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Influence of Cross-Sectional Distortion on Flexural-Torsional Buckling
Influence de la torsion dans la section sur le flambage combiné flexion-torsion

Einflul der Querschnittsverdrehung auf das Biegedrillknicken

YASYHIRO SUZUKI TOSHIE OKUMURA

Research Engr. Prof. of Civ. Engrg.

Sakurada Iron Works Co. Ltd. University of Tokyo
Tokyo, Japan Tokyo, Japan

1. Introduction

The influence of cross-sectional distortion on the flexural-torsional
buckling of members with thin-walled open cross sections is studied applying the
assemptions used in the folded plate theory.

The buckling theories of thin-walled members have been separatedly develop-
ed as the primary buckling and as the local buckling. The flexural-torsional
buckling is involved in the former. The former is based on the fundamental
assumption that the cross section is non-deformable at the instant of buckling,
and the later is related to cross-sectional distortion. It is, however,
reasonable to consider that the both of the above buckling phenomena actually
take place simultaneously. The influence of cross-sectional distortion is
increasing its importance in the analysis of buckling due to a tendency of using
the more thin-walled members with the appearance of high-strength steel.

In relation to this problem, F. Bleich studied the flexural-torsional
buckling of T-shaped stiffener considering the deformation of its webgl)
Japan, T. Okumurafz) and T. Naka et alg3) studied the lateral buckling of
I-shaped beams with the same method as Bleich, where the web plat? %s considered
4 and M,

In

as an assembly of narrow transverse strips. Recently, R. Schmied

(5) studied the buckling of I-shaped members considering the complete

Fischer
plate action of web plate. E. Goldberg et al(6) presented a systematical buckl-
ing analysis for members with arbitrary cross-sectional forms considering the
cross-sectional distortion and starting from the usual plate equation and the

membrane equation.

1. Bg. Schlussbericht
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In this study, the members which consist of many flat plate elements are
treated by energy method, and so it is difficult to take the complete plate
action of each element into the consideration due to the complexity. For this
reason, the thin-walled members are replaced by mechanical models of folded
plate system, and thus the plate action of each element is simplified as
Bleich's method.

The buckling stress is calculated with the use of the energy method.
Expressions for the internal strain energy and the potential energy of external
loads are derived for a thin-walled member as a folded plate system. Assuming
proper buckling modes and introducing into the total energy expression, the
critical condition for buckling is obtained by the concept of stational energy.

Numerical results are obtained with the help of an electronic computer.

2. General Equation for Analysis
2.1 Assumptions and Symbols

In this study, only the member with a prismatical open section is treated.
The cross section considered here consists of one series of flat plate elements

as shown in Fig. 1.

Fig, 2 Deformation of plate
element
Fig. 1 Typical cross section

The following assumptions are also the basis of the analysis.
(1) At any point in the section, the longitudinal normal stresses due to the
external loads do not exdeed the proportional limit at the instant of buckling.
(2) The longitudinal normal stresses are linearly distributed only within each
plate element. That is, Navier's hypothesis remains valid for each plate

element, but not for the whole section.
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(3) Each plate element is subjected only to bending moment in the direction
perpendicular to the longitudinal axis and to shear force accompanied: to this
bending moment. That is, the thin-walled member is replaced by an assembly of
transverse frames of unit width, and between these frames normal and tangential
stresses in the plane of each element are transmitted from one frame to another.
The symbols used hereafter are shown in Fig. 1 and 2. Fig. 2 shows the

displacement components. They are

& 1 displacement of a plate element in its plane

7Ni,¢ Ni, -y : displacements of nodal points perpendicular to the plate to
which they belong
% : bar rotation of a plate
Voi ¥, (-/ : tangential angles at the edge of a plate element
@, : rotation of a mnodal point

and among these the following relations exist;

N P L A ! ) ét:n
9=k (i )=5; Gay, ~ Gy ) S S (1)
2 . El'_f 'y /
Ne,e-f =(ca_gr‘._l_£‘-) Tan Tr_y

; ; Eivy !
N, = (fc—*w) Tan Y;

