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IVa

Analysis of Bridge Structures Comprising Two Continuous Curved Main Box Girders,
Whose Supports are Staggered or not, and That are Connected by Cross Beams having
Flexural but not Torsional Rigidity

Calcul des structures comprenant deux poutres caisson maitresses continues et courbes,
a supports décalés ou non, et reliées par des traverses sans rigidité torsionelle

Berechnung von Bricken mit zwei durchlaufenden, gekrimmten, kastenférmigen Haupt-
tragern, deren Auflager beweglich oder fest sind, und die mit biegesteifen, jedoch drill-
weichen Quertragern verbunden sind

D. VANDEPITTE
Professor at the University of Gent

Assumptions

1) The structure behaves elastically.

2) The supports of the box girders are unyielding and the interme-
diate supports provide vertical reactions only.

3) The loads act on the two box girders.

4) The formula’s for uniform torsion are valid. It is well known
that the errors resulting from this assumption are small in the
case of box girders.

The two main girders may or may not have the same number of
spans. Their flexural rigidity EI and torsional rigidity GC may
be variable. The flexural rigidity of the cross beams may be in-
finite or finite. If the distance a between the box girders varies,
the rate of variation must be small enough for the transverse beams
to be practically perpendicular to the girders. The supports of the
girders may or may not coincide with the locus of the shear center
of their cross sections, which we shall henceforth call the center
line. The end supports may or may not allow flexural or torsional
rotation of the ends of the box girders. The loads may act on or
off the center line of the main girders.

Nodes
In figure 1 each box girder is represented by its center line.

We first consider the box girder on the outside of the curve,
together with one half of each tie
beam (fig. 2). Along its center

\ line nodes are introduced :

' 4 at each support, at each junction

with a connecting beam, at the

x support FIG.1 point of application of every con-

: centrated external load or moment,

al.
7
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k at the boundaries

T

FIG. 2

Element transmission matrix

!n k between zones of

o] constant curva-
T—z~7*&T5T7S“T“T\T£ ture, or of con-
m stant flexural or

'm  torsional rigidity,
or of constant
distributed load,
and at all points of the girder where it
is desired to know the stress resultants
or displacement components. Hence each
girder element between two successive
nodes has or is assumed to have a con-
stant radius r (fig. 3) and constant ri-

gidities EI and GC = %} y and it carries

or is assumed to carry a uniform down-
ward load q along its center line and a
constant moment m (per unit length)
about the center line. m is taken po-
sitive when it acts in the direction of
the rotation of a corkscrew that moves
forward in the direction of the arrow in
figure 3.

The forces at the left end of the element considered as a free

body are the shear force Sp

rwr

AN
~ N \\

St \\é?j
VY

~
FIG.4 N

end of the element :

Sr = 5 + «qr

H =
iz B
non

, the bending moment My and the torque
Tp . Similar forces act at the right
end of the element. Sp 1s considered
positive when it acts downwards on the
element, Sy when it acts upwards. The
positive direction of the bending moments
and torques is defined by the corkscrew
rule, as 1s that of the rotations ¢ in
the vertical plane tangent to the center
line and ¥ in the plane perpendicular
to that line, both rotations being
represented in figure 4 by arrows per-
pendicular to the plane of rotation.

The vertical (downward) displacements at
the ends of the element are denoted by
Wy and wp .

Statics provides the following
relationships between the internal for-
ces at the right end and at the left

(1)

Mgcosx - Tpsin« + Sprsinx + r(qr-m)(1-cosx) (2)
Mpsin« + Tycosx + Spr(1-cosx) - r(qr-m)sing + qqr2 (3)

One obtains the bending moment M and torque T in the section
defined by the angle 8 by replacing « by x-p in the expressions 2

and 3. The curvature 7 and the twist per unit length © at tre same
point are given by m = é% and e = gé = %%
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] with C given by Bredt’s formula C = §
S
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| |
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| |
e |
FIG.5
¢p = Fpcosa -
= feosx -
Wr = ?2511'10( +
= @sing +
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1 A2

when

d"%

the box girder is monocellular (fig. 5 - A :
cross=sectional area bordered by the center line
of the girder walls).

