Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 8 (1968)

Artikel: Probleme der Kaltverfestigung im Stahlleichtbau

Autor: Eidamshaus, Paul

DOI: https://doi.org/10.5169/seals-8769

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Probleme der Kaltverfestigung im Stahlleichtbau

Problèmes de l'écrouement dans la construction légère en acier Problems of Cold-Hardening in Light-Weight Steel Construction

PAUL EIDAMSHAUS Dipl.-Ing.

In den "Beiträgen zur vorbereiteten Diskussion" sind in der Fußnote zum Referat II a 2 Versuche der HOESCH AG erwähnt. Nicht von den Ergebnissen dieser Versuche - vielmehr von einem besonderen Fall der Nutzung der Kaltverfestigung in der Praxis soll hier berichtet werden.

Ausgehend von dem Gedanken, daß für die Zulassung höherer Spannungen nicht der Mittelwert der Streckgrenze eines Querschnitts – sondern im allgemeinen ihr Minimum maßgebend ist, haben wir uns seit langem besonders mit der Frage befaßt, wie im Walzprofilierverfahren eine möglichst gleichmäßige Streckgrenzenerhöhung über den ganzen Querschnitt eines Kaltprofils – also auch in den ebenen Querschnittsteilen – erzielt werden kann. Die Möglichkeit ist gegeben und wird seither in zahlreichen Fällen praktisch nutzbar gemacht.

Im Bild 1 ist als Beispiel ein trapezförmiges Profil aus einem Stahl St 37 (nach DIN 17 100) dargestellt. Die normale Streckgrenze des unverformten Bandes beträgt 24 kg/mm². Dagegen war für das fertige Profil eine Streckgrenze von im Mittel 38 kg/mm² gefordert, wobei kein Wert unter 36 kg/mm² liegen durfte. Das Diagramm zeigt in Schraffur den Bereich der Sollwerte und die in den verschiedenen Punkten des Querschnitts tatsächlich erreichten Streckgrenzenwerte, die durchweg höher liegen. Der Linienzug darüber gibt die jeweilige Bruchgrenze an.

Die weitere Forderung nach einer mindestens 20%igen Bruchdehnung ist ebenfalls voll erfüllt, wie der untere Teil des Diagramms zeigt.

Dieses Profil ist als Längssteife der Stahlfahrbahn einer im Jahre 1962 gebauten Straßenbrücke erstmalig eingesetzt worden. Abgesehen von den kalt gezogenen Drähten in den Kabeln der Hängebrücken ist dies meines Wissens der erste Fall einer Nutzung der Kaltverfestigung im Brückenbau.— Bild 2 zeigt Längs- und Querschnitt - Bild 3 eine Ansicht dieser Brücke.— Seither sind solche Kaltprofile mit erhöhter Streckgrenze vielfach im Brückenbau eingesetzt worden. Bild 4 zeigt eine Ausführung der letzten Zeit: Die Straßenüberführung über Eisenbahngleise bei Ludwigshafen am Rhein.

Mit dieser Anwendung der Kaltverfestigung ergeben sich interessante wirtschaftliche Vorteile:

Einmal ermöglicht die im Walzprofilierverfahren herstellbare große Länge der Profile (bis etwa 15 m und eventuell länger) eine weitgehende Automatisierung bei der Fertigung der Fahrbahntafel,

insbesondere aber wird der Güteaufpreis gespart, der für den sonst erforderlichen höherwertigen Baustahl (zum Beispiel St 52 nach DIN 17 100 mit der natürlichen Streckgrenze von 36 kg/mm²) aufgewandt werden müßte. Dabei bleibt die bessere Schweißbarkeit des St 37 als zusätzlicher Vorteil erhalten.

Anmerkung:

Die Veröffentlichung der Bilder 2, 3 und 4 erfolgt mit freundlicher Genehmigung der Rheinstahl Union AG, Dortmund, der ich an dieser Stelle meinen Dank aussprechen möchte.

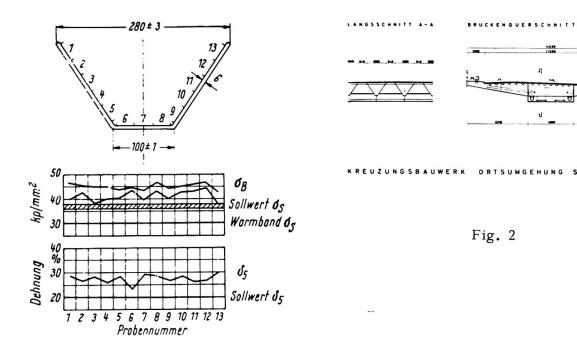


Fig. 1 Mechanische Werte eines Trapezprofils St 37-3 m.e.S.

Fig. 4 Fig. 3

Leere Seite Blank page Page vide