Per = 9 + '/’.',L,'
From the above relations, it can be concluded that the necessary and sufficient
components to descrive the whole deformation of the section are & (¢ =1,2,... m)
and ¢ (¢=1,2,... m-1).
2.2 Internal Strain Energy
The internal strain energy V as a folded plate system is separated into
three parts.
V=V +Vy +7Vs3
where V; : sum of the strain energy by the beam action (simplified membrane
action) of each element
Vo : sum of the strain energy by the frame action (simplified plate
action) of each element

V3 : sum of the strain energy by the pure torsion of each element

These energies are to be expressed in terms of the independent deflection &
and o .
( )! means hereafter the differentiation by z-coordinate.
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i) V1 As the linearlity of the longitudinal normal strain is hold within

each element, V; can be expressed in the following form for all m plate

Vy= §f 8 CEL €74 ERE ) dz oo ()

where I = moment of inertia of a plate element

F = cross area of a element
€ = longitudinal normal strain at the centroid of a element
E = Young's modurus

g, and g are not independent of each other. The longitudinal normal strains

in both plates must be equal at a point where two plates meet

R S e (9
Introducing the average strain € , and the difference &; between the strainsé

and €., as follows

T T T o e
=/

(=/

Eq.(6) can be solved in the following forms

bl

£ = 5 @) & e (90)

» ¢
E=2a &+ 3 oo &
YRR s Y

=J§ A j 8] (E22) oo (G})
where e, . "
e e A A I (Y
L=/ ¢, =0
(=2 C?', = e, c‘,? =€y e (/0 b)

€23 iy =y G j=SpUing) ciiee iy

JS¢ A =ajvoe;

“j
isi g ea — e (03
Substituting Eq.(9) into Eq.(5), the expression for V, is obtained in the

following form

! " %
v =§£ ,é’,{E"' E°+ EF &+ €)%} de

=5 Sl (L ED v R € v £ £} dz
m e - - )
’?IL qg:r{&-lifiaffﬁ_,{:f(d(,j £&:) J+EFE ldz

E . E = L ETE" £ B 5 i
"‘2"]; ZR:',(' gidef'E'-[; 'Z 2&',:" E[' E‘-C{Zf 2L Fe dz (/I)

=/

¢t



YASYHIRO SUZUKI — TOSHIE OKUMURA 325

where R, ji » and

g

”

R = lov £ 5 a3,
J=

~

‘

1

H

1

1

:

1

1

]

1

1

1

1

1

1

1

1

1
~
-~
oy
e

Ripie = ﬁ‘f’ Ao Ay (&%)
ii) Vo Replacing the thin-walled member into an assembly of frames in the
transverse direction according to the assumption in the folded plate theory,
the expression for strain energy V» can be derived using the following rela-

tions for transverse moments Y and Eq.(})

Y“., = G- ¢(‘f )

)/‘-=

The strain energy Vo stored in the plate element i becomes as follows

_I_zd S_’(Y? +Yr g Yet+ YE)

- 2‘3. §Pi gt Py Pit 9} - 30 (Pt Pi) r 3}
where D;= Et}/r2¢ 1-Y5)
Since one edge is free for the edge plates 1 and m, no bending moment exist in
these element, and thus no contribution to the strain energy may be assumed.
Consequently the strain energy Vo, for the whole section is expressed as follows
excluding the contribution from the edge plates

Ve = /}';2—? [P+ Py Pt Q2= 38 ( Pyt @)+ 385 Jdz e (r3)
% in this expression is a function of &/ as defined in Eq.(1).
iii) V3 This energy is defined as the sum of the energies stored in each
element due to pure torsion, that is, St. Venant's torsion. This strain energy
is expressed as a function of #; for each interior plate element, while the
contribution for the two edge plates are expressed by the twisting angles at the
nodal points 1 and m-1, and thus the strain energy V3 is

=g/ 560 SFdzr L L ahgir Gl gl yde e (/4)

(=2

where J; is St. Venant's torsional constant and G is the elastic modulus for
shear.
2.3 Potential Energy of External Loads

