses Gemisch als Schwebung äußert.

Die bisher übliche Deutung, daß die Wirbelablösung auch
außerhalb der Resonanz stelle vom schwingenden Stab gesteuert werde

und deshalb stets die Eigenfrequenz beobachtet werde, kann für
sehr kleine Auslenkungen bzw. für Verhältnisse der
Schwinggeschwindigkeit zur Windgeschwindigkeit von weniger als 0,1 % (z.B.
für V ~1,5«V^ nicht als zutreffend angesehen werden und ist
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200
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$ vkr- s

Beobachtung im Wind-
kanol

Iheor. Resonanzkurve
(nach Gl.4)

n» n-j

A

Drescher
(Mittelwert)

Noväk
0,8

weaver
Mcöregor0.6-

FunqOA-

ScrutonBishop
0,2 ¦

Penzien

Gerranl
TO3 2 5 1011 2 5 10s Rekr

-Re

Bild 2: Schwingung sverhaJ.ten Bild 3 s Quertriebsbeiwerte ca.
für -9» «»0,01 (Quellenangaben in [5J)

inzwischen experimentell widerlegt. Bei Versuchen im Windkanal
der Technischen Universität Dresden wurde festgestellt, daß die
Wirbelfrequenz im Nachlauf hinter einem in der Eigenfrequenz
schwingenden Schornsteinmodell linear mit der Anblasgeschwindigkeit

ansteigt. Diese Messung bestätigt die im Abschnitt 3 vorgelegte
Hypothese.

Versuche mit gelenkig gelagerten Stahlrohren zeigten Resonanz

bis zur 4. Eigenfrequenz. Das Auftreten dieser höheren
Eigenformen setzt voraus, daß in Stablängsrichtung veränderliche
Quertriebskomponenten wirken. Nach der bisherigen Annahme der
mit der Wirbelablösung verbundenen KraftWirkungen ist diese
Erscheinung unter Berücksichtigung des Helmholtzsehen Wirbelsatzes
nicht erklärbar.

Die von verschiedenen Autoren angegebenen Quertriebsbeiwerte
ca für Kreiszylinder (im Bild 3 sind einige wichtige Werte

dargestellt) schwanken außerordentlich stark und sind als Grundlage

für eine Bemessung sehr unbefriedigend.
Gerrard [4] hat an einem starren Kreiszylinder eine

Frequenzanalyse des Oberflächendruckes, allerdings nur für einen
einzigen Punkt des Querschnitts, durchgeführt und entgegen der
Erwartung ein Spektrum statt einer diskreten Frequenz messen
können.

Die angeführten Widersprüche und Unklarheiten führen zu dem
Schluß, daß die bisher angenommene harmonische Erregung trotz
der periodischen Wirbelstraße nicht dem tatsächlichen Erregungscharakter

entspricht.
3. Hypothese einer schmalbandigen spektralen Erregung

Direkte Messungen der Quertriebskräfte am schwingenden
Zylinder sind nicht bekannt. Es muß aus den aus der Literatur
bekannten Tatsachen und aus den eigenen im Niedergeschwindigkeits-
Windkanal der Technischen Universität Dresden durchgeführten
Versuchen auf die Erregungsart geschlossen werden.
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Alle bekannten Erscheinungen sind nur erklärbar, wenn für
die Quertriebskraft A(t) bzw. den Quertriebsbeiwert c»i(t) nach
Gl. (3) eine stationäre Zufallsfunktion mit einem schmalbandigen
Spektrum angenommen wird. Mit Hilfe der Enveloppenmethode der
mathematischen Statistik (siehe z.B. 8weschnikow[7]) läßt sich
nachweisen, daß ein derartiger stochastischer Prozeß mit einem
Spektrum <4 S/Sw. A cu /ü^r « 1 (Bild 4b) als Realisierung eine
sinus-ähnliche Kurve mit etwa konstanter Periode und langsam
veränderlicher Amplitude ergibt. Die Frequenz entspricht dabei der
mittleren BandfrequenzcüJjj.. Die Amplituden sind nur als
statistische Wahrscheinlichkeitswerte darstellbar. Der von Drescher
gemessene Quertriebsverlauf stimmt mit einer solchen Realisierung

überein.
Die Strömungsvorgänge am Kreiszylinder und die dabei

auftretenden Kraftwirkungen können etwa folgendermaßen gedeutet werden:

Der Nachlauf in einer gewissen Entfernung hinter dem
umströmten Querschnitt ist zwar entsprechend dem Karmanschen
Stabilität snachweis periodisch, am Körper selbst sind aber Störungen

möglich, die rasch abklineen. Die Kraftwirkungen am umströmten
Körper könnten also zunächst regellos sein, vom Nachlauf

wird rückwirkend ein gewisser Rhythmus aufgezwungen, so daß sich
ein schmal bandige s Spektrum ergibt, dessen Realisierung eine
Periode entsprechend der Nachlauffrequenz aufweist.

Die Quertriebserregung wird als stationärer stochastischer
Prozeß aufgefaßt. Die statistischen Mittelwerte für den
Kreiszylinder lauten

T/2 T/2

cTTH Tim -if cA(tldt =0 c~7ft")=lim f J cA2(t)dt const. (5)
T-°° -t/2 T~°°

-T/2

Für die Erregung wird eine Frequenzanalyse mit Hilfe des
Leistungsspektrenverfahrens (Power-Spectral-Method) durchgeführt,
die zu einer Spektraldichte cf> a in Abhängigkeit von der
dimensionslosen Frequenz S führt. S entspricht formal der Strouhal-
Zahl nach Gl. (2). Um das Einführen zweier Parameter zu vermeiden,

wird c)> a(S) nicht wie bei Fung [3] normalisiert, sondern
die Spektraldichte wird so definiert, daß der Inhalt des
Spektrums gleich dem quadratischen Quertriebsmittelwert ist. Eine
ausführliche Darstellung der folgenden Entwicklungen ist in [5]
zu finden.

oo

c7ft»-J*A<S)dS S-fp& (6)
S 0

Wenn Realisierungen c^(t) bekannt wären, könnte $A (s) &us der
Korrelationsfunktion Ra(TE) ermittelt werden.

Die Schwingungsgleichung eines quererregten Stabes lautet:

A(X/t) (E.J.w") "+2,u.o^.w+.a.w' A(x,t) (7)

EJ.D.f* w' X1^) w dw.(x,t)

|U- Massenbelegung

E.J - BiegeSteifigkeit
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Durch Entwicklung der Schwingungsauslenkung w(x,t) nach Eigenformen
w, (x)

w(x,t) ff qk(t).wk(x) (8)
erhält man ein System verallgemeinerter Schwingungsgleichungen.
Für die k-te Eigenform gilt

§k(t) + ^wk.qk(t) + cok2.gk(t) -|— (9)
K.

cu - k-te Eigenkreisfrequenz
ITC

"9>k Wb'TöJT ~ l°Sar* Dekrement der Dämpfung

Qk(t) J A(x,t).wk(x)dx Mk =J(u(x).w|(x)dx

Die Verteilung der Luftkraft A(x) bzw. ihres Beiwertes c^(x)ist auch in Stablängsrichtung x als statistischer Prozeß
aufzufassen. Da die Korrelationsfunktion

RA(Ax) cA(x).cA(x+Ax) (10)

noch unbekannt ist, wird vorläufig diese Verteilung determiniert
durch Entwicklung nach den Eigenformen erfaßt

°A<X^ =icAk^« /$$£? OD

Das Spektrum der Systemauslenkung in der k-ten Eigenform
erhält man über die Betrachtung der Belastung als regellose
Impulsfolge und über die Korrelationsfunktion der Auslenkung zu

2 2 C

2 1

«Ck (">) -—2x2 rU-—5" ~ Frequenzübertragung

Der quadratische Mittelwert der generalisierten Auslenkung
ergibt sich damit als Inhalt des Spektrums

-5— a2.02 T0Akl"-dS*" ;'*" to)'d" °^5C -L^^s-i (15)

Da S0A (S) abhängig von Re ist, erscheint eine technische
Näherung slösung des Integrals der Gl. (13) zweckmäßiger für die
praktische Anwendung als eine "strenge" Lösung für eine angenommene

Vergleichskurve. Die Frequenzübertragungsfunktion <c£ (ms)

nach Gl. (12) kann als sehr schmalbandiger Filter aufgefaßt werden,

der im wesentlichen nur die der Eigenfrequenz nk entsprechende

Erregungsintensität $Ak « Sk) <?a(S|<) passieren läßt. Da
die Querschwingungen nur bei schwach gedämpften Systemen
interessieren, für die •* £. 0,05 angenommen werden kann, ist der Fehler

der Näherungslösung mit der Annahme #a(S)»= const ("weißes
Rauschen") klein gegenüber anderen Unsicherheiten (z.B. Dämpfung,
Turbulenz, Meßfehler für ermittelte Spektraldichten ua.). Für
&= 0,05 beträgt der Fehler für die Amplitude ca. 15 %, er nimmt
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etwa linear mit der Dämpfung ab.
Mit dem Amplitudenwert wj 2.wz(t) gilt für die k-te Eigenform
an der Stelle x der maximalen Auslenkung

q-D-Vs^. Vfo(Sk) _ nu-Df 2

0,ma«
** \ X-p-nfi -V-** S,= (14)

Zum Vergleich dazu gilt nach der herkömmlichen Auffassung im
Resonanzfall

Res q-D -C

h X^.
'-Ak (15)

Wenn für V * Vkr die Lösung der Gl. (13) vollständiger erfaßt
werden soll, kann nach Bild 4 geschrieben werden

• Wmaxlt) ~ fcxjt.n^l 2--frk ^(1-v^J )*! (16)

a;
"^k

.>

^k

b; 1,0

v^ r VK

J
_aS

9 Skr

w

¦

PLs Ik1,0

JU
Wk

v<vkr

Skr

Mit der hier vorgelegten Hypothese

einer schmalbandigen
statistischen Erregung können
alle bisher bekannten
Widersprüche gelöst werden. Im Bild
4 ist für zwei Fälle angedeutet,

welche Formen das Spektrum

der Systemreaktion annehmen

kann. Daraus sind das
Vorherrschen der Eigenfrequenz,
das Auftreten von Schwebungen
und der Karmanschen Frequenz
besonders bei größeren Dämpfungen

ersichtbar.

Bild 4: Zusammenhang zwischen Frequenzübertragsfunktion (a),
Erregerspektrum (b) und Spektrum der Systemauslenkung
(c) nach Gl. (12)

4. Ergebnisse der durchgeführten Versuche
Im Windkanal wurde das Schwingungsverhalten an gelenkig

gelagerten Stahlrohren von 32...103 mm Durchmesser und 1,5 m bzw.
2,5 m Länge und an einseitig aufgehängten Stahl- bzw. Holzzylindern

von 89 mm bzw. 200 mm Durchmesser gemessen (siehe [5]). Die
Düse hatte einen Durchmesser von 2,0 bzw. 3,0 m. Die Kanalturbulenz

in der offenen Meß strecke betrug ohne Berücksichtigung
einer gewissen Pulsation des gesamten Geschwindigkeitsfeldes
0,1...0,2 %.
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Der gesamte Verlauf der registrierten Querschwingungen
konnte nicht durch einen Beiwert nach Gl. (4) dargestellt werden.

Aus den Meßwerten einer Vielzahl von Versuchen wurden
Spektraldichten nach Gl. (14) ermittelt. Für alle Versuche mit
gleichartig gelagerten Stäben ergaben sich im durchfahrenen
unterkritischen Bereich gleiche Kurven für die Spektraldichten.
Nur die maximalen Ordinaten (für die kritische Frequenz S^r)
erwiesen sich als Re-abhängig. Um die Versuchsergebnisse auf Stäbe
normaler Schlankheit im natürlichen Wind übertragen zu können,
wurden bei den Versuchen keine Endscheiben verwendet. Dadurch
zeigte der Verlauf der Spektraldichten für beide Modelltypen
Unterschiede. Für die gelenkig gelagerten Stahlrohrmodelle ist
die Umströmung im Stabmittelbereich maßgebend für die Schwingung

serregung, während bei den auf der einen Seite federnd und
auf der anderen Seite gelenkig gelagerten Zylindern die Strömung

sverhältni sse am beweglichen freien Ende bestimmend sind,
wobei sich infolge eines Belüftungseffektes qualitative
Unterschiede ergeben.

Bei den gelenkig gelagerten Stäben nahm die kritische
Frequenz (S^-p 0,17...0,20) mit steigender relativer Amplitude
w/D ab. Diese Beobachtung entspricht dem Steinmanschen
Verstärkungseffekt, der als Wirbelstraßenverbreiterung gedeutet wird.
Der Wert nach Steinman

¦* 1+1,54.w/D (siehe z.B. Weaver [8]) (17)
wurde bestätigt. Dagegen lag die kritische Frequenz bei den
Zylindermodellen konstant bei S^r ~ 0,145. Bemerkenswert ist das
Auftreten eines zweiten Maximums bei letzteren Modellen für
S < 0,05. In einigen Fällen mußten die Versuche wegen zu großer
Beanspruchungen (Schwingungen in der Grundfrequenz bei einem
Mehrfachen der ersten kritischen Geschwindigkeit) abgebrochen
werden.

Die Wahrscheinlichkeitsverteilung
der Erregung ist nicht

bekannt. Wird eine Gaußsche
Normalverteilung oder eine der
NormalVerteilung nahekommende
Verteilung angenommen, dann
müßte die Systemreaktion eine
NormalVerteilung aufweisen
(Sweschnikow [ 7]), bzw. wenn
nur die Amplituden betrachtet
werden, müßte sich eine Ray-
leigh-Verteilung (Bild 5)
ergeben. Für kleine relative
Amplituden w/D < 0,5 %, die durch
künstliche Zusatzdämpfung
erzielt wurden, stimmt die gemessene

statistische Verteilung
mit diesem theoretischen Wert
etwa überein. Bei größeren
relativen Amplituden, wie sie für

Vkr bei kleinen Dämpfungswerten stets auftreten, konnte eine
zunehmende Amplitudenstabilisierung (Bild 5) beobachtet werden, so
daß statt des Wahrscheinlichkeitswertes Vw0z der determinierte

P(w0)
100%

50%

V P
Rayleigh-Verteilung

max wo/D=:0,5%
rrn» w0/D*: 1,5%

w0/D*2,5%
w0 /0 * 5 ft/»

VF-7w2(t)
z-W

Bild 5s Gemessene Wahrschein¬
lichkeitsverteilung
der Amplituden
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Wert w0 geschrieben werden kann. Diese Erscheinung kann als
Selbststeuerung oder Rückkopplung gedeutet werden. Eine
mathematische Darstellung dieser Kopplung der Erregerkraft mit der
Systemreaktion kann nicht gegeben werden.

5. Berechnungswerte
Von den gelenkig gelagerten Modellen wird auf Stäbe. die

an beiden Enden gehalten sind (eingesapnnt oder gelenkig),
extrapoliert und von den einseitig federnd aufgehängten Zylindern
auf Stäbe mit einem freien Ende (Kragstäbe).
5.1. Querschwingungen von Stäben, die an beiden Enden gehalten

sind.
Die aus den Versuchswerten ermittelten Kurven $a(S) wurden

auf eine gemeinsame kritische Frequenz S. 0,19 bezogen (Bild
7). Diese Strouhalzahl S* gilt für den"starren*Stab (w 0).
Die kritische Frequenz und die kritische Geschwindigkeit ändern
sich beim schwingenden Stab um den Verstärkungsfaktor v nach
Gl. (17) auf die Werte

1 * * nk*D
%cr v,Skr Vk,kr ",vk,kr v ' Ö"7l? (18)

Für die praktische Bemessung interessiert meist nur die
Beanspruchung im "Resonanzfall" (für die kritische Geschwindigkeit).
Die Spektraldichte wird für die zugehörige Reynoldsche Zahl aus
Bild 7 entnommen. Zunächst ermittelt man die Schwingungsaus-
lenkung w*. Die tatsächliche Auslenkung in der k-ten Eigenform
an der Stelle x der maximalen Amplitude erhält man durch
Multiplikation mit dem Verstärkungsfaktor nach Bild 6.

"0 t < f^r. kw2j*pi D

(19)

VF

1,6

1.1

1,2

.V7D
1,0

5% 10% 15%

Bild 6: Verstärkungsfaktor

Handelt es sich um ein schwingendes
System mit einem winderregten Stab,
kann die Schwingungsamplitude durch
Multiplikation mit dem Faktor M*/Mk
ermittelt werden. M^ ist die
generalisierte Masse des erregten Stabes
nach Gl. (9), M^ die generalisierte
Masse aller schwingenden Stäbe in
der k-ten Eigenform.
5.2. Querschwingungen von Krag Stäben

Für Stäbe mit einem frei
umströmten Ende gilt als kritische
Strouhalzahl Skr "»* 0,145. Die kritische

Geschwindigkeit beträgt in der
ersten Eigenform

V
n^ ,D

1,kr 0,145 (20)
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feSk?r=maxV^
I

Re 2-10\ k=1

^A(Sk

fürS£ 0,19

10-

für Srundschwingung

/lk 1)
8-

6-

*L-Re=2-105, k l
4-

k 2...'»
k 2

Sf. 0.2105 Q01 0,05 0,1 03

Bild 7s Spektraldichten glatter kreiszylindrischer Stäbe mit un¬
verschieblichen Stabenden im unterkrit. Re-Bereich

Entsprechend den Messungen wird v 1 gesetzt. Die Schwingungs-
auslenkung beträgt in der ersten Eigenform (Meßwerte für höhere
Eigenformen liegen nicht vor)

wO,mox * \t{L-i,Z-W Se -ELliI
=>1 - V (21)

*w

6

M

1

'(•10*

für Skr= 0,145

10»

MÄisö

5 ¦KT

Re =2.5-10

Spitze für
2-Re=(2...3) 105

*=
0,2

X. 0
Re 0 0,05 0,1

überkritischer
y^jjy Re-Bereich

Re=Ct.5...7)-io5

Re=(3,5...<fM05
^r_

0,3 St 0 0,05 0,1 0,2

Bild 8: Spektraldichten glatter kreiszylindrischer Kragstäbe

Die hier gemessenen Werte im überkritischen Bereich sind
für S 4. 0,1 etwa 5-fach größer als die Angaben nach Fung [3]|
die allerdings nicht für Kragstäbe gelten. Ein Vergleich mit den
Beobachtungswertenvan den Stahlrohrpendelstützen der Bogenbrücke
bei Zdäkov in der CSSR zeigt, daß wesentlich größere Amplituden
auftreten können als nach Fung für gleiche Geschwindigkeiten zu
erwarten wären,
6. Übertragungsmöglichkeit auf Bauteile im natürlichen Wind

An einzelnen Stahlrohr-Fachwerkstäben einer
Kurzwellenrichtantenne wurden bei ganz bestimmten, eng begrenzten Windge-
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schwindigkeiten relative Doppelamplituden von 10...15 % beobachtet.
An einigen Stabanschlüssen mit breitgedrückten Rohrenden

sind dabei Risse infolge Dauerbruch aufgetreten. Die beobachteten
Auslenkungen stimmen mit den hier angegebenen Berechnungs-

werten unter Zugrundelegung an der Antenne gemessener Dämpfungswerte
überein. Dagegen ergäben sich mit der Annahme nach Gl. (4)

im Resonanzfall für c& 0,8 (z.B. Noväk [6] etwa 2,5-fach
größere Beanspruchungen. Da die Spannungen in einem Rohrstab
für die kritische Geschwindigkeit etwa linear mit dem Verhältnis

D/t (t - Wandstärke) sowohl nach Gl. (14) als auch nach der
herkömmlichen Annahme Gl. (15) anwachsen, ist es unter
Berücksichtigung des angegebenen Beiwertes ca «s 0,8 kaum möglich,
Konstruktionen aus sehr dünnwandigen Rohren auszuführen. Aus Gründen

der Wirtschaftlichkeit ist es deshalb unbedingt erforderlich,
die bisherige Annahme durch eine Darstellung, die die tatsächlichen

Verhältnisse besser zu erfassen versucht, zu ersetzen.
Bei dünnwandigen Stäben kleiner Schlankheit (steife Stab«?),

bei denen die Resonanzgeschwindigkeit im Bereich der maximalen
Windgeschwindigkeit liegt, könnten theoretisch sowohl nach der
bisherigen als auch nach der hier vorgeschlagenen Annahme
Beanspruchungen auftreten, die die Fließgrenze normalen Baustahls
überschreiten. Beobachtet wurden aber unseres Wissens bei großen
Windgeschwindigkeiten keine gefährlichen Querschwingungen, da
diese im unterkritischen Re-Bereich nach Bild 2 nur in einem
sehr engen Geschwindigkeitsbereich auftreten. Mit großen
Windgeschwindigkeiten ist im allgemeinen eine sehr starke Turbulenz
bzw. Böigkeit verbunden, so daß sich große Schwingungsamplituden
in Querrichtung nicht ausbilden können. Um diesen Erfahrungswerten

im natürlichen Wind nahezukommen, wird vorläufig mangels
besserer Kenntnisse vorgeschlagen, von einer bestimmten Geschwindigkeit

ab (z.B. für V > 15 m/s) die errechneten QuerSchwingungsbeanspruchungen

abzumindern.
Eine Voraussage der zu erwartenden Dämpfungswerte für eine

bestimmte Konstruktion ist bisher nicht möglich. Für die hier in
Frage kommenden Bauteile wurden an verschiedenen geschweißten,
dünnwandigen Stahlkonstruktionen stets sehr niedrige Dämpfungswerte

ermittelt. An Stahlrohrstäben einer Fachwerkkonstruktion,
an Stahlrohrpendelstützen einer Bogenbrücke und an frei hängenden

Stahlrohr-Pipe-Lines hat man logarithmische Dekremente der
Dämpfung in der Größe

A =«0,007. ..0,03 (22)
gemessen. Für die Bemessung von Stahlkonstruktionen wird ein
Wert in dieser Größenordnung empfohlen.

7. Offene Probleme
Um für die Ubertragbarkeit auf den natürlichen Wind bessere

Kriterien als oben angegeben zu finden, ist es erforderlich, die
Spektraldichten in Abhängigkeit von der Turbulenz zu bestimmen,
d.h. die Turbulenz im Kanal muß planmäßig variiert werden können.
Im natürlichen Wind sind Turbulenzmessungen in einem solchen
Umfang erforderlich, daß für jeden Ort und jede Höhe Wahrscheinlichkeit

swerte für die zu erwartende Windturbulenz angegeben werden

können.
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Am Stab sind weiterhin Messungen der Korrelation der
Quertriebskräfte in Stablängsrichtung nach Gl. (10) erforderlich,
d.h. in zwei benachbarten Querschnitten sind im variablen
Abstand Ax synchrone Oberflächendruckmessungen erforderlich.

Im natürlichen Wind ist besonders für die Anwendung auf hohe
Bauwerke wie Mäste und Türme die räumliche Korrelation der
Windgeschwindigkeiten zu messen. Die Werte, die im Windkanal für
kleine Stäbe und mit einer konstanten Geschwindigkeit über die
ganze Stablänge gemessen wurden, würden für sehr hohe bzw. lange
Bauteile zu ungünstige Beanspruchungen liefern.

Die Untersuchungen sind auch auf nicht kreisförmige
Querschnitt sformen zu erweitern. Es bedarf noch umfangreicher Arbeiten,

bis das Problem des Schwingungsverhaltens von Stäben im
natürlichen Wind als abgeschlossen betrachtet werden kann.

Literatur
[1] Borges, J.F.:

[2] Drescher, H.:

[3] Fung, Y.C.:

[4] Gerrard, J.H.

[5] Hölzel, G.:

[6] Noväk, M.:

[7] Swe schnikow,

[8] Weaver, W.:

Dynamische Belastungen (Wind und Erdbeben)
Vorbericht zum 8. Kongreß der IVBH, Zürich
1967
Messungen der auf querangeströmte Zylinder
ausgeübten zeitlich veränderlichen Drücke
Zeitschrift für Flugwissenschaft 1956

Fluctuating lift and drag acting on a cylinder
in a flow at supercritical Reynolds

number
Journal of the Aerospace Sciences, vol. 27
(1960)
An experimental investigation of the oscilla-
ting lift and drag of a circular cylinder
shedding turbulent vortices
Journal of Fluid Mechanics, vol. 11 (1961)
Ein Beitrag zum Problem winderregter
Querschwingungen kreiszylindrischer Stäbe im
unterkritischen Reynolds-Bereich
Dissertation Technische Universität Dresden
1968
The wind-induced lateral Vibration of circular

guyed masts
IASS-Symposium on tower-shaped steel and
reinforced concrete structures
Preliminary report - Bratislava 1966

A.A.: Untersuchungsmethoden der Theorie der
Zufallsfunktionen mit praktischen Anwendungen.

Teubner-Verlag, Leipzig 1965
Wind-induced vibrations in antenna members
Proc. ASCE, vol. 87 (1961), No. EM 1



1168 VI - QUERSCHWINGUNGEN KREISZYLINDRISCHER STÄBE

ZUSAMMENFASSUNG

Es wird nachgewiesen, daß die bisher übliche Annahme einer
harmonischen Quertriebskraft im unterkritischen Reynolds-Bereich
im Widerspruch zu dem zu beobachtenden Schwingungsverhalten
steht. Gestützt auf Windkanalversuche werden die resonanzartigen
Querschwingungen aus dem Wirken einer stochastischen Quertriebskraft

mit einem schmalbandigen Spektrum erklärt. Berechnungs-
werte werden angegeben.

SUMMARY

The conventional hypothesis of a harmonic lateral force in
the subcritical Reynolds ränge has now been proved to be contra-
dictory to the observed behaviour of vibrations. Based on tests
in wind tunnels, the resonancelike transverse vibrations are
explained as results of the action of a random lateral force with
a small-band spectrum. Calculation values are given.

