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Influence Lines for Shear around Columns in Flat Plates
Les lignes d'influence d’efforts tranchants autour des colonnes aux dalles plates

EinfluBlinien fir Schub im Stiitzenbereich von Flachdecken

PAUL E. MAST
Dr.Eng.
Manager, Design Research Section
Portland Cement Association
Skokie, lllinois USA

Introduction

Shear stresses near columns in flat plate structures are caused by the
column reaction. This reaction can be subdivided into a force, V,, acting per-
pendicular to the plate and into a moment, M, whose vector is parallel to the
plate. Only a portion of this moment, M, is transmitted to the plate by shear
stresses. The remainder is transferred by bending stresses (Fig. 1).

The stress concentrations resulting from the above reactions often govern
the design, i.e., they determine the required plate thickness and column peri-
phery. Itis the purpose of this paper to contribute to the evaluation of these
stress concentrations.

The moment transfer in the

‘i:j% vicinity of columns has been in-
' T —— vestigated in extensive test

I programs [l through 6]. While
| these tests resulted in design
l methods developed on a hypotheti-
cal basis [6 through 9], they did
not reveal precisely which portion
of the unbalanced moment is
transferred by bending stresses
and which portion by shear. The
design methods commonly used in
the USA [8, 9, 12] assume the
moment transfer by shear to take
_4 N-portion of unbalanced place in accordance with the

Critical
periphery

Shear stresses due

to punching force N moments transferred x
and unbalanced N by bending stresses equation
moments ~
/ V, KM
v = —v + e (1)

A

J
FIG.1 TRANSFER OF UNBALANCED MOMENT ¢ ¢
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Vy= Total punching shear force

M = Total unbalanced moment

K = Percentage of unbalanced moment transferred by shear
A, = Area of failure plane

J. = Polar moment of inertia of failure plane

e = Distance from shear centroid to point on failure plane

Experimentally determined values for K, A, and J, vary and are available
in tabulated form [9, Table 8-6]. The following is an approach to determine
these values analytically and to evaluate the resulting shear stresses by means
of influence lines.

An Analytical Method to Determine K

The deflection function of a simply-supported single-span plate strip, sub-
ject to a concentrated moment, is known [10].

M 1 . nmx
W= ZD:?'Z?COSnm (Hng)z)e-ngx e 8

Visualizing the plate supported by flexible columns at its center and applying
the concentrated moment by one of these columns (Fig. 2), one can write a
similar deflection function

., L T 1  nm nmy\ -5 . nm(L+x)
w = MDTT?'Z‘ o2 Cos (1 + 5L, )e sin =—r—— (3)
nsl.23

The boundary conditions at the remote columns are satisfied by this equation
only partially. This, however, does practically not affect the stress configu-
ration in the vicinity of the column at which the unbalanced moment is applied.

/’|II "’AW‘? 11

""“v“'w A h e r A I TEH "'.

FIG.2 CONCENTRATED MOMENT APPLIED TO FLATE PLATE
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The series represented by Equation 3 converges slowly and, hence, is of
limited practical use. It can be summed up, however, by means of transcen-
dental functions [11], similar to the deflection function of a simply-supported
plate strip (10]. We first determine the derivatives of the deflection function,
w, with respect to the x and the y axis in closed form, and then the expres -
sions for all bending and twisting moments and for the shear forces. It should
be noted that simple expressions for the latter ones can be obtained best by
determining 3d(Aw) /3x and d3(Aw)/dy, respectively.

—»
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FIG.3 SHEARS AND MOMENTS AROUND COLUMN
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d°%w
my, = m,, = -D(1 -V) 30y
M cosh—z;L cos—gf +1 cosh—sz cos—;f -1
15 SRR }
T 32L° Ty mx\° ( Ty Trx)g (7)
(cosh o1 + COS_ZL cosh oL COS—ZL

m, is similar to m,, except that the terms associated with (1 -V) are of

opposite sign.

g, = S | A, oy AT
*odx oy dx
M coshz—% cos% +1 cosh;L cosE 1
~ 1612 { oy T ¥ oy be 2} (8)
( hZL + COSE (coshZL -C SZ_L>
q = dmy, , Omy, _DB(AW)
Y dy dx dy
© Mp sinh 51 sin 5L sinh oL sin oL
16L%2 { my B oy x\? } (9)
( osh2L + cos 2L, (coshZL - cos ?,L)

To determine the value K of Eq. 1 from the above expressions, one can
define it in two ways. If K is defined as that portion of the unbalanced moment
M, which is not transferred between columns and slab by pure bending
stresses, then K becomes

J

Vi uC VL UL
of m,dy + of my,dx - oJ‘ q,ULdy - OI q,xdx

L VL uL
Ry dx - j' q,ULdy - J' q,xdx
0 o

4 |
1 M OI m,dy (10)

The values U and V in this expression define the assumed failure plane
(Fig. 1) at which the stress configuration is to be determined (Fig. 3). The
integrations can be performed numerically or, with certain approximations, in
closed form as follows.