The potential energy of external loads U is equal to the sum of negative
products external forces and displacements of their points of application in the
didection of the forces. Considering the fully loaded but undeflected state as
the reference position for the potencial energy, U represents the change of the

potential energy dve to buckling:
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Provided that no cross-sectional distortions take place at the end of the

member, the external stresses on the end surfaces are given as follows for the
nodal points

= P

Ge=F* y:
The stresses vary linearly between the nodal points and therefore

G = U_Z—f+(ﬂ'f—0—7-;)(ﬁf7) """""""""""" (16)
Neglecting the change of the external stresses and the change of the fiber
strains due to the change of stresses before and after the buckling, the dis-

placement d is due only to the curvature of the fiber by the buckling deflec-

. /f ((C/AZ) (dM) I e —— (17)

where A x and A y are the two displacements of a fiber in the mutually

tion:

perpendicular direction. Considering the distortion of the plate elements,

they become as follows for interior elements
ax =& }
Dy = P i- 1+ cPi- /(4) -4:2%- 1Y 319:)(4.)*»&(9‘ 1+ ;- ~2d )(T) ““““ (/18)

Substituting the displacement d obtained from Eq.(l7) and 18), and the

external stresses of Eq.(l6) into Eq.(lS), the portion of potential energy of

external loads for the internal plates Uy is given as follows

=N Z[ Tt (1008 Pra20 0l 1w 5 8EPE 6815, 9 +38EP 2 12,8282

r 25240, i-rb +24,3,,ﬂ Pi 28850 F: + 8488 s Fis 564 et L)
+%Z4% (420 E( +420 '?;', (-1+3.4% P 641 @, 901‘+ 5.6; ?40.&«}
+588.4; ?!': a’-/191"+ 284;221Q£59'-’/“60—&2v0£ Pi+56.4: iy 502'_/
-84.8:21%))dz (19)

This potential energy for the edge plates become as follows considering the

following relations
for plate / Ax=£& ay=Cu-Fd
for plate m Ax=Em A7=?m,m—1+5om-!u6

e - 4, FoR{(67 0152 -2?:/5%(&—3/+ ) Lo oes-2e08,+55)
03P {(£5% T ;E'a 8:5"3,(/ %2 ) ,zea (64,& 8&)331-3:5,3)}
+0-1Fm {(Em* m,m—')gé + Gt Fnr B (- % % em —5;”’;(613»16" Blndnr38m)
N e
x (201 -2endn-43)} ) d2 (20)
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The potentical energy of the whole system T is the sum of the expressions
as derived and thus T =V + U =1V +V2+V +U +U2, in which all the terms are the
function of ? and 2. The deflection components 5/ and ¥ involved in the above
expression are also expressid in terms of €{ and P/ by Bq. (1) and (2).

Assuming the buckling mode, the critical equation for this buckling is
derived from the concept of stationary potential energy, that is

&= & (v; VAV 4T 4T 5) = @

The terms which includes the strain € in the energy Vl is ommitted, because we
consider here only the change of the energy before and after the buckling.

3, Numerical Examples on Hat-Shaped Columns
3.1 Critical Equations
For an example, lateral-torsional buckling of columns subjected to exc-

centrical compression on the axis of symmetry as shown in Fig. 3 is treated.

y ™~
I (1) O p 5054 T
=~ = - .l B I
Z e |
— = T I
°
(2) @ (i) !
z (centroid) X LS
ol
L= -;
2 =) —= 4 Fig. 4
/ A flexural-
Fig. 3 General hat-shaped torsional
section buckling mode

Introducing the following parameters
Fdy

Fd _ Ede

Z, !+ Ix e# , Zzzl Ty 83.. B
the external stresses at nodal points are expressed by one stress ¢ as follows

G =05 =02 = 05 = 21 ¥ - P/F

0z ~ 03 = (0-22
The flexural-torsional buckling mode is assumed to be symmetric on the axis of
symmetry of the cross section as shown in Fig. 4, then there exist the follow-
ing relationship

§i=85,8:-8a, P, -Pa, Po-%;

