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Computer Analysis of Folded Plate Structures
Etude a la calculatrice électronique des toits plissés

Berechnung von Faltwerken mit Hilfe elektronischer Rechengeriite

JOHN E. GOLDBERG WM. D. GLAUZ A. V., SETLUR

Ph. D. Ph. D. M. S.
Purdue University, Lafayette, Indiana, USA

Introduction

Continued and, indeed, apparently increasing interest in folded plate con-
struction suggests that the application of electronic computers to the analysis
and design of such structures be investigated. Two methods of analysis, both
developed for electronic digital computers, are described in the present paper.
The methods consider prismatic folded plate structures which are simply
supported at their ends. Both methods are founded upon the basic equations
of classical plate theory and classical two-dimensional elasticity theory [1, 2]!)
and therefore imply only the assumptions and limitations inherent in those
theories.

The first method is essentially a transliteration to matrix form of a theory
- described in a previous paper [3]. The matrix form is especially convenient for
use on an electronic digital computer and a program is easily prepared which
requires for input only the basic geometry (length, widths, thicknesses, and
inclinations of the individual slabs and beams), material properties and loading.
The program then constructs appropriate matrices and finally produces, as
output, displacements and tractions at desired points within the folded plate
structure.

In the second method, using a technique described previously [4], the basic
equations of plate and elasticity theory are transformed into sets of first-order
ordinary differential equations in the intrinsic variables; namely, Fourier
coefficients of four components of displacement and of four tractions. These
equations are in a form which is convenient for numerical integration on an
electronic digital computer. ' '

Since each of the slabs which form the folded plate is assumed to be simply-
supported at the ends (x=0,a), it is convenient in both methods to represent
loadings, displacements and tractions as compatible generalized half-range
Fourier series. Thus, for example,

1) Numbers in brackets refer to items in the Bibliography.
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Loadings p and ¢, displacement v, and tractions M,, M,, N,, N, and @, are
also expanded into sine series. Loading in the z-direction, and tractions M,
N,, and @, are expanded into cosine series.

While Egs. (1) postulate infinite series, only a few terms or harmonics of
the several series are needed to provide the accuracy required in design. The
equations and discussion in the following sections pertain to a single arbitrary
harmonic of the general solution except as stated, and the dependent variables
are the amplitudes or coefficients of the m-th terms in the several pertinent
series.

First Method

Let 2, 4, k be three successive joints of a folded plate system (Fig. 1). For
the m-th harmonie, let d be the column vector of the four components of
displacement at joint 7, the directions being associated with a reference plane

Fig. 1. Portion of folded plate structure. Fig. 2. Differential element showing
positive tractions.

(conveniently taken as a horizontal plane) as shown in the figure. The ampli-
tudes of the four tractions at edges j of slabs jk and 7j are represented by the
column vectors F;} and F¥ and are given by the matrix equations
Bt = Ty K3 T djf + Ty Ky Ty dif + T By

]

Ef =T, K; Ty, d}+ T, Ki; T dF + T, ‘F—}i' (@)
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Here T}, K;, F, x are, respectively, a directional transformation matrix, a
stiffness matrix, and a fixed-edge traction matrix. For a beam at and parallel
to joint 7, the four tractions may be written, similarly, in matrix form as

F¥ =T,K,T,d}. (3)

iR ¥ R |
The several matrices are defined in Appendix I.
Since joint j is in equilibrium, the sum of Eqgs. (2) and (3) must vanish.
This yields the matrix equation,

[Ty K Tig) A + [T Ky Ty + Ty K3 Ty + T K e Ty ) dF

jt it 3733 . (4)
+ [T Ky T At = — Ty By — Ty B

Jji i

Similar equations may be written at each joint. If there are n joints with
unknown displacements, there will be essentially 4% algebraic equations in
the same number of unknown displacements. Simultaneous solution may be
effected by any suitable technique such as, for example, the Gauss-Jordan
algorithm or matrix iteration.