Geometry, as applied to small angles and
deflections, allows the following relationships
between the vertical and rotational displacements
at both ends of the girder element to be written :

o ~
‘?gsino( + fcos/i.’prd,s - sin/a.erdp

$sin« + I_El-f f Mcos{Ad{.% L JTsinde (4)
o

¥pcosx + jsinp ‘Drdfs J.cosli OrdF

$pcoso + E_I J‘OMsinpd{B + L 0Tcos{sdp (5)

o

o(
w_ =W, + ¢rsind - ¢,r(1-cosd) + jrsin hrdp - jr(‘l-cos ) .8rd
et % ¢ peEap = | ) «Ordf

o]
2 & 2

(o4
= + ?grsind - Lf’er(1—cosm) + == EI MsianP -EE-I;[— J T ( 1-cos(3)d(3 (6)
o

O

Substituting the expressions of M and T into 4, 5 and 6, and
performing the integrations, one finds three equations, which may
be assembled with 1, 2 and 3 into the matrix equation

4 N_r 9
w.|= 1 rsin« -r(1-cosa) b.), b15 b16 b.[? 1x Wy
P 0 cosa -sind b21+ b25 b26 b27 Pe
Yr 0 sina cos« b3,+ b35 b36 b37 v
M. |0 O 0 cosd -sind rsing r(qr-m)( 1-cosq) Mp
Tr 0 0 0 sina cosa r(l1-cos«) --r(c;r-m)sinntﬂtqr2 Tp
s.| |0 o 0 0 0 1 dqr S
1) o o 0 0 0 0 1 ) 1)
or V.= BV , with (7)
r2
b, = ﬁ—[(ﬂf’)o(sina 2P(1-coso€] b15 = m(‘lﬂo) (cose -sind)
_ _T
by, = T[("’P) sing + (1+P)°(coso(] b25 2EI(1+P)°(Sln°(
—- __I:__ =
by, = Z57(1+P)esino bys = 51 [(1+P)o(coso(-(1-f’)sinoa
3
big = ——[(1+P)(°f0050< - sina) + 2)°(ot-sino()]
2
2

Cabliianbacinks

2
[(1+P)o(sino( - 2P(1 -coso(;‘] b36 = -;-E—I(Hp) (¥coso =sina)
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- 2
by, = ET [(14P) (1-cosd -%sind)(qr-m) +P(1-cos« -%—)qz}
2r
b27 = a %I—_i(Hf) (dcosx-sine«) (qr-m) + P( -sincx)qr]
o
b37 = gf_(wp)m-cosq -%sinu)(qr—m) +P(1-coso<)m]

One finds the column vector V_ , made up of the displacement compo-
nents and stress resultants pgrtaining to the right end of the gir-
der element by premultiplication of the column vector Vy; pertaining
to the left end by the element transmission matrix B.

Boundary vector and boundary matrix

A boundary vector L and a boundary matrix D are associated
with each node at which an external load acts on the box girder.
This applies in particular to the junctions of the girder with the
tie beams, but not to its supports.

Discontinuities 4w, A® or AY in the displacement components w,
¢ and ¥ at the node may also be included in the vector

-

L = (Aw‘ and in the matrix D=[0 0 O O O 0 Aw
AQ 0O 0 0 0 0 0 4¢
AY O 0 0 0 0 0 AY
AM 0O 0 0 0 0 0 AaM (8)
AT 0O 0 0 0O O 0 aT
AS 0O 0 0 0 0 0 as
. O ) (0 0 0 0 0 0 0}
The positive directions of the A-quantities are shown in figure 6.
Wc AW W,
K
AP
Pe I M,
) e AM
FIG.7 s Element Node Element
j j FIG.6 j+1

If the load consists of a downward force P acting with the eccen-
tricity e (positive toward the center of curvature) with respect
to the center line (fig. 7) : AS = P and AT = Pe. At the
junction of the girder with the cross beam i : AS = Si and

a
AT = My E% Si (Si and M; : shearing force and bending moment

at mid span of the transverse beam 1i).