§,,§2,§3 and ¥;, $,remains as the independent components. In the direction of

the column axis, they are further assumed to vary as
(= Ci sin 2 A=T/g
P = Bi sinA2
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After introducing the above relations into the energy expressions derived
in the previous sections, the potential energy for the whole system can be ex-
pressed in terms of C; and By, and differentiation of thus obtained total ener-
gy by Ci and Bi reduces to & system of linear egquations about Ci and Bj. The
buckling criteria is the condition that the determinant of this system
vanishes;

K11 Ki2 K13 Ki4 Kis
Ko1 K22 K23 Kpy Kps
K31 K32 K33 K34 K35| =0
K41 K42 K43 Kag K45
K51 Ksp K53 K54 Ksg

The elements of this determinant take the form Kij=Kij,T +Kij,zxaF. Numerical

evaluation of & satisfying this condition can be attained with the help of an
electronic computer. And in this case the theoretical value with no consider-
ation of cross sectional destortion canr be used as the starting value.
3.2 Numerical Results and Comparison with Usual Theory

Some numerical results on hat-shaped columns are shown in Fig. 5 through
8, in which the vertical axis is the reduction of the flexural-torsional buckl-
ing stress due to the influence of cross-sectional distortion compared with the
usual theory where the cross section is assumed to be non-deformable-—---

cf. (1) or (7).
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Fig. 5 shows the change of reduction of the flexural-torsional buckling
stress in relation to the len~th of column for some wall-thickness, when the
hat-chaped column shown in the same figure is subjected to the axial compres-
sion only. For longer columns the reduction is gernerally very small and
scarcely no more than 1%, but with the shortening of column length, acceler-
ation of the reduction is noted; more acceleration is observed for a column
with thinner cross section.

It is noticed that the results shown here are valid only for the elastiec
buckling, and this limits are shown in the figure by two broken lines for
yield stresses of 2400 and 3600 kg/cmz, and the curves on the lefthand side
of these broken lines for each yield stress has to be modified to be
meaningful by the theory of inelastic buckling. Consequently, it can be
concluded that the reduction of the flexural-torsional buckling strength for
a practical elastic column doces not exceed a few percents.

FPig. 6 shows the relationship between the change of reduction and the
change of the wall-thickness for the same column as for Fig. 5.

Fig. 7 shows the variation of reduction as a function of sizes of 1lip
plates of the hat-shaped column under axial compression. It is presumed
that there is a critical size of lip plates with which the minimum reduction
may results.

Fig. 8 shows the relation between the reduction and the eccenntricity
of the axial load. In the case of a longer member, the reduction is scarcely
influenced by the eccentricity and it's magnitude is very small but in the
case of a shorter member the reduction is largely changed by eccentricity,
and moreover the reduction increases with increasing eccentricity to the
direction for the top of the hat-shape and decreases with a eccentricity to

the opposite direction.
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SUMMARY

An approximate method to estimate the influence of the cross-
sectional distortion on the flexural-torsional buckling of open
thin-walled members is presented based on the folded plate theory
using the energy concept. From some numerical results on hat-shaped
columns, it is shown that this influence is small and negligible
for steel columns of practical length and section, but for such
columns as with shorter length or much thinner wall thickness, the
reduction of flexural-torsional buckling stress is highly enlarged.

RESUME

Une méthode approximative d'estimation de 1'influence de la
déformation de la section sur le flambage combiné flexion -tor-
sion d'we barre & section ouverte mince est développée & partir
de la théorie des voiles prismatiques utilisant des considérations
d'énergie. Quelques résultats numériques sur des profilés en U
montrent que cette influence est minime pour des barres de di-
mensions raisonnables, mais que les tensions sont réduites sen-
siblement dans le cas de barres trés courtes ou tres minces.

ZUSAMMENFASSUNG

Aufgrund der Faltwerktheorie mittels Energiebetrachtung wurde
eine N&@herungsmethode entwickelt, um den Einfluss der Querschnitts-
verformung auf das Biegedrillknicken von offenen, dinnwandigen
Stdben zu schétzen. Einige numerische Beispiele mit U-Profilen
zeigen, dass dieser Einfluss verschwindend klein wird bei Sté&ben
mit normalen Lingen und Querschnitten, dass dagegen die Biege-—
drillknickspannung erheblich reduziert wird bei sehr kurzen oder
sehr dinnwandigen Stében.
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