Having determined the displacements at each joint, these may be substi-
tuted into the following formulas to obtain the tractions at desired points
within each slab. For a typical slab, jk,

d; = Tt dF, dy = Tt d, (5)

where d;;, and d,; are the slab displacement column vectors at j and k respec-
tively, e.g., the elements of d;, are 0;, wj;, v;; and u;,
M, =—RE,(1-»){B5[8,(y') + (85 —c*)C(y")]—8,/2}
=Dy [6;{ =B, [S1 (%) + (3, —t*) C (y")] + B [C1 (y') + (81 —c*) S (¥')]}
+ 0. {81 [S1(y") + (31 —t*) C(y)]+ B [C1 (y') + (8, —c*) 8 (y)]}] (6)
+ Dy My [wy {Bs [S1 (%) + (83— ¢*) C (y)] = B4 [C1 (¥) + (33— t*) S (¥')]}
+wy; {Bs [S1(y') + @5 —c*) C(y)]+ B4 [Cr(y) + (35— 1%) S (¥")1}1,
M, = R,(1-v){Bs[5, (y’)—(83+c*)0(y’)]+81/2}
=Dy [0;{B,[S, (%) — (8, +t*) C(y')] =B [C1 (') — (B2 +¢*) S (y')]}
— 0, {B1 [5: (%) - (3, +t*) y)]+182[0 (%) — (B2 +¢*) S (")} (7)
+ Dy My [y { = Bs [81(¥') — (85 —c*) C (¥")] + B4 [CL(¥") — (B3 +1*) S (y')]}
— e {Bs[S1(4") — (B +¢*) C ()] + B4 [C1 (¥') — (B33 +1%) S (")]}],
M, = — By (1=9)B;[Cy (y) —c* 8 (¢)]
=Dymy [0;{ =B, [C1 (y") + (1 =1*) S (¥ )]+ B[Sy (¢) + (1 —c*) C (¥)]}
+0:[B1Cr () + (1 —1*) S ()] +B[S1 (¥)+ (1 —c*)C )] (8)
+ Dy, [wp {B5 [C1 (¥") —c* S ()] = Ba [S1 () —t* C (y)]}
+ Wi {B3 [C1(y') —c* S (y)]+ B, [S: (¥) —t* C (¥")]}],
Q = Rzﬁas(y')+sz{9 [— }81 () +BC(y)]+ 0, (B S () +B.C (y)]}
— Dy {wy [Bs S (y') —Bs C (¥ )] +wy; [Bs S (¥') + B4 C (y')]}
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R
Q = —72[20(?/’)33—1]_1)%2{9;‘ [-BC (Y )+ B8 (y)]+6,[B.C (') + B8 (y')]}

+ DTy {3 [B5.C (')~ Ba S ()] + 03y B O (8) + 8. S (4]} (o)
N, =—RBs[Ci(y)—(c* +38,) S(y)]
— Dy [, {Bs [S1 (¥') — (35 +¢*) C ()] — B [C1 (¥') — (85+¢*) S (y)]} (11)
— 0 {Bs [S1 (¥') — (85 +1%) C ()] + B6 [C (%) —(35+¢*) S (y")]}]
+ D,y 7y [u; {—B7 (81 (') + (86 —c*) O (y')]+Bs [Cr (y') + (8 — £*) S (¥)]}
—u {B7 [S1 (") + (86 —¢*) C (y)]+Bs [C1 (') + (B —t*) S (¥ )31,
N, = EBs[Ci(y)—(c*—8)8(y)]
— Dy 7y [0, { — Bs [S1 (') + (34— t*) C (y')] +B6 [C1 (¥') + (8 —c*) S (¥')]}
g (B[S (') + (By— 1) € (4 )]+ B [Cy (4') + (By— %) S (¥')T}]
4 Dy, [ 185 [, (4) + (8~ %) O (') — Ba[C4 (4') + (8, — %) S 9} (12)
(B[S, (4') + By — %) C ()] + B [Cy (4') + (B, — 1) S (¥) D],
Noy = 028,08, ()~ (c* 43 C )] +1)

+ Dy, [0, {B5 [C1 (¥') — (B + 1) S(y)]—Bes[S1(y')— (86 +c*)C (y)]} (13)
— v {Bs [C1 (¥") — (B +t*) S (¥")]+Bs [Sy (¥') — (B +¢*) C (y')]}]