Denoting by Lj the boundary vector and by Dj the boundary
matrix assoclated with the node j, that separate$s the girder ele-
ments Jj and j+1, and observing that the quantities on the right
hand, resp. the left hand side of figure 6 are the components of
the vector Vi4q p relating to the left end of the element j+1,
resp. of the‘veltor Vi, relating to the right end of the element j,
one sees from considerations of geometry and equilibrium that
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Vyrre Lyt Vye

Using equation 7, we obtain =L. +BJYV

Vv
1,0 S Lyt By, (9)
Span transmission matrix

Numbering 1 to n the elements in any given span k of the box

k girder (fig. 8), we may
—5 i write Vnr = anne and then
1 S5 18 =1 repeatedly apply equation 9
Vnr = anne = n(Ln-1+Bn-1Vn-1,£) = Bn(Ln-1+Bn-1(Ln-2+Bn-2VN-2,ED
= ve. = Bn(Ln_1+Bn_1(Ln_2+Bn_2( ..... (L2+82(L1+B1V125»D

Since DJV12 = Lj (J=1,2,...4n=1), the above equation may be trans-

formed into V. = Bp(Dp_4+B;_1(Pp_o*By o (++«+ (D2*By (DB, ) Vs
or Vnr = Ukv']z L1

with the span transmission matrix Uk defined by
U, = Bn(Dn-1+Bn_1(Dn_2+Bn_2(....(D2+B2(D1+B1EDD (11)

Now denoting by Vkr and ka the vectors V pertaining to the right

end and to the left end of the span k, equation 10 is identiecal
with Vo = UV, , (12)

The product of any two matrices B has zero elements and unit
elements in the same places as the matrices B themselves. Hence,
the span transmission matrix is of the type

U =[1 Wy w3 upy Wy U ug,
0 Upp Wy ug, Uy Wy Uy,
0 M3z W33 My W Yy Uy
0 0 0 W), uHS u46 uh7
0 0 0 USH 11,55 u56 u57
o o0 0 0 0 1 g,
o 0 0 0 0 0 T ]

If all the loads on the box girder, including the shearing forces

Sy and bending moments Mj in the tie beams, and the displacement
discontinuities 4w, a9 and AY¥, if any, are known, equation 11

ylelds the numerical value of the 24 elements u of every one of the
p matrices Uy (p is the number of spans of the box girder - fig.2).

Expanding equation 12, we obtain

Yir T ke P20k T U3y Mg Y ugsTy, tugeS, tuy, (14)
Pyr = H22%Pkp * U23¥ke * Wontip T UasTyp * UsgSye * Uy, (15)
q)kr = u32<Pk£ + u33q}k£ + uBkng + u35ka + u36sk€ + u3,7 (16)
Mkr = uLfHMkE + u)_I_STkE + u,+65ke i* U.)+7 (17)
Tgp = UgiMip * UssTyp * UsgSyp +uss (18)

SkB = Sk£ + u67 (19)
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Girder transmission matrix

Then Wip = Wee = 0 for all values of k.

- e e - - -
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e

We obtain ¢, , Wkr "

My, and T, = as functions of ¢, , Yot My, and Ty, only by adding

14 successively to 15, 16,
Y26 136

respectively - T

16 g

17 and 18, after multiplying 14 with
u u

The resulting
116 116

expressions may be written as the matrix equation

r YT
ri =

Uag

u u
¢, 6

u - =—u u —112_611 u -i?-éu u -u-ééu u -

- =35 _ 36 - - -
rl|"327 w5012 B33 T M3 Yk T gt B35 T s 9377w, M7

N

Use X

236, 136 236,

M -E&éu -E&éu u -E&—u u, -E——u u -Eﬁéu
kr u,o12 Ugg 13 Ll Ui 1 L5 Uig 19 47 U, 17
u u u u u
6 56 6 6 —iéu
T --i—u - 2, U -':iﬂl u --5—u U =
kr Uy 12 usg 13 54 ug 1 755 Uig 15 757 Uqg V2
\ 1, . O O O O 1 A
¢ 3
or, denoting the two column matrices in this X th
equation by wkr and wk? , and the square matrix Yie
. - M (20)
by Fk : wkr kake (21) ke
Txe
Neither of the quantities ¢, ¥ , M and T 1
varies suddenly at any intermediate support. ~
Therefore Wy, = wk-1,r (k=2,3,...4p) and
W =FW = F W = F_F F W T asses
pr p'pe = Fpfp-s p-1,E p p-1 p-2 p-2,¢
= Fpr_1Fp_2 R F2F1w1£
or wpr = ZW,p (22)
with the girder transmission matrix defined by
Ill‘FF (23)

2= Py 4Fp2 2F

Z 1s a 5x5 matrix ;
and one unit element.