RESUME

L'hypothese conventioneile d'une force transversale harmonique

dans le domaine sous-critique de Reynolds s'est trouvee
ötre contradictoire au comportement des vibrations observees.
Suivant les essais dans le tunnel a6rodynamique, les vibrations
transversales, ressemblant aux r6sonances, sont interpretöes
comme l'action d'une force transversale stochastique au spectre
d'une bände etroite. Valeurs pour le calcul sont donnee.
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On the Damping of Vibrations

Amortissement des vibrations

Über die Dämpfung von Schwingungen

LIVIO NORZI
Italy

It is well known that classical elasticity offers to
the structural engineer many valuable results and some po-
werful general methods to calculate the characteristic
frequencies of his buildings.

But we have to remember that, from the dynamic view-

point, a world of perfect elasticity would be very unstable
and brittle (with materials of finite strength) whilst, for
tunately in practice, many resonant frequencies are not at
all dangerous, thanks to damping.

Our knowledge on this subject is not as wide as it
should be to answer, at least with a practically sufficient
approximation, to questions like the following:

what is the maximum alternating stress that a given
structure can endure in a definite interval of time?

is it possible to build with materials of higher static

strength without losing something as to the capability
to withstand dynamic actions?

since the damping coefficients increase with stress,to

Qi-hli "EicKarii-ht
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what extent does abundancy of dimensions really improve
dynamic. safety?

.Vith a view to bring some contribution towards the Solution

of such problems, or of many others that naturally arise
from them, we started in February 1967 a program of systematic
research on the damping of vibrations in the frequency ränge
1 + 100 hz which is of interest not only for civil engineering
(1 10 hz) but also for the design of machines (10 +• 100 hz).

This program is carried out at the Building Science

Institute of Turin Polytechnic School, with the support of the

Italian National Council for Research (C.N.R.).
Without any claim to have reached final conclusions, I

wish to point out some results, both theoretical and

experimental, that appear to be promising or that deserve at least a

deeper analysis.
1) Deduetion of the Equations of Small quasi-Elastic Oscilla¬

tions and Discussion on the Relationship between Relaxation

Time and Frequency for Beams in Bending.

From a thermodynamic view point, the simplest hypothesis
that can be made about the dissipation of energy for unit time
and unit volume is the following:

dW— g .(rate of change of elastomechanical
energy) +

g (local gradient of velocity) (l)
without any "a priori" assumption concerning g g (but, of

course, for irreversibility g >0, g £ 0

It is fundamental to observe: first, the logical simme-

try connecting elastic after-work (caused by the Variation of
elastomechanical energy with respect to time) and internal
friction (caused by the Variation of kinetic energy in space); se-
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cond,that to evaluate the local density of energy and its rate
of change we have to take into aecount the static stresses pre-
existing to vibratory motion.

If we apply hypothesis (1) to bending of a uniform beam,

neglecting shear and rotatory inertia and denoting with
f the elastic deplacement

M0 tne pre-existing bending moment,

the principle of conservation of energy expresses the stationary

property of the form; :

/[EJ (^f)2 + PA (**) 2+ / g^ (^§-)2dt+/g PA(-^ )2dt]dx
o öx dt o öx 9t o 9x9t

By transformation into a double integral we get a normal

problem of the calculus of variations, and if we put:
g^-l / P A 2a EJ/ p A b2

g2 2c

the indefinite equation may be written (in the case of
constant coefficients):

o
55f ,2 94f _

93f 92f
n r,x2a — + b — - 2c —— + —- 0 (3)

Sx 9t 9x 9x 9t 9t
For a simply supported beam, of length L, under its own

weight only, it is easy to deduce from (3) the relaxation
time in the form:

A
p ——2 r (4)

g1Mo V + ^2 72
2

L
or, since M0 sL =1 /v

B
^ (5)

a + S v
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where A,B o,ß are constants,

fig.l

A

o
In fig. 1 a comparison is made between different theories

about the relationship 9=9 (v) •

Neglecting internal friction (g 0) and the influence
2of pre-existing stresses (g1M0 const) we have the curve q

that would mean disaster as to antiseismic strength because
2

by 8v= const damping would be too low for low frequencies.
If ve put g 0, g const we get the line p (in agreement,

e.g. with POZZO's observations on concrete ('))
By assuming g const, g const, we find the hypßr-

bola s that eliminates the paradox of undamped low

frequencies.

However a real curve m^ look like r (see fig. 2 from
BO and LEPORATI's experiments on Burback tracks ('')) and

this fact can be explained by considering

2) The Influence of Microstructure

As it is reasonable to suppose that energy be dissi-
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pated mainly through weak grains, large enough to have a Chance

of undergoing plastic deformation, we are interested in kno

wing the minimum grain size D0 that may be "activated" in this
sense and the fraction F(D) of mass constituted by grains of
size D or more (F(0) 1, F( °° 0)

2
D0 may be given by a formula as o D corfefc or the like,

decreases with stress and increases with frequency, whereas

the contrary occurs for F(D0).

Consequently in (4) g1, g? that increase with F(D0)
« da di?

will decrease with vand in (5), with — <(->»7T)" < °> i-fc wil1

be possible to have a maximum for 8 (v).
So we corne to think that damping depends chiefly on

stress, especially at low frequencies when the Controlling
factor is the number of cycles.

In fig. 2 we see the results of experiments on small
oscillations of uniform beams with the same cross section
vibrating at the same frequency under different end conditions

(•')• The amplitude of oscillation A was between

l/25th and 1/50th of the static deflection.
dAPlotting the relaxation time 6=- -jg- A/(— against

frequency seems to demonstrate that the assumption of seismic

coefficients depending only on frequency (as prescribed

by several regulations) is an over-simplification too
far from reality.

To study the combined effect of stress,frequency and

grain-size we have performed many more experiments using I
beams HE 100 B UNI (5397-64) on

3) The Damping of Large Oscillations
During each experiment the Variation of6with A,0 has
been quite evident.
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I) JT 2L

II) 1—±"
V= V

-fa-4-—1=0.951 -J-a-f»
¦i—' a'=1/5l' 0.19l

III) l-
«J"= v

4- a"—|-—1"=0.841—+- a"-i-
?r—-1 a"= 1/51"= 0.341

Condizioni di appoggio

I)
II)
III)

Rotaia tipo Burback
(Din536ks75)
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The results appear in fig. 3 where two dimensionless
parameters have been introduced: 6 v (a number of
cycles) and
o.
—'- dynamic amplitude of stress oscillation
a

0 pre-existing static stress

o © + o sin 2 nv t
Here again three different geometrical conditions

corresponding to nearly equal frequencies have been

considered. The maximum bending moments are roughly as 1:2:3.
A micrography of every specimen has been kindly

prepared and analyzed by prof. BURDESE.

We observe that
a) a hyperbolic law fits well enough with the experimental
curves 9 v /g«

A + B (°/°0)
So far we are in agreement with (1): the rate of

dissipation of energy is proportional to o o /9 and must

be equalized to the terms of the second member that necessa

rily comprehend a velocity factor o v multiplied by a

function of o a which, to a first approximation, can

be expressed as Aa + Bo

b) the constants of hyperbolae depend on material and end

conditions:
for a given material, the structures under heavier stress
damp out vibrations more rapidly; for a given geometry of
structure damping is quicker in materials with coarse and

larger grains.
Normalized damping tests may be useful in quality

control.
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Finally I wish to draw attention to the influence of
dissimetry in the excitation of vibrations and emphasize the
reasons that cause large variations of the damping coefficients

in the general problem.
Let us consider
4) The Characteristic Equation

b2 S4 + 2 a S2 - c §2 z + z2 =0 (7)

connecting the exponents of the elementary Solution
exp x + z t of eq. (3)

If we put:
§ u+iv=re =1_ e

R

z - x + iw

and consider (7) as an equation of the 2nd degree in z ,we

get, with the assumption, surely acceptable for steel, of
dissipation so modest as to influence frequency but little:

z= V c - a % +ib)
Writing:

c + ib y e a k y

and using the inversion to represent long waves at increasing

distances from the origin, we obtain:

- X= ~P~ [cos (2 cp+e - — cos 4 cp ]
R R

Y x
w= -©- [sin (2 cp+e) - - sin 4 cp ]

R R

(8)
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In fig. 4 the curves of constant damping X and their
orthogonal trajeetories of constant pulsation ")are traced
in the particular case Y X -\} e n /2

So, in Gauss1 plane, we have an immediate representation
of the correspondence between the dissimetrical atte-

nuation of waves in space and time respectively.
It may be seen at once that near points like P, repre-
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senting long slightly unsimmetrical waves, the same value
of x corresponds to very different frequencies; whilst
near Q a minor change in the wave form causes different
damping for equal frequencies.

E
E

OO

1 see
'4

fig.5
The almost undistorted permanence of complicated wave

forms, like the one of Fig. 5 observed (¦) during more

than 5 minutes of free oscillations of a Burback track,
may be perhaps better understood through these considerations

rather than by associating definite damping coefficients

to simple harmonics.
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SUMMARY

Elastic Systems with the same frequency may have different
relaxation times. Materials under heavy stresses and coarse-
grained materials darap out vibrations more quickly and so
show a greater reserve of dynamical strength. In propagation
phaenomena the damping factor may be very sensitive to
comparatively small changes in the shape of waves.

RESUME

Des systemes elastiques de la m§me frequence peuvent avoir
des temps d'amortissement tres differents. Les materiaux
plus sollicites et ceux ä gros grains amortissent les
vibrations plus rapidement et montrent ainsi une plus grande
reserve de resistance dynamique. Dans les phenomenes de
propagation le facteur d'amortissement peut §tre tres sensible
ä des modifications relativement petites de la forme des
ondes.

ZUSAMMENFASSUNG

Elastische Systeme mit gleicher Frequenz können sehr
verschiedene Relaxationszeiten zeigen.
Stark belastete sowie grobkörnige Materialien dämpfen die
Schwingungen schneller und zeigen eine grössere dynamische
Widerstandsreserve. In Verbreitungsphänomena kann der
Dämpfungsfaktor sehr empfindlich auf relativ geringe
Veränderungen der Wellenform sein.



VI

The Treatment of Damping Coefficient on the Dynamic Problem

Sur le coefficient d'amortissement dans les problemes dynamiques

Die Behandlung des Dämpfungskoeffizienten bei dynamischen Problemen

Y. OHCHI
College of Technology

Hosei University
Tokyo, Japan

INTRODUCTION

Recently the use of digital Computer having become very populär, a number
of papers dealing with the response analysis of complex structures is published«
Very few of them set apart, however, they do not give detaüed explanations
about damping force» The writer having also developed a program for response
analysis of framed structures, computed the responses of various types of them,
and is in every time troubled by how the damping coefficients are selected.
As response displacements depend largely upon them, even it is possible that
we insist on the propriety of the certain damping coefficients obtained
inversely from the required response displacements.

Damping force is a force that suppresses vibrations and comes from various
originso Though it is quite natural that efforts to catch the causes dominating
the damping forces and to include them in the equation, such a frontal attack
would not be so expected under existing circumstances. In case of complex
structures, it is also very hard to determine the ratios to the critical damping
coefficient, as in a one-mass-system, because of its complexity.

Then the writer, referring to the results of vibrational experiments about
one-mass-system, and noticing that damping constant is of three terms (first
inversely proportional, second unrelated and third proportional, to the
frequency), has tried to extend the idea to multi-mass-system. There are such four
forces, further saying, as inertie force (Mä), damping force (Ci), restoring
force (Kit) and external force (-Mife in case of earthquakes) which determine a

Vibration, the theme of this paper is then the second force. Restoring force
is determined from the static relation between external force and deformations
of the structure. Thia subject is dealt with in other papers of which one is
published by the writer^^'. In this paper is shown in another form extended
thereafter, It is inevitable to encounter what type of seismic waves is
selected, but such problem should belong to the field of seismology. Finally,
as for inertia force, it is usual to concentrate the mass to some points, but
as actually the mass is distributed along structural members, this effect must
be introduced. The discussion about this problem is left for another chance.

ONE-MASS-SYSTEM

The kinetic equation of one-mass-system is

Kx= - M EC + "Xe - Cie

Dividing by M and replacing

p /^T 4. jP- Ccr - 2 44~W
¦V M Ccr
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Eq.(l) is reduced to

X + 2-fSpx + P2* -Xe (3)

in which p is circular natural frequency and h is called damping constant, the
ratio of actual damping coefficient(c) to critical value of that (Ccr). The
relation between damping constant(h) and logarithmic decrement (A) is

The Solution of Eq.(3) is

X P"' Sv (t) (4)

s,,t,="lÄre"pM,Sin PVT^Fu-X) dX

Substituting in Eqv(4) actual seismic waves, and calculating maximum values of
S (t) for various values of p, we can get a response velocity spectrum by
plotting S (t) against p. To average the values of Sy(t) for a number of cases
of actually oecurred earthquakes makes so-called average response velocity
spectrum (s proposed by Hausner.

After our simple experiment. h is constant or proportional to p (se«
Fig. 1, 2). Making a reference'/, h is in inverse proportion with p. Then, we

shall be able to put
fl -no P-'+-ni +4P (5)

Substituting this in Eq.(3) and using Eq.(2), Eq.(l) becomes

Mx + (2£oM + 2£i©K©r 4 2-nzK )±+ KX - M% (6)

Damping coefficient is then expressed in such a form as

C 2-foM 4- 2-fii ©KM" + 2-in2K (7)

üsing Eq.(5) as damping constant under such condition that tio and-Fi2 have
constant values, average response velocity spectrum of Hausner is calculated as
shown in Figs. 3(a),(b),>

¦MÜLTI-MASS-STSIEM (MODAL ANALTSIS)

The kinetic equation of a multi-mass-system is» by using matrices,
expressed as followso

IK* - MI(Öt+ Fie -CX (8)

Now, introducing a linear equation
MI X2 - K * 0

let V. be the root other than aero, and P? be the value of Xz (the number is
as much as the rank of the matrices), that is to say, the eigenvector and
eigenvalue. If VI denotes the matrix arranging Vx. in a column, and P2 the
matrix arranging Pi2 diagonally, the relation between them ia

VT IK \ll XHTM V/ P2 (9)

Each element of P is circular natural frequency, and each column of VI shows

proper mode of Vibration. Further^ changing the independent variables%¦ of
Eq.(8) to 1 by the relation
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7C V/q (10)

and multiplying \UT from the left side, Eq.(ll) is obtained.

V©M V/ci + V/TC Jc\ + V/TMI V/ P2q, - V/TMI F -xe (ll)
Because the critioEal damping coefficient matrix of the kinetic equation (8) for
a multi-mass-system is 2 MI V/ P V/ "' (see APPENDIX i), defining, on an analogy of
^.{.7), the damping coefficient matrix of multi-mass-system as

C 2-f.oMI + 2-fiiMlW PV/"' + 2h2 IK (12)

and modifying the second term of läq.(ll) and considering Eq.(9), we find

V/TCV/ 2*oV/TMIV/ + 2*i V/TMIV/P + 2fi2V/TMIVP2

Eq.(ll) is therefore transformed into

q+ 2(*oP-'+*iU +I2P Pq + P2«^ - V/TMI MI >H V/TMI Fxe (13)

When P_lSvi. (t) is the Solution of Eq.(3) in which Eq.(5) and circular
natural frequency P* of multi-mass-system are substituted, Svi(t being the
matrix of diagonal arrangement of Svi (t) » the Solution of Eq.(l3) is

q, P-'Sv (t) V/TMI\<7 r'UrMI F

and the relative displacement is obtained by substituting in Eq.(lO), as follows:
Of V/PHSv(t)( V/TMIV/r' V/TMI F (14)

Sectional forces would be then calculated from the displacement method of
statics.

MULTI-MASS-SYSTEM (DIRECT METHOD)

Damping coefficient of Eq.(8) being substituted by equation (l2), and
replacing

^ # • ^ ~ F * e_(C$+ IKXf) (15)

Eq.(8) would be solved by the numerical integral method ' such as the Runge-
Kutta-Gill or Milne's Method, under the initial condition, -X <j 0 at t=0.
As described at the head, there are so few papers dealing with damping force
that the writer has proposed the equation (l2). But, when using direct method,
the second term of equation (12) seems troublesome. So it would be better to
compute Eq.(l5) after normalizing the eigenvector by using the relation

V/T MI MI E

into the form

C 2-noM + 2fiiMIV/PV/TMI + 2fi2IK (16)

or letting include the influence of the second term to the first and the third
tenü

C 2*0 MI + 2*2IK (16-)
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STIFFNESS MATRIX

For calculation of the responses of multi-mass-system using Eq.(l4) or (15)»
it is necessary to make up mass matrix (Ml) and stiffness matrix (IK in addition
to damping coefficient matrix (C If the mass is concentrated to the structural

nodes, mass matrix is to be diagonal matrix, but actually the mass is
distributed. Though the writer is researching to take into consideration the
influence of distribution, but it is not yet the time to publish.

Stiffness matrix is obtained from the static relation between loads (P)
and displacements (Ot)

KTt P (17)

Many studies in this field being published, their results should be used. The
writer has also published a method^/^^ Afterwards the writer modified to be
able to use for a member with one hinged end. Here is a simple explanation.

The linear equation by which the framed structure is solved statically is
written as follows

Die DTTC= P - A\CTFfa - BCTFfb (l8)
ü-küT is stiffness matrix, ~% is displacement vector and the first term of the

right side is force vector composed of external forces acting on the nodes.
The second and third terms of the right side are vectors composed of external
forces acting on the intermediate members connecting the nodes, Ffa and Ffb
are end reactions of fixed beam (or modified end reactions when hinged), fl© is
transformation matrix of coordinates (local to global), and, A\ and B are also
transformation matrices from sectional forces at the member's end to nodal
forces. The contents of D it are shown in APPENDIX II.

Solving Eq.(l8) with performing an Operation to the supports, sectional
forces of the both ends Fa and Fb would be obtained.

Fa Ta i DTX + Ffa. Fb Tb ik ÜT X + Ffb (l9)
The Operation to the supports is, for example, to sweep out the corresponding
row and column of the stiffness matrix, if the node i is fixed in one direction,
and/or to add a spring constant to the corresponding diagonal element of the
stiffness matrix, if the node j is supported elastically in one direction.

NUMERICAL EXAMPLE

The Suspension bridge shown in Fig.(4) is modelled and shows in Fig.(5).
By substituted various values offio ,"fn fi 2 into equation (12), the numerical
calculations are carried out. If the Suspension bridge and the seismic wave
acting at the both tower bases are Symmetrie, the response of displacements
and/or member forces of the center span are reduced to extremely small. In
order that we increased the masses of the right tower ten per cent more than
that of the left for this numerical example.

Results of the calculations are tabulated in the table 1. The figures in
this table are obtained from eq.(l4) using a seismic wave of the reduced El
Centro NS component (the maximum acceleration is 200 gals). Eere we also
calculated the response of displacements using other types of above seismic
waves, but we can not show the results in this paper because of space limitations.
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APPENDIX I CRITICAL DAMPING COEFFICIENT MATRIX

Supposing qi Qe~ in the expression (ll), let the right side equals
zero, it becomes

(V/T MI MI cj2 - V/T£ MI OJ- 4 V/TMI V/ P2) Q e_ujt 0 (a)

The above equation representsthe system of free Vibration accompanying with
damping,if OJ is real, the system does not vibrate. In order that OJ be of a
value at the border between being real and imaginary, that is to say OJ be

identical rootsP the next expression should stand.

V/TCcr MI 2 V/TMV/ P (b)

This would be confirmed by substituting (b) into the expression (a), which makes

V/TMlV/ F OJ2 - 2 P OJ + P2) Oewt 0

or V/T MI MI F OJ - P )2 Oe"wt 0

From the expression (b), (Der is obtained.

Ccr 2MIV/PV/"1 (c)

APPENDIX II EXPLANATION OF jSqs. (18) AND (19)

If the structure is constructed in the Xu plane of the global co-ordinate
x<p$- the elements of matrices which are included in eqs„(l8) and (19) are as
follows.

Schlussbericht
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(l) For plane framed structure (Loads and deflections are restricted to the
inside of the xy plane)

D

Ta

S x L-1 8 Y L© 0
8 Y I©1 8 X 1©' 0

0 4 /»L ±8

u 0 0
0 u 0
0 ^-£a(2U-£*>L 2"L

¦ß

T«

a 0 0
0 4 0
0 0 c

-u 0 0
0 -u 0
0 -^a(2U-cEa)L iL

Ot

frj

Px

Lmi
Fa

Nua
Sva
Mwa

U
Nu«

Mw<?

(2) For grid-type structure (Loads and deflections point to the outside of the
xij- plane)

Ta -

8 XL© -/iYL"1 -8YL -1 d 0 0

8YI© //.XL© 8 XL© & 0 e 0

0 -(£0+ ££).© 0 _° 0 fJ

u 0 0 -u 0 0

0 Ea U u 0 £* -u
0 -.Ec + E-*-)L© 0 0 -(Ea + E^)C'0

0%~j [m* ' Tua Tu-*

0i* P m^ Fa Mva F* Mv£
i

Saio
L-.

Sw#

Where

a=EAL" b 3(cEa+£;^)2{u+(£a+£^)2 ß}"'Eh»L"" c 4<f a £*EIw L"3

d GJL~' e=3(£a+£4-£a £U {u +(£3 + ^)2 ßf'EluL-' f- «f o «©«-Elvi©1

8 dL --S
'
cl 6a (2U- f-* + ßth- 2U - £a

cA £0 + /3 E4

for plane framed S.

for grid-typ« S.
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ß
'3feEIw (GAL2©1 for plane framed S.

3HZ Elv (GAL2 )"' for grid-type S.

U unit matrix
E, G, KL diagonal matrices, the (i, i) element in diagonal matrix shows the

Young's modulus, the shear modulus and the shear coefficient of member L

A, Iv, Im, J, L, X, Y diagonal matrices in which the [i, *¦ element
represent the cross sectional area, the moment of inertia of the section
around the local 17, ui axis, the tortional moment of inertia of the
section, the length and the projection of the length on the global
axis respectively.

al ,ß matrices indicating with which member is connected at member's node.
For example, ckif-a 1 or P*j= 1, it shows that the end a or b of
member j is connected with the node i} otherwise d, iL* 0 or ß*f** 0.

€a »£*= diagonal matrices, in which the (-£,-0 element equal zero, if a
hinge is located at the end a or b of member i; otherwise equala 1.

X ^ j. (0x,9ij.,9j) column vectors, the ith element shows the deflec¬
tion (deflection angle) of node £.

Nuo Svo Swa (Tua, Mva Mwa) column vectors, the <Cth element shows the
U ,V ,w component of the sectional forces (moments) at the end a of

member L.

APPENDIX III NOTATION

C, C damping coefficient and damping coefficient matrix
Ccr,Ccr= critical damping coefficient and critical damping coefficient

matrix

A= logalithmic decrement

f m This vector represents the difference of absolute and relative
displacement vector dividing tsyZei, while the displacement is
the same direction as seismic acceleration, the values of
elements in this vector are 1, otherwise equal sero.

rs

damping constant /Ccr

'fio.'ni,'n2 " constants defining h (see Eq.(7) or (12))

spring constant and stiffness matrix

¦ mass and mass matrix
circular natural frequency and circular natural frequency matrix
average response velocity spectrum

Sv(t). Sv(t)= 8ee Eq8» (4) and (14)

i yl unit matrix

u; 1 yj mode vector and mode matrix
X ,X relative displacement and relative displacement vector

Xe seismic acceleration
A\ B CT .(D »Fa »F* ,Ffa rFf-* ,fo P» Ta ,1-t- see APPENDIX II

*
fii fiz

K IK

M Ml

P P

S V
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Table I

damping

Const.

ho __ 0.628 — 0.314
damping

Const

ho — 0.628 — 0.314

h i 0.100 — — — h i 0.100 — — —'

h2 — — 0.0159 0.008 h2 — 0 0159 0.008

NORMAL FORCE (t) SHEARING FORCE (t)

side

cable

13 1 070 1 090 1 030 1 050

tower

1 575 566 61 1 570
1 4 1 080 1 IOO 1 040 1 060 2 126 136 125 116

15 1 IOO 1 120 1 060 1080 3 549 588 523 544

center
cable

16 57.6 70.3 56.8 55.7 4 870 878 854 863

1 7 56.5 69.3 55.7 546 5 1 030 1 020 1 050 1 030

1 8 55.7 68.0 55.0 53.9 6 14 800 14 800 14 800 14 800

side

hanger

35 201 2 28 174 187 DISPLACEMET (cm

36 88.7 95.4 85.6 86.7

left
tower

1 16.9 3.84 19.0 4 88

37 55.6 57. 1 52.5 53.7 35 16.2 14.8 17.4 13.6

38 42.9 487 372 400 2 16.6 16.2 16.8 14.7

center

hanger

39 44.4 54.4 41.4 40.4 3 14.0 13.7 14.2 12.3

40 2.96 4.06 2.88 2.80 37 8.37 13.5 8.44 7.24

41 5.50 6.67 5.46 5.30 4 3.35 3.38 3 29 2 88

42 4.69 5.77 4.61 4.50 5 — — — —
BENDING MOMENT t nn

side

span

22 132 23.8 154 39. 1

tower

1 2 1 400 21 000 22 700 21200 23 47.4 8.6 1 54.8 14.0

2 24 700 23 500 26 000 24200 24 41.5 1 1.2 46.8 15.4

3 16 600 16400 17 IOO 16600

center

span

25 3.31 3.30 3. 42 3.26
4 12 500 12 300 12 800 1 1000 26 1.67 1.87 1.58 1 .77

5 40 400 41600 39 IOO 39800 27 2.60 0.66 3.05 0.5 1

6 522000 522 000 524000 522000 28 3.39 0.55 4.04 0.93

stiff
girder

26 1 150 844 1 250 987 29 3. 15 1.32 3.61 1 .56

28 151 154 162 152 30 2.68 2.22 2.70 2.29

29 79.8 58.7 96. 1 62.7 3 1 3.42 3.32 3.50 3.34

30 88.6 28 5 122 42.7
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From our simple experiments about this field, we propose the equation (12)
or (16') for the damping coefficient matrix of the multi-mass-system.. Results
obtained from usual method were compared with some series of our numerical
calculations, we find thatfio in eq.(l2) is more important and influential than
that of -P-2 on conforming the result obtained from usual method. We consider
that some questions still exist in adapting damping coefficient matrix to be
used in usual method.