— Dy 7 [u; {— B7[CL(¥') + 85— ¢*) S (¥')] +Bs [S1 () + 35 —1*) C (y')]}
— U {B7 [C1(y') + (85— ¢*) S (¥")]+Bs [S1 () + (85 —t*) C (y")]}] ,

in which
b

Yy =§b'—y§ dm=w;7; ; t* = a, tanh a,,; c* = o, cotha,,;
— m _ mm 2. _ m )3
m=T M=) M=)

Ny may N_mry . mmry
S (y’) = sinh P S; (") = sinh =
Cly)=cosh™ %5 Cy(y) =" cosh =L,
D = ER3 _ Eh
17 24(14v)° 2T 2(14w)’
R=4q' R=8q~ R=L- R:ﬁ-
1" mga’ 2T mya’ 87 (1+v)mya’ 1 mya’

2 2 1

=3+v; ey B = _v; 5, = +V; 86=i; 87=3+V.

14v 1¥v 1¥v 1—v 35 14+v

Similar formulas may be deduced from Reference [3] for computation of
displacements within the various slabs, if desired.

The equations should be used for a sufficient number of harmonics. For
uniform loading, only the odd harmoniecs (m=1,3,5,etc.) are involved and,
usually, two to four of these will provide sufficient accuracy for design purposes.
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Second Method

It has been shown in a previous paper [4] that, for slabs simply-supported
at their ends, the equations which govern the deformations and tractions may
be written as a system of eight first-order differential equations. In the present
case these become

dw_ o 40 _ _%{.H(ﬂ)zw. gv _Ny  mm,

dy ’ dy D a ’ dy H ’

d_u= 2 Ny _mm . dNy=MN _4p

dy H(l1-v) a dy a % mn’

dN, mr aM 2mm av, mr\2 4

e TN e M g = () e
(14)

Ty

2
M =D(1_u)ﬁai’9; M,=VM2,+D(%’) (1—»?)w;

N

. =vN,—H="(1-)u,

Eh ER3
1—p2’ ' 12 (1—2)

in which H =

Eqgs. (14) together with the transformations, Eqs. (16), form a system of
eighth order subject to four boundary conditions at the initial edge and to
four additional conditions at the terminal edge of the complete structure. If,
for example, an edge is unsupported, the conditions are

N,=N,, =V,=M,=0. (15)

If the edge is elastically restrained by, say, an edge beam, the tractions at the
edge are related to the displacements through the stiffness matrix of the beam
(i.e., K;;) with an appropriate directional transformation matrix. Alternatively,
one may consider the edge beam itself as an additional slab which augments
the folded plate structure and which, at its outer edge, is subjected to the
conditions represented by Eqgs. (15).

Given specified initial values of the eight intrinsic variables, the equations
are readily integrated with the aid of an electronic computer and using a
suitable numerical procedure such as the Runge-Kutta fourth-order process
[5]. At each joint, the transformations

vt =0 cosx;+wsina; wt = wcosa; —vsinay;

; ; 16
N} = Njcosa;+ V- sina;; Vt=V-cosa;—Nysine;; o = ¢;;—d; (

)

are made within the computer, and the integration then proceeds with the
new variables appropriate to the slab under consideration.

The complete and correct solution consists of the nonhomogeneous solution
plus a linear combination of four homogeneous solutions, each obtained by
integrating Eqs. (14) with appropriately chosen initial values and using
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Egs. (16) at the joints. The case of a structure with free edges will serve to
illustrate the method.

For this case, one constructs four homogeneous solutions (Solutions 1 to 4
in Table 1) by deleting the » and ¢ terms in Eqgs. (14) and integrating. The
initial conditions are Eqs. (15) and the values of the initial displacements are
shown in the table. With the p and ¢ terms restored to Egs. (14), one inte-
grates these equations to obtain the nonhomogeneous case (Solution 5 in the

Table).

Table 1

Solu- Initial Values Terminal Values

tion u ) w 6 Ny Ny M, v,
1 1 0 0 0 N‘(yl) I\T;Iy.‘! Mg(;l) V?(Jl)
g 18314040 N N M 4%
N i N M 4%
4 0 0 0 1 N@(;“ N;‘}) Mch) V}‘,‘”
5 0 0 0 0 N NG MO o

Each of these solutions yields numerical values for all dependent variables
at the terminal boundary. If this boundary is free, the calculated tractions
are of interest and have values as indicated in the table.