the “box gIrder "
b K - k k+1
k OR
CI(-I k
FIG.9

its fifth row consists of four zero elements

e - - S

The eccentricity of support k,
betweer the spans k and k+1,
towards the center of curvature
of the girder is denoted by
) (fig. 9). The downward

movement of point k on the
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center line is Wiep = G ¥pp = °k¢k+1,e y and that of point k=1 1is

Viep = °k-1“ke . Equation 14 thus becomes

Ctier = UroPip * (Cra1?Be3) Ve t BauMip * UysTip WS t ugy  (24)
We multiply both members of 16 with ¢, and subtract from 24 to
obtain an equation that we solve for Ske :
s = _w12”%"M2 o Zke1T U3 %My, Bak T SkMan

u1 -cku _ u17 - cku37 (25)

- T
Ujg = Cllyg kB uyg = oy
Substitution of this expression for S,, in 15, 16, 17 and 18
yields a set of four equations that may be written in matrix form :

r YN - N - A
fp | = [Boo ho3  hy hyg byl x Pieg
Yer | P32 P33 By Byg hyo 1Y
My hy, My hy b hy, Mkl (26)
Ter | (P52 Ps3 o Pew Mg Byl Tk
1 ) . © 0o 0 0 1 ] L1
or Wier = HeWieo (27)
u - C, u
with Mgy B Wy = ulé = cifuii ug (122,3,4,5 5 §=2,3,4,5,7) (28)

on the understanding that W, = u43 = u52 = u53 = 0 and that for

J=3 ck_1+u13 must be substituted for u13 in the numerator.
Obviously all the elements u appearing in the matrices Uk and Fk and
in the equations 25 and 28 relate to span k of the girder, although
this is not specified explicitly in the notation.

The matrices Hk and Fk are identical when Cpq = C = 0.

Equilibrium of the infinitely short portion of the girder
resting on support k (fig. 10) requires

K Si+1,0 = Sgp ~Re 80d Ty p = Typ = Ry
Elimination of R, leads to
o Sk SHJ T""t P T = c kS -5 For T,_ we
kr  “k+1,e k( kr k+1,£>° kr
k substitute in this equation the expression
F1G.10 included in equation 26. For S, _ we substi-

tute, in accordance with equatigﬁ 19,
u67+Ske y, with expression 25 substituted for Ske . For Sk+1,a we

substitute expression 25, written for span k+1 instead of span k ;
we differentiate the elements u pertaining to span k+1 from those
pertaining to span k by denoting the former by u’ ; the quantities

¢k+1,€ ’ ¢k+1,2 and Mk+1,e appearing in the expression for Sk+1,8

are equal to Py 9 ?&r and M, ., and consequently they can be

written as functions of ¢ and T by means of equation

by ke * Yke o Mxe ke
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The operations described finally yield an equation that we solve
for Tyvr,e # Tiar,e = BooPip * g3¥yy gy Myep + BTy + ey (29)
the quantities HSj being defined by
w.-c,  .ul _ u,,=-c u c
G T ek ujs.-ck+1u§5> th = th = Cx u1j -ckul1 T u? -ck wl,
16 ~ "k+1"36 16 ~ "k 36 16 ~ "k+1°36

[hzj(“ﬁz'cknug'z) - hy g (eyruiy-cy, udl) - huj(uh'ckﬂuélﬂ] (30)
on the understanding that u13+ck_1 must be substituted for u13 and
that, for j=7,

)
912 = ks 1937
“x\%7 T T, e
16 k+1736
second member of equation 30.

The first three relationships contained in 26 may be assembled
with equation 29 into the matrix equation

~

) must be added to the

Y o= c
(i1 0] = [ha2z Noy  hpy by hyo | X (9,
Yiee1,0 Nia B33 hyy hyg Byl (9
Mevr,0 Mo by hy by bl M, (31)
Tre1,e Bso  Bgy  hgy  hgg  hg, | Ty
L1 ) Lo 0 0 0 1) L
or wk+1,e = H W, (32)
The matrices ﬁk and F, are identical when Cpoq = ¢ = O.