In order to obtain more adequate value of fio~"f2 we conclude that more
field test or more detail of experiment for determining the damping coefficient
matrix is necessary.

RESUME

De nos experiences dans ce domaine nous arrivons ä proposer
l'equation (12) ou (16') pour la matrice de coefficient
d'amortissement du Systeme ä masses multiples. Les resultats regus par
la methode habituelle ont ete compares avec quelques series de
nos calculs numeriques. Nous trouvons le facteur ho dans l'equation

(12) plus grand et influent que h2, en adaptant le resultat
obtenu par la methode habituelle. Nous pensons que tous les
problemes ne sont pas resolus dans 1'adaptation de la matrice du
coefficient d'amortissement a la methode de calcul normale.

Nous concluons qu'il est necessaire de faire plus de tests
sur nature ou de detailler d'avantage les experiences pour obtenir

des valeurs hör* h2 plus adequates a la determination de la
matrice de coefficient d'amortissement.

ZUSAMMENFASSUNG

Aufgrund unserer einfachen Versuche auf diesem Gebiet empfehlen
wir die Gleichung (12) oder (16') für die Dämpfungskoeffizienten-Matrix

des Viel-Massen-Systems. Ergebnisse der üblichen Verfahren
sind mit einigen Sätzen unserer numerischen Berechnung verglichen
worden, und wir finden, dass ho in Gleichung (12) wichtiger

und einflussreicher denn h2 bei Anpassung an die Ergebnisse der
üblichen Verfahren ist. Wir berücksichtigen, dass einige Fragen
bei der Anwendung der Dämpfungskoeffizienten-Matrix im üblichen
Verfahren noch offen bleiben.

Um mehr hinreichende Werte ho^vh2 zu erhalten, folgern wir,
dass mehr Felduntersuchungen oder mehr Prüfungsdetails zur
Bestimmung der Dämpfungskoeffizienten-Matrix notwendig sind.
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Application of Modern Design Techniques to Practical Wind Problems

Application des techniques de projection modernes aux problemes pratiques poses par le vent

Anwendung der modernen Entwurfstechniken auf praktische Windprobleme

E.M. LEWIS R.A. WALLER
W.S. Atkins and Partners

Epsom, Surrey
Great Britain

Introduction

It is clear that the days when wind was considered as a static phenomenon have

gone. Gone also in many cases is the simplicity of the quasi-static load case which has

normally been assumed as applicable to wind loadings.

The equivalent static load concept is adhered to very strongly. It is clearly valid
to express answers as an equivalent static load but it can, if we are not careful, tend to
cover up gross inadequacies in the method of calculation and in the assumptions that have
been made.

This contribution to the prepared discussion describes attempts to apply the latest
concepts and techniques of analysis to dynamic wind loading conditions.

Two major dynamic effects will be considered. There is the problem of aerodynamic

instability caused by the formation of regulär patterns of vortices in the lee of certain
shaped structures requiring the techniques of dynamic analysis of complex structures.
There is the problem of gusting as it relates to the more flexible structures involving in
addition the techniques of random Vibration analysis.

Gusting

Buffeting in a gusty wind occurs largely at random. The random velocity fluctuations

are, however, contained within an overall spectrum which defines the amount of
wind energy available (on an average) at various frequencies (Prelim. Publication 8th

Congress IABSE).

All structures have modes in which they naturally vibrate, the sway modes of
Vibration being particularly important in the context of wind gusting as they can interact
with the wind and accentuate the dynamic effect.

The work done by Davenport (Davenport 1961) was aimed at producing simplifications

of the basic techniques of random Vibration allowing the engineer to take gusting
into consideration. The following is the expression for the effective force which is
applied to a structure taking into aecount its dynamic response.
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The effective force hourly wind pressure x gustiness of wind x structural
response x a factor

This last factor is a Statistical measure wluch defines the peak response in which
we are interested; e.g. Davenport suggests taking the average of the peak responses
which occur within periods of an hour. This factor varies little with the characteristics
of the structure. The mean hourly wind pressure and the gustiness of the wind are
clearly also independent of the properties of the structures concerned.

The simplest case to consider is that of the lightly damped structures where the
response is largely governed by movements which take place at the natural frequency of
the strukture (fortunately many practical structures respond in this way). In this case

Davenport shows that the response is proportional to/——where Sn is the spectral density

of the gusting at the natural frequency n of the structure and S the logarithmic decrement.

It happens that the reduced spectral density in the frequency ränge from 0.1 Hz
x2

upwards is closely given by an algebraic polynomial. Davenport suggests 2\©3

and Harris (Harris 1968) suggests 2\5/6 where x in each case is given by 1200 —
\Z-rSC V

where V is the wind velocity in metres/sec. Where x is significantly greater than 1 as
—2/3it is when n is greater than 0.1, both these polynomials reduce to x

Hence the effective force is proportional to:

n 8

Clearly, therefore, the lower frequency structures are more susceptible to wind
gusting as the effective force is greater.

A further effect exists in that the lower frequency gusts tend to be more highly
correlated over larger areas than the higher frequency gusts. Conversely, the higher
the gust frequency the smaller the effective area over which the gust pressure is applied.
There comes a point at which the gusts are so small in relation to the structural size that
they do not have a significant effect. Davenport suggests that once the gust frequency
exceeds the ratio of the maximum wind velocity to a typical dimension of the building,
then the effect of gusting can be ignored.

We will now consider a few examples of buildings which have been designed and
constructed where gusting was of sufficient importance to influence their design.

A Building on Springs

A block of flats (Albany Court) was erected in 1966 over the Underground railway in
London (Figure 1). The building was supported on a number of laminated rubber Springs

to isolate it from the vibrations generated by the
railway. This is probably the first complete
building to be isolated in this way from low
frequency ground-borne vibrations (Waller 1966).

Clearly the introduction of Springs for this
purpose significantly alters the natural frequencies
of the building. In this case the vertical frequency
of the System was designed to be 7 Hz. It is a
characteristic of the larninated rubber spring that
its horizontal stiffness is two Orders less than its
vertical stiffness so that in the first instance the

Hxina

Fl.t

ReinlwcedRein1<xced
3EK*ino hall

Masonry
Wasonry
railway wall
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designed horizontal frequency of the spring System was about 0.5 Hz. This frequency
was sufficiently low for there to be a significant possibility that the building would
respond to gusting especially as this frequency is in the ränge at which eddies would be
shed from nearby buildings. It would clearly be unsatisfactory if in eliminating the
ground-borne vibrations the building were made significantly sensitive to the wind.

At the low frequencies involved the human sensitivity to Vibration can be represented

as proportional to acceleration. No rigorous estimate could be made of the
likely magnitude of the acceleration induced by wind. It was judged however that there
might be a problem at 0.5 Hz as an effective dynamic pressure of 1 lb./ft.2 was
equivalent to an acceleration of 0.001g for this particular building, a level at which a

significant number of people can perceive low frequency Vibration.

Now acceleration is proportional to (amplitude)x(frequency) and amplitude is
proportional to (effective force)/stiffness. Stiffness in this case is proportional to

(mass)x(frequency) Thus acceleration is proportional to:
-1/3 ,-1/2 -1

n 6 m
if m is the effective mass of the building.

To reduce this acceleration there are therefore three possibilities: we can
increase mass, damping, or natural frequency. In this particular case it was decided
that the simplest and cheapest course was to increase the natural frequency. It was
found possible to increase the horizontal natural frequency to 2.5 Hz without significantly
reducing the attenuation of the ground-borne vibrations.

The building in this case could be considered substantially as a rigid body on a
number of Springs and the analysis was fairly straightforward. There was little coupling
between the various modes although clearly in the vertical planes the horizontal natural
frequencies and the frequencies in sway or rock (6 Hz in this case) are coupled together
to some extent. Indeed it is this coupling which limits the extent to which the so-called
horizontal natural frequency of the spring system can be raised.

Raising the lowest natural frequency to 2.5 Hz eliminated the possibility of
interaction with eddies from nearby buildings and kept the effective 'natural' wind energy
likely to interact to a nunimum.

The effectiveness of the measure can only be judged by experience. Two years
have elapsed without significant vibrations being reported.

In the case of the taller and more flexible buildings the flexibility of the structure
itself must be taken into aecount in the analysis. It will often arise that the horizontal
frequencies cannot be raised enough to avoid significant gust action. With the taller
structures wliich have natural frequencies in sway of the order of 0.5 Hz it will be
impossible to avoid the problem of gust action by increasing the natural frequencies.
Here it will be useful to consider the addition of damping into the foundation.

Water Tower

The type of water tower that will be described was the subject of an extensive
development programme. The programme was aimed at producing a new form of water
tower which would combine the economies of the cheaper form of towers with the
appearance of the more expensive. The form of water Container finally chosen can be
described as an inverted parachute with the fabric made of nylon reinforced rubber and
the cäbles of high tensile steel. These cäbles are fixed to a stiff annulus which is
mounted at the top of the tower leg (Figure 2).
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It is well known that the natural frequency of water contained in a tank is low and

it was possible that the tower might respond to gusting and to vortex excitation. One

twentieth scale wind tunnel tests were commissioned at the
National Physical Laboratory (Smith 1964) and indicated that
vortex excited instability was unlikely. Unfortunately it is not

yet possible to simulate gusting conditions in a wind tunnel and

recourse to calculation was necessary in this respect.

The natural frequencies for the tower were difficult to
calculate. The mode of particular importance can perhaps be

best described as the 'sloshing' mode. Formulae do exist for
the 'sloshing' of water within rigid Containers (Housner 1963),
but the nature of the present Container was such that no previous
Solution could be found that was applicable and it was decided
that scale models would be a better method of establishing the
natural frequencies than a theoretical exercise. The other mode

of Vibration of relevance is the Vibration of the stalk itself with the water playing little
part. It is easy to show that this frequency is much higher than the 'sloshing'
frequency of the water in the tank. From the scale model used in the wind tunnel tests
the natural frequencies were measured with various amounts of water in the tank and

the lowest natural frequency oecurred with the füll tank. Further it was found that the

system was essentially linear.

£§>

% Capacity Natural
frequency

Hz

5

40

100

3.78

0.82

0.81

The ability to scale models for this purpose is of considerable advantage. Analysis
demonstrated that the system could be considered, for scaling purposes, as a Compound

_i
pendulum for which natural frequency is proportional to (linear scale) 2. Pressure is

7

proportional to (linear scale) and force is proportional to (linear scale) when velocity
i

is proportional to (linear scale)2. The model was made to represent as closely as
possible the füll scale Situation; there remained many uncertainties; however the
logarithmic decrement of 0.025 measured in still air conditions was taken to represent
a fall scale tank. The effect of wind was to increase this damping slightly. It was
also considered that the likely effect of foundation damping, joints in the structure,
etc. would be to increase it again and that this figure would be on the safe side.

One other significant factor had to be established in relation to the behaviour of the
tank before its fall scale behaviour could be predicted. Not all the wind force is modified
by the dynamic behaviour of the tank. A proportion of it is effectively applied directly to
the top of the tank and stalk which is more rigid. The remaining part of the wind force
can be considered as acting upon the flexible portion of the tank and therefore modified by
the tank's dynamic characteristics. The distribution of the wind force was measured by
displacing the tank in a steady wind stream until it was completely stationary. When
the displacing wind force was suddenly removed the tank and water were set into a state
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TABLE

Steady Wind Overturning Moment

Mean hourly wind speed 27 ms"

Equivalent model speed 27 p^.

-l6 m s

Model overturning moment 0.7 kg m from test (Smith 1964)

Füll scale overturning moment 0.7 x 20 kg m

Füll scale mean hourly overturning moment 110, 000 kg m

Additional Moment Due to Gusting

Additional moment (mean hourly moment)x(gustiness)x(response)x(factor)
(Davenport 1961)

(i) Mean hourly moment as above.

(ii) Gustiness.
z - ex

Gustiness 2.457K (r© 0.145 for an open site

When K surface drag =0.005
a power law =0.16

exponent
z height of centre of pressure 30m

(iii) Response.

The additional moment due to gusting can be divided into two components, one third
being modified by the dynamic response and two thirds acting on a 'rigid' structure.

„ /velocity spectrum area
Response 2 / —-v response spectrum area

Unmodified response 2

», ^-r- -> /°-82 nSn in I-Modified response 2 / ^-rr-— =10.6 (ignoring aerodynamic
V i io magnification)

for—= .008 m_1
v
& .025

(iv) Factor.

Factor for unmodified component 4.1
Factor for modified component =3.8

Total Overturning Moment
2 1

mean hourly moment x (1 +— x 0.145 x2x4.1 +^x 0.145 x 10.6 x 3.8)
o o

110, 000 x (1+0.8 + 1.9)kg m
400, 000 kg m*

* Using Davenport 1967 Total overturning moment 360, 000 kg m.
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of motion. The motion took place in various modes simultaneously but predominantly in
the two modes associated with the 'sloshing' of the tank and contents and the sway of the
stalk. The motion of the stalk decayed quite rapidly but the 'slosliing' of the water

continued for some time afterwards. By
monitoring the motion of the tank by sensing the
displacement of the stalk and extrapolating the
behaviour of the water back to zero time, it was
possible to show (Figure 3) that the wind load was
distributed approximately two-thirds on to the
stalk and one-third on to the flexible tank and

water. It is this third of the force which is
potentially magnified by the dynamic response of
the water and the tank.

It is instructive perhaps now to consider the
wind loads on a typical füll scale tower. Taking a
capacity of 500 cubic metres of water the diameter

the tank would be about 12.2 m. The calculations appropriate to such a tower are
scheduled in the facing table. The wind speed and surface roughness coefficients used
have been estimated for an exposed site.

The total calculated wind loads are roughly double those which would have been
assumed, taking an averaging period of 1 minute as suggested by British Standard Code
of Practice CP3, Chapter V, or 70 percent greater than the loads on a rigid structure
taking aecount of gust loading.

Windet

V-
rU r.

Oscillatlom

Time

35£illaliooi

-14

Drax Chimney

When completed this will probably be the world's largest multi-flue chimney. It
will have a height of 260m and will have a constant outside diameter of 26m. The outer
shell is made of reinforced concrete whose thickness varies from 1.5m at the base to
37m at the top; the three flues are also of reinforced concrete and they are elliptical

in section, having major and minor axes of 13.7m and 9.2m respectively.

A circular cross-section was chosen for the chimney because it is this shape
which has the lowest level of vortex excitation.
Nonetheless there is still considerable doubt as
to the behaviour of tall flexible cylindrical structures,

and it was necessary to carry out a number
of Studie? and analyses of the potential behaviour,
both under gusting conditions and under potential
vortex excitation. As the flues are in 22m
lengths and are carried on expansion bearings
(Figure 4) in order to prevent thermal effects
from inducing unacceptable stresses in the
concrete shell, the dynamic behaviour of the

chimney as a whole is extremely complex. Too
complex in fact to contemplate a vind tunnel

model. A computational model was therefore built up and one element of it is shown
in Figure 5.

The flues are represented as a mass with rotational inertia supported on the
bearings which had a finite stiffness in the horizontal direction but which have been

regarded as infinitely stiff in the vertical (as above, the vertical stiffness is 100 times

Flua

PlaEEorm

Rubber beannp
Rubber beartom

Chlrvuiay ihell
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the horizontal). The shell is broken up into an equal number of elements (i.e. 11) to
correspond with the flue sections and here again
rotational inertia has been allowed for. Hysteretic
damping has been included both in the bearings and
in the shell. The complete system therefore has
been represented by twenty-two masses with
associated spring and damping Systems.Shell

Shell fliHneu Unit sinusoidal forces were applied in turn to
each mass element of the shell and the response of
the whole system calculated. The Computer
programme centres round the 88 square matrix which
was Condensed to a diagonal matrix rather than
inverted. The total effect is obtained by summing
the effects of the loads on each shell element. This

is done for various frequencies, and the interval between the frequencies was chosen
depending on the sensitivity of the response of the chimney to frequency.

The first calculations were for a chimney with normal laminated rubber expansion
bearings supporting the flues (Figure 6). For comparison, the case without expansion

bearings was calculated and is represented by a

curve labelled monolithic. It can be seen that the
behaviour of the two Systems is entirely different.
It was a relatively simple step from knowing the

response characteristics of the chimney to calculate
its behaviour under gust conditions. This was
done by integrating the response spectrum obtained
using these frequency characteristics, and the net
result showed that the chimney with flexible expansion

bearings had in fact a dynamic response of
only about half that of the monolithic chimney.

Fre.,,.^ This was based on the assumption that the damping
in the shell structure, i.e. the quadrature

component due to damping, was 2 per cent of that due to stiffness. The bearing damping
was taken as 12 per cent. In either case the significance of gusting was small in relation
to the total load, and particularly so when aecount was taken of the probable lack of
correlation of wind pressure over the height of the chimney. It was estimated that a

gust lasting for at least 15 seconds was required in order to envelope the chimney, and

this compared with the period for the structure of between 1 and 2 seconds. Clearly
there is unlikely to be much dynamic response under these conditions.

/
/ \

En.parti.ion bearingj

Vortex excitation

The second type of dynamic problem discussed in this contribution is that of
vortex excitation. Indeed it is this vortex excitation which is the main problem with
structures like the Drax chimney. The difficulty is that little data exists on the behaviour
of structures of this size. It is also virtually impossible to carry out model tests in a
wind tunnel because of the very high Reynold's number (approximately 10°) which"prevents
the correct scaling of the dynamic effects. What data there is suggests that the cross-
wind lift coefficient can have any value from 0.7 down to 0.1, and indeed recent papers
at an International Symposium (Wootton 1968) suggested that the force coefficient might
be even less. Whilst it is difficult therefore to calculate in advance the magnitude of the
loads and movements of the chimney, the Computer model enabled comparisons to be
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made between the various possibilities. The previous.Figure indicating the response
of the chimney to unit forces (as a function of frequency) is now modified to take aecount
of the Variation of wind force with velocity (a function of frequency via a Strouhal
number of 0.27). Figure 7 then represents the non-dimensionalised response of the

chimney to winds of varying velocity. It was
clear that the use of the expansion bearings had

significantly modified the behaviour of the chimney
Expansion bearings

compared to the monolithic case. Further, the
Vibration amplitudes were reduced. This
suggested that if the properties of the expansion
bearings were chosen with the dynamic behaviour
in mind then the overall maximum amplitude of

F,e,"n„ "nd"""" ¦eloc"v * the chimney could be further reduced. This was
figure 7 maximum done by decreasing the shear stiffness of the

bearings until the amplitude at the top of the
chimney was less than one tenth of that in monolithic case. There are two peaks in the
amplitude curve. The first is at relatively low wind speed where the frequency of
vortex shedding corresponds with the natural frequency of Vibration in the horizontal
mode of the flue segments. The magnitude of their response is limited by the damping
in the bearings. At higher wind velocities and frequencies the shell itself is playing
the major part in the mode of Vibration, and its amplitude increases as the wind speed
approaches that corresponding to its natural frequency giving a second amplitude peak.
However, the maximum wind speed likely to occur is somewhat lower than that necessary
to produce a resonant condition here.

It is worth commenting that there are three basic ways of reducing Vibration
amplitudes due to vortex excitation in a structure. Firstly there is changing the natural
frequency to avoid resonance; secondly increasing the damping to keep the amplitude to
a reasonable level; and thirdly the prevention of the formation of the vortices by changing
the shape of the chimney. In this case the cheapest Solution involved changing the
natural frequency and damping simultaneously to give a better performance. The
possibility of eliminating the vortices at source was also considered and in parallel with
the above computations a test programme was commissioned on behalf of the Central
Electricity Generating Board (Walshe & Bearman 1967). Several methods of preventing
the formation of vortices were considered, including the use of helical strakes and a

perforated shroud. The tests demonstrated that the helical strakes produced a marked
increase in the overturning moment due to wind whilst the perforated shroud did not.
Although the effectiveness aerodynamically of the shroud was not as great as that of the
strakes it was considered in the event of a chimney being subject to vortex excited
oscillations that the shroud represented a more reasonable repair scheme. It reduced
the vortex excitation quite significantly but did not introduce an increase in the wind
drag load.

The behaviour of the Drax chimney will be monitored during construction so that
the calculations can be compared with actuality, when in the unlikely event of the effects
being underestimated the chimney can be modified accordingly.

Whilst the main theme of this paper has been the use of the more advanced
techniques of analysis one lesson which could be drawn from the examples quoted is the need
to monitor the non-standard structure during its erection and immediate post-erection
period to determine the likelihood or otherwise of untoward behaviour.

It is also clear from this paper that whilst modern techniques are being used the
amount of data available and the quality of the data are poor. This has been the subject
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of another paper by one of the authors (Waller 1968) in which the general conclusion was
that more of the research efforts should be directed towards the füll scale interaction of
the wind and structures so that the more sophisticated design techniques can be utilised
with confidence.

Notation

ot wind power law exponent.

b logarithmic decrement.

g acceleration due to gravity
K surface drag coefficient.

m effective mass.

n natural frequency.

V mean hourly wind speed.

X 1200-.
V

z height above ground.
n Sn

reduced gust velocity spectrum.K V10
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SUMMARY

Several structures are described which are novel in that dynamic wind
excitation was a significant design parameter. Gust excited Vibration is
considered in terms of occupant comfort in a block of flats and the structural
integrity of a water tower. The reduction of vortex excited Vibration of a 260 m
chimney is described. The quality of wind data is poor and consequently the
need to monitor the behaviour of such structures during and following erection
is emphasised.

RESUME

On parle de plusieurs structures qui sont nouvelles en ce sens que l'excitation
dynamique par le vent a ete un parametre important de leur dessin. Les vibrations
causees par des coups de vent sont considerees en relation au confort des locataires
d'un immeuble et ä l'integrite structurelle d'un chäteau d'eau. On decrit la
diminution des vibrations causees par tourbillons d'une cheminee de 260 m de
hauteur. Les data donnes pour le vent ne sont pas tres sürs et on souligne donc
la necessite de surveiller le comportement de telles structures pendant et apres
l'erection.

ZUSAMMENFASSUNG

Verschiedene Strukturen werden beschrieben, welche insofern neu sind, als
die dynamische Erregung durch Wind ein massgebender Konstruktionsparameter
war. Durch Windstösse verursachte Schwingungen werden mit Hinblick auf den
Komfort der Bewohner eines Wohnblocks und auf die strukturelle Integrität eines
Wasserturms bewertet. Ferner wird das Nachlassen der durch Wirbel
verursachten Schwingungen an einem 260 m hohen Schornstein beschrieben. Die auf
Wind bezüglichen Daten sind nicht sehr zuverlässig, und es wird daher auf die
Notwendigkeit hingewiesen, das Verhalten solcher Strukturen während des Aufbaus
und danach zu überwachen.



VI

Dynamic Effects on Precast Bridge Structures

Effets dynamiques sur des ponts en prefabrique

Der dynamische Einfluß auf vorfabrizierte Brückenteile

VLADIMIR KOLOUSEK
Prof.Ing.Dr., Dr.Sc.

Praha

In recent times,prestressed structures assembled of precast
concrete elements are used also for railway bridges. There ls not
much experience about their dynamic properties and therefore
research first theoretical and then experimental on actual bridges
had to be undertaken»

a + b ri
55,00m 30,50m30,50m

Fig.l

The statical system of the structure which we have used in
the investigation is a three span

rigid frame.(Fig.l) The cross-
-section in the middle of the
central span is in fig.2. The

elements of the superstructure which
were manufactured in a central
precasting plant were transported
on a trailer, lifted, rectified
and prestressed.

The objeet of the research was

to find theoretically the dynamic
characteristics of the system i.e.
the natural frequencies and modes,

=U"W ^
3,14

Fig. 2
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and to determine the forced vibrations produced by the load
crossing the bridge. The results were then compared with the
results of measurement on an actual structure*
The theoretical investigation.

The horizontal beams of the frame structure are of box-shaped
cross-section with variable mass and moment of inertia. The
theoretical analysis of such a system can be executed by various methods

of different accuracy and laboriousness. The differential equation
for the vertical motion in this case becomes

Mx.) &&&-- + E jL_ [iw -&<?1*2_1 0 (1)
3 t2 2x2 L 2x2 J

vhere the notation is as follows
/t(x) is the variably distributed mass

is the abscissa of the point in question if the origin
is at the left end of each span

v(x is the vertical deflection of the point x at the time t
Kx) the variable moment of inertia
£ modulus of elasticity
Solution of the equation (1) can be found in the explicit form for
special cases only. The major part of solutions 'start from the
work by Kirchhoff^"' who investigated the vibrations of a conical
cantilever. They are available e.g. for the beams with the
distribution of^(x) and I(x) as follows

Kx) ^ -J- )n+2 (2)

^(X) =^b _jL >n (3)
where ^ and I. are the mass and moment of inertia on the right end

of the beam and L is the distance of
the right end from the conveniently
chosen origin (fig.3).There are only
four arbitrary constants in express-
ions(2) and (3) and it is evident that
not any distribution of^(x) and I(x)
can be expressed, Consequently, for an

actual structure this laborious
Solution represents» as a rule, an

1) Kirchhoff Q.: Vorlesungen über mat. Physik. Mechanik. Leipzig 1876
2 KopeHeB B. r.: HeKOTopHe sa^aiü TecpuH ynpyrocTW. MocKBa i960.