One now writes the terminal boundary conditions in the form

C; NP +Cy N® + Oy NP +Cy NP = —ND,

C,;NY+C, N +C3 N +C,N@ = —-NG, -
Oy MD +Cy MD + Oy M + Cy MO = — M, L)
Ci VP +C, VB +C3 VP +C VO = -V®

and solves these equations for the C’s. These are, in fact, the correct values
of the initial displacements. Now, with the starting values

1= Oy, p==0;, w = (4, =0 (18)

a final integration of Egs. (14) is made with the loading terms included and
using Eqs. (15) and (16). This calculation yields the amplitudes of displace-
ments and tractions over the entire structure for the harmonic under considera-
tion. The entire process is repeated for as many harmonics as are necessary to
attain any desired accuracy.

Example
Fig. 3 shows the cross section and loading of one unit of a north light roof.

The two narrow edge members were treated as beams having bending and
torsional resistance. Curves for a typical quantity, the transverse bending
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My (calculated) af mid-section
Lb ft/f1

1 term!m=*

S\, Stermsime13. 91

g e /r h =4" (for all slabs)
Length a=60'-0"

Fig. 3. North light folded plate structure.

moment at the section midway between the ends, are shown. One curve shows
these moments computed by the first method using only the first harmonic
(m=1). The other curve presents the practically correct solution obtained as
the sum of several harmonics (m=1,3,...,9). Comparison of the two curves
indicates that it may be inadvisable to use, as is sometimes suggested, only
the first harmonic as a basis for design and analysis.

The computer programs produce complete information on each of the trac-
tions and displacements for as many transverse sections as may be desired.
The programs, when used on a sufficiently large machine, are entirely self-
contained. They accept as input the basic information such as geometry,
material properties, desired number of harmonics and points at which final
quantities are desired. The first method program then calculates the fixed-
edge tractions and the edge coefficients for each slab and beam, forms the
joint equations and solves for the joint displacements. It then computes trac-
tions and displacements at as many sections and interior points as desired.
The present example required approximately 0.75 minutes on an IBM 7090
computer to produce results for five sections. The second method program is
similarly self-contained.

Appendix I

As used in Eq. (4), the displacement column vector, df, and the trans-
formation matrix, 7}, for slab jk at joint j are

8, 1 0 0 0
0 ing, 0
w_ | M o cos<,'l>;,-,‘c sin ¢ ;. 1
% & and, 4 0 —sing;, cosg; 0] (8
Uj 0 0 0 1
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The stiffness matrices, K, and K;;, for joint j of slab jk are written as

[ sikC,  SiC, 0 o ]
Ko = —SikC, —8SikC, 0 0 .
ST 00 —ske, SOy |
L0 0 SFCyy =80y |
[ Skig, —Sk(C, 0 0o ]
kJ 0 0 8FC, —8¥0, |
B 0 0 S50y 8§ Ce
in which, according to Reference [3],
) Eh3.m s m . . Eh,m
ik — ik ik — 7 Qik ik _ ik
& 12(1—v?)a’ 5 a S % (1+v)2a’
Cis =m(+p,cosha, —fysinha,), Cs¢ = 7*(+B3cosha,—pB,sinha,),
3
Crs = ’m,a_rr (£Bssinhe,, —B,coshay),  Cyi9 =7 (—Bscoshay, +Bgsinha,),
Cis14 = 7 (£ B, cosha,, —Bgsinha,,), C1s16 = 7 (¥ Bysinha,, +Bgcosha,),
m m
C; = a Cs, C,= o Cs, Ci = Cis, Crs = Oy, (21)
B4 = (a,secha,, +sinhe,,)"1, Bsz = (e, csche, + coshe,, )™,
_3—v . “il 3—v i
Bsg = (ocm secho,, F T sinh am) i Baw = (am esch e, + e cosh cxm) :

When + or ¥ are indicated, the first subscript is associated with the upper
sign and the second subscript with the lower sign.
The matrices for the slab j¢ are

L o 0 —S§EC,, — 850,
[sic, 8S7C, 0 0
K. — SPC, SYCy O _O
i 0 0 870, S¥CQ.|
| 0 0 —8§Cy, S0,

For the beam at the joint j the stiffness matrix is

2 -2
By D +2Bjb; mazﬂ 0 0
— Bii b, —2 Bj 0 0
a 3 3
mmby; .. .
0 0 T” B} —2Bjm,
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where
ii _ L h} by mEa? i B R0 miat i _ B hy;0F;m3 7
He= 48m; a® ’ = 24m, a* ’ Bs 6myad
. Eh b m?xn? . 166G b m2 2 |
Bii == gm];az -, D311=—E (1—0.63b—f)m1+—a2 b3,
n
E h%; m?n? 2 E b3, m?=* E b% m? 72
m= (1 g ) ma= (14 ) and me= (14 55ET).