We are primarily interested in the stress configuration near the columns,
where the terms which have (coshmy /2L + cosmx/2L) in the denominator are
very small compared to the remainder of the equation. They may, therefore,
be neglected. Furthermore, setting

2
X  TX X X
Fs S o L B 1
sin 3 5L and cos oL, 1 1/2(2[ > (11)
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2
ny _ _X> Y o U3
and COShZL 1+ 1/2<2L , and sinh 51 5 3y, (12)

the expression for m, in Eq. 6 simplifies to

'{/L
M =4y L{(l+ ) =L + (y /L)

2
() Ry 13

C(x/L)?+ (y/L)?]?

This equation can be integrated to

M y/L 7d-v) (y/L (x/L)
[mydy = 50 {avctan x/L [ ](x n (y/L)g} 14)

so that a closed solution for K as a function of the critical periphery (Fig. 3)
becomes

2 1 -v) uv
_E {arctan U ';( :l U2 + Ve} (15)

The above definition of K is based solely on the transfer of bending
moments. There is, of course, also the possibility of expressing K in terms
of the shear stresses, q,, directly. This approach is even more justified
since we are interested primarily in the maximum shear stresses along the
critical periphery.

Making similar approximations as outlined before, the expression for g,
of Eq. 8 becomes

[2 (y/L)2 Z(X/L)E:] [— (y/L) (/L) ]
{ [(x/L)?+ (y/L)?

Remembering from Eq. 1 how the shear stress, v, due to the unbalanced
moment, M, was defined, the definition of K then becomes

<= () '

i = 41TL2 } (16)

where d = structural depth of the plate. While J, and e are determined by the
failure plane chosen, the shear force, q,, as given by Eq. 16, varies, of
course, along this periphery and does not suffice to define K. The required
additional condition comes from the fact that the slab is built integrally with
the column. This results in zero twisting moment, m,,, along the column
face, so that g, = 3m,/dx. On the other hand, the term 3%°w/3x° is almost con-
stant with respect to y in the vicinity of the column. It can, therefore, be
assumed that the actual distribution of g, along the column face is uniform and
that it is justified to assume an average value, q, = constant, to prevail along
the assumed failure plane along the y-axis in the vicinity of the column. To
find this average value, E;, one must integrate Eq. (16) as follows.

W= f a.dy

(18)

o v, Gl

{-X/—VL—J- arctan +

217 x /L (x/L)%+ V@
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To determine K from Eq. (17), one may use the definition of J, from
Reference 9, Eq. 8-24, so that

J- 4 d2
] - PP 2)=Z1712 —

in which the structural depth, d, of the plate may be assumed as L /40. This
term is rather insignificant so that any other reasonable assumption will yield

similar results. The resulting K-value for q, = q, can thus be expressed as a
function of the critical periphery, i.e., in terms of U and V (Fig. 3)

S YRS oty AR ST S | R

Another simplification suggests itself by neglecting terms in Eq. 20 which are
small compared to the remainder of the equation. Hence, with

J
—
R =125 (21)

a simple expression for K results, which is within 1/2 percent identical with
Eq. 20:
R

K=smoe+ v

(22)

This shows that the resulting averaged maximum shear stress, v = _c;/d, due
to an unbalanced moment, M, is inversely proportional to the square of the
distance from the center of the column to the corner of the critical periphery:

3 M
T 2mdL® (U + V?)

v (23)

Influence Lines for Maximum Shear Stress

As revealed by Eq. 1, the influence line for maximum shear stress is a
combination of the influence lines for the column reaction, V, and for the un-
balanced slab moment, M. Fig. 4 shows these influence lines for a typical
flat plate structure extending over three spans (slab thickness: 8 in.; columns
18x18 in.; story height: 10 ft.; spans: 20 ft.; bay widths: 20 ft.). For a
structure with longer spans, the ordinates of the moment influence line would,
of course, be bigger, whereas the ones for W would remain about as shown.

In order to combine these influence lines, we multiply the ordinates of the
one for M by the factor

Q=K3{,—&l e (24)

and add them to the ordinates of the one for V, as shown in Fig. 4c. The
force, S, obtained by putting a load on the ordinates, 7,, yields the maximum
shear stress as v = S/A,.
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FIG.4 INFLUENCE LINES FOR MAXIMUM SLAB SHEAR AT COLUMNS

Tables 1 through 3 tabulate K-values and the corresponding Q-factors as a
function of the shape of the critical periphery, which is expressed by its coor-
dinates, U and V. Table 1l is set up for K =1.0. The corresponding Q-factors
pertain to designs in accordance with common practice in the USA [8, 12].
Table 2 uses K-values based on the moment transfer, as defined by Eq. 15.
Table 3 uses K-values based on maximum shear stress, as defined by Egs. 20

or 22.