Fig. 3.
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approximation only.
Equally, some aproximative methods such as those of Rayleigh,

Stodola, Ritz or Galerkin can be used, but if an adequate accuracy
of calculus is to be attained, all these methods end in tedious
computations.

Therefore, the author of this contribution has used his own

procedure which enables us to determine the dynamical characteristics

in a relatively simple way and with arbitrary required
accuracy. This method, which can be called the simplified slope-
-deflection method, Starts from the following considerations,,
Let us consider a beam which q ^t*&*-
vibrates harmonically, and ^t*1***^
mark on it some points (fig.4). >!^
Between the points the ^Ss*©? ^h
deformed axis of the bar ^^^-^-.—-as^^ Fig. 4.
creates a curve, whose shape
is determined not only by the position of the points a, b, c

and their rotations, but also by the inertial forces which act on

the distributed mass of the vibrating bar between these points.
Let us imagine now the same beam which, however, does not vibrate
but is statically deformed by some forces and moments acting in the
points a, b, c so that the displacements and rotations of these
points are the same as in the first case. It is evident that the
deformed axis of the bar between the marked points will now be

different, owing to the absence of the inertial forces (see the
dotted line in fig.4). The difference between both shapes will
decrease with decreasing both of the frequency of vibrations and

the distance of the points a, b, c

Using the slope-deflection method, we divide the system by

joints into singular bars. The displacements of joints can be

determined by means of slope-deflection equations which are
obtained from conditions of equilibrium of end forces and moments

of all bars connected in singular joints. In our case, the joints
are in the points a, b, s, b», aJ and the bars a-b, b-c, b-s,
s-b», b»-c*, b'-a».

The first task is the determination of moments and forces
acting on the bar ends if they displace or rotate with ar^amplitude
equal to unity. In fig.5 the bar a-b is represented in the case
that the end b rotates harmonically.The amplitudes of end moments
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are
Mab( /b=l)=Mab stat £ b=l)-<jj2/^(x) v1(x) v2x dx

Mba( fi b«l)=Mba stat fi b«D-«» 2/^(x) vx2(x) dx

where us is the angular frequency and Mßb ^^ ^ mlj
sinwtMab(/b=D Mba(rb=D sin oo

v^tx) sin cjt

1sin cot

4

(4)

is the end

'"^Mab(/a=i)sincot Mba(^s1isin(ot
_Jb

Ev (jc) sin col

Fig. 5.

moment in the point b if this
point is statically deformed

withjb*l. If the first natural
frequency of the system is to
be determined, the dynamical
curves v^(x), Vg(x) can be

substituted by the statical
ones Vh(x), v,(x).The curves
v,(x), "Vp^-O (statical influence

lines) determined for the
bar a-b of the system represented

in fig. 1, are in fig. 6,

v, U) M Dastat(fh=l)=29?7010 Mprr1

Mab stat (/b=1)=i075223 Mpm .1 .-

ft1 h^
o OJ xj- CM t>. 00 o K m to o Ol IO
sj- o UO <jd o in <jO o -* T— -4- oo m 00 v» o> Ol p) >4- OJ IO tN Nt ,N -fr
6

1

o
1 T

co
l

NT
1

1 1

<JD

1

«jO
1

in
I

NT
I l T o

1

Cr,LO

fa V-WO
Mab sbt fa ^283123 Mpm

Mba5tat(/a=ir1075223MPm

Fig. 6.

3) Kolouäek V.: Vibrations of Systems with Curved Members.

Publications IABSE.VXXIII. Zürich 1963.P.219-232
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Where also the end moments are indicated supposing E »3850 000 Mp/m
The integral in (4) can be evaluated with sufficient accuracy by
numerical summation of finite differences dividing ths bar into
strips. Then it is

M
ab( c.=-l) M„ib ¦LJ mab stat( £

fe _,
=1).oo2 Zm. vn "2i (5)

where m. denotes the mass of the strip i and v,., Vp.. the vertical
displacementsin the centre of gravity of the strip i, Another
proceeding can be applied for the determination of the end-moments
of piers which are of constant cross-section. The pier and the
horizontal beams peneträte in the upper part of the pier d-b (fig.7)

and the rigidity of the pier increases in this part
substantially. It can be assumed that the moment

of inertia is infinitely large there. The low end

was assumed to be fixed rigidly, which holds only
when the foundation reposes on solid rock. The end

moment acting on the upper end can be expressed by
frequency functions F (X) which have been developed

<" b

*& ;
Mbc

£Uv

Fig. 7
4)5)

by the author '. It is

- -V'a3<o2(6)
Mbc(^b=l) " f S iX) - T F4 iX) +!* F6 (A3 " IV'

The lest term in exp. (6) expresses the moment of inertial forces
of the rigid part d-b of the length a and ^ is its mass per unit
of length. It was assumed I 2,286 n©

<*•» (*¦'= 17,31t/m (=1,76 Mps2 m"2

X^L\rT o,33541 EI
E 2850 000 Mp/nT

Further it can be assummed for small values of X

XX) * 4- t^A4 F4(A) ± -6 + 2\\XA
Substituting into eq.(6) we obtain

M.

X * 12 - ^

?bc(^b=l)
2143961 - 301>15 «•»

The values of end moments and forces of all bars which were
determined according to exp. (5) or (6) are given in Table I.
4) JEolouSek V.: Baudynamik der Durchlaufträger und Rahmen.

Fachbuchverlag, Leipzig 1953

5) Kolouäek V. : Calcul des efforts dynamiques dans les ossaturss

rigides. Dunod, Paris 1959
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Table I.

$ =1'a V1 V1 v 1

s

"ab 1283123-286,20 ca2 107 5223*412,80 <o2

"ba 1075223+412,80 e^2 2927010-1124,46co2

% 3421740- 819,45co2 -168850-57 ,35oj2

"bc
1075223*412,80w2

2143961-301,15u2

84927H-2245 ,06uj2
1221640*301,02uj2

122l64**-301,02<o2 -168850-57,35J
Msb 1221640* 301,02 <o2 1462100-207,56 to2

Ysb -168850- 57,35 co2 9701,97-15,1 Ild

Free symmetrical vibrations, The first
natural mode is represented in fig. 8. The slope-deflection
equations are

where

Mab °
Mba + "b.
1 h °

7

*b
ab " Mab(i; =l)^a + Mab(L=l)(.

Mt-©a .,-i + IL -P.° \°)a -ba(^l)"S. £.<}b«l>- b
"bs-«bs(^=l)L + Mbs( V1)?tb (8)
«bc "Wir b
xsb xsb(Jb=l)-*b

+ ^(Vg-l) • vs

i and <© denote the amplitudes of rotation in joints a and b

respectively, v is the amplitude of vertical displacement in the
Joint s, and Yab is the amplitude of end force.

After substituting numerical values into (8) and (7) we obtain
the equations of the Table II. Setting the determinant of the
equations equal to zero, we obtain

OJ - 16 078*j4 + 36 175075 <o2 - 9353 402 000 0
and thereof

-1 -1 u) ¦ 116 s-1W(l) 17»235 a » W(2) * 48»* *» - (3)
The last two values are of an informative character only. The first
natural mode is given by f a, S© and v8; one of them can be chosen
and two other calculated from the equations of Table II.
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Table II.

t. tb V
s

1283123 - 286,20w2 1075223* 412,80uo
2

0

1075223 + 412,18co2 8492711 -2245,06 «o
2

-168850 -57,35uj2 =0

-168850 - 57,35co2 9701,97-15,mJ 0

Supposing that v * 3a« ,we have

^a » -0,02003 ^b * °»02804

The deformations of singular bars can then be obtained using the
statical curves of deformations which for the bar a-b are in fig»
6. The first mode of the system is shown In fig. 8.

OJE^ET,C3>.«X}*-d>«OCT)^+CTl sr-

c5Öid öoc5dö d o
5 feS§o ätiioQ <5 Ö»^

1 16 2524 26 ¦27

2

r- C3 CJ CM P")f— O* OM Q IT) C\i *~
CNJ CMCSiCMC\iCM^-»=-»-0

N <fi
O O *=-

X
(1)OOO o oooooooooII I I I I I I I I I I I

^7775

30,50m 27/50 m 27,50 m

Figr.8.

Forced vibrations« The forced vibrations of
the structure are produced by the movement of vehicles crossing
the bridge. The computation was executed for the case of a two

cylinder locomotive of the weight G 97 t moving at a constant
speed, the driving wheels of which produce the centrlfugal force
P=0,3 N^ (in Mp, if N denotes the number of revolutions per second)
with angular velocity Isl ¦ 2clr,N. The problem can be solved by expanding

the vibrations into a series of natural modes by the same method

which was described in detail in previous works of the author ' '
6) Kolouäek V.: Schwingungen der Brücken aus Stahl und Stahlbeton.

Abhandlungen IVBH. B. XVI.Zürich 1956.S.301-332.
7) Kolouäek V.: Vibrations of Bridges with Continuous Main Girders.

Publications IABSE.V.XIX.Zurich 1959.P.111-132.
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The critical speed by which N is equal to the first natural
frequency is ß - ^

"(1)where n,.,« -^kr-L is the first natural frequency of the loaded
bridge and D is the diameter of the driving wheels. It will be

assumed that the alternating forces of axles act only when moving
along the central span. Thp time Variation of the deflection in
the middle of the central span produced by the alternating force
is givjen by the formula (45) in the paper ' p.326

/ Avm(*/2)Psincömt r- _tot "I
(_|_^t)=—i±i 2 2 L(cosait_e bx)-wbsincotJ

Zio,^ (<o +<o b)
(9)

Kcwherew= -j- and ub io a damping coefficient. A is given by

A r?r~ (10)

fj <u{x) v2(1) (x) dx

where V/, •. (x) denotes the first natural mode and the summation 2.

is to be extended over all the spans of the System. B, is the
coefficient of the first term in the Fourier series

vCl)(x) B1 sin -|* + B3 sin -$?- +

The angular frequency £7/-, ¦> of the bridge loaded by a locomotive
is lower than of an unloaded one. If the centre of gravity of the

7)locomotive is in x d, it can be calculated according to p.123

<o
'CD " "(D vm.

where «\_ 2
D \£- (11)

(d)m* v,, s iü;
^=^d + -3~JÜ > (i2)

;/ Hd w dx

and mT is the mass of the locomotive. In our case it is (see fig.
8) in the central span ^

v(1)(x) 0,8766 sin -*-ß- - 0,0452 sin -Q-- (13)
so that

B1 0,8766

We obtain further by numerical integration (see fig,8)
¦e

^•l^Y\i) (x) dx 42»103 Mp s2 m

p
In accordance with preceding experience, we can assume that d

Then v,-,©d) 0,75 and

_^_ i + -22- 9a75?__
1,132

& 9,81 42, 303
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Further, it is __ \l -,

U(l) =C°CD \ ~ !7,235.0,940 16,198 s x

"(1)
n(l) "ZT" 2>578 Hz

A °A§2§§ 0,01873 Mp-1s-2m
1,132.42,103

P 0,3.2,5782 « 1,994 Mp

With D =¦ 1,26 m it is
c * 2,578.T. 1,26 10,21 m/s » 36,75 km p h

co £ä12.i21_ o,583 s"1
55

We can put <r_

where a et is the distance of the load of the beginning of the
central span. Then we have— ,~ _.

CÖ t _ W£D ^ 27 R
^a

w(d * - -13 r 27>8 ~r
<ü. t —S- -j-- 0,025253 a

The logarithmic decrement was appreciated in the value cT= 0,1 so

that <o, =oH/,v 0,258 s Substituting into (10) we obtain

0,01873.l,994cos 22a|*.§

v(£/2,t) » 1'—r0,583(cos fi - e-°'02525a)
2.16,198(0,583 *0,258'© L /

- 0,258 sin -JS-J (14)
The curve (14) is shown in fig.9a. According to our supposition
that the resonance exists only when the locomotive passes the
central span, we can determine the amplitudes A(t) of the curve
v //2,t) in the span b' - a', from the formula

A(t) C e'^b*
where C denotes the amplitude of vibrations when the locomotive
has left the central span. In fig. 9b the curve of fig.9a is
superposed above the curve of statical deflection produced by the
weight of the locomotive moving along the bridge. This curve
represents the theoretical curve of dynamic deflection in the
centre of the bridge. The dynamic augmentation of the static
deflection is 20 %
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a'
r—<W

30,50 27,50 30,5027,50
3;

a1

b;

Fig.9

Results of load-tests.
First of all, the bridge was tested by statical loads. The

measured deflections attained only 70 % of theoretical values. The

real rigidity was consequenty 1,42 times larger than the assumed

one. The attained value E of concrete was larger than was supposed
in the analysis and the moment of inertia was elevated by the
monolithic execution of sidewalks. The natura^requency increases
proportionally to the ||EI. It can be expected that the actual
first natural frequency and the critical speed will be|l,42=1,19
multiple of the theoretical value

c 1,19.36,75 * 44 km p.h
A 97 ton two cylinder locomotive was used for the teata. The

deflection in the middle of the central span was measured by means

of a Stoppani deflection meter. At the same time the stresses in
the lower part of the middle span girder were registered by means

of strain-gauges and Brüell-Kjaer registration apparatus. The

diagrams recorded at the speed of 44 km p.h. are shown in figs.
10 and 11. The first of them should be; compared with the theoretical
diagram of flg. 9. It is evident that the measured dynamic effects
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Fig. 10.

are larger than the calculated
ones. Themeasured dynamic
augmentation attains about 35 %

of the statical deflection
compared with the 20 % calculated.

The difference is mainly
the result of the higher
rigidity of the actual structure.
The centrifugal force P

Kjaer d Kjjer

/WW>/ww^» «j«jvvjvuvvv '^^^A
5^3=

increases with the 3econd power of the critical speed so that
actually P will be 1*42 times larger than as calculated. In the same

proportion, the dynamical augmentation of the deflection will
increase and will theoretically attain the value of 28 %, The

remaining difference between 28 % and 35 % is to be attributed to
the inaccuracy of measurement, of presuppositions e.g. the value
of damping and that of unbalanced masses of driving wheels and

partly also to the inaccuracy of the theoretical analysis which
neglects the movement of the masses along the bridge, etc.
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SUMMARY

In the paper the dynamic effects of moving load on a railway
bridge of prestressed concrete are discussed« The results of
theoretical investigation are compared with the values obtained
by the dynamic tests on the actual structure. The results are
qualitatively in good accordance but the measured amplitudes of
vibrations are somewhat larger than theoretically assumed.

RESUME

Les effects dynamiques des charges mobiles sur lesponts
rails en beton precontrainte sont analyses dans la contribution.

Les valeurs de la Solution the©]±iue sont comparees avec
les r^sultas experimentaux obtenus sur la construction actuelle.

Les amplitudes des vibrations mesurees surpassent un
peu ceux de l'analyse theorique.

ZUSAMMENFASSUNG

In der Arbeit sind die dynamischen Einflüsse der beweglichen

Belastung auf die Eisenbahnbrücken aus vorgespannten
Beton untersucht. Die Ergebnisse der theoretischenUnter -
suchung sind mit den experimentellen Werten verglichen, die
bei dynamischen Messungen auf einer fertigen Brücke erhalten
wurden. Beide Ergebnisse stimmen qualitativ gut überein, die
gemessenen Amplituden sind jedoch einiwenig höher als die
theoretisch gerechneten Werte.
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Structural Dynamic Considerations in Horizontally Curved Bridges

Quelques considerations sur le comportement dynamique de ponts en courbe

Dynamische Betrachtungen an waagrechtgekrümmten Brücken
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Professor of Civil Engineering

University of Pennsylvania
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1. INTRODUCTION

As the engineer is turning his attention more and more from aerospace
to "geospace" and his envirojiment, a more sophisticated understanding of the
response of earthbound structures subjected to natural and other forces assumes
greater importance. In particular with the development of hiijh speed transportation

Systems, for example in the United States, Japan, and France, it is
essential to consider the dynamic loads caused by the present and future vehicles,

and the dynamic response of bridge or elevated structures.

A number of analytical studies have been reported in the past fifteen
years of the dynamic response of bridges on straight alignments subjected to
simulated highway or railway loading. However, little or nothing of substance
has been reported for horizontally curved bridges, and as is seen from the results
presented herein, this increasingly used geometry gives rise to substantially
higher dynamic amplification factors for displacements and stress resultants

shear, flexural and torsional moments).

This contribution discusses some analytical results obtained for either
a concentrated force or a simulated vehicle traversing a horizontally curved
bridge at constant velocity. The significance of this type of study assumes
greater importance when it is realized that in the next ten years the world wül
witness new and more efficient and probably automated transportation Systems
in which vehicle speeds will approach 500 miles per hour.

2. CURRENT SPECIFICATIONS

In the United States and in many foreign countries the American Railway
Engineering Association Specifications [1] are used to determine the dynamic
effects of all types of moving trains by a Cooper's E-72 loading. In applying
the AREA Specifications to obtain dynamic effects, an impact factor, expressed
as a percentage of the static live load, is calculated on the basis of only one
independent variable, a characteristic length L in feet, which in general is
taken as the loaded length of the member being examined. For example, for the
direct vertical impact of moving trains for beam spans, stringers, girders, ...:

Impact Percentage

60 " 500

13 00

I> 4 0
10

L < 10 0 ft,

L >, 100 ft (la)
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and for truss spans
4 0 0 0

Inpact Percentage +15 (lb)1

L+2 5

A simple calculation shows that the greatest impact percentage can never
exceed 40% ofthe static live load.

The Standard live loading for highway bridges in the United States is
the HS 20-44 representing a highway truck-trailer of 72,000 pounds, or
alternately a uniformly distributed lane loading of 640 pounds per linear foot
of lane with either a concentrated force of 18000 pound (for moment) or 2 6000
pounds (for shear). Again, the dynamic effects are aecounted for by utilizing
only one independent variable L, which represents the length in feet of the
portion of the bridge span that is loaded to produce the maximum stress in the
member being investigated. The AASHO formula is:

Impact Factor ¦-' <£ 0.30 (2)

It must be noted that neigher of these specifications consider other
important parameters such as the velocity of the vehicle, the uneveness of the
deck ofthe bridge, the initial conditions ofthe vehicle upon entering the span
(pitching motion for example), or the geometry of the span, that is, a straight
alignment, a vertical curve, or a horizontal curve.

3. STRAIGHT BRIDGES

Comprehensive analytical studies of the dynamic behavior of simple
and multi-span bridges on a straight alignment have been reported in the
literature [e.g. 3,4,5]. Some ofthe parameters considered in these studies
involve: the speed of the vehicle; the ratio of the total weight of the vehicle to
the total weight of the bridge; the ratio of the natural frequency of the j axle
to the fundamental frequency of the bridge; rotatory inertia of the vehicle in
pitching motion; axle spacing; shape of the roadway profile; initial condition of
the vehicle (vertical and angular displacements) upon entering the span; initial
condition of the bridge (dynamic deflection and velocity) when the vehicle enters
the span. When these parameters are varied through the ranges of values that
describe the vehicle-bridge system of todays dynamic increments as'high as 1.0
are obtained; however, for the more basic parameters ratios involving vehicle
velocity, weights of vehicle and bridge, and natural frequencies of vehicle and

span, the maximum dynamic increments are of the order of magnitude of 0.30.
The term "dynamic increment" is defined as the difference between the dynamic
value ofa function (e.g. deflection, shear, moment) at a specified section
and the value of the function for the same force or load statically applied at the
same specified section, this difference being divided by the absolute maximum
static value ofthe function at the specified section.

Thus, it can be concluded that even though all the parameters upon
which the dynamic response of a bridge depend are not included in the AREA

and AASHO Specifications, the impact values specified by these organizations
appear feasible and reasonable for current design procedures.
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4. HORIZONTALLY CURVED BRIDGES

As horizontally curved bridges (many times approximated by a series of
short straight segments) were being utilized more frequently in highway design,
the University of Pennsylvania initiated, a few years ago, a study to determine
the dynamic response characteristics of such structures. The major objective
of this study was to ascertain the dynamic increments for realistic bridge-
vehicle Systems and thus determine whether the specifications in current use
were adequate.

A simply supported, single span, horizontally curved bridge was chosen
(see Figure 1) and two types of input were used: (1) A single force traversing
the bridge along its centerline at constant velocity, and (2) A rigid mass
(sprung mass) connected by a linear spring and a viscous damper to a rigid
mass (unsprung mass) which was always in contact with the bridge deck,
traversing the bridge along its centerline at constant velocity. See Figure 2.
The parameters considered and their corresponding ranges were:

1. Central Angle, Oi
0.125 radian £ &i 4 l.Oradian

2. Radius of Horizontal Curvature, r
200 ft. „< r « 800 ft.

3. Rigidity Ratio of the Bridge Cross-section, A

p^ _
torsional rigidity + warping rigidity function

Flexural rigidity
0.05 •# A «? 1.00

4. Speed Parameter, ov
(velocity of vehicle) (fundamental period of equivalent

straight bridge*)
ax

2 (length of equivalent traight bridge*)
0.06 * ctv <¦ 0.18( 20 mph <f v ^ 60mph)

5. Weight Ratio, R

r _ total weight of vehicle
v weight of bridge

0.08 4- \ < 1.00

6. Frequency Ratio, $v
natural frequency of vehicle
natural frequency of equivalent straight bridge*

*The equivalent straight bridge is defined as having the same length as the
curved bridge.

Cs*h1i iccHüi-Ii-ht
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The disp'acement equations of motion representing this system were
coupled, non homogeneous partial differential equations which were solved by
techniques described previously in detail by Tan and Shore [6,7 ] The

major conclusions drawn from this study of horizontally curved bridges were:
(1) The dynamic increments (as defined in Section 3) for deflections and stross
resultants for the moving constant force were generally higher by at least 10%

than for an equivalent straight beam; (2) The dynamic increments for the moving
vehicle for deflections and stress resultants were significantly higher than for
an equivalent straight beam; (3) When the frequency ratio and the weight
ratio are 0.30 or less the response ofthe bridge due to the constant force can
be used; (4) For a rigidity ratio greater than 0. 5 and a central angle less than
0.50 radians, the curved bridge response can be predicted by an equivalent
straight bridge; (5) Preliminary results indicate that the dynamic increments
for vertical deflection, w, rotation, ß and stress resultants are essentially
the same for a given set of parameters. Two typical response curves for
curved bridges are shown in Figures 3 and 4. In these Figures the following
notation is used:

DIWSB dynamic increment for vertical deflection of an equivalent
straight bridge of length Lc ; DIWCB dynamic increment
for vertical deflection of the horizontally curved bridge.

On the basis of the results obtained in this study of the response of
horizontally curved bridge the following recommendations appear in order:

(1) An appraisal of the current specified impact and dynamic
factors to determine whether other variables should be

incorporated in addition to only a characteristic length.
(2) Since for curved bridges the dynamic increment is extremely

sensitive to the rigidity ratio parameter, attention should be

given to methods for accurately calculating the torsional,
warping, and flexural rigidities of complex bridge structures.
It appears necessary and feasible that work on analytical
methods by finite element techniques verified by model tests
should be initiated for predicting these rigidity ratios.

(3) Dynamic response tests on laboratory models of curved beams

appears advisable. These models should simulate as closely
as possible the mathematical model used in References 6 and
7, to verify the analytical results.

(4) Field tests of actual curved bridge structures subjected to
dynamic loads should be initiated to correlate both the
analytical results and model tests.

(5) Further analytical work should be initiated for curved bridges
to include other effects such as superelevation which introduces
an initial twist in the bridge, vehicle speeds up to possibly
500 mph, longitudinal forces due to braking, accelerations, and
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(5) Continued:

decelerations at these high speeds, as well as the other
parameters listed in Section 3 which were reported for straight
bridges, but which were not included in the study reported in
References 6 and 7.

REFERENCES

1. AREA - Specifications for Steel Railway Bridges, Chicago, 1965.

2. AASHO - Standard Specifications for Highway Bridges, Washington,
D. C, 1965.

3. Hillerborg, A., "Dynamic Influences of Smoothly Running Loads
on Simply Supported Girders". Institute of Structural Engineering
and Bridge Building of the Royal Institute of Technology, Stockholm,
1951.

4. Biggs, J. M. Suer, H. S„, and Louw, J. M., "Vibration of Simple-
Span Highway Bridges", Transactions ASCE 124: 291 (1959).

5. Huang, T. and Veletsos, A. S. "Dynamic Response of Three-Span
Continuous Highway Bridges", Civil Engineering Studies, Structural
Research Series No 190, University of Illinois, 1960.

6. Tan, C. P. and Shore, S., "Dynamic Response of a Horizontally
Curved Bridge" Journal of the Structural Division, Proceedings
ofthe ASCE, March, 1968, pp 761 - 781.

7. Tan, C. P. and Shore, S., "Response of a Horizontally Curved
Bridge to a Moving Load" Journal of the Structural Division,
Proceedings of the ASCE. Publication pending.

d0

X
z,w

FIG. 1. CURVED BEAM GEOMETRY

M l±l s

C
v
X777777777777

FIG. 2. IDEALIZED VEHICLE



8

DIWSB

A - 0.05
A - 0.50

A - 1.00

4/ \ \\/ \)f
l \\ P\v \¦p^p^-.2

0.20 0.U0 0.60

Position of Load, vt/L

0.80 1.00

FIG. 3. EFFECT 0F RIGIDITY PATIO ON DYNAMIC INCREMENT FOR DEFLECTION AT MIDSPAN

CONSTANT MOVING FORCE, L r =200', CC =0.18

3
JD

C

C

>
r-
O
<
2

oo

D
m
J3
>
H
O
z



1.1*0.

A » 1.00

1.2C A - 0.5°0

////

A - O.OJ

0.80

o.Uo

o

'4
l: •©

\

/1
II:
i:

*.\
'.X

\

/
•V

//

^^4
* N * ¦ •

S ". / // -1

V.

/ /
/ /
//
/V.