Now we successively apply equation 27 for k= p and equation 32
for k= p=1, p-2, ..., 2,1

W _=HW  =HH .W =HH A W = epnes
pr P pL p p-1"p-1,2 p p-1p-2"p-2,t

= HH_(H o eeees BHEMW,
or wpr = ZW,, (22)
with the girder transmission matrix defined by

—

z=HH B 5 . B, (33)

End support conditions

We expand matrix equation 22 :
Ppr = Z11Pe T Zia%g t2gMy YTy 2
Yor = 2219y T ZapWqp t Zp3Myy t 2Ty + 250 (34)
Mpr = Z3q9qp ¥ 230wy ¥ 233Ny + 29, Ty + 244

-—

Tpr = zh1¢1e+'zh2qﬁ8'+ZM3M3£'+ZH4T1E'+ZHS

Various boundary conditions at the left end support may occur:

a) The end of the girder rotates freely about its tangent and also
in the vertical plane containing the tangent : Ty = M1£ =0
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b) The end of the girder cannot rotate in either direction :
Y = P = ©

c¢) The end of the girder rotates freely in one of those directions,
but is fixed in the other direction :
either Vg = 0 and M1& =0

or T,, =0 and Pyp =0 (unlikely combination) .
One of these pairs of conditions obtains at the right end support.

Whatever the combination of end support conditions maK be, two
terms are zero in the right hand member of each equation 34%.
Moreover, the left hand member of two equations is also zero. These
may be solved for the two unknown components of the vector W1E .

2) The end _supports are located off the center line of the girder

In this case practically the only boundary conditions imagi-
nable are : free rotation of the girder ends about their tangent
and in the vertical plane containing the tangent. The following
relationships then obtain
M12 = 0 and T12 = -coR0 +coS12 at the left end support, and
Mpr = 0 and Tpr = +chp +cpSpr at the right end support.

We write equation 25 for k=1, multiply by Cq 3 replace the
left hand member coS1e by T12 , and thus obtain a~ relationship

containing only and T . A second such relationship is
1 Y e 1L

h

provided by the third equation 34, with My = Mpr = 0. To obtain
a third, we premultiply both members of equation 12, written for
k=p, by U} : -1

P Vp2r= Up vpr s extract from this equation the expres-
sions for Whe and wpz as functions of Yor © cp#%r y ?$r y q@r y
M =0, T . and Spr , write that the former expression is equal

pr T
to Cha times the latter expression, substitute-JE} for Spr in
the resulting equation, and so arrive at a relationship between

wpr ’ Wbr and Tpr , that we transform into a relationehip 4%& y Y
and T12 by using the first, second and fourth equations 34%. Thus
we finally have three equations that we may solve for ¢, , ¥y
and T .

12

Displacement components and stress resultants

Whether the end supports coincide with the center line of the
girder or not, we know vector w1£complete1y after having performed

the computations just described. We may now calculate W,, for all

other values of k by repeatedly using equation 32. Equation 25
then yields the numerical value of Syp for k=1,2,...4p. Since

Wip = *Cy_1¥yp » We know all the vectors V,, and are able to com-

pute the vector V pertaining to any node in any span by means of
equation 9.
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Deformation induced by direct load - Deformation influence
coefficients = Actual deflections and rotations

The above analysis is used to calculate the deflections w of
the outside box girder and the rotations ¥ about the tangent at
the nodes coinciding with the m cross beams (fig. 2) for 2m+ 1
different loading conditions. We denote
by Yio (i=1,2,...,m) the deflection and by 4&0 the rotation at

the Jjunction with cross beam i1, produced by the given external
loading on the box girder ;
by w, (1=1,2,...,m ; x=1,2,...,m) the deflection and by dzix t2he
rotation produced at the same point by a downward force .
applied at the junction with cross beam x (fig. 11) ; X

by Wiy? the deflection and by qix, the rotation produced at the

same point by a unit moment acting at the junction with cross
beam x, as shown in figure 12.

2
qy )

Ol FIGMN ¥ix FI6.12 ¥’

The corresponding quantities for the inside girder are calculated
likewise. They are denoted by the same symbols, marked off by an
! (figures 11 and 12).

