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Inelastic Behavior of the Steel Framed Structure Subjected to the Seismic Force
Comportement inélastique de structures en cadres d'acier soumises a des forces sismiques

Unelastisches Verhalten des Stahlrahmentragwerkes unter Erdbebenkraft

BEN KATO HIROSHI AKIYAMA
Associate Professor Research Associate
The University of Tokyo
Japan

Introduction

To clear the safety of the structure against earthquake,
it is necessary to know the inelastic behavior of beams, columns
and entire frames until their collapse state under alternating
loading as the author states. This discussion concerns to evalu-
ation of the inelastic behavior of steel structural members.

It is known that the conventional simple plastic theory
cannot predict the actual inelastic behavior of the steel struc-
tures even in monotonous loading, and it can be said that this
mainly comes from the fact that the strain hardening property of
the material is not taken into account in that analysis, and the
effect of the applied axial load is not evaluated reasonably.

We suggest the solution for the beam-column subjected to
axial compression and bending moment which makes allowance for
the strain hardening and the effect of the axial compression.
The load deflection diagram under alternating loading is shown
to be obtained from the load deflection diagram under monotonous
loading by the simple definite procedure.

Furthermore, the response analysis of the one mass vibrat-
ion model of the steel structure is done using the clarified
inelastic characteristics, and the difference of the response is
shown to be attributed to the difference of evaluation of the
effect of the strain hardening upon the structure.

Inelagtic Behavior of Steel Members

Monoaxial bending only is treated here, and the effect of
shear stress is ignored. Lateral buckling is also out of the
matter. Breaking-off and local buckling of the section element
of the member are considered to be the most effective origins of
the collapse of the member and these origins can be predicted by
some material tests.

General feature of the stress strain relation of steel may
be expressed by the diagram as shown in Fig.(1l).

As the bending deformation is obtained by integration of the
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curvature along member axis, to determine the moment curvature
relation is the essential procedure.

Moment Curvature Relation--- Case I when the bending moment
is applied in monotonous way: The bending moment is to be applied
about x-x axis in Fig.(2), and the section of the member is
assumed to be symmetric about the axis perpendicular to the bend-
ing axis. Axial compression is kept in constant, and the moment
increases gradually.

Let the solid line of Fig.(3) be the strain distribution
at the arbitrary inelastic state under moment M, and the broken
line be that of after infinitecimal increase of the curvature due
to the increase of moment. Then the following relation are der-
ived from the equilibrium condition of stress.

dH, =-d¢ H,, dH, =-d¢ H, , dH,=-d¢ H, , dH;=-d¢ H;
P Kl

dSe=(dH,B, +dH.B, )e,+(dB, B, +dH, B} )e,
dIe=(dH,B, H*+dH,B, H] )e, + (dH,/ B,/ H/dH, B, H? ) e
40 ={-(dH.B, H, -deBsz)e.-(dH:B;H{-dH;B;H;ﬁeZ} /Se
where ¢: curvature d¢: increment of ¢
¢, ¢ strain at yield point
£t strain at strain hardening point
ey : (E-E:.)/E €,1 (Ez‘Ea)/El
: distance from the transient neutral axis to the comp-
ression fibre where the strain is equal to &,.
Hy: distance from the transient neutral axis to the tens-
ion fibre where the strain is equal to-&,.

Hy: distance from the transient neutral axis to the comp-
ression fibre where the strain is equal to &-+.

H,: distance from the transient neutral axis to the tens-
ion fibre where the strain is equal to-@.

Se: effective area, which means the sectionadl area of the
ficticious elastic bar which has the equivalent axial
rigidity to the actual bar in the specified inelastic
state.

I.: effective moment of inertia, which means the moment
of inertia of the ficticious elastic bar which has
the equivalent flexural rigidity to the actual bar
in the specified inelastic state.

dO: movement of the transient neutral axis

Bi,B: : width of the section at H;,H;/ respectively.