-.Uo

v-..©/ ' \

-.80
0.20 o.Uo o.tSo

Position of Load, vt/L

0.80 1.00

US

a
z
m
-<
usIO
za
m

FIG. 4. EFFECT OF RIGIDITY RATIO ON DYNAMIC INCREMENT FOR DEFLECTION AT MIDSPAN

SMOOTHLY MOVING VEHICLE, L r 200! a =0.18, R =0.50, y =0.50
C V V V

tt



1222 VI - STRUCTURAL DYNAMIC CONSIDERATIONS

SUMMARY

Many studies have been reported in the past fifteen years concerning
the dynamic response of bridges on straight alignments subjected to simulated
highway loading. However, little has been reported for horizontally curved
bridges and this rather common alignment on highway and railway Systems
gives rise to substantially higher dynamic amplification factors for displacements

and stress resultants. Such a study has been made for a simulated
highway vehicle traversing a curved bridge considering such parameters as
radius of curvature, flexural to torsional rigidity ratio,velocity of the vehicle,
and vehicle mass to bridge mass ratio. Some overall results will be reported
and recommendations made in light of current specifications.

RESUME

De nombreuses etudes ont 6te faites ces dernieres 15 annees
sur le comportement dynamique de ponts droits soumis a une Charge
d'autoroute simuldß. Cependant, on a presque totalement neglige
les ponts en courbe, beaucoup employes pour routes et chemins de
fers. Pourtant, on a ici des facteurs d'amplification dynamique
considerablement plus grands pour les deplacements et pour des
tensions resultantes. Une teile etude a ete faite pour un vehicule de
route simul^ traversant un pont courbe, considerant des parametres
tels rayon de courbure, rapport des rigidites ä la flexion et ä la
torsion, vitesse du vehicule, et rapport des masses du vehicule et
du pont. Quelques resultats universels et des recommandations
concernant les executions courantes seront publies.

ZUSAMMENFASSUNG

Viele Untersuchungen sind in den letzten fünfzehn Jahren
betreffend das dynamische Verhalten von geradlinigen Brücken unter
Verkehrslast angestellt worden. Wie auch immer, wenig ist über
waagrechtgekrümmte Brücken gesagt worden; diese weniger gebräuchliche

Ausführung der Strassen- und Eisenbahnbrücken zeitigt
erheblich höhere Schwingungsamplituden für die Verschiebungen und
Spannungen. Eine solche Untersuchung wurde für ein simuliertes
Fahrzeug bei folgenden Parametern angestellt: Halbmesser,
Drülsteifigkeit, Geschwindigkeit des Fahrzeugs sowie Ausmass desselben

im Verhältnis zu dem der Brücke. Einige Gesamtspannungen und
Empfehlungen aus gebräuchlichen Ausführungen sind aufgeführt.
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Non-Stationary Vibrations of Bridges Under Random Moving Load
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Nichtstationäre Brückenschwingungen unter zufälliger, beweglicher Last
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1. Introduction

It has been assumed up to this time that the traffic loading
of bridges, i.e. the static and dynamic component of the service
load, is a well known function of the space and time coordinate (a

deterministic process), see [lj [2], This paper deals v/ith the essentially

opposite case supposing that the traffic loading of bridges
is a random process. This new coneeption is in better accordance
with observations because the true traffic loading is influenced
by the random composition of the traffic flow, by the random initial

conditions when the vehicles enter the bridge, by the irregulari-
ties of unevenness of the road surface etc.

In general the static and dynamic deflection of bridges is
described by the linear differential equation

L[v(x,t)J p(x,t) (1)

where v(x,t) denotes the deflection and p(x,t) the load. The random

Variation of p(x,t) is assumed not only with respect to the time
coordinate t but also to the position coordinate x and in addition the
load p(x,t) is regarded as a nonstationary Gaussian random process
of non-Markov type.

L represents a linear differential Operator of the type
L Lo V^-H" + 2^"b-^ (2)

at* at
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where LQ is a seif-adjoint linear Operator in the space coordinate x,
& - mass per unit length and cofe - circular frequency of viscous

damping.

2. Probability Analysis

I±lt_Norml_r_Mode_Anal£Sis. Elastic Systems described by Eqs.
(1) and (2) are with advantage solved by means of the normal-mode
analysis «,

V(x't} ?iV(J)(x) q(J)(t) (3>

p(x,t) XI p. v(j)(x) Q(j)(t) (4)

where v(J)(x) are the normal modes of Vibration that are obtained
with regard to the boundary conditions from the equation

LoL>(j)(x>] ^ wW*(j)fr> (5)

W(j) is the natural circular frequency of the System,

Qü)(t) " / p(x,t) V/,x(x) dx (6)
Vcj)0/

J

is the generalized force,

V(j) =/^^J)(x)dx> j^ v(j)(x)v(k)(x) dx 0 for j / k
° '

(7)
and q(J)(t) is the generalized deflection that is obtained with
regard to the initial conditions from the equation

V(J)(t) + 2 cüb;(j)(t) +«2J)q(J)(t, Q(j)(t)g)
The Solution of Eq.(8) with zero initial conditions isX oo

Q(j)(t) ^h(j)(t"r)Q(j)(r) ** * /h(j)(T)Q(j)(^) äv

where h,.©t) denotes the impulsive function
f 1 "VUpr- e einölt for t * 0

h(j)(t) & (10)

l ° for t < 0

and co^ w^} - wj # The limits of integration in (9) ^ybe extended to oo and -oo respectively, because Q, .»(t-*) 0
for rr > t and h(j)(r) 0 for r< 0, respectively.

The functions h(j)(t) and v(j)(x) are deterministic while
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q(*)(t), Q/^Ct), v(x,t) and p(x,t) are random ones.

2t2t_Co^elatign_Anal£sis. The probability analysis recquires
to know the statistic characterisitcs of the input

p(x,t) E [p(x,t)] + p(x,t) (11)

Kpp(xl'X2,tl,t2) E [P(acl»tl) P(x2'V] (12)

where E represents the mean value linear Operator, p(x,t) - the
centred value of the load and kDT)(3Cti3C2»*1,*2^ ~ the covar:1-ance o:f the
nonstationary function p(x,t).

As follows from the definition of the covariance (12) the co-
variance of the generalized deflection may be evaluated from (9)

^(jW*1'*2' =//h(J)(rl)h^)(T2)KQ(j)Q(k)(tl-Tl'VT2) '

•dridr2 (13)

the covariance of the deflection from (3)

o« CO

K™(x-, |Xo>t, .O Z Z_ v/^(x, )v/v\(x9)K (t,,t?)w l'^'1!.» 2 j=i k=1 <J> 1 (W 2 <l(j)<l(k) 1 2(14)

and the covariance of the load from (4)
00 00

Kpp(x1,x2,t1,t2) Z Z A(j)(x1)v(k)(x2)KQ( )Q(k)(*l»t2>
(15)

In Eqs. (13) and (15) the covariance of the generalized force is
calculated from (6) n

KQ(J)Q(k)(tl,t2) =v V~//VU)(xl)v(k)(x2)KW)(xl»X2'tl't2) '
)V(kWJ(j)v(k) 00

dx1 dx2 (16)

2.3._§pectral_Densitj_AJnal^8i8. The spectral density of a

nonstationary function is defined in[3j and for the generalized deflection

the Wiener-Khinchine relations between the spectral density
and the covariance are as follows

OC 00

1 // -K^tp-OLt,
Sn n Klö? " ö Kn n (t,ft,)e X A dt, dt,q(j)q(k) 1' 2 4x7J qü)qU) X 2 T 2(1?)

-00 -ec

rr i(«2t2-«it,)
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For the spectral density analysis it is also convenient to in-
troduce the transfer function

Ott

[ -it>t 1
H(J)(W) /h(j)(t)e dt =_1 ö (19)

X w(j)"° + 2iaV°

as a Fourier integral transformation of h(.j(t) given by (10).

Then the spectral density of the generalized deflection may be

evaluated as a function of the spectral density of the generalized
force, see [4] :

S„ n (cü,,6>9) HMx(ä, H/Vx(w?) SG Q («-,,<©) (20)
°-(j)q(k) X 2 (J) X (k) 2 Q(j)Q(k) X 2

where H(.\(k>) is a complex conjugate function of H/.n(w).
Here we used the spectral density Sn n (<JJn ,o>„) of the ge-Q(j)Q(k) 1 2

neralized force defined simüarly as in (17); this can be adapted
with regard to the Eq. (16)

1 ff -KsUSt-Ssltr)
S (cj^Wp) ö-/ / Kq 0 (t,,t2)e dt,dt?Q(j)Q(k) 1 2 Ax2 J J ^(j)Q(k) 1 2 x 2

l 2 — (21)

~ // v(j)(xl)v(k)(x2)SpP(xl»x2'CJl»aJ2Jdxldx2
i)V(k)7 7(j

0 0
oo oe

i(w2t2"<altl^
K0 0 <W / / S0 O Kiw2)e ^ x x do d«2 (22)
Q(j)Q(k) X 2 ^V Q(j)Q(k) X 2 1 2

The spectral density of the deflection is then with respect to
(14)

txS CO

Svv(x1,x2,co1,^) II v(j)(xl)v(k)(x2)Sq(.)q(k)("l»w2)

from which the covariance of the deflection can be calculated simi-
larly as in (18) and (14).

3. Random Moving Load

3tl._Random_Moving_Force. As an example we shall solve a simple
beam of span £ loaded ba a massless force P(t) P + P(t) with
constant mean value E [P(t)J P which is moving with constant velocity

c along the beam. The analogous deterministic case was solved in
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[2] and [4] and it represents the mean value of the present Solution
E[v(x,t)] so that we will now investigate the stochastic case only.

The load per unit length and its mean and centred values are

in our case

p(x,t) ^(x-ct)P(t) E[p(x,t)] (5(x-ct)P p(x,t)
<£(x-ct)£(t) (24)

where <£(x) represents the Dirac-delta function. The covariance of
the load can be calculated from (12)

K (x1,x2,t1,t2) cf(x1-ct1) 6(x2-ct2) Kpptt^tg) (25)

where Kpp(t,,t2) is the known covariance of the load P(t). We

Substitute (25) into (16) and then, with regard to the well known

properties of the Dirac function, we obtain the covariance of the

generalized force
1

K_ 0 (t. ,t,,) vr .©et, )vfv©ctp)Kpp(t, ,tP) (26)
Q(j)Q(k) 1 l V(j)V(k)

(J) ^ Ck) 2 PP X 2

Using (26) the covariances of the deflection can be calculated
from (13) and (14).

As an example let us assume the covariance of the force P(t)
in the form

Kpp(t1,t2) Kpp(t2-t1) 2xSp efttg-t^ (27)

where Sp is the constant spectral density (white noise). Then we

obtain from the Eq. (13)
oooo

K (t-,t,) llh(*4XTy>h(v4T?)V(.-i\c(U-Tr)\.
q(j)q(k) x 2 vC)v(k)j/i

" -WO-0O

V(k)[c(t2-f2)] Kppd^-^.tg-^) är1 dr2

2xST I r

v h(j)(rl>h(k)(rl+t2wtl)v(jic<Vrl)J-
V(J)V(k) J

¦ '(k^VVJ dTl (28)-«

If for simplification we neglect the cross-correlation of the
generalized deflection, i.e. K (t, ,t0) 0 for j ^ k, the

q(j)q(k) 1 d

variance of the deflection can be received from (14) :
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<<*,t> Kvv(x,x,t,t) Z v2^x)K (t,t)j^— Vi. \y. /Ps

j=i G> q(j)q(j)

- y 2*sp 2

j x (j) >»

(29)

The following expressions hold true for a simple beam of span l
and of bending stiffness EJ, see[4]

jxx
V(.)(X) sin—, V(j)

<^l
' W(J>'

j4*4 EJ
(30)

2 ^' ^ ^
Substituting (30) and (10) into (29) we obtain (note that the
limits of integration may be changed as h, • \(r1) 0 for t; < 0 and

v(,)[c(t-r1)] 0 for r1> t
*r- 8xS

cr(x,t) 2_-
j=i ^«3)2,/2 oi" /

jwcp 2 jxx / r -«. r^ sin —7- / I e sin cj(j)riSin_(t_ri) dr1=

V8xSp 2 Jxx x
©_ j-70" sin
j=l ^«(j) i 16

sin 2co©.t +

r rU(rt+3*c/4 \ -2«it-^ —2 2 sin 2^ct/i + e •

wh _2wh't 1

f^t + -7 (cos 2j7rct/i - e
D

cos 2w. ..t) +Cj) «(.}+jxc/i (J} J

+ -^ ^- -si
-2o>,t

(«(jj-j'c/i)2*«^
sin 2jTct/i + e sin 2co©.t + —

"(^-J'e/i
-2«bt,(co3 2jxct/£- e cos 2<-o©.,t)

JTc/i2^b

j TCCVi +«£ \6Jfe
3in 2jirct/i-

-2w.t\ 26V -2«. t+ cos 2jrct/i - e
D --?_|l - e

b (cos 2co('j)t - -iii.
US(j)

1

.sin2co(.)t)
2 -2-vvt

+ 1 - e
b

(31)

As the variance of the deflection is a function of the time
the resulting Vibration of the beam appears as a nonstationary process

although we have taken into aecount the movement of a stationary
random force.
For subcritical velocities c < ccr) the greatest static and
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dynamic effects of a moving force appear approximately in the moment

when the force crosses the beam centre. Therefore the coefficient
of variance, defined as Cv(x,t) S" (,x,t)/E [v(x,t)j is to be calculated

for x 1/2 and t T/2 i/(2c). It represents then the
relative dynamic increment of the deflection effected by the random

moving force and it takes the following form (from (31) for j=l
approximately, see [4] :

Cv(i/2,T/2) Cp. Cvp (32)

Here Cp is an analogous coefficient of variance of the force P(t)
and Cp is represented graphically in Fig. 1 as a function of the
parameters ot and ß where nX is a velocity parameter and ß a damping

parameter, respectively :

<* c/cCT ; Ccr (T//)(EJ/u )1/2 (33)

ß ' % / "(1) (34)

The same results can be obtained using the spectral density
analysis from the section 2.3. In this case the load (24) must be

taken for a function of the time only, see [4].

312._Random Moving_Distributed_Load. As a next example we

shall solve a simple beam loaded by an infinitely long random strip
which is moving with constant velocity c along the beam. The analogous

deterministic case was solved in[4] where not only the movement

of the continous load p (measured per unit length) but also
the effects of its inertia mass ja. p/g were taken into aecount.

The load is assumed to have the following form
p(x,t) p(x-ct) r(t) (35)

The first of the components p(x-ct) is a random variable in the
moving coordinate System £ x-ct while the second r(t) is a random

function of time. The mean values of these two functions are assumed

to be constant
E[p(| )] p E[r(t)] 1

so that the load (35) may be written as

p(x,t) p + g(x,t) [p + p(| )]. [l + r(t)] (36)
where p(x,t) p( + pr(t) + p(| )£(t). Then with respect to (12)
the covariance of the load is
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+ PKpr(^l*2) + p2lW(tl»t2) + P Vr(^l'V2) + «ppr^l'^V +

+ P Wfe'W + Vr^'^'H»^1 (37)

where £ x.-ct., i 1, 2. Let us assume approximately that the
functions p(| and r(t) have no cross-correlstion of the second up
to the fourth order; then (37) reduces to

VXl,X2,tl»t2) Sp(^^2> + ^ Kw(tl^ (38)

where KDD(fi>f2^ ^s ^e covariance 0x* the load function in the
moving coordinate system i and K (t,,t© is the covariance in the
time coordinate.

As an example let us assume the covariances of these functions
in the following form

VM2> atV(fe-fl) Krr^,t2) 2xSrCf(t2-t1) (39)

where S and S are the constant spectral densities (wide-band spectra).

Putting (38) and (39) into (13) the covariance of the generalized

deflection may be evaluated; hence
sssstssU

KQ(J) QCK, (tl»t2) =7^/|/^ '
-»-»)o (40)

/ 2jtS cf[x2-x1-c(t2-T2-t1+tL)] + 2vTSrp2ö,(t2-t1-T2 + ri)|dx1dx2dT1dr0

The limits of Integration with respect to time r are considered
from 0 to 00 in accordance with (10) and because the movement of the
load has an infinitely long duration.

Neglecting the cross-correlation K (t,,t© 0 for j ^k

the variance may be calculated from (40) and (14) :

ESO

<<*>*> Kvv(x,x,t,t) 2E v2(.)(x) Kq(j)q(j)(t,t)

j^^iW^jÄ'.uV l 1 c D % D +

— t — —
*2 2

+ 4 wb b " 3 w(j) + Pe«)
-ö) i/c _,1 - e cos w©v<t/c.cos jtf)
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<Ä>,

0 0 /
D + 4 wj j( <3{ - 3^b - j2x2c2//2) b --¦- 60/' i/c.COS j*ft+sm '(J)'

y- 4Srp2(l - cos jx)
3-1 ^2j2x s\^0^*4

sin
JTCX (41)

where co(j) w2,j(l - cx2at/j2)/(l + « tO,h)
2 _2

CJf .s- Cd.
Ki) b

U,
2,2.2/e.2%2.

<«>b/(l + ae D 3( j - j x'di/jti)'+

+ 4iASi?c2/l2

X <u /^ (42)

The result (41) does not depend on time so that the Vibration
of the beam is a random process stationary in time. The coefficient
of variance for the centre of the beam can be approximately brought
to the following form, see [4]

CT(!/2,t) =0;(i/2,t)/E[v(i/2,t)] CpCvp +^.0^ (43)
of variancr?

where C and C are the analogous coefficientsVof functions p(5
and r(t)respectively and the expressions C and C are represented
in Figs. 2 and 3 as functions of«: ,ß and mass parameter ae, see

(33), (34) and (42).

4. Application of the Theory and Experimental Results

The theory presented above can be applied to bridge structures
assuming that their moving load is a random function. The Solution
is shown for two typical cases which concern (a) short span bridges
and (b) long span bridges.

(a) The load of short span bridges or short longitudinal beams

is idealized by a concentrated force of random time Variation
moving along a beam. Structures of this type are usually loaded by
one axle of the vehicle only.

(b) The load of long span bridges is idealized by an infinitely
long random strip (35). The first component of this load p(i

expresses the random distribution of the static load in the bridge
span direction while the second component r(t) interprets the true
dynamic effect of the load. The large span bridges are usually loaded

by a series of axles resulting either from continous highway
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traffic or from a railway train whose length is supposed to be mufch

longer than the span of the bridge.

In reality the traffic loading is - generally speaking - an
unknown random process. Therefore a Solution was given also for the
problem inverse to that given in the present paper?[5]. The probability

analysis [5] Starts with the known statistic characteristics of
the response v(x,t) giving the input characteristics for p(x,t) as
a result. The statistic characteristics of any particular bridge
(i.e. the beam deflections or stresses in some points) can be measured

without difficulties under service conditions and on this basis
the load characteristics can be evaluated.

As an example the Fig. 4 shows a covariance function measured
on a railway bridge.
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SUMMARY

The traffic loading of bridges is considered as a nonstationa-
ry random process. Starting from the statistic characteristics of
the load the theory supplies information as to the statistic char*c-
teristics of the deflections or stresses in a bridge i.e. the
mean value, the covariance, the spectral density, the variance or
the coefficient of variance.

The Solution is shown for two typical cases which concern small
and large span bridges.In the former case the load is idealized by
a concentrated force of random time Variation moving with constant
velocity along a simply supported beam. The random effects of this
load are decreasing with increasing velocity and damping (Fig. 1).

In the latter case the load is idealized by an infinitely long
rnndom strip which is moving again with constant velocity along a

simple beam. This type of load induces in the beam a stationary random

Vibration the amplitudes of which are increasing with decreasing

damping and for velocities approaching the critical speed which
depends also on the mass of the traffic load (Figs. 2 and 3).

RESUME

Le traffic sur un pont est considere comme une Charge stochastique

non-stationnaire. En partant des caracteristiques statistiques
de cette Charge, la theorie donne des informations concernant les
caracteristiques statistiques des deformations ou des tensions dans
un pont, c-ä-d. la valeur moyenne, la covariance, la densite.spec¬
trale, la variance ou le coefficient de variance.

Deux cas typiques ont ete traites pour un pont court, resp.
long. Dans le premier cas, la charge est idealisee par une force
concentree, variable arbitrairement avec le temps et voyageant avec
une vitesse constante le long d'une poutre simple. L'effet arbitraire

de cette Charge decroit avec vitesse et amortissement croissant
(fig. 1).

Dans le deuxieme cas, la charge est idealisee par une charge
repartie stochastique infiniment longue voyageant sur la poutre
simple avec une vitesse constante. Cette charge provoque une
Vibration stationnaire arbitraire, dont les amplitudes croissent
inversement avec l'amortissement et augmentent avec des vitesses
approchant la vitesse critique, qui depend egalement de la masse
de la charge de traffic (voir fig. 2 et 3).
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ZUSAMMENFASSUNG

Die Verkehrslast von Brücken wird als nichtstationärer,
zufälliger Vorgang aufgefasst. Ausgehend von den statistischen
Charakteristiken der Last liefert die Theorie Auskunft über die
statistischen Charakteristiken der Verformungen oder Spannungen einer
Brücke, die da sind der Hauptwert, die Kovarianz, die Verteilungsdichte,

die Varianz oder der Koeffizient der Varianz.
Die Lösung wird an zwei ausgeprägten Beispielen mit einer

kurzen und einer langen Brücke gezeigt. Im ersterwähnten Fall ist
die Belastung durch eine Einzellast idealisiert, die sich bei
zufälliger Zeitvariation mit konstanter Geschwindigkeit entlang des
einfachen Balkens bewegt. Die zufällige Wirkung dieser Last ist
verschwindend bei wachsender Geschwindigkeit und Dämpfung (Fig. 1).

Im letzteren Fall ist die Belastung durch einen unendlich langen

Streifen idealisiert worden, der sich wiederum mit konstanter
Geschwindigkeit bewegt. Dies bewirkt im Balken eine stationäre,
zufällige Schwingung, deren Amplitude mit abnehmender Dämpfung und
mit Geschwindigkeiten, die sich der kritischen nähern, welche von
der Lastmasse abhängt, wächst.
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The Wind-induced Vibrations of Large Cylindrical Structures

Vibrations dues au vent dans de grands ouvrages de forme cylindrique

Windschwingungen langer Zylinderbauwerke
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The University of Western Ontario, London, Ontario, Canada; on
leave of absence from the Czechoslovak Academy of Sciences, Prague

The difficulties caused by the wind-induced lateral vibrations
have increased with modern high cylindrical structures and columns
of large bridges. The nature of the excitation and the aerodynamic
damping of lateral vibrations are discussed in this paper.
1. Introduction

In recent years, wind-induced lateral vibrations excited by
the fluctuating lift forces have oecurred with some large
cylindrical structures in many countries. These dangerous vibrations

are usually excited at low and medium wind velocities and
have their predominant components in a plane perpendicular to that
of the wind. The lateral vibrations have caused serious trouble
in many cases, as described, for example, in papers [6,8,12,16,17,
20] An illustration of a difficulty of this kind is the lateral
Vibration of the high cylindrical columns of a 330 m span arch
bridge [9,12]. The Vibration which was much stronger than in the
case described by Kunert [6] produced in the columns additional
dynamic stresses of up to roughly 780 kg/cm2 that of course highly
compromised their desirable bearing capacity. A similar problem
recently arose with the cylindrical hangers of a large arch bridge
in Canada. So it appears that the possibility of lateral Vibration
must be taken into aecount not only with masts and towers, but
with all structures containing slender cylindrical members and
thus, also with some steel arch bridges.

In general practice, the problem is not usually faced until
the structure is finished and the eure is difficult. The
prediction of the lateral Vibration already in the design stage is
therefore of major importance.

2. The Nature of Lateral Vibration Excitation
A considerable number of experiments have been carried out

with the aim of elueidating the nature of lateral oscillations.
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Understanding the problem has already had quite an interesting
history. For many years, the lateral Vibration was considered

to be a response of the structure to fluctuating lift forces which
accompany the regulär eddy shedding creating the well-known
pattern in the wake, usually called Karman street. This explanation

leads to the Solution of the response in terms of deterministic
vibrations which results in very simple formulae even for

rather complicated structures [8]. This approach seems justified,
especially in the subcritical ränge; however, already the earlier
measurements in the wake have shown that even in this ränge the
vortex pattern is not perfectly periodic, with the only exception
of extremely low Reynolds numbers (see Roshko [14]). Thus thelift is composed of periodic and random parts and the response
should be solved in terms of random Vibration. This approach
shows the strong dependence of the intensity of Vibration on the
ratio of the random and periodic parts of the lift [9]

Later studies of cylinder behaviour in the supercritical ränge
led to the conclusion that the lift is chaotic (see Fung [4]) and
the Statistical approach, based on Fung's power spectrum of lift,became very favourable for the whole supercritical ränge. Nevertheless,

this calculation sometimes leads to considerably small
amplitudes with large structures [9].

Finally, investigations in the region of very high Reynolds
numbers proved a reappearance of harmonic component of the lift or
narrow band lift in this domain, sometimes called the transcritical
ränge. The papers by Roshko [15] and by Cincotta, Jones and Walker
[2] represent very important contributions in this respect.

To provide further information about the fluctuating forces
acting on the cylinder, pressure measurements on the surface of the
body are useful [5]. Fig. 1 represents an example of such measurements

carried out by the author and 0. Fisher on a cylinder with a
diameter of 31 cm at Reynolds number R 265000 and Strouhal number

S 0.194. The upper trace
is the motion of the cylinder,
the lower traces show the

© A A surface pressures measured at^ v' v two points situated 2.35
diameters apart in a plane
perpendicular to the direct-

i ion of the air flow. (The
.' A A sensitivity of the two

J V > pressure pick-ups Disa Pu2a
was different, as indicated).
These measurements were made
at a wind velocity, which was
lower than that at the reson-
ance (below the resonance)..©VV it can be seen that the
pressures are approximately
in phase with the motion. In

Fig. 1. Surface Pressures on a the region of resonance,
Circular Cylinder there was a distinet phase

shift it/2 between the pressures
and the Vibration. Above the resonance, the periodicity was not so
well pronounced as in the former cases. However, whenever the
periodicity could be recognized, the phase shift between pressure
and motion approached tt. These observations of phase conditions
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between the fluctuating lift force and the response of the
cylinder evidently agree with phase conditions of mechanical
Systems excited by an external force. Therefore, the outlined
pressure measurements support the assumption that the lateral
Vibration may be considered as excited oscillations.

