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Computer Analysis of Folded Plate Structures

Etude ä la calculatrice eiectronique des toits plisses

Berechnung von Faltwerken mit Hilfe elektronischer Rechengeräte

JOHN E. GOLDBERG WM. D. GLAUZ A. V. SETLUR
Ph. D. Ph. D. M. S.

Purdue University, Lafayette, Indiana, USA

Introduction

Continued and, indeed, apparently increasing interest in folded plate
construction suggests that the application of electronic Computers to the analysis
and design of such structures be investigated. Two methods of analysis, both
developed for electronic digital Computers, are described in the present paper.
The methods consider prismatic folded plate structures which are simply
supported at their ends. Both methods are founded upon the basic equations
of classical plate theory and classical two-dimensional elasticity theory [1, 2]1)
and therefore imply only the assumptions and limitations inherent in those
theories.

The first method is essentially a transliteration to matrix form of a theory
described in a previous paper [3]. The matrix form is especially convenient for
use on an electronic digital Computer and a program is easily prepared which
requires for input only the basic geometry (length, widths, thicknesses, and
inclinations ofthe individual slabs and beams), material properties and loading.
The program then constructs appropriate matrices and finally produces, as

output, displacements and tractions at desired points within the folded plate
structure.

In the second method, using a technique described previously [4], the basic
equations of plate and elasticity theory are transformed into sets of first-order
ordinary differential equations in the intrinsic variables; namely, Fourier
coefficients of four components of displacement and of four tractions. These

equations are in a form which is convenient for numerical Integration on an
electronic digital Computer.

Since each of the slabs which form the folded plate is assumed to be simply -

supported at the ends (x 0,a), it is convenient in both methods to represent
loadings, displacements and tractions as compatible generalized half-range
Fourier series. Thus, for example,

l) Numbers in brackets refer to items in the Bibliography.
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Loadings p and q, displacement v, and tractions Mx, My, Nx, Ny and Qy are
also expanded into sine series. Loading in the a:-direction, and tractions Mxy,
Nxy and Qx are expanded into cosine series.

While Eqs. (1) postulate infinite series, only a few terms or harmonics of
the several series are needed to provide the accuracy required in design. The
equations and discussion in the following sections pertain to a single arbitrary
harmonic of the general Solution except as stated, and the dependent variables
are the amphtudes or coefficients of the m-th terms in the several pertinent
series.

First Method

Let i, j, k be three successive joints of a folded plate system (Fig. 1). For
the m-th harmonic, let d* be the column vector of the four components of
displacement at Joint j, the directions being associated with a reference plane
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Fig. 1. Portion of foldod plate structure. Fig. 2. Differential element showing
positive tractions.

(conveniently taken as a horizontal plane) as shown in the figure. The amphtudes

of the four tractions at edges j of slabs jk and ij are represented by the
column vectors JJjjf and F£ and are given by the matrix equations

Fft Tik Kik Tjk if + Tjk Kkj Tkj d£ + Tjk F,k,

Fjf Tn Kn T„ df + Tn Kit Tv df + Tn FH.
(2)
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Here Tik, Kjk, Fik are, respectively, a directional transformation matrix, a
stiffness matrix, and a fixed-edge traction matrix. For a beam at and parallel
to Joint j, the four tractions may be written, similarly, in matrix form as

Fjf TjjKijTjjdf. (3)

The several matrices are defined in Appendix I.
Since Joint j is in equilibrium, the sum of Eqs. (2) and (3) must vanish.

This yields the matrix equation,

[Tn Ka Tij\d* + [TH KH Tn + Tjj Kn Tn + Tjk Kjk Tjk] df
+ [Tjk Kkj Tkj] & * - TH Fn - Tjk Fjk.

Similar equations may be written at each Joint. If there are n joints with
unknown displacements, there will be essentially 4n algebraic equations in
the same number of unknown displacements. Simultaneous Solution may be
effected by any suitable technique such as, for example, the Gauss-Jordan
algorithm or matrix iteration.