Maxwell’s reciprocal theorem shows that the calculated
deflection and rotation influence coefficients must satisfy the
The action of any cross beam 1 on the
S, Mi+qgﬂ outside main girder consists of the downward

' force S, and the moment M; + —55= , as shown
in figure 13 § its action on the inside girder

i _Mi+g§§ consis:ssof the upward force Si and the moment
Si =M, + 12 i .
FIG.13 i

The actual deflection w; and rotation qi of the outside main

girder at its junction with cross beam 1 under the influence of
the given loading acting on the complete structural system are
given by

a_S

= ax X X)
Wi =Wy, v 2T WSt “1x’(”x S

x=1
m axsx
" Yo i XZ=% [(wix +wix’) 2 + wix’Mx (35)
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m (a axSxJ
\gl = Lyio * xZ=—%[2 wixsx + "Pix’(Mx T2 )
m a SX
= %o )g lj(“’ix* Yypr) 5%+ lJ’:uc'Mx] (36)

The actual deflection wi and rotation ‘-}*i of the inside main girder

are likewisem
w{ = w! + 2 [(—Wix +wix> —T 1x’Mx] (37)
m a_Ss
= X X
4’1 = bis ¥ &= [(’*HXJ' ix’) 2~ wix’Mx} (38)

Deformation of the cross beams

The loads acting on any tie beam i and emanating from the main

girders are shown in figure 14. They bring about the end deflec-
tions w, and wj and end rotations ¢i and

[’“"Si M;-ﬂzﬂ LH . Assuming that the braces between the
( Tie beam i W box girders are full-webbed beams and not
aisi . trusses, and that the shear deformation is
e Mi*=5 Foree S; 3 therefore negligible with respect to the
_'g q; R 3 flexural deformation, one easily derives
. the following relations :
¥ unloaded position S aiMi
2 . = } =
Fi W‘Z\J‘”t : “Li U’i E11 (39)
¥ deflecte L1 Vi 1 A :z:tis1
FIG.14 anaps g, + 42 +2 =—== (4+0)
i i ay EEIi

(Ii : moment of inertia of the tie beam i).

Similar relations between the shear force, the bending moment
and the displacement components may be derived for trussed connec-
tions between the main girders.

Obtaining the values of the unknowns Sy and Mx

Substituting the expressions 35 to 38 for Wy o Llai y wi and lfzi
into 39 and 40 we find
a,M

[(d’ q’ix' qli,-x ¢ix) 2 +(¢ +u{x’>Mx]—EjI:L= io'd"io (1)

(i 1 2,.-.,1’!‘!)

in){[d’ +¢ix’ '¢ix+¢:’tx’ - a2_(w1x Wix2tWix " )J

x=1 i
2
+[¢ix"¢ix’ - EI(wix'+ wix’] Mx}

a a.S
s i g 2 _
B 3EIi 2~ —¢10- :,Lo T ai(wio'wio> (1=1,2,...4m) (4+2)

This set of 2m simultaneous algebraic equations may be solved
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a, s
for the 2m unknowns ﬁzx and MX . The matrix to be inverted is of
the order 2m, while the structure is 2m+p+p’-4 times statically
indeterminate (p’ : number of spans of the inside girder), if the

ends of the main girders are free to rotate.

When the shearing forces and bending moments in the bracing
are known, it 1s easy to determine the final internal stress resul-
tants and displacement components for the box girders, either by
superposing for each one 2m+4 cases of loading already analysed, or
by analysing each box girder separately under its full loading,
including the forces and moments emanating from the bracing.

The complexity of the structural system considered is such
that the calculation is hardly feasible without a computer.

Remark about the location of the connecting beams

It was assumed implicitly in the above that the braces do not
meet the box girders at the supports. Yet, it 1s almost natural
for some tie beams to be connected with the main girders at suppor-
ted cross sections. This situation can be handled in the analysis
by assuming that the junction of any such cross beam is located
beside, but close to the support, leaving an infinitely short
girder element between itself and the support.

SUMMARY

The structural system described in the title 1s analysed

by applying the transmission (or reduction) method to the cur-
ved main girders separately, thus obtaining deformation compo-
nents and influence coefficients, and by using the force method
to find the shear forces and bending moments in the connecting
beams .

RESUME

Les deux poutres maitresses courbes sont d’abord étudiées
séparément par la méthode de transmission ou de réduction, ce
qui fournit les composantes de la déformation de ces poutres,
ainsi que les coefficients d’influence de ces composantes.
Ensuite les efforts tranchants et les moments fléchissants
dans les traverses sont déterminés au moyen de la méthode des
forces.

ZUSAMMENFASSUNG

Die zweil gekriimmten Kastentri@ger werden zunichst

gesondert mit dem Ubertragungsverfahren studiert. Diese
Berechnung liefert die Verformungskomponenten, sowie Einflusz-
zahlen fir diese Komponenten. Nachher werden die Querkraft
und das Biegemoment in den Querbalken mit dem Kraftverfahren
ermittelt.
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