These Q-values in Tables 1 through 3 differ considerably, and so do the
shapes of the resulting influence lines for shear. The lower portion of Fig. 4,
for example, compares the influence lines based on the Q-factors from Table 1

v U | 0.025 | 0.050 | 0.075 | 0.100
0.025
K, 0.050 K| = constant
0.075 = 1.000
0.100
0.025 2.823 1.756 1.315 1.062
3] 0.050 2.482 1.477 1.101 0.894
0.075 2.341 1.348 0.993 0.803
0.100 2.264 1.274 0.928 0.747
Table 1. K and Q - Values without

Plate Theory

(solid line) and from Table 3
(dashed line). The chosen coordi-
nates of the critical periphery are
U = 0.045 and V = 0.089, which
comply with common practice [8,
12] for the column and slab dimen-
sions stated above. The K-values
pertaining to these Q-factors are
K; =1.00 (for Q, = 1.425) and

Kz = 0.301 (for Qg = 0.428). It
should be noted that these influence
lines resemble the ones for kern-
moments in columns of continuous
frames. The width of the '""shear
kern,'" measured from the centroid
of the critical periphery, amounts
to
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v U | o0.025 | 0.050 | 0.075 | 0.100 v Y| 0.025 | 0.050 | 0.075 | 0.100

0.025 | 0.620 | 0.800 | 0.867 | 0.900 0.025 | 0.451 | 0,435 | 0.387 | 0.353

K, 0.050 | 0.391 | 0.620 | 0.736 | 0.800 Ks 3'2:: g';?z z':zl 2':;’: z:z
0.075 | 0.277 | 0.485 | 0.620 | 0.705 . ’ ) ; :

b.w0 | 0.2 | 5357 [ 6.525 (& 420 0.100 | 0.166 | 0.300 | 0.385 | 0.427

0.025 | 1.7 | 1206 | T1a0 Toom 0.025 | 1.273 | 0.764 | 0.509 | 0.374

o, [0050 [ 0971 [ 0915 | o810 {0,716 o) 0.050 | 0.764 | 0.637 | 0.490 | 0.382

20,075 | 0.689 | 0,652 | 0.615 | o 567 0.075 | 0.510 | 0.490 | 0.425 | 0.357

0.100 | 0.482 | 0.499 | 0.487 | 0.463 0.100 | 0.375 | 0.383 | 0.358 | 0.319

Table 2. K and Q Values Based on Table 3. K and Q Values Based
Moment Transfer on Maximum Shear
k=1/Q=7J./KA_e (25)

Evaluation of Influence Lines

The variation of the influence lines (Fig. 4c) shows that the shape of the
critical periphery and the theoretical assumptions of moment transfer affect
the shear stresses around a column in two ways: First, there is a direct
effect due to the magnitude of the factors associated with Vy,and M, i.e., the
magnitude of the variables K, J., A., and e. The other effect results from the
positioning of the live load as determined by the positive and negative regions
of the influence lines.

In designing multi-span frames, we are used to positioning the live load
either on the two spans at both sides of a column (Case A) or on just one span,
i.e., to the left or to the right of a column (Case B). The first arrangement,
Case A, results in a maximum punching force, \{, whereas the latter one,
Case B, results in a maximum unbalanced moment, M. We will investigate
these two loading conditions with respect to the maximum shear stress which
they produce. Furthermore, we will see what effect partial loading of the
span has, i.e., loading up to the zero-point of the influence lines (Case C).

The influence lines of Fig. 4c represent two extremes. The solid line
(Ky = 1.00; Q, = 1.425) puts the maximum emphasis on the unbalanced moment,
whereas the dashed line assumes a big portion of the unbalanced moment being
transferred by bending (Kz = 0.301; Q3 = 0.428). Shear stresses obtained
from these influence lines cannot be compared directly because the ones for
K; = 1.00 may be reduced by the provision of flexural reinforcement [8]. It
is for this reason that the resulting shear stresses are compared separately
in Tables 4 and 5. In other words, these tables are meant to show the signif-

icance of the live load positioning only.