This conclusion is important because some authors tend to
explain the lateral Vibration of circular cylinders as oscillations
induced by negative aerodynamic damping. This explanation does
not seem justified for the following reasons:
1. The existence of fluctuating lift forces has been proven many
times, even with steady cylinders performing no motion.
2. The mentioned phase shift it/2 at resonance (out of phase force)
is typical for excited oscillations.
3. The negative aerodynamic damping, as usually understood, represents

forces which are induced by the motion of a body, the cross-
section of which is aerodynamically unstable. The square cross-
section represents the well-known example of this kind. However,
the instability clearly defined with the square cross-section
cannot be defined in the same way with the circular cross-section.
Furthermore, the self-excited Vibration of bodies with unstable
cross-section significantly differs from circular cylinder

oscillations. The
main feature of self-
excited oscillations
is the monotonous
increase in steady
amplitudes with wind
velocity above a
certain value. An
example of wind-
induced oscillations
of this kind is
given by Fig. 2.
This figure represents

the universal
galloping response
of square cylinders
having different
normal modes under
the action of wind
with constant and
variable mean speed

Fig. 2. Universal Galloping Response of Square [11].
Cylinders Having Different Normal Modes
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This representation holds generally for all bodies with different
mass, damping and normal modes but with square cross-section [11].
In other cases of negative aerodynamic damping, the character of
the response as a function of wind velocity is similar; however,
this character is principally different from that of circular
cylinder Vibration. Laberal response of circular cylinders always
implies either a more or less well pronounced resonance peak alike

as curve a in Fig. 3, or a continuous
progressive increase in amplitudes, as
diagrammatically shown by curve b in
the same figure. According to the
previous, the latter case is typical
for the supercritical ränge with the
purely random lift.

For all these reasons, the
assumption that the lateral vibrations
of circular cylinders can be calculated

wind velooity as excited (forced) oscillations
seems to be well founded. The problem,

Fig. 3. General Character of course, is to know the lift forces
of Lateral Vibration as functions of all main factors which

govern the phenomenon. For a reliable
prediction, the lift forces should be defined by their power spectra
and cross-spectra as functions of Reynolds number, intensity and
scale of the turbulence and dimensionless amplitude of Vibration.

Despite the large amount of experimental work which has been
carried out, a füll description of lift forces is not available.
The research of ground wind effects in relation to launch vehicles
has recently provided some very interesting information concerning
the ränge of very high Reynolds numbers inaccessible in Standard
wind tunnels. Especially the work of Cincotta, Jones and Walker
[2] must be referred to here because the ränge of very high Reynolds
numbers is particularly important for large structures. As for the
nature of lift forces, these authors came to the following
conclusions concerning different ranges of Reynolds numbers:

In Reynolds Number Range: The Nature of Lift is:
1.4 to 3.5 million Wide band random
3.5 to 6 million Narrow band random
6 to Iß.2 million Random plus periodic

The Strouhal number determined from the autocorrelation
functions increases with the increase in Reynolds number from 0.15
to 0.3, but the value 0.3 remains constant throughout the random
plus periodic ränge.

So far, the previous measurements by Fung [4] and Roshko [14]
agree with these results.

However, the measurements by Schmidt [18] in the ränge of
Reynolds numbers up to 5 million led to another result. His power
spectrum for lift force at R 5 million has no well-pronounced
peak. Contradictions of this kind oecurred with other measurements
too. It seems likely that these contradictions have their reason
in differences in surface roughness of the body and the intensity
and scale of the turbulence of the flow.
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2.1 The effect of turbulence
The extent to which the behaviour of bluff bodies in wind can

depend on turbulence is demonstrated by Fig. 4. The sharp peak
caused by vortices in
smooth flow completely
disappeared due to turbulence

and the character
of response is quite
different in both cases.

The turbulence and
the surface roughness
thus highly affect the
nature of aerodynamic
forces acting on the
cylinder. These factors
therefore also affect the
value of the critical
Reynolds number which divides
the subcritical ränge from
the supercritical one.
Some information of this
kind is provided by
Simon [19]. Uncertainty
in the estimation of the
critical Reynolds number
is sometimes very
unpleasant.

For example, the
columns of the large arch

reduced velocity - -jj\ bridge mentioned in the
y ' introduction performed the

Fig. 4. Response of a Square Cantilevered strongest Vibration at
Prism in Turbulent and Smooth Flow. R 551000. It was not
(Measured in the Boundary Layer Wind quite clear in which
Tunnel Laboratory of The University of regime the columns vibrated
Western Ontario by P. Rosati) at this R. This made the

decision of how to suppress
the Vibration difficult. Vibrations were decreased by filling the
columns with granulated gravel. The efficiency of such a method
depends on the regime of the flow round the body as discussed in
paper [12]. This explains why this approach to the eure of Vibration

may fail in some cases, as was experienced with a Canadian
bridge, whereas the same eure may be successful in other very
similar cases [6,9,12].

This example indicates that the elueidation of the effect of
atmospheric turbulence on the lift nature is really desirable.

2.2 Dependence of lift on the motion
The influence of the motion on the lift forces is a further

important factor. To study it experimentally two approaches can
be used: ihe motion is controlled by an exciter, or by changing
the structural damping. The former way has been used more often.

In the ränge of random plus periodic lift at very high Reynolds
numbers (6-18.2 million), Cincotta and associates [2] found a very
strong increase in the lift with the amplitude at the eoineidence
of the frequency of excitation with the frequency determined by the

- Y -DIRECTION

- X-CERECTION
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pertinent Strouhal number. (This resonance case is of major
importance). Assume that with small Vibration amplitude v (with
structures usually v/D < 0.1, even in very serious cases) this
increase can be expressed by a linear law C

— i + k-
Ls

Here <© is the lift coefficient at Vibration with the amplitude u,
Ls the lift coefficient of a stationary cylinder, k a constant and

D the diameter. Then a coefficient k 47.0 can be derived from
data contained in paper [2], which means a considerable increase inlift with the amplitude.

In subcritical ränge, a much lower increase was found by
Bishop and Hassan [1]. From their data a coefficient of k 2.25
can be calculated for R 6000 and small dimensionless amplitudes.

Finally, in supercritical ränge, characterized by random lift,Fung [4] did not find any remarkable increase in lift with the
amplitude of motion. (See also [10]).

All these authors applied external excitation of the Vibration.
There is also a possibility of Controlling the amplitude of the
Vibration without any interference with the mechanism of the
excitation by changing only the intensity of damping. Plotting the

resonance amplitudes against
structural damping can provide some
information about the character of
excitation; however, even this
involves complications. If the
dependence of resonance amplitudes
on the inverse value of the
structural damping is linear (Fig. 5

curve a) the excitation may be
supposed harmonic and independent of
the amplitude. If this dependence
has character, as curve b in Fig. 5,
the reason for this may be the
random nature of the fluctuatinglift or the presence of positive
aerodynamic damping. The latter
factor is discussed in the next
paragraph.

tt> <D

U "tt
C 3
3 -U
C -<J

O i-J
w a
tt) £
Pe ö

1/struct. damping

Fig. 5. Dependence of Resonance

Amplitudes on Inverse
Value of Structural Damping

2.3 Positive aerodynamic damping
Severe lateral vibrations usually occur with structures having

extremely low structural (system) damping. In such cases the
resistance of the air flow to the motion of the structure can
result in a positive aerodynamic damping which is comparable with
the structural damping. The intensity of the aerodynamic damping
can be estimated as follows.

Assume a cylinder under two dimensional flow conditions
moving with the velocity v perpendicularly to the direction of the
wind blowing with the velocity V (Fig. 6), which is the Situation
with lateral Vibration. Then the resultant relative wind with the
velocity V acts on the body under the angle of incidence ct.

Neglectinq the mass effect, the drag force on a unit of length
has a component in the direction of the motion
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F -pCnDi7 n sin a (1)
y 2 D rel v '

Here p is the air density and C the drag coefficient; with small
angles et sin a tan a v/V and y V.rel

y f "\ Th& mean wind speed increases
ve^^^---^\ / i -\-^ar with the height of the structure

which may be taken into aecount by
putting

V(x) Vw(x) (2)
Now V means the wind speed at a

t Y3v(t) reference point xr and w(x) a
function describing the mean wind

Fig. 6. Vibrating Cylinder in increase, so that w(xr) 1. Then
the Flow the air resistance which acts on a

differencial unit of length of a
structure at position x is

f(v)dx j;pCDDVw(x)isdx (3)

Under the assumption that this holds even during Vibration (quasi-
steady approach) this resistance of the wind to the lateral
Vibration evidently has a nature of viscous damping.

The exciting aerodynamic forces are small during the lateral
Vibration. Therefore steady lateral Vibration cannot differ too
much from the normal mode of free Vibration vn(x) and may be
expressed as

v(x.t) av (x)oos us t (4)' n n
where a is the amplitude at the reference point xr, and us the
circular frequency of the n-th mode. The mode vn(x) is chosen in
such a scale that vn(xr) 1.

The work done during a period T of steady Vibration by
aerodynamic damping forces (3) on the whole structure is

W flfTf(v)dxdv(t) (5)
o o J

After Substitution from (3) and (4)

W I f -r-pCT,DVw(x)a us v (x)sin us tdxdt (6)
o o 2r D n n n

and after integration with respect to t
W ^¦npCnDVa2us flw (x) v2 (x) dx (7)2 D n o n

The maximum potential energy calculated as maximum kinetic
energy for the deflection (4) is

L f -tt\i(x)v dx --ra us f \i(x)v (x)dx (8)
o 2 2 n o n

where \s(x) is the mass of the structure per unit of length.
rV

Logarithmic decrement of damping can be defined as 6 jj.This yields for log. decrement of aerodynamic damping with
lateral Vibration in variable mean wind

1 2
¦npCr.DVf w(x)v (x)dx

&a= £__2 -ZI (9)
2us f \s(x)v (x)dxn o n
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Here the Strouhal number
may be introduced. üj D

s -2L-
2t\V

(10)

With constant mass \i(x) \s and constant mean wind speed
w(x) 1 the log. decrement of aerodynamic damping is simply

TJPCnD p Cn D2
D

6
r,a 2us y

D

4 S y
(11)

In variable mean wind but with constant mass, the log.
decrement of aerodynamic damping

(12)6' 6 a
a a

where the constant 7 2f w(x)v (x)dx

f v (x)dx
o n

(13)

expresses the decrease in aerodynamic damping due to variable mean
wind velocity. This is calculated for some simple normal modes in
Table 1.

(x) v.. (x)

Mode y (x)--
n

Wind incr. w(x)-

Constants o

rM

(x/l) (x/l)

I
x/l

(x/l)

11
19

(x/l)

_£
10

1/

2 /72x /l

(x/l)

äl
ZI

(x/l)

11
16

Table 1. Decrease in Aerodynamic Damping o Due To Variable Mean
Wind Velocity

The wind increase w(x) is taken here, as recommended by
Davenport [3]. The exponent 1/6 corresponds to conditions in
open country, 1/3 to centres of large cities. The top x=l is
considered the reference point. In other cases, the reduction a
can be calculated from (13) or estimated according to Table 1,
because its value is not too sensitive to the exaet form of the
normal mode and very little to changes in the wind profile with
cantilevered structures.

The existence of the positive aerodynamic damping has been
recognized and experimentally proven. From the point of view of
structures, Scruton [16] and Davenport (e.g. [3]) pay a great deal
of attention to this damping. Davenport experimentally studied itin detail and presented its general discussion [3]. However, the
aerodynamic damping has found little application with lateral
Vibration of cylindrical structures, where it should be considered
at least in two directions: when estimating the effect of changes
in damping, and when evaluating the experiments.
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The practical importance of the first application is evident
from the numerical value of the aerodynamic damping.

The expression (11) provides constant damping for resonance
Vibration in regions in which Cp and S may be considered constant.
In subcritical ränge with S 0.2, C- 1.2 and p 1/8 kg m~4s2

6 -!,?£ (14)
a 16 y

S=°-riD^ (15)

In transcritical ränge for S 0.3, C 0.54 (see [2])

a 16 y
In supercritical ränge the damping must be calculated with respect
to the wind velocity.

The columns of the mentioned arch bridge have D 1 m,
y 29.9 kg m~2s2 and the aerodynamic damping (14) is 6a 0.0063.
The log. decrement of structural damping was of the same order,
namely 6S 0.0078. Thus the total damping 6a + <5S should be introduced

into calculations. On the other hand, the increase in &a by
application of strakes (spoilers) due to the increase in Cp (see
[10]) contributes to the total damping and thus to the effectiveness

of such advices.
As for the evaluation of Vibration experiments, this task is

complicated by the simultaneous presence of three factors: the
aerodynamic damping, the randomness of lift (even when dominant
frequency is well pronounced), and the dependence of excitation on
the amplitude of motion. Neglecting the aerodynamic damping can
therefore affect the result concerning the two latter factors.
3. Structural Damping '

The structural damping represents a further factor, the
estimation of which is always uncertain. It is very small with
modern structures, often 6g < 0.01, which is the main reason for
the frequent occurance of strong lateral Vibration, especially with
all welded structures. Finding suitable devices to provide a
considerable increase in structural damping would, therefore, be
the most important contribution to the practical part of the problem.
(Reed and Duncan's [13] hanging chains represent an example of this
kind.) Some effective coating or other means without any additional
construction would be desirable.
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SUMMARY

Despite the increasing understanding of the lateral Vibration
of cylindrical structures, the preciseness of a quantitative
calculation necessary for a reliable prediction is limited. For
prediction of dynamic behaviour of large structures in wind, experimental

investigation on models in wind tunnels is therefore most
recommendable.

RESUME

Malgre les connaissances croissantes sur les vibrations laterales

des structures cylindriques, la precision requise pour une
prevision valable n'est guere obtenue par un calcul quantitatif. C'est
pourquoi on ne peut assez recommander des essais experimentaux sur
modeles reduits dans le tunnel aerodynamique quand il s'agit de
prevoir le comportement dynamique d'une grande structure soumise au
vent.

ZUSAMMENFASSUNG

Trotz des wachsenden Verständnisses seitlicher Schwingungen
zylindrischer Bauwerke ist die Genauigkeit für eine quantitative Rechnung

notwendig zu einer wirklichen Voraussage, beschränkt. Deshalb
ist für die Voraussage über das dynamische Verhalten langer,
windausgesetzter Bauwerke die experimentelle Untersuchung im Windkanal
am Modell das wohl empfehlenswerteste.
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Dynamic Wind Response of Guyed Masts

Mäts haubannes dans le vent turbulent

Abgespannte Mäste unter dem Einfluß von
turbulentem Wind

MICHAEL SHEARS CA. FELIPPA R.W. CLOUGH J. PENZIEN
University of California, Berkeley

1. DTFRODUCTION

Engineering interest in the analysis of guyed masts was stimulated by the
introduction of radio transmission, and one of the earliest contributions, by
Walmsley (l) in 192*+, was concerned with the static loads applied to stay-ropes
used to support wireless masts. Problems associated with the dynamic behavior
of cäbles have received much attention in classical texts for well over a
Century. The motion of inextensible loose chains and the small oscillations of
tight elastic strings have been discussed extensively by Routh (2) in 1860, and
Rohrs (3) in 1851. Probably the earliest detailed method for the static and
dynamic analysis of guyed masts under the action of wind forces, however, was
due to KolouSek (h) in 19^+7. In more recent years, due largely to the increased
heights end importance of telecommunications masts, there has been considerable
interest in this field of study, with notable contributions by Cohen (5), Dean
(6) and Davenport (T).

In the past, the static analysis of guyed masts has usually been
accomplished by treating the shaft as a continuous beam-column resting on non-linear,
elastic supports using Solution techniques based on modified slope-deflection
equations. Generally, the Solution methods employed and the description of the
System have been rather cumbersome and not entirely suited to the analysis of
the fully integrated guyed mast System. For this reason, various approximations
have been made in both the guy cable representation and in the manner of
application of the steady wind forces, the result being the evolution of a number of
similar methods of analysis differing only in the number, or degree of approximations

to the real system.

The dynamic analysis of guyed masts has received very limited attention to
date, and those methods proposed are often quite unsultable for any detailed
investigation of the dynamic responses to fluctuating wind excitations. An exception

was the report by Hartmann and Davenport (8) in 19^6, which described the
spectral response analysis of a tall, guyed mast utilizing a Single degree of
freedom, discrete parameter model to represent the cäbles. Even in this case,
however, the effect of the wird on the cäbles was neglected in the analysis.

The purpose of this paper is to report on detailed Computer studies made

using a suitable discretized model to investigate the response characteristics

9.Bg. Schlussbericht
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of guyed masts under the action of turbulent wind influences (9)- The model
representing the system is fully integrated geometrically and structurally, and
may be used to study both the static and dynamic behavior of the system.
Estimates of the dynamic responses of a tall, guyed mast are evaluated deterministi-
cally using actual wind velocity data, and non-deterministically using the
theory of random vibrations and incorporating available wind velocity spectra.
A comparison between the deterministic and non-deterministic responses, and a

discussion of the relative merits of the two procedures are also presented.
2. THE CABLE MODEL

2.1 Finite Element Discretization
The real cable is represented by an assembly of one-dimensional cable

elements (CE) interconnected at nodal points located on the initial cable profile,
utilizing a lumped mass idealization for the dynamic analysis.

_ T^e stiffness properties of the CE are derived in a local cartesian system
(x,y,z) where x is the chord axis and y is in the plane of the element. Three
degrees of_freedom are defined at each node: the two displacements u and v in
the x and y directions, respectively, and the rotation cp about z. The CE stiffness

matrix includes the conventional axial stiffness and the geometrie stiffness,

which aecounts for the effect of the cable tension T. The secant CE axial
stiffness (along the x axis), which results from the assumption that the CE

profile is a shallow parabola, is given by (5)
W

2

k -AT _1_
A Ac c

n (2T+AT)
M

T W (T+AT)2T2
(2-1)

where c is the chord length of the element, Wn is the total applied load normal
to the chord, E is the elastic modulus and A the cross-section8l area of the
cable material. Since AT and Ac are not known a priori, the tangent axial
stiffness

K - -¥- - —A de c

1 n

2
W ~\ -1

EA 12T3
(2-2)

is used for each linearized step of the iterative static Solution (Section 3-3)>
The (6 x 6) CE stiffness matrix is completed with the geometrie stiffness,
which is obtained by as_suming a cubic v(x) Variation defined in terms of the
nodal values of v and cp.

2.2 Cable Frequency Studies

In order to test the convergence properties of the finite element idealization
as the number of elements is increased, the lowest natural frequencies of

a Single cable were computed and compared with the results obtained from a

series Solution for an assumed overall parabolic profile. Before presenting the
numerical examples, the parabolic cable Solution is outlined for clarification.
Parabolic Cable Series Solution: The undamped equation of motion of an end-
fixed, inclined parabolic cable under a uniform dead load per unit of chord
length w, (Fig. l), vibrating about the parabolic equilibrium position y(x) is
given by 2 2

2 v iii+ dTi-£ (2-3)
8 dx dx

By expressing v(x,t) as a Fourier sine series
00

v(x,t) £ Yn(t) sin HH (2-20

n=l
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and taking aecount of orthogonality, Eq. (2-3) may be reduced to two infinite
Systems of ordinary differential equations representing the Symmetrie and
antisymmetric modes (8,9) of Vibration.

For the Symmetrie modes (n odd)
m

- 2-2t t \Y + cu (l + V) Y + cu
n n x h' n

n

T + dT
FIG. I

T + dT

v(x,t)

8=1,3-
s/n

n\ (2-5)

n n y(Tq/w c is the n-th tautwhere cu

string frequency and

P P
8 A E w e

5 7©^
2

cos e (2-6)

is a dimensionless constant providing the
cross coupling between the Symmetrie modes and
hereafter termed the "cable parameter". The
Symmetrie mode natural frequencies oSf, can be
computed from (2-5) using Standard eigenvalue
techniques. For a relatively taut cable, the
cross coupling becomes negligible and aun

approaches c%, whereas for a slack cable
considerable coupling develops, especially
between the first (n l) and second (n 3)
Symmetrie modes.

For the antisymmetric modes (n even), the frequency equation is identical
to that of a taut string (£ 0) and oa_ ö^ (n 2,k....).

(a) TAUT CABLE

12

|io
o
~ 8

6

o

O
ÜJ
rr oii *-

-300 450"

£ .19

^r
/w3

W2

wl

(b) SLACK CABLE
E 24000 ksi
Diam. 2in H=ii2oK
Transv Load=0.2 klf

2nd ANTISYMMETRIC

~ 300

C=I2.I8

cü4= 11.26 (11.26) b

2nd SYMMETRIC 1
in **

'ü)= 8.46 (8.46)
— 4

Ist ANTISYMMETRIC

u.r 5.63 (5.63)

Ist SYMMETRIC "2

w 3.07(3.07) S,
rr
U-

Jüt_

W3

W2/

OJ,

2nd ANTISYMMETRIC
/ Xss^ES^g/^

cü4=5.60(5.63)

©nd SYMMETRIC

cu3=5.4l (5.51)
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\ ^2= 3.83 (3.84)

Ist ANTISYMMETRIC

CU,= 2.77 (2.82)
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FIG. 2 CABLE MODEL FREQUENCY CONVERGENCE STUDY
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Comparison of Results: A 300 ft. horizontal
cable under w 200 plf was selected for the
comparison. Two midspan sags were assumed:
5 ft. for the taut case {t, 0.19) and 20 ft.
for the slack case (£ 12.16). Fig. 2
presents the results of the finite element
frequency analysis for various subdivisions. The

convergence is very fast in the case of the
taut cable, and slower for the slack cable.
The frequencies obtained for the parabolic
cable are indicated in parentheses.

Other Guy Cable Characteristics: To further
ensure that the cable model adequately represents

the properties of guy cäbles, a numerical

investigation of the fundamental frequencies
was performed for a series of cäbles with

chord lengths varying between 250 and 1000 ft.
and initial tension levels between 10-20$ of
the breaking strength. The ränge of cäbles
investigated was intended to include most of
the cäbles likely to be used in the construction

of guyed masts. A curve illustrating the
relationship between the cable parameter £ and
the chord length to normal sag ratio is given
in Fig. 3, which clearly shows that most
practical guy cäbles lie within a closely bounded
region. It was also found that for a given

initial tension all cäbles considered feil on the same curve, indicating that
the cable parameter is a direct measure of the tautness irrespective of the
cable dimensions. The frequencies calculated using a six-element cable model
were found to agree with the analytic solutions obtained from (2-U) to within
5$, see Fig. h, indicating that the commonly assumed parabolic cable profile is
satisfactory for most guy cäbles.

3. THE GUYED MAST IODEL

3-1 Finite Element Discretization
In order to complete the finite element idealization of a guyed mast structure,

a beam-column element (BCE) is required. The BCE stiffness matrix is also
generated in the local element system (x,y,z) defined in Section 2.1, and
includes both the axial and geometrie stiffness_contributions (as described for
the CE) plus the flexural stiffness_in the x-y plane. The bending stiffness is
obtained by assuming a fifth-order v(x) expansion_in terms of the transverse
displacements v, rotations cp and curvatures äcp/dx at the end nodes, the latter
two degrees of freedom being eliminated by static condensation. Elements with
variable section and inertia may be specified.

The BCE mass discretization results from static lumping of the element
mass at both end nodes.

The complete structure can be idealized as an assembly of both cable and
beam-column finite elements. The stiffness matrix, nodal force vector and
lumped mass matrix of the discretized structure are obtained by direct
superposition of the stiffness matrices, applied nodal forces and lumped masses,
respectively, of the individual elements, after a transformation to common or
global coordinate Systems at all interconnecting nodal points.

In this investigation, the guyed mast structure was assumed to be Symmetrie
and symmetrically loaded with respect to a vertical X-Y plane, where Y is the
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vertical shaft axis. A finite element may represent either a single structural
component in the X-Y plane, or two members initially located in two vertical
planes X'-Y and X"-Y symmetrically placed with respect to the X-Y plsne, and
which remain symmetrically located after deformation. Thus the actual three-
dimensional problem is reduced to a two-dimensional problem.

3.2 Loading Actions
Static Loading: In the static analysis, the structure is subjected to its own
weight and the mean or steady wind pressure. The dead load is converted to
nodal forces by static lumping at the nodal points. The wind forces are calculated

by assuming that the wind acts in the direction of the horizontal X axis
defined in Section 3.1, and that the mean velocity Vx(y) at any height Y is
given by the well-known power law (lO). The wind pressure on each finite
element is assumed to be uniform and determined by the velocity at the midheight
and the geometrie and aerodynamic properties of the member (exposed width and
drag-lift coefficients). The resultant element wind forces are then lumped at
the end nodes. In addition, concentrated wind forces intended to represent
certain concentrated areas such as insulators, reflectors, etc., may be specified
at any nodal point.
Gust Loading for Deterministic Dynamic Analysis: The deterministic gust analysis

requires the specification of a wind velocity history from a set of digi-
tized velocity records Vx(t,Yi) taken at several heights Y^. This input can be
conveniently reduced to a dimensionless or "reduced" pressure fluctuation
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<L.(t,Y)
u (t,Y) -3 l (3-1)
x 4,(1)

where qx is the dynamic pressure corresponding to Vx and qx is the average over
the sample used. Interpolation may be used if Y / Y^. In order to simplify the
analysis procedure in the present case, however, a reduced pressure fluctuation
Hx(t) n (t,Ym) computed from a sample taken at height Ym was used over the
entire structure as a multiplier on the actual static wind force distribution.
This assumption is probably conservative, since the vertical correlation decay
is neglected.
Gust Loading for Non-deterministic Dynamic Analysis: The following assumptions
were made for the non-deterministic gust analysis:
(a) The horizontal gust component Vgx(t,Y) Vx(t,Y)-Vx£Y) is a stationary

Gaussian random variable and small with respect to Vx.
(b) The cross-spectral density function proposed by Danvenport (10) and de¬

scribed by Ferry Borges in the theme paper (ll) represents the vertical
correlation of horizontal gustiness.