After the increase of the curvature dq, these quantities will
change as follows.

H,—- H +dH,+d0 , H~H,+dH,-d0

H/-H/+dH'+d0 , HXH/+dH,-d0

Se»S¢+dSe, I Ie+dIl., p—cp+d® , M M+E, Iodp

M-¢ relation may be pursued successively using the above relaion
throughout the whole strain range. Numerical calculation is perf-
ormed easily by the aid of the electronic digital computer.

Case II when the bending moment is applied alternatingly:
It is very complicated to describe the exact M- ¢relation under
alternating bending. So by the aid of the simplified model given
below, an outline of the relation is sought after.

1. Member section is sandwitch type as shown in Fig(4).

2. Stress strain relation of steel under alternating loading
is as shown in Fig.(5b). To be more precise, with regard
to the stress in definite sign the stress strain relation
has the same configuration as that under monotonous load-
ing as shown in Fig.(5a).
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On such a model it is easily understood that the M- dPrelation
under alternating loading is obtained as shown in Fig.(6b).
Fig.(6a) shows the M- relation under monotonous bending. Comp-
aring Fig.(6a) and Fig.(6b), it can be seen that in Fig.(6b)
with regard to the bending moment in one direction the M—cprela—
tion has the same configuration as that shown in Pig.(6a).

The actual shape of section differs from that provided by
the condition 1. Hence when the bending moment is removed, the
residual stress is introduced over the section. In this paper,
however, the effect of such & residual stress is assumed to be
negligible, so the M—cprelation obtained above becomes applic-
able to any section.

Load Deflection Curve of Steel Members-—-- Deflection of the
member is readlly obtained by integration of the curvature corr-
esponding to the bending moment produced by the external loads.
For the exact solution numerical integration technique is effec~
tive, but in some cases approximate solution provides facility
for engineering purposes. Especially the solution under alterna-
ting loading is uselessly troublesome. Hence for this case some
devices in approximation are needed.

When the bending stress is determined uniquely by the ext-
ernal loads, the correlation between the load deflection curve
under alternating loading and that under monotonous loading is
gimilar to the correlation as exists in M—CPrelation. As is shown
in Fig.(7), the load deflection diagram under alternating loading
is readily obtained from that under monotonous loading.

With regard to a definite direction of loading, the load deflec-
tion curve in Fig.(7b) has the same configuration as that in
Fig.(7a).

But in general, geometry change of the member affects upon
the bending moment distribution. In Fig.(8) two cantilever col-
umns are shown for example. When the end load is applied alter-
natingly under constant axial load P, lateral deflection produces
secondary bending. When the end load is removed after some extent
of the inelastic deformation in one direction, deflection remains
and to remove the residual moment at the fixed end, end loads of
-P5/7 in the case of Fig.(8a) and -P& in the case of Fig.(8D)
are required respectively. In such a state residual stress still
remains along the member axis as shown in Fig.(9). Here, we ass—
ume that the residual stress shown in Fig.(9) has no effect upon
the load deflection relation under further application of the
end load in the opposite direction. Based on the assumption, we
can depict the load deflection curve as shown in Fig.(10), that-
is, the load deflection curve under alternating loading is obt-
ained from that under monotonous loading in the same manner as
is shown in Fig.(7). In Fig.(7) the abscissa is the basal line
whereas in Fig.(10) the broken line which shows the tentative
unloaded state of the member is the basal line, and with regard
to the load deflection relation in one side of this line, the
curve under alternating loading has the same configuration as
that under monotonous loading. From this figure it can be seen
that the summation of the plastic deformation in one direction
until collapse does not exceed the plastic deformation capacity
under monotonous loading.

Comparison with Test Result--- Load deflection curves were
obtained using the test specimens as shown in Fig.(11).