In comparing Cases A through C, the dead-to-live load ratio is important.
We assume a feasible range of live loads varying from 50 1b. /sq. ft. to
100 1b. /sq.ft. Considering the slab thickness given, other factors affecting
the dead-to-live load ratio are the type of concrete (lightweight or normal
weight) and, due to load factors, the design method used (Ultimate Strength

Method or Working Stress Method [12]).
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K, =1.000 Ultimate Strength Working Stress

Q, = 1.425 Normal weight Lightweight Normal weight Lightweight
Live Lioad: 50 100 50 100 50 100 50 100
Case A 112 159 95 142 69 96 58 84
Case B 171 278 154 26} 102 162 91 150
Case C 173 280 155 263 103 163 92 152

Table 4. Shear Stresses (psi) as Function of Live Lioad Positioning

K = 0. 301 Ultimate Strength Working Stress

Qs = 0.428 Normal weight Lightweight Normal weight Lightweight
.ive Load: 50 100 50 100 50 100 50 100
Case A 124 172 104 152 7 104 64 91
Case B 124 173 104 154 78 105 64 92
Case C 130 185 110 165 80 111 67 98

Table 5. Shear Stresses (psi) as Function of Live Lioad Positioning

The values of Tables 4 and 5 were computed in compliance with standard
practice [8, 12] by means of a computer program [13]. They show that it is
always the live load position for maximum positive span moments (Case B)
which causes maximum shear stresses at the columns. They, furthermore,
show that the increase in shear stress due to extending the live load to the
zero-point of the influence lines (Case C) is insignificant. It should be men-
tioned that some building codes [12] call for only 75 percent of the live load to
be applied in pattern loading, whereas 100 percent of the live load must be
placed on all spans. Under this condition it is possible that the positioning of
Case A governs, especially when the spans are short and, therefore, the Ny
are small compared to the mn, (Fig. 4). The loading of spans which are not
adjacent to the column is insignificant due to the restraining effect of the re-
mote columns.

It should be noted that the experimentally determined K-values [9, Table
8-6] correspond well with the K-values of Table 3, if the critical periphery is
at least d/2 away from the face of the column. This is reasonable since the
theoretical assumption of a concentrated moment is justified only in view of
the theorem of St. Venant, i.e., at some distance away from the point of appli-
cation. Numerical refinements are, of course, always possible by using
series expansions of the applied moment and of the boundary reactions.

The K-values and Q-factors depend on the shape of the critical periphery
and, thereby, on the column size. In addition to this primary effect, the
column size affects, of course, the shape of the influence lines for V and M.
Visualizing the latter one as the deflection curve due to a unit moment applied
at the joint, one could expect the ordinates, 7y, to decrease with increasing
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column stiffness. In reality, however, these ordinates increase, because of
the smaller joint rotation. They would diminish to zero, of course, if the
columns had no stiffness at all. Doubling the column stiffness in the example,
for which influence lines are shown in Fig. 4, would result in an increase of
the ordinates, TMm, by about 30 percent.

Summarizing the above, it can be stated that all of these factors, the
assumed shape of the critical periphery, the stiffness ratio between slabs and
columns, the slab spans, and the theoretical assumptions of moment transfer
have an effect on the shape of the influence lines. As far as the critical live
load positioning is concerned, however, Case B (Tables 4 and 5) will usually
be the governing one.
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SUMMARY

An analytical method is developed to determine the stress configuration in
flat plates subject to column moments. The results are presented in closed
form for values, K, as a function of the shape of the critical periphery.

These values agree well with test results. Influence lines for maximum shear
stress are drawn for the bounds of the feasible range of K-values. Their
evaluation shows that live load on alternate spans usually governs. The effect
of partial loading of spans, however, is insignificant.

RESUME

On présente une méthode analytique pour déterminer les efforts aux dalles
plates produits par les moments aux colonnes. Les résultats sont présentés
en formules fermées définissant les valeurs K, qui sont des fonctions du profil
de la périphérie critique. Les valeurs s'accordent avec les résultats expeéri-
mentaux. Les lignes d'influence d'efforts tranchants ont été tirées pour des
valeurs extrémes K a portée de service et évaluées pour des conditions
différentes. L'évaluation fait preuve du fait, qu'une charge utile aux portées
alternes est decisive, tandis qu'une charge partiale des portées est
d'insignifiance.

ZUSAMMENFASSUNG

Der Aufsatz schlagt eine analytische Methode vor, um die Spannungen in
Flachdecken zu ermitteln, welche durch Stutzenkopfmomente hervorgerufen
werden. Die Ergebnisse sind in geschlossenen Formeln fiir'K'in Abhangigkeit
der Bruchform dargestellt, und sie stimmen gut mit vorhandenen Versuchs-
ergebnissen iiberein. Mit den Extremen der K-Werte im brauchbaren Bereich
sind Einflusslinien gezeichnet und fiir verschiedene Bedingungen ausgewertet.
Sie zeigen, dass abwechselnd feldweise Belastung ausschlaggebend ist, dass
aber teilweise Feldbelastung die Ergebnisse kaum beeinflusst.
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