For uniform load, the fixed edge traction column vectors F}k and F}i, at the
joint 4 for the slab jk and ji are

— Ri¥(28;Cosha,,—1) Rii (2B, Cosha,,—1)
7o Ri¥B,Sinh o, T R} B,Sinh «,,
ik = 4 R B, Sinh «,, S 4 R} B, Sinh a,,
Rj[4Bs Cosh ey, — (1 +v)] — R[4 B, Cosh a,, — (1 +)]
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Summary

Two methods for the analysis of folded plate roof structures are presented.
Both methods have been developed for solution with the aid of an electronic
computer. The methods are ‘“‘exact’ in the sense that they are based upon
classical elasticity theory and classical plate theory.

One procedure is formulated along the lines of the displacement method of
structural theory and takes the form of a set of algebraic equations in which
the unknown quantities are the four generalized displacements at each joint
or edge. The coefficients and constants of the set of equations may be generated
within the computer.

The second procedure is based upon numerical integration of an appropriate
eighth-order set of differential equations. This procedure differs from the usual
methods for handling shell problems in that the dependent variables are taken
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to be the intrinsic quantities. The output of the procedure is thus directly in
terms of the quantities of interest, including displacements, rotations and
stresses at all points on the antinodal lines.

Résumé

Il est présenté deux méthodes de calcul des couvertures en voiles poly-
gonaux; leur conception présuppose ’emploi d’une calculatrice électronique
dans la pratique. Ces deux méthodes sont «exactes» en ce sens qu’elles se
fondent sur la théorie classique de I’élasticité et celle des plaques.

La premiére procéde de la méthode des déformations et prend la forme d’un
systéme d’équations algébriques dans lesquelles les inconnues sont les quatre
déplacements généralisés a chaque joint ou aréte. Les coefficients et constantes
du systéme peuvent étre déterminés par la calculatrice.

La seconde méthode est basée sur l'intégration numérique d’un systéme
approprié d’équations différentielles du 8e ordre. Elle difféere des méthodes
habituellement utilisées dans les problémes relatifs aux voiles en ce que les
variables dépendantes sont prises comme grandeurs intrinséques. Ce sont
ainsi des grandeurs d’intérét immédiat que les résultats fournis représentent:
déplacements, rotations et contraintes en tous les points des lignes anti-nodales.

Zusammenfassung

In der Arbeit werden zwei Berechnungsmethoden fiir als Faltwerke aus-
gebildete Dachkonstruktionen erlautert. Beide Methoden sind fiir die Losung
mit Hilfe elektronischer Rechengerite entwickelt worden. Die Methoden sind
«exakty, in dem Sinne, daBl beide auf der klassischen Elastizitdtstheorie und
der klassischen Plattentheorie aufbauen.

Die eine Art des Vorgehens basiert auf der Deformationsmethode der Trag-
werktheorie und erscheint in der Form eines Systems algebraischer Gleichun-
gen, in welchem die Unbekannten die 4 verallgemeinerten Verschiebungen an
jedem Rand oder an jeder Kante darstellen. Die Koeffizienten und Kon-
stanten des Gleichungssystems konnen mit dem Elektronenrechner gewonnen
werden.

Die zweite Methode basiert auf der numerischen Integration eines ent-
sprechenden Systems von Differentialgleichungen der 8. Ordnung. Dieses
Vorgehen unterscheidet sich von den iiblichen Methoden zur Behandlung von
Schalenproblemen, indem die abhéngigen Variablen als Eigenwerte betrachtet
werden.

Diese Methode liefert so direkt die gesuchten Werte fiir Verschiebungen,
Drehungen und Spannungen an allen Punkten der Gelenklinien.
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