In specimen(A% the column is subjected to axial thrust and the
transverse shear force increasing proportionally according to
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the following condition.
P=Vcos ¢ , Q=Vsin¢

Where V is the applied load.

In specimen(B) the column is subjected to constant axial
load and alternating end moment conducted through beams.

Stress strain relation of the material was obtained from
the stub column test, and is shown in Fig.(1l2). The maximum str-
ess was reached by occurence of the local buckling of flanges.

M-c¢relation obtained from the procedure mentioned above
is shown in Fig.(13). Load deflection curve of the specimen(A)
is shown in Fig.(14), and the curve of the specimen(B) is shown
in Fig.(15) in which the theoretical curve under monotonous
bending is shown by the curve ABC.

Collapse of the member was assumed to occur when the stress
at the point where the maximum moment grows reachs Opover entire
section., Mg corresponds to such a stress distribution. In Fig.
(14) and (15) theoretical curves after collapse are drawn on
the assumption that the maximum moment of the specimen is kept
to be Mg.

In these figures the test results agree with the theoret-
ical prediction fairly well, and the effect of the strain hard-
ening upon the inelastic behavior is very remarkable.

Regponse Analysis of the Framed Structure

Restoring Force Characteristics—-- The cantilever column
shown in Fig.(1l6) represents the fundamental element of the
framed structure subjected to seismic force. To see the general
feature of resistance of the framed structure to seismic force,

a simple outline of the inelastic behavior of the cantilever col-
umn is sought after through the approximate approach.

The M-¢ relation under the constant thrust obtained above
may be approximated by two linear segnents ignoring the elastic
part of it. The first segment is parallel to the abscissa at M.

At first the deflection of the member is evaluated ignoring
the effect of the secondary bending caused by the geometry cha-

nge. In Fig.(17) the part of the column ab is in inelastic range
under the given loads P and Q, the the distribution of the curv-
ature along the member is expressed as shown in Fig.(17b). This
is reduced to the simplified model as shown in Fig.(17c¢) in
which the curvature of the inelastic part ab is approximated by
the mean value of the curvatures at the both ends of ab, then

the mean value ¢, may be written as follows.
b, =R b = Mg+ p (1)
° 2 2Dst st
Where q%ﬁ the curvature at the starting point of the
strain hardening.
Dg: the flexural rigidity in strain hardening
range. Namely the slope of the second segment.
Mr: the fully plastic moment under axial force.
Mg : the fixed end moment
The lateral deflection Syand the slope @bat point b are given as

follow. b (Qb Z /2 . gb _ 4"

Then the lateral deflectlon at the top of the member may be given
as follows., szz 2
+(R 1)/ 2)
Where é%l: the lgigth of the 1ne£astlc part of the member.
;> the length of the elastic part of the member.
As the bending ‘effect of the thrust P is ignored, the follwing
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relation will hold for any shear force Q.
Qizi =MPC ] QIZ :Q1 (Zl + Zz )ZMf
These are translated as:
LA =(=1)/0 o L/ =l/w s o =M/ Mpe
From equation(l) and (2), introduting the expression M, =D ¢, ,
and p = fPst/cp, y the lateral deflection is written as follows.

=(a=1, D +8)(o=1 )] 3)

Where D: flexural rigidity in the elastic range

As the second step, the effect of the secondary bending
must be taken into account. This effect is illustrated in Pig.
(18) where the curve ac shows the deflected configuration of the
member. Horne*had approximated this configuration by the straight
line connecting the both ends of the members as shown in Fig.
(18a). Then the equivalent lateral force Q which provide the same
bending moment a2t the fixed end is given as follows.