(c) The drag and lift coefficients are independent of the Vibration frequen¬
cies.

(d) The peak intensity level (a-level) of the response components is a function
of both the response spectra and the wind sample duration, as proposed by
Davenport (12), but extended for multi-degree of freedom Systems.

3.3 Analysis Procedure

This Section describes briefly the main steps of the Computer analysis of
the diseretized structure.
Static Solution: Because of the presence of the guy cäbles, the structure is
geometrically non-linear. The static equilibirum position (SEP) under the
static loading is determined by a matrix iterative procedure of Newton's type.
A typical linearized step includes the following sequence of Operations:
(a) Calculate the external nodal forces on the present geometry and the inter¬

nal nodal force resultants from the element forces (axial forces and bending

moments) determined at the previous step (in the first step, the only
internal element forces are the initial cable tensions specified on the
initial geometry). The unbalanced nodal forces are the difference of the
external and internal forces.

(b) Evaluate the tangent structural stiffness and solve for incremental nodal
displacements, which, when added to the previous displacements, define the
new structure configuration.

(c) Calculate the internal element forces in the new geometry (for each cable
element, the cubic equation (2-l) must be solved for T). Then repeat
steps (a) through (c).
The convergence to the SEP can be conveniently measured by the magnitude of

the unbalanced nodal forces corresponding to the unconstrained nodal displacements.

Usually h to 6 iteration cycles are found to be sufficient for most
problems.

Frequency-mode Analysis: For the dynamic analysis, the structure is assumed to
oscillate linearly about the SEP. This assumption permits Standard matrix mode-
superposition techniques to be used for both the deterministic and the non-
deterministic cases. A set of "m" significant lowest frequencies cuj. and associated

Vibration modes $®X is obtained by solving the Vibration eigenvalue
problem:

[KK*r} * 4 LMH*r} (r l,2...m) (3-2)
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where [k] is the tangent stiffness matrix at the SEP and [mJ the lumped mass
matrix. This is accomplished by reducing (3-2) to a Standard eigenvalue problem
form after elimination of all rotational degrees of freedom.

Deterministic Gust Analysis: The normal response amplitudes Yr(t) are obtained
by solving the modal response equations

Y (t) + 2 J us Y (t) + cd Y (t) P Ji (t)r rrr r r r *x (r 1,2,...m) (3-3)

where Pr < R > {§rJ are the static generalized wind forces calculated using
the static wind forces iJV} at the SEP, and yv are the modal damping coefficients.

The time history of any desired quantity z(t) about its SEP value is
given by

'<*>" I B Y (t)zr r (3-«0

r=l
The program generates

time response plots of nodal displacements, nodal accelerations and internal
element forces, as well as the peak or envelope values.
Non-deterministic Gust Analysis: The gust response spectra of the discretized
structural model are evaluated for each contributing Vibration mode using Standard

random Vibration techniques (13). This procedure requires a double
integration to be performed over the structure, the integration being reduced to a
double summation over the model elements using a Gauss-Legendre numerical quad-
radure formula for a set of conveniently spaced frequencies (from cu 0 to
ou 2(1^) The modal variances o"r are then computed by numerical integration of
the response spectra over the significant frequency ränge. A program Option
allows the cable elements to be excluded from the analysis for the purposes of
comparison.

The variance or mean square oscillation af of any desired quantity z(t) is
easily calculated by mean square superposition of the modal variances weighted
by the modal influence coefficients Bzr. Finally,crz is multiplied by the
peak value or a-level of z(t), which is computed as proposed by Davenport (12).

h. GUYED MAST EXAMPLE

il-. 1 Description
A tall guyed mast having four sets of three-way guy cäbles and a cantilever

antenna was chosen for the present example. The dimensions and structural prop¬
erties of the system, see
Fig. 5, were based on the CFPL
mast described by Hartmann and
Davenport (8) with certain
modifications.

The fluctuating wind
velocities used in the deterministic

dynamic studies were
obtained from the NASA 150-meter
meteorological tower located at
the Kennedy Space Center (KSC)
in Florida. The data was
recorded on magnetic tape and
then digitized at 10 records
per second (ik), although in
the present investigation data
intervals of 0.5 seconds only

FIG.5 MAST PROPERTIES AND GEOMETRY were used, the velocity at
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FIG. 6 WIND VELOCITY RECORD FROM I8m AND I50m KSC MET TOWER

each interval being the average of five digitized values. A plot of a 12 minute

segment of the wind velocity record measured at the 18- and 150-meter levels
is shown in Fig. 6, which clearly indicates the increase of the mean velocity
with height and the randomly fluctuating nature of the gusts. It is also noted
that the fluctuations are somewhat more intense at the lower elevation, and, for
this reason, the wind records used to evaluate the system responses were taken
from the 150-meter level, corresponding to about mid-height of the mast. Wind
velocity inputs of about 2 minutes deviation were considered sufficient to give
estimates of the responses, since the longest periods of the system rarely
exceed 5 seconds.

The mast was assumed to be located in open country, for which the mean wind
velocity was taken to follow a l/Tth power law Variation with height. The
parameters required to completely define the cross-spectral density of the horizontal

wind velocities proposed by Davenport (lO), namely the ground drag coefficient

and exponential decay coefficient, were taken to be 0.001 and 7, respectively.

k.2 Refinement of the Guyed Mast Model

To avoid excessive Computer analysis time, tests were made to determine the
least refined model, which still gives uniform responses compared with more
refined models. Three models were considered, see Fig. 7, with the properties
shown in Fig. 5 and also with the shaft elements considerably stiffened. The

initial cable tension level was taken to be about 11.5$ (Standard) of the breaking

strengths for each test, and the mean wind velocity +75 mph at the 10-meter
elevation. The viscous damping of the System in this and subsequent tests was
taken to be 0.6$ of critical for all modes.

REFINED MODEL INTERMEDIATE MODEL SIMPUFIED MODEL

FIG. 7 NODAL POINT ARRANGEMENTS FOR GUYED MAST MODELS
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The results of the static and deterministic analyses showed that the
intermediate model responded in a uniform manner compared to the refined model (which
should be used to obtain the responses in the final analysis of a real problem),
whereas the simplified model responses suffered considerable variabüity. The
intermediate model was then used to study the influence of a number of parameters

on the system responses, with a saving in Computer time of the order of
GQ'fO for a füll static and frequency-mode analysis, and up to about 35$ for a

deterministic dynamic analysis. The parameters studied include shaft stiffness,
initial cable tensions, the mean and fluctuating wind velocities, and the wind
on the cäbles.
©3 Results of the Guyed Mast Studies

Static Responses: The results of numerous tests on the intermediate model for
the influencing parameters outlined above indicate that the shaft responses are
controlled largely by the cable sizes and spatial arrangements, and, once these
have been selected, the shaft displacement and bending moments are little
influenced by changes in the initial cable tensions or the shaft stiffness.
Increasing the cable sizes by 50$ resulted in reductions in the shaft displacements

of up to 30$ for identical initial tensions. The shaft moments in this
case were redistributed, but still little changed in magnitude, indicating that
the flexural behavior of the shaft is a relatively unimportant design parameter
for a given cable arrangement. For initial tensions between 10-20$ of the
breaking strengths it was also found that, although the guy cäbles exhibit
nonlinear properties locally, the overall guyed mast behavior is closely linear
for wind velocities up to about 60 mph, beyond which linearity is lost.

In the above tests the z-displacements (see 2.1) of the CE were neglected,
and further tests using a revised program to include these effects showed that
the shaft displacements had been underestimated for positive winds and overesti-
meted for reversed winds, resulting in_a loss of linearity of the system for
positive winds. The influence of the z-displacements of the CE emphasizes the
importance of including the wind on the cäbles in any analysis.
Deterministic Dynamic Responses: Increasing the shaft stiffness was found to
have little effect on the cable modes of the system, since the static cable
tensions at the SEP are themselves unaffected, but has a direct influence on the
predominant shaft mode frequencies, which results in some increase in the shaft
displacements and a rapid increase in the shaft bending moments. Increasing the
initial cable tensions, however, had the opposite effect and the predominant
cable modes only were influenced. The result in this case was a slight overall
reduction in the shaft displacements and moments, although these effects were
somewhat variable, particularly for the antenna cantilever, which tends to act
as an independent appendage and has a considerable influence on the shaft modes.

As stated earlier, a two minute fluctuating wind input taken from the 150-
meter level of the KSC met. tower was used to evaluate the deterministic dynamic
responses in the tests to study the various influencing parameters. The
responses due to records of one, two and three minutes duration taken from the
150-meter level are listed in Table 1 for comparison, since it may be postu-
lated that, for a record of duration less than 20 minutes or so, the
probability of higher intensity wind gusts occuring in the record increases with
increased length of the record. To ülustrate the effect of the apparent
increased gustiness at lower elevations of the KSC tower data, the responses due
to a two-minute input taken from the 30-meter level are also tabulated. In
each case the responses are based on the SEP due to a +75 mph mean wind velocity

at 10-meters, with the z-displacements neglected. Effective "gust factors"
based on response are presented for comparison with the non-deterministic
results and the quasistatic procedures commonly used in design offices. Shaft
axial force and cable tension responses are not tabulated, since the dynamic
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contributions were found to be generally small, usuaüy less than 30$ of the
corresponding static maxima.

Table 1

Response
KSC met wind record (duration/elevation)

2 min/30m 1 min/l50m 2 min/l50m 3 min/l50m
x-acceleration

*Node 1 0.71g 0.27g 0.31g 0.35g
2 0.29g 0.09g 0.10g 0.10g

x-displacement (ft)
Node 1 3-93 1.29 1.77 1.91*

2 1.1+8 0.59 0.76 0.88
3 0.92 0.28 0.57 0.59
k 0.81 0.21» 0.1+2 0.V7

Gust factor on
x-displacement

Node 1 2.88 1.62 I.85 1.93
2 2.11 1.1*5 1.57 1.66
3 2.16 1.35 1.72 1.71*
k 2.59 1.1+7 1.82 1.92

Bending moment (kft^
Node 2 355-0 128.5 161.0 171.5

3 530.5 230.5 271.0 291.9
1+ 316.0 11© 5 127.0 19© 0
5

Gust factor on
WH. 5 119.0 201.5 222.9

bending moment
Node 2 lt.6!+ 2.32 2.65 2.76

3 2.16 1.50 1.60 1.61+
k 2.68 1.61 1.68 2.03
5 2.76 1.1*7 1.80 I.89

*See Fig. 5

Due to the coupling between the system modes and the dependence of modal
sequence on the overall System stiffness, it is difficult to preselect the
important modes influencing the responses. Further tests to study the modal
contributions showed that the choiee of modes for the dynamic response calculations

can be made on the basis of the magnitudes of the modal generalized
forces, and this procedure was adopted for the non-deterministic analyses.

Non-deterministic Dynamic Responses: The non-deterministic responses of the
intermediate model listed in Table 2 were evaluated from the SEP's due to the
+75 mph basic mean wind velocity, first with the z-displacements of the cäbles
neglected^ for comparison with the deterministic results in Table 1, and then
with the z-displacements included. Also tabulated are the mean peak intensity
levels (see 3>2) and the effective "gust factors" for each response. The axial
force responses are again omitted, due to the relatively small dynamic influences

involved.
The effect of ignoring the z-displacements of the cäbles is seen to

overestimate the system responses by up to about 20$, although it was found in
further tests that the corresponding responses may be underestimated by as much
as 1+0$ if the wind pressure on the cäbles is ignored completely in both the
static and dynamic analyses. It is noted from Table 2, however, that the shaft
acceleration responses are not affected by the z-displacements of the C8bles,
since they are mainly influenced by the predominant antenna-shaft modes.

The shaft displacement responses obtained by neglecting the z-displacements

of the cäbles are seen to compare fairly closely with the corresponding
deterministic responses due to the 30-meter wind record, which is clearly
conservative since the same gustiness is assumed over the füll height of the
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mast. The average gustiness of the 150-meter record provides the more realis-
tic deterministic responses, which tend to maximum values somewhat less than
the non-deterministic responses.

Table

Response z-displacements
neglected

P* z-displacements
included P*

x-acceleration
Node 1 0.57g 1+.1+2 0.57g 1+.1+2

2 0.26g U.l+9 0.26g 1+.50
x-displacement (ft)

Node 1 3.60 ©35 3.28 ©37
2 1.62 1+.31* 1.31* ©37
3 0.1+1 1+.1+1+ 0.37 1*.1*5
l+

Gust factor on
0*33 1+.1+5 0.31 l*.l+6

x-displacement
Node 1 2.73 1.95

2 2.22 1.55
3 1.52 1.33
1+ 1.65 1.52

Bending moment (kft)
Node 2 280.7 1+.1+2 278.5 1+.1+2

3 1*58.5 1+.1+2 375-0 1+.1+0
1+ 221.0 1+.52 209.0 1*.51
5 228.5 1+.1*9 229.5 U.l+9

Gust factor on
bending moment

Node 2 3.88 3.81
3 2.00 I.58
1+ 2.18 2.02
5 1.91 1.81+

*P peak intensity level (sigma level)
5. CONCLUSIONS

The finite element model is shown to provide a suitable representation of
the guyed mast and allows detailed static and dynamic analyses to be performed
on a fully integrated system. Several hitherto ignored factors, such as the
wind effect on the cäbles and concentrated areas, and the use of the deflected
static equilibrium position as the mean dynamic configuration, can be naturaüy
included. The behavior of the actual structure can be arbitrarily approximated
by a mesh refinement process limited only by the capacity of the Computer
program, and the incorporated static and kinematic assumptions.

The Computer program has been used in the analysis of a number of complex
guyed mast Systems, but can also treat arbitrary two dimensional structures,
including Suspension bridges. Moreover, the methods described in this paper can
be extended to include any conceivable structural system by constructing the
appropriate finite element models.

The deterministic responses due to a single wind record sample depend on
the duration of the sample, as well as the atomospheric conditions at the time
and place of measurement. These observations suggest that wind record samples
are not a useful means of determining the probable maximum responses, unless an
ensemble of such samples is used and the resulting responses evaluated on a

Statistical basis. This procedure is tedious and uneconomic, and, due to the
random nature of the wind gusts, the use of stochastic procedures is clearly
the more rational approach. Deterministic methods, however, do have useful
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applications in providing time-histories of response, particularly if used in
conjunction with actual response measurements.
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SUMMARY

This paper reports detailed Computer studies made using a suitable dis-
cretlzed model to investigate the response characteristics of guyed masts under
the action of turbulent wind influences. The actual structure is idealized in
the form of a finite element model, which is fuüy integrated geometricaüy and
structurally. Estimates of the dynamic responses of a tall, guyed mast are
evaluated deterministically using actual wind velocity records and non-deter-
ministically using the theory of random vibrations and incorporating available
wind velocity spectra. A comparison between the deterministic and non-deterministic

responses, and a discussion of the relative merits of the two
procedures is presented.

RESUME

On presente ici une technique detaillee d'analyse sur ordina-
teurs de la reponse de mäts haubannes sous l'action du vent turbulent.

La structure est representee par un modele discret d'eiements

finis qui tient compte de tous les parametres geometriques
et structuraux actuels. la reponse dynamique d'un mät haubanne
eleve est obtenue de deux facons: par une methode deterministique
utilisant des vitesses du vent reellement enregistrees; et par un
modele statistique qui utilise la theorie des vibrations aleatoires
et des spectres de reponse au vent probables. On compare les solutions

obtenues par les deux methodes et l'on discute leurs merites
respectifs.

ZUSAMMENFASSUNG

Dieser Bericht enthält detaillierte Computer-Analysen des
charakteristischen Verhaltens abgespannter Mäste unter dem
Einfluss von turbulentem Wind. Das eigentliche Bauwerk ist durch
endliche Elemente idealisiert, das alle geometrischen und baulichen
Parameter enthält. Das dynamische Verhalten von hohen abgespannten

Masten wurde mit zwei Methoden ermittelt: Die erste basiert
auf eigentlichen Windgeschwindigkeitsmessungen und die zweite
verwendet statistische Methoden unter Zuhilfenahme von vorhandenen

Windgeschwindigkeitsverteilungen. Ein Vergleich dieser beiden
Verfahren mit ihren jeweiligen Vor- und Nachteilen wird erläutert.
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1. Introduction
Because of the development of structural analysis methods,

computation measures, available materials and construction technique,
dimensions and flexibility of recent bridges have been

increased and the damping capacity of them has been decreased.
As a result of these, recent bridges are liable to be subjected
to not only static wind effects but dynamic ones. Cable-stayed
girder bridges are one of the examples of them.

The authors consider that structures have to be designed
against wind effects shown in Table-1. When a structure is rigid
enough, only the aerodynamic wind forces shall be considered; but
for a flexible structure, dynamic effects together with the static
instability phenomena shall be considered. In the case of cable-
stayed girder bridges, aerodynamic wind forces, aeolian Vibration,
galloping and/or torsional flutter among the wind effects listed
in Table-1 will have a prime importance.

Table - 1 Wind Effects on Structures

Wind
effects

Static
effects

Aerodynamic wind forces Drag, lift, pitching moment
Static instability
problem

Divergence
Lateral buckling of girder

Dynamic
effects

Forced Vibration
Random Vibration
Aeolian Vibration

Self-excited Vibration
Galloping
Torsional flutter
Coupled flutter

As pointed out by J.F. Borges in his introductory report on
the subtheme "Dynajmic Loads", the estimation of wind velocity is
a fundamental problem for the wind-resistant design of structures.
The life time and height of structure, the local condition of
structure site and the turbulence in wind mainly govern the
estimation of wind velocity.
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Among these factors wind turbulence will have two aspects in
its influence on the estimation of wind velocity. The first is
the spatial distribution of turbulence and the second is the
structural response caused by turbulence. By considering the
spatial distribution of turbulence, wind velocity on shorter
bridges shall be greater than those on longer ones. The relation
between wind velocity and the dimension of structures has already
been derived in the tentative design criteria against wind
effects for proposed Honshu-Shikoku bridges (1). On the other
hand, effects of random vibrations excited by wind turbulence may
be substituted by increasing the wind velocity so as to represent
the expected maximum stress conditions in the structure, but, so
far as the authors know, the quantitative modification of wind
velocity has not yet been obtained.

In this contribution, the authors describe the wind-resistant
design process of the Onomichi Bridge, including the estimation of
wind velocity, results of the wind tunnel model tests and the
Vibration tests on the completed bridge. It is already shown that
cable-stayed girder bridges not always possess a satisfactory
stability against dynamic wind actions (2) (3). The wind tunnel
model tests for the original design of Onomichi Bri'dge showed an
unsatisfactory aerodynamic stability, too. However, fabrication
of the bridge had been simultaneously progressed during the model
tests and only a limited change in the sectional shape of girder
was possible. Among several alternatives, a plan to install a
lane of open grating at the center of bridge floor showed an
improvement in increasing the critical wind velocity and was
adopted.

Vibration tests on the dynamic characteristics of the
completed bridge such as natural frequencies, Vibration modes and
structural damping were conducted. The measured structural
damping was comparatively low which showed the possibility of
wind excited Vibration.

In the conclusion, the authors emphasize the necessity of
the thorough investigation by wind tunnel model tests in the
designing process of cable-stayed girder bridges.
2. Outline of the Onomichi Bridge

The Onomichi Bridge, which is located in the Seto-Inland Sea
and spans a sound of about 200 meter wide between Onomichi City
and Mukaijima, is a cable-stayed continuous girder bridge of 215
meters center span and 85 meters two side spans. The continuous
girder of the bridge consists of two plate girders 3.2 meter high
and steel plate deck 10.4- meter wide.

As shown in Pigure-1, the girder is stayed at both sides by
locked coil ropes in a fan shape. The ropes are supported by two
towers of 72.6 meter high and are fixed at the girder ends and
tower ends.

Natural frequencies of the bridge are approximately calculated
as shown in Table-2. The ratio of fundamental natural

frequencies in torsional mode and flexural mode is about 2.93-
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Table - 2 Natural Frequencies of the Onomichi Bridge
(c/s)

Mode Symmetrie Mode Asymmetrie Mode

Order Ist. 2nd. 3rd. Ist. 2nd. 3rd.
Vertical flexural Vibration 0.581 1.385 1.795 0.914 1.562 2.249
Torsional Vibration 1.706 3.942 4.536 3.055 3-978 5.543
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Figure-1 Elevation and Section of Onomichi Bridge

3- Estimation of expected wind velocity
By reason of the importance and the life time of the Onomichi

Bridge, 100 years period was chosen as the return period for
estimating wind velocity.

About 5 kilometers apart from the bridge site, a meteorological
observatory Station exists and observed wind velocity data of

10 minutes duration after 1°A2 are available. Assuming the
double exponential distribution of probability density of the
annual maximum wind velocity, the return values in period of 50
and 100 years at the Station are estimated as 21.5 and 22.8 m/s,
respectively. The values should be modified by considering the
difference of topographical condition between the bridge site and
the Station.

On the other hand, in connection with the meteorological
survey for the proposed Honshu-Shikoku bridges. multi-regression
analysis upon return values of wind velocity in the area of Seto
Inland Sea were conducted. In the analyses, the influences of
local topographical conditions such as the openness and undula-
tion of topography, rate of sea area and others were taken into
aecount. As the estimated values at the bridge site, 29.6 and
31.8 m/s for 50 and 100 years return periods were obtained by
this method. However, because the multi-regression analyses
were conducted for applying the wide area of Seto Inland Sea and
it was not so sufficient to apply for the estimation of wind
velocity in the local area, the values obtained by this method
were ignored and 22.8 m/s was chosen as the fundamental value for
estimating wind velocity at the bridge site.

By taking into aecount of the effect of convergence of wind
in a narrow Channel and other topographical conditions, wind
velocity at the bridge site was estimated 1.2 times of those at
the Station, that was 27.4 m/s. It was considered that the
comparatively low value of wind velocity was resulted from the
greater roughness of ground surface around the bridge site.
Therefore, i/4- was assumed as an exponent of the power law forthe vertical profile of wind velocity, which resulted in themodification factor of 1.377 at the altitude of the bridge girderof 36 meters.

Qs*hli icthar \r-h t
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As described in the introduction, wind velocity should vary
according with the dimension of structure. The modification
factor for the span length of 215 meters is 1.208 according to
the design criteria for the proposed Honshu-Shikoku bridges.

As the result of modification of wind velocity mentioned
above, 45.5 m/s was obtained. The aerodynamic stability of the
bridge was judged by this value.

4. Wind loads and calculated critical wind velocities
In design of the Onomichi Bridge, horizontal wind loads of

1680 kg per linear meter of the girder and of 300 kg per unit
area (n)2)of towers were taken into aecount according to the
"Design Specifications for Steel Highway Bridges". As shown
later, the wind tunnel model tests showed smaller value of drag
acting on the girder than the above mentioned value.

The critical wind velocity for the lateral buckling was
calculated by a formula derived by Hirai and Okauchi (4). In the
calculation, values of drag and lift coefficients obtained by the
wind tunnel model tests were used. The calculated value was
148.5 m/s and was far beyond the above mentioned wind velocity of
45.5 m/s.

Also, the critical wind velocity for the coupled flutter
was calculated by introducing aerodynamic forces on the flat
plate derived by Theodorsen, for the purpose of reference,
though the air flow around the bridge girder usually separated
from the surface of structure and the theory based on the potential

flow could not be applied. The calculated value was 78 m/s
and exceeded the above mentioned value of 45-5 m/s.

5. Wind tunnel model tests
Measurements of three components of aerodynamic forces and

instability tests were conducted on section models of 1/25-6
scale. A wind tunnel of Göttingen type was used for the tests,
which had the test section of 3-0 meter high and 1.8 meter wide.
The maximum wind velocity of the tunnel was 23 m/s. A detailed
description of the tunnel is shown in the reference (5)-

In the measurements of aerodynamic forces, an electrical beam
balance was used. In the instability tests, the model was
mounted horizontally on a spring system with its spanwise axis
normal to the wind flow. The model was allowed vertical and/or
pitching motions separately or in coupled motion.

The polar moment of inertia and the mass of model per unit
span were simulated to those of the prototype. No reliable value
of structural damping of the actual bridge was available for the
authors, those of the prototype in flexural and torsional motion
were assumed to be 0 06 and 0.05, respectively. Damping of the
model were kept as low as possible and, for the model of modified
final design, an additional damping was given by a set of electro-
magnetic dampers. The ratio of torsional frequency to the
flexural ones of the prototype in the fundamental mode was about
2-93, but because of the installation mounting the model, the
ratio of the model was about 2.
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The similitude on the reduced velocity was used in the
conversion of wind velocity from model to prototype. In other
words, the value of reduced velocity V/NB, in which V, N and B
were the wind velocity, the frequency of Vibration and the
representative linear dimension of model and prototype, was assumed
same for model and prototype.

As the wind tunnel model test on the original design pro-
gressed, it was revealed that a negative slope of lift coefficient
curve was found in the measurement of aerodynamic forces and
galloping Vibration started in comparatively low wind velocity in
the instability test; so, changes in external shape of the bridge
girder were required. However, at that time, fabrication of the
girder was simultaneously progressed and only a slight change was
possible.