Q=(M;-PS)/1 =(«¢Mpe =P S)/} (4)
Equation (3)and (4) give the Q- Srelation.
This approximation, however, underestimates the secondary bending
and the another approximation as shown in Fig.(18b) is proposed,
where the point* shows the coordinate (8§, (d—1§1/2m ). (x=1)/ 2«
denotes the midheight of the inelastic portion, and the deflected
shape of the member is approximated by the straight line also.
This ohoice seems to be rather arbitrary, but it will be shown
later that this gives the better approximation to the exact solut-
jon. In this approximation the equivalent horizontal shear force
is given as follows,
Q= [U‘MPC -(2%_)Ps} /4 (5)
J+L

Comparison with the exact solution is made in Fig.(19) with
regard to the Q- 8 relation using the same section member as
shown in Fig.(1l), and the same stress strain relation as shown
in Fig.(12).

In the case of no axial thrust these two methods coinc¢ide,
however when the axial force becomes larger, it can be seen that
the later method gives better approximation than the former omne.
In ¥ig.(20) Q-8 diagram for the same member derived from the
conventional theory ignoring the strain hardening is given.
Comparing these two figures, it can be seen that the effect of
the strain hardening is very significant.

Besides, from Fig.(19) it can be seen that the inelastic
deflection curve may be approximated by the linear relation with-
out substantial error. Hence the fundamental feature of the
restoring force characteristics of the framed structure may be
suggested to be the relation as shown in Fig.(10).

Response Analysis of the 1 Mass System——-— Using the restorig
force characteristics given in Fig.(21) the response analysis
was done . For an example, one mass viburation system as shown
in Fig.(21) is chosen.

The ground motion is of N-S component of E1 Centro 1940,
May( the peak value of acceleration is 330 gals)

Governing equation of the sytem is as follows.

m('y""yo )+f(.V)=O .

Where y: deflection y Yo: ground motion

f(y): restoring force characteristics

Result of the analysis is given in Fig.(22). Fig.(222)
shows the residual plastic deflection after the ground motion
is faded away. Fig.(22b) shows the maximum deflection during the




672 Illc — INELASTIC BEHAVIOR OF THE STEEL FRAMED STRUCTURE

earthquake and Fig.(22c) shows the summation of the plastic
deflection in one direction.

The ordinate of these diagram expresses the yield force
coefficient which is given as follows.

f=F, /mg

Where g: acceleration of gravity
The abscissa expresses the plastic deflection divided by the
initial elastic limit deflection which corresponds to the initial
elastic limit stress Fy.

In these figures, the parameter K denotes the strain harden-
ing effect. When the strain hardening does not exist, the value
is equal to the slope of the basal line ff'in Fig.(21) which
denotes the effect of the secondary bending by the weight of the
mass.

From these figure it can be seen that the plastic deflect-
ion is considerably affected by the strain hardening effect
and especially development of the residual deflection is moder-
ated by the strain hardening.

Conclusion
The more precise aspect of the inelastic behavior of the
steel members has been pursued by the experiment and the analysis
which makes allowance for the strain hardening property of steel.
The effect of the strain hardening property upon the deflec-
tion response of the steel framed structure to an earthquake was
evaluated, and that was shown to be very remarkable.

Reference
* Horne M.R. , Medland I.C. : Collapse Loads of Steel Frameworkes
Allowing for the Effect of Strain Hardening.
Proc. Institution of Civil Engineers 1966, May
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Fig.(11l) Tect Specimens

675

P
X Roller
Me Y38
| T .
o3 i
j r L N
a” R 3Eg —94—— +
i
kqgg = ~
s ! %
J WE
. (11a) N (11b)
pecimen(4) 1 P Specimen(B)
o)
T
2420 -o- Fig.(12)
o Ey<Ez 7 Y%er Stress Strain
=287 Relation
E=2100Ycw
1500 _M(":on-cn) | |
! i | :
0
I T8 S 344
=1L #127x1 =3344 ;
r P e
1000 —
| _P/R=0
500: ~— %5 Fig.(13) The M-<Relation
: 06 2
H = )
_ 07 | /ﬁf\\bql H : depth of section
08 | ———Rully Plastic Moment
|
. : O.gl ! : l ' i L " l i \ 1 1 3l 1 1 1 } ll" it 1 j
_‘f_ﬂt:‘_i)’_. L 2—:"55 2 ¢(CM—K’0‘3)



676

V(ken) /\ ’rf\)
-~ ! I
! a
-\‘\ \ I
AIOO,_. ~a g%:bv
| Ecm VME?“
45 |18 ]138.2
50_
10 Sem)
01 5 10
V(w“?_] 2’“5 Sem Vm?m
100 % (125 | 696
504~ -a
101 . S(em)
01 5 10
Vol

Illc — INELASTIC BEHAVIOR OF THE STEEL FRAMED STRUCTURE

Fig.(14) Load Deflection Curve of (A)

, — test result
W) | e exemt molnifon
77 without strain
100- ; = hardening
{
504 Uem| ©cm Vmax "
60 | 6 99
10 | Stem)
0 1 5 10
;/('coin) mremEs
00 90 [135 | 57.2

M e('t'n)

test result
——— theory

effect of
strain hardening

L am

P=105 tons
[=42.9cn

+

3

RN Fig.(15)

Load Deflection
‘;f\ ) Curve of (B)
«

g effect of

strain hardening



BEN KATO — HIROSHI AKIYAMA 677

ﬁi L§ -
| 4 a (18a) --(I)

1_@‘_1 L@ J
Fig.(17b) Fig.(17c)

(18v/——=(1II)
Fig.(18) Approximated Deflection

Fig.(19) Load Deflection Curve
Exact Solution . Collapse State

— — —Approximction | — — — Approximation II
20 20F Qlton)
16 16 7=90 cm _ =
- Iy — = p/B-fo
— = s
12 12r = -
7~ ——— 03
‘/ ?::.

3L 3 -
4 A

Stem) ~—— 07, §(cm)
0 2 4 6 0 2 4 6 8

Fig.(20) Load Deflection Curve R:yield axial force

r b
Pp=0 2 |

Z =75cm
03




678 Illc — INELASTIC BEHAVIOR OF THE STEEL FRAMED STRUCTURE

r)r/1 ; 0.24 \
’ s \\\Q:::i‘- K=0.05
‘\\\\\\ ~‘5\\‘5\~§‘ :

Bt
» natural period ‘\\\\\\\\\ -00B
’ =0.5 sec. 008 k- \\ :
(21a) One Mass System 003
00
Q) 10 20
(22a)
K=
tanp/tanx 02J=5/m9
F + :
Y p \
fhee /1
0
. 016

T : ‘\\fl Rx: -005
tan T /tank=-005 ] ‘~\\\\\\\\\‘.03
Restoring Force 0.08 K\\\\\\;,
Characteristics 003

(21b) 004 ;

t = E/mg

Q24

wg&\\\
NN
\\é%b%os

0
008 003
0,04
-0 10 20
Fig.(21) (22¢)

Fig.(22) Deflection Response



BEN KATO - HIROSHI AKIYAMA

SUMMARY

The more precise aspect of the inelastic behaviour of the
steel member has been pursued by the analytical method which
makes allowance for the strain hardening property of steel.

And the effect of the strain hardening property upon the
deflection response of the steel framed structure to an earth-

quake was evaluated.

RESUME

Des connaissances plus précises du comportement plastique
de membres en acier ont été obtenues par la méthode analytique,
ce qui permet de tenir compte du durcissement de l'acier. Cet
effet du durcissement sur la déformation du portique d'acier due
a un tremblement de terre a été évalud.

ZUSAMMENFASSUNG

Genaue Kenntnisse des plastischen Verhaltens von Stahlbau-
teilen wurden mit analytischen Berechnungen angestrebt, wodurch
die Verhartung des Stahls berilicksichtigt werden konnte. Die Wir-
kung der Verh&rtung auf die Verformung des Stahlrahmens wurde
abgeschéatzt.
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