Several alternative plans were proposed and tested in the
wind tunnel and finally a plan to install a lane of open grating
at the center of girder was adopted. Table-3 shows the required
and actual values of models for the original and modified final
design. For the brevity, results of the model tests only for the
original and modified final design are shown in this contribution.

Aerodynamic coefficients of the girder sections are shown in
Figure-2. The negative slope of lift coefficient appeared in the
original design could not be diminished even in the modified
final design. However, as seen in Figure-3, the dynamic behavior
of model was improved. Figure-3 (a) shows relations between
amplitude and wind velocity in flexural Vibration when models were
subjected to horizontal wind. Conditions of models were different,
so wind velocity converted to the prototype is shown in the
figure.

Table - 3 Values of Model

Model
Weight Polar moment of inertia Structural damping

required actual required actual flexural tortional

Original
Modified
final

gr-
7667

7667

gr-
7648

7679

gr-cm-s2
3620

3620

gr-cm-s^
3430

3650

0.060
,0.029
V0.065*

oa

0.022
/0.008
^0.050*

Frequency Frequency ratio
flexural

Nh
torsional

Na required actual

c/s
1.55
1.80

c/s
3.48
3.90

2.93
2.93

2.25
2.17

With additional
damping by electro-
magnetic damper
units.
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In the case of original
design, vertical Vibration of
restricted amplitude set on at
9.6 m/s wind velocity and held
out to the wind velocity more
than 30 m/s. Beyond 35 m/s,
the amplitude grew rapidly and
the Vibration became catastro-
phic. The predicted critical
wind velocity of the prototype
was about 38 m/s The tests on
modified final design were
conducted with two different damping

values as shown in Table-3.
The value of logarithmic decrement

in vertical mode with
additional damping were almost
same with the test on original
design. However, in the modified

design, a restricted
Vibration set on at the wind
velocity of about 13 m/s and
lasted until 16 m/s. Beyond
the wind velocity of 48 m/s, a
vertical flexural Vibration
oecurred again and the Vibration

became catastrophic with the increase of wind velocity

/^<^ * ^^ 1 L
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Design X ' Cm. Moment
-QS+-0. IB Coeffioant

- I.oj - O20

Figure -2 Aerodynamic Coefficients

of Girder Section

Thus,
the critical wind velocity of 48 m/s was predicted for the" modified

design. The restricted Vibration in the modified design
seems to be an aeolian Vibration and the catastrophic one a
galloping. In the case of original design, it can be considered
that overlaping of aeolian Vibration and galloping have oecurred.

Original design

Modified final design

E 6

r/i</h 0.029
81

>./h =0.065 6/8 31 0«--07 V,•»91 <fa=0050

lo
10 20 30 40 50

-•" Wind velocity for the prototype (m/s)

(a) Flexural mode

20 30 40 50 60 70 80

— Wind velocity for the prototype (nv%)

(b) Torsional mode

Figure-3 Amplitude and Wind Velocity of Model ViDration

Figure-3 (b) shows relations of torsional amplitude and
wind velocity. In this case, too, the manner of Vibration was
similar to those of flexural Vibration. But the model of
modified design with Sa 0.050 showed a noteworthy behavior in
the ränge of wind velocity 67 to 80 m/s. In this ränge, when a
small disturbance less than 2 degrees was given to the model, then
the Vibration died out, but when the initial disturbance exceeded
2 degrees, then the Vibration diverged.
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As seen in Figure-3, the value of structural damping influences

the aerodynamic behavior of bridge. So the necessity of
measuring the value of prototype was acutely feit and the
Vibration test of the Onomichi Bridge after its completion was
scheduled during the model tests were progressed. For serving
the prediction of aerodynamic behavior of the bridge after finding

the value of structural damping of the completed bridge, a

special analysis was applied to the records of wind tunnel model
tests on the modified final design.

In general, the value of damping consists of structural
damping and aerodynamic one and the aerodynamic damping varies
according to wind velocity, amplitude of Vibration, sectional
shape of the structure and incidentai angle of wind. From the
diagrams showing the amplitude and numbers of Vibration, we can
obtain the values of damping corresponding to each amplitude and
each velocity and can draw contour lines which show the relation
among the values of damping, amplitude and wind velocity.
Figure-4 shows such contour lines of flexural and torsional
vibrations for the model of modified design with and without
additional damping.

In Figure-4, (a) and (b) show contour lines in flexural
motion without and with additional damping, respectively. The
structural damping, which means the damping in still air, of the
former is 0.029 and that of the latter is 0.065- The difference
is about 0.035- If the superposition of structural damping was
possible, zero contour in (b) must coincide with - 0.035 contour
in (a). The comparison of (a") and (b) shows that this is
correct qualitatively but not in the strictly quantitative
meaning.

44
Wind vetoaty ImA)—-

(a) Flexural mode (8h=0.029)

Wr

w

Wind nbcilv ImAI—-
(c) Torsional mode (Sa =0008)

Wind «Efcaty Imrtl WM nkx.it, !„<>
(b) Flexural mode (Sh=0065) (d) TofSiona| mode (Sa=0050)

Figure-4 Contour of Aerodynamic Damping

Figure-4 (c) and (d) show contour lines in torsional
motion. The structural damping of the former is 0.008 and that
of the latter is 0.050 and the difference is about 0.04. In
torsional Vibration, too, zero contour line in (d) roughly
coagree with - 0.04 contour line in (c). From the above facts,



1270 VI - WIND RESISTANT DESIGN OF A CABLE-STAYED GIRDER BRIDGE

the authors consider that these contour lines offer an effective
supplementary measures for predicting the aerodynamic behavior of
prototype.
6. Vibration tests of the comple

After the completion of the
veyinp mainly structural damping
the bridge was vibrated by
specially devised twin excitors
which were able to generate
reciprocating forces in phase or
out of phase and thus able to
excite the bridge in any of
flexural and torsional motions.
Figure-5 shows a plan of twin
excitors. The exciting
frequency is variable from 0.2
to 10 c/s. The maximum excitine
force per each unit at 10 c/s is
15 tons. A remarkable feature
of the excitors is that the
position of unbalanced weights c
so as to keep constant exciting
The other remarkable feature of
can be eliminated within short p
into zero output position. The
resonance curves and the latter
Vibration.

ted bridge
bridge, Vibration tests for sur-
were conducted. In the tests,

QE
AS Motof 40 tf>
1250-125 RPM 150-1
1500-150 RPM I60-)n G Eicltor

2700±5° 2700*550 _ _ 2700"° 550

Figure-5 Plan of Twin Excitors

an be changed during the Operation
forces regardless of frequency.
them is that the exciting forces
eriod by moving unbalance weights
former is useful for recording
for causing a damped free

060

050

0.40

030

020

010

„1127
.l«7
»1012

Frequency (c/s)

(a) Flexural Vibration

I

I

Legend

0 ', Excitors al center

• : Excitors at '/4 pt

»fc.—.iT—./»»fc.,.

Frequency (c/s)

(b) Torsional Vibration

Figure-6 Resonance Curve

Table - 4 Measured Natural Frequencies
(c /.)

Mode Symmetrie mode Asymmetrie mode

First Second First Second
Vertical flexural
Torsional

0.58
1.66

1.38 0.92
2.94

1.62
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The excitors were
installed at the center
or at the quarter point
of the center span.
Motion of the bridge at
every 1/8 point in the
center span, every
quarter point in the side
spans and at the top of
the tower were measured
by using temporary
installed accelerometers.
Figure-6 (a) shows a
resonance curve in vertical

flexural vibrations
and (b) shows those in
torsional vibrations.
Figure-7 shows modes
of Vibration in the
fundamental Symmetrie
and asymmetric modes of
vertical flexural and
torsional vibrations.
Table-4 shows measured
values of natural
frequency. The comparison

of Table-4 and 2 shows
frequency and measured ones

^T^ ^1K-^

0.025r s i
Q0.25-

•¦* Q0I2E ¦

5 0.0251-

(b) Torsional Vibration

El 50

ä 25 f25

(a Flexural Vibration

'~^—r Symmetrie Mode

'"X-' Asymmetrie Mode

Figure-7 Modes of Vibration

good eoineidence of the calculated

Figure-3 shows diagrams of amplitude and number of Vibration
cycle in the damped free Vibration of the bridge. The
logarithmic decrements of the
bridge were obtained by averaging

the slopes in the diagram
and were 0.05 for the vertical
flexural motion and 0.035 for
the torsional motion. The
measured values are somewhat
smaller than those assumed in
the wind tunnel model tests.

^1

£
Ol £*

—
E

i 3 20 30 *3 5ö «8
No. of vibrations

lb) Toriional Vibration

„ __ t

K

4 ""¦f"^Y-iTTVfl*si " H,In

1

1

_J 1
1

2 ' f i i D 1 2 K >5 1 3 20 22 24 26 219 30

7- Observation
As the results of wind

tunnel model test show, the
critical wind velocity of the
Onomichi Bridge for the
aerodynamic instability is not so
high and possibly the restricted
Vibration occurs in low wind
velocity. In fact, during the
Vibration tests, the bridge was
subjected to wind velocity of
about 13 m/s and a vertical
flexural Vibration of about 20
cm/sa acceleration, which was
stationary, was caused by wind
and was recorded. The observed
frequency was almost equal to the natural frequency of verticalflexural Vibration in the first Symmetrie mode.

No.of vibralion
(a) Flexural Vibration

Figure-8 DtawMnt of AmpMtutf«
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For inspecting the dynamic behavior of the bridge under the
wind action,"two anemometers and ten accelerometers have been
installed. One of the anemometers has been installed at the top
of tower and the other at the center of main span. When wind
velocity exceeds a certain amount, say 20 m/s, recording papers
of these run fast and wind velocity of every two or three seconds
can be obtained. Accelerometers are coupled with the anemometer
at the center of main span, and when wind velocity exceeds the
above amount, they start zo record vibrations of the bridge.
Vertical flexural, torsional and swaying vibrations can be
observed.

Also, accelerometers can start to record vibrations caused
by earthquake when ground acceleration exceeds a certain amount,
say 5 cm/s2

3. Conclusion
In the introduction, the authors have classified wind

effects on structures as shown in Table-1. The wind tunnel model
tests on the Onomichi Bridge in oteady wind have shown that
aeolian Vibration, galloping and torsional flutter of the bridge
girder possibly occur and that cable-stayed girder bridges are
liable to vibrate under wind actions as similar as other flexible
structures.

When a structure is rigid enough, static wind loads such as
drag, lift and pitching moment are enough to be taken into
aecount in designing it. On the contrary, when a structure is
flexible, not only static wind loads but dynamic wind effects on
it should be considered. So it can be concluded that two major
problems in the wind resistant design of structures are to
estimate the design wind velocity and to consider dynamic wind
effects on them.

There are several methods for estimating wind velocity, to
which structures are subjected, but sometimes return values
obtained by different methods differ from each other. The
difference is considered to be mainly caused by the evaluation
of influences of the local topographical condition at the
structure site. On the local distribution of mean wind velocity,
multi-regression analyses on return values, numerical
calculation method based on the fluiddynamic equations, wind tunnel
tests for topographical models and instrumental Observation of
the actual distribution are the evaluating methods. Studies for
establishing an effective method of statistically estimating
return values of maximum wind velocity taking into aecount the
local topographical conditions of the structure site will be
necessary.

At present, it is very difficult to represent dynamic wind
effects on structures in terms of wind loads. In the near
future, dynamic wind effect causing aeolian Vibration on
structures may be represented by a stationary external force
acting on them and those causing random Vibration (buffeting)
may be represented by the equivalent increase of wind velocity.
However, it would be essentially impossible to represent the
dyn<amic wind effects causing self-excited vibrations in terms of
wind loads, even in the case of soft flutter. Therefore from the
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view point of wind resistant design of structures, especially
flexible ones, "wind effect" instead of "wind loads" shall be
considered.

The value of critical wind velocity, which governs the
dynamic instability of structures, should be investigated for
self-excited vibrations. Only the wind tunnel model test is the
measures for predicting the critical wind velocity for the prototype.

Besides the critical value of wind velocity, dynamic
responses of structures such as the amplitude and frequency of
Vibration can be revealed by the model test.

From a functional point of view, Seiberg (6) proposed three
kinds of critical wind velocity in the soft flutter problems
according to their torsional amplitudes. In this case,
prediction of vibratory amplitude of structures is indispensable for
evaluating the critical wind velocity of them. Because the
vibratory amplitudes in the soft flutter are governed by the
value of sfructural damping, contour lines of aerodynamic damping
related to amplitude and wind velocity as shown in Figure-4 offer
an effective measures for predicting the critical wind velocity.

From the reasons mentioned above, the authors conclude that
the design of flexible structures such as cable-stayed girder
bridges or Suspension bridges should be investigated by the wind
tunnel model tests in the region located in zone of strong wind
like our country.

In addition, measurements of structural damping, especially
those in torsional mode, of completed bridges have an important
meaning on the aerodynamic stability of structures and are
desirable. Those values obtained in our test on the Onomichi
Bridge were considerably low. The accumulation of values of
structural damping measured on presenting structures is quite
necessary.

Finally, the author emphasize that the Observation on the
dynamic behavior of structures under wind action contributes to
the progress in wind resistant design method of them as same as
it contributes to the inspection of structural safety.
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SUMMARY

This paper describes the design considerations of the Onomichi
Bridge against wind effects such as the estimation method of design
wind velocity, results of wind tunnel model test, Vibration tests
of the Bridge and installations observing the aerodynamic response
of bridge. Basing on their Classification of wind effects, the
authors point out the possibility of causing a cable-stayed girder
bridge aeolian Vibration, galloping and torsional flutter and the
necessity of considering dynamic wind effects besides wind loads
in the design.

RESUME

Cet article decrit les considerations de dimensionnement faites
pour le pont Onomichi contre les effets du vent: Methodes d'estimation

de la vitesse du vent, resultats d'experiences faites sur
modele au tunnel aerodynamique, tests vibratoires sur le pont et
installations observant le comportement aerodynamique du pont. Se
basant sur leur Classification des effets du vent, les auteurs re-
levent la possibilite d'obtenir des vibrations sur un pont ä
haubans, des galoppades et des flottements tordants. Ils montrent
la necessite de considerer les effets dynamiques ä cöte des charges

de vent dans le dimensionnement.

ZUSAMMENFASSUNG

Der Beitrag beschreibt die notwendigen Betrachtungen über den
Windeinfluss, die bei den Studien der Onomichi-Brücke gemacht wurden,

wie Schätzungsmethode für die in die Berechnung einzusetzende
Windgeschwindigkeit, Modellversuche im Windkanal, Vibrationstests

an der Brücke und Einbauten zum Beobachten des aerodynamischen
Verhaltens der Brücke. Die Autoren stützen sich auf ihre

Klassifizierung der Windeinflüsse, um die Möglichkeit von Schwingungen,

Galoppieren und Torsionsschlingern an seilverspannten
Brücken zu betonen. Sie weisen auf die Notwendigkeit hin, bei der
Bemessung neben den ruhenden Windlasten auch die dynamischen
Einflüsse zu berücksichtigen.
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SCOPE OF THE STUDY

This investigation is based on studying the response of ten
actual reinforced concrete chimneys varying in height from 352
ft. to 1200 ft. The physical properties of these ten chimneys
are tabulated in Table 1. Accelerograms for the three actual
earthquakes tabulated in Table 2 have been selected for the
analytical study. All tabulated results are based on the average
values obtained from the response due to these three accelerograms.
It should be mentioned that the average response due to the three
earthquakes has been found to be very close to the average
response due to seven strong motion earthquakes which include the
three used in the paper £0.

METHOD OF SOLUTION

The modal analysis technicjues are used in finding the
response of a chimney to the earthquake accelerations at the base
of the chimney. The steps will be stated very briefly.

1. Determine the mode shapes and the shears and moments
associated with each mode. The Stodola process
combined with numerical integration is used tl3 L"23 •

For practical purposes three or four modes of Vibration

will be enough.
2. The displacements, Y(x,t), in the chimneys as well as

the shears, V(x,t), and bending moments M(x,t) at any
section and at any time are then computed by the following

equations C2l, Ü3]:

Y(x,t) Xs©(x) • q.,<t) (i)

V(x,t) iv.(x) • q.(t) (2)
j=l -1 J

M(x,t) 21 M (x) • q.(t) (3)
j-1 3 H



Table 1 - Data for Chimneys Used in Study

Chimney
No.

Height
(ft.)

Outside Diameter Total
(ft.) Weight

Top Bottom (kips)

Period E
(seconds (kips/
per cycle) sq.in.)

Remarks

352

450

23.58

16.33

30.90

35.79

4532

6743

1.74

2.12

3500

3500

3 534 18.67 35.03 8374 2.26 3500

4 622 23.33 47.26 12526 2.33 4000
5 707 19.98 69.14 26236 2.91 3500

6 797 31.33 62.50 23392 3.29 3625
7 825 25.00 63.96 22970 3.44 3625

8 840 41.66 74.42 40976 3.33 3630
9 997 33.67 83.00 42440 3.64 3625

0 1200 37.00 95.29 65955 4.68 3820

Corbel supported
brick lining
Corbel supported
brick lining
Independent liner
Independent liner
Corbel supported
brick lining
Steel liner
Steel liner
Three steel liners
Steel liner
Steel liner

>
DJ
-AID
C
>
A
m
TI
O
ID
o
m
US

CS

o

Table 2 - List of Earthquakes
oo2n
3!
m
H
m
ni
<
US

Designation Location Date Direction
A

B

C

El-Centro, Cal.
Olympia, Wash.

Taft, Cal.

May 18, 1940

April 13, 1949

July 21, 1952

West
N 10° W

S 21° W
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in which x is the distance along the chimney, t is the time,
$2 (x) is the mode shape in the jtll mode and Vj (x) and M • (x) are
the shears and moments associated with the jÜL mode.

The value of qj; (t) which is a multiplier for the modal
displacements, shears and moments, is obtained from the following
equation: H

2 -a(t) J m(x)ß'j(x)dx
q.(t)+3/9«j.q.(t)+«J-q.(t) A (4)
: J J 3 /m(x)c2r?(x)dx

o -I

in which ß is the fraction of critical damping, *>j is the
frequency in radians/sec., a(t) is the acceleration of the earthquake

and m(x) refers to the mass per unit length.
Eiquation (4) is solved numerically \Z\Z] using a third order

Runge-Kutta process.
3. Although the Solution of equations (1), (2), and (3) will

give displacements, shears and moments at all intervals
of time, yet the maximum values at any section are the
only ones that are of interest. These maximum values are
computed for each earthquake and the average is then
obtained.

RESULTS

Base Shear

Many codes express the value of the maximum shear at the
base of a chimney due to earthquakes as a function of the first
mode period and of the total weight of the chimney. For this reason

the maximum base shear has been computed for each chimney due
to earthquakes A, B, and C and the average of these three maximums
has been plotted as a ratio of base shear to total weight in Figure

1. It should be emphasized that the maximum base shear (Figure
1) is the maximum of the algebraic sum of four-mode responses.

Base Moment

A dimensionless plot of the maximum base moment, Mj-,, is given
in Figure 2. The ratio of M^ divided by the product of the base
shear times the height, H, is plotted against the first mode period

of the ten chimneys considered in this study.
Shear Distribution from Accelerograms

The distribution of the maximum shears along the chimneys is
presented in Figure 3 in normalized form for five of the ten chimneys

considered. The numerical value of the maximum shear for any
height above the base can be calculated from the value of the base
shear recorded in the Figure.
Maximum Bending Moment Curves

The maximum bending moments in five of the ten chimneys are
presented graphically in normalized form in Figure 4. These bending

moments are the average value of the maximum moment curves
due to earthquakes A, B, and C.

PROPOSED ACI EARTHQUAKE PROVISIONS JjjQ

1. Base shear. In the proposed chimney code of the American
Concrete Institute, the base, V^, is given by the
empirical equation:
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where
V. ZUCW or V, ZUCWnb b 1 (5)

Z a zone factor which shall not be less than 0.30
for Zone 1, 0.5 for Zone 2 and 1.0 for Zone 3.
Zones are indicated on a map for the United
States Uniform Building Code.

U Use factor varying from 1.3 to 2.0.
W Total weight of chimney without lining
W Total weight of chimney with lining

0.1C

i\pr
The period, T (secs. per cycle), may be approximated by:

t ¦ th8 5? - - \/4l- (7)

H Height of chimney in feet
D-^= Outside diameter of chimney shell at base (ft)
D Outside diameter of chimney shell at top (ft)
E Modulus of elasticity of concrete (lbs./sq./

in.)

Distribution of Lateral Forces. Fifteen percent of the
base shear, Vb, is considered concentrated at the top of
the chimney and the remainder is distributed in accordance

with the following requirement:
Top

Base

wh
T,

1

h©h
Xi _L \ "

0.85 V
w, hh

*Whh
(8)

3. Bending Moments. The bending moment at any level as
provided by the proposed code is :

Mx Jx [0.15 Vb(H-hx) + 2Fh(h-hx)]

where J J+(l-J) (h /H)
3

(10)

9)

J 0.6/3wT (But not less than 0.45 norV more than 1.0) (11)
COMPARISON OF PROPOSED ACI PROVISIONS WITH

THE ACTUAL RESPONSE DATA

The comparison with the proposed ACI Code will be presented
under three parts:

Schlussbericht
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(a) First Mode Period T

Both the computed values and those obtained from the
ACI formula (equation 7) are tabulated in Table 3.

Table 3 - Comparison of the Computed First
Mode Period, T (secs. per cycle),

with the ACI T

Chimney No. Height Computed T ACI T

r-l 352 1.74 1.98
2 450 2.12 2.34
3 534 2.26 3.18
4 622 2.33 2.94
5 707 2.91 3.03
6 797 3.29 3.92
7 825 3.44 4.02
8 840 3.33 3.86
9 997 3.64 4.43

10 1200 4.68 5.38

(b) The Base Shear or Total Lateral Force
The shape of the proposed ACI curve for base shear is

plotted in Figure 1 to compare it with the data obtained from the
mathematical analysis. This curve is a plot of Equation (5) for
Z 0.8 and U 2.0.

(c) The Bendinq Moment Curves
To compare the ACI bending moment curve with the

computed curve it is necessary to use the same base shear. Therefore
the maximum base shear that was obtained by the actual response is
distributed according to the ACI provisions and the ACI bending
moment curve is obtained from such distributions by using Equation

(9). These ACI moments are compared with those obtained from the
actual response in Figures 5, 6, and 7 for chimneys #4, #7, and
#10 respectively.

IMPORTANCE OF MAXIMUM STRESS INVESTIGATION

The non-linear Variation of the stress in the reinforcing
steel of a typical reinforced concrete chimney with respect to
the change in the bending moment is clearly shown in Figure 8.
The values given have been calculated for a cross-section with a
center line diameter, d, and thickness, t, of 51.97 ft. and .833
ft. respectively. The Variation is affected considerably by the
percentage of reinforcing steel. Procedures for design have been
presented in a previous paper by the authors £3^ and will not be
repeated here. However, it is recommended that a load factor of
at least 1.5 times the working load bending moments be used in
the maximum stress design with upper stress limits of 0.8 f<i for
concrete and F„ for steel. The value of f<i is the specified
compressive strength of the concrete and Fy is the yield strength of
the steel. The above remarks do not apply to an ultimate strength
design.
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CONCLUSIONS

Only certain pertinent facts of reinforced concrete chimney
design for earthquakes have been presented in this paper. From
the data given it seems reasonable to draw the following conclusions

:

1. Although procedures that are presented in chimney codes
are useful for preliminary designs they are not always sufficiently

accurate for a final design.
2. A response analysis in which from three to seven carefully

selected accelerograms are used is recommended for investigating
the final design.

3. Both a working stress and a maximum stress investigation
of the stresses should be made.

4. Although not discussed in this paper maximum shearing
stresses should also be determined. These stresses may occur
in the upper one-fifth of the chimney.
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SUMMARY

This paper is primarily concerned with presenting some
results of the response of actual reinforced concrete chimneys
to recorded accelerograms of actual earthtquakes. The results are
based on an elastic response using the first four modes with a
damping coefficient of .05 of critical.

The analytical results are then compared with those proposed
by the American Concrete Institute Code (1968) for Earthquake
Design of Chimneys. The provisions of this Code are summarized
in the paper.

The last part of the paper emphasizes the necessity of
designing reinforced concrete chimneys for both a working stress
and a maximum stress condition as the stresses, especially in
the steel, do not vary linearly with the bending moments.

RESUME

Cette redaction presente quelques resultats de reactions
de cheminees en "beton precontraint sur les accelerations mesurees

de plusieurs tremblements de terre.
Ces resultats analytiques sont compares avec le Code de

l'Institut Americain du Beton, dont les prescriptions sont re-
sumees ici. Enfin, la redaction demontre la necessite de
dimensionner les cheminees en beton precontraint et pour une Charge

de service et pour des conditions de Charge maximales, vu que
les tensions ne varient pas lineairement avec le moment, surtout
dans l'acier.

ZUSAMMENFASSUNG

Dieser Beitrag ist hauptsächlich bemüht, einige Ergebnisse
zu zeigen, die man aus der Aufzeichung der Beschleunigungen von
Erdbeben als Wirkung auf Stahlbeton-Schornsteine erhält.

Die Ergebnisse stützen sich auf elastische Bestimmung, die
ersten vier Fälle benützend, mit einem Dämpfungsbeiwert von 0.05
des kritischen. Die analytischen Ergebnisse sind dann mit denjenigen

verglichen worden, die durch die Normen des amerikanischen
Betoninstitutes für den Entwurf von Schornsteinen bei Erdbeben
vorgeschlagen wurden. Der letzte Teil des Beitrags betont
ausdrücklich die Notwendigkeit, Stahlbetonkamine für Gebrauchs- und
maximale Spannungsbedingungen zu entwerfen, da die Spannungen,
insbesondere jene des Stahles, nicht linear mit dem Biegemoment
ändern.
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