Having determined the displacements at each Joint, these may be substituted

into the following formulas to obtain the tractions at desired points
within each slab. For a typical slab, jk,

djk -^'fc "j > "-jk ™iZi "-k> (5)

where djk and dkj are the slab displacement column vectors at j and k respectively,

e.g., the elements of djk are 0-, wik, vjk and Uj,

My =-R1(l-v){ß3[S1(y') + (h-c*)C(y')]-ü2l2}
-D1m1[ej{-ßl[S1(y') + (S1-t*)C(y')]+ßl[C1(y') + (S1-c*)8(y')]}

+ Okißi[Si(y') + (81 -1*)C(y')]+ß2[C,(y1) + (h-c*) S(y')]}] (6)

+D1mi [wjk{ß3 [S, (y') + (83 -c*) C (y')] -ßt [C, (y') + (83 -t*) S (y')]}
+ wkj{ß3[S1(y') + (B3-c*)C(y')]+ßi[C1(y') + (S3-t*)S(y')]}],

Mx R1(l-v){ß3[S1(y')-(S3 + c*)C(y')] + 81l2}

-Dlm1[ei{ß1[Sl(y')-(&s + t*)C{y')]-ßt[C1(y')-(Bt + e*)S{y')]}
-Ok{ßi[S1(y')-(h + t*)C(y')]+ßi[C1(y')-(o2 + c*)S(y')]}](l)

+ D1mi[wjk{-ß3[S1(y')-(83-c*)C(y')]+ßi[C1(y')-(83-rt*)S(y')]}
-^¦{^[Ä1(2/')-(S3 + c*)C(2/')]+i84[C1(2/')-(83 + <*)Ä(2/')]}],

Mxu -R1(l-v)ß3[C1(y')-c*S(y')]
-D1tn1[ej{-ß1[C1(y') + (l-t*)S(y')]+ßa[S1{y') + (l-e*)C(y')]}

+ 6k[ßiC1(y') + (l-t*)S(y')]+ß2[S1(y') + (l-c*)C(y')]}] (8)

+ Dxm2 [wjk{ß3 [C, (y') -c* 8 (y')] -ß4 [S, (y') -1* C (y')]}
+ ^{ß3[Ci(y')-c*8(y')]+ßi[S1(y')-t*C(y')]}],

Qy RzßsSiy'j + Dm^i-ß^iy'j+ßrtCiy'K + d^Siy'j+ß.Ciy')]}
-Dm3{wjk[ß3S(y')-ß4C(y')]+wkj[ß3S(y')+ßiC(y')]}, ^
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Qx -^C (y')ß3-l]-Dm2{ej[-ß1C (y') + ]82S(y)] + öfc[/31C (y')+ß2S (y')]}

+ Dm3{wjk[ß3C(y')-j84S(y')]+wkj[ß3C(y')+ßtS(y')]},
('0)

N„ =-Riß6[01(y')-(c* + S1)S(y')]

-2)2mJ^{iSJÄ1(y')-(86 + I*)C'(2/')]-i86[C,1(y')-(85+c*)Ä(y')]}(ll)
-vkj{ß5[S1(y')~(h+t*)0(y')]+ß6[C1(y')-(h+c*)S(yW

+ D2m1[uJ{-ß1[S1(y') + (St-c*)C{y')]+ßa[Gl(y') + (Sa-t*)S(y'm
-«*{/3T[Ä1(y') + (8.-c*)0(y')]+A[CFi(y,) + (86-'*)'S(y')]}].

iVx Ä4]86[C1(y')-(c*-8a)S(»')]
-D2m1[vjk{-ß5[81{y') + (8i-t*)C(y')]+ß6[C1(y') + (h-c*)8(y')]}

+vkj{ß5[S1(y') + (h-t*)G(y')]+ß6[C1(y') + (8i-c*)S(y')]}]
+ D2m1[uj{ß7[S1(y') + (?i7-c*)C(y')]-ß8[C1(y') + (Z7-t*)S(y')]} (12)

+«*{A[51(y') + (87-e*)0(y')]+A[Cfi(y') + (87-**)'8(y')]}],

N«, ^{2^C'Sl(2/')~(c* + S6)C(2/')] + 1}

+ D2m1[^{J85[C1(2/')-(86 + <*)S(2/')]-i86[Ä1(2/')-(86 + C*)C(2/')]} (13)

- *v iß, [Cr (2/') - (8« + **) S (y')] +ß6 [Sx (y') -(o6 + c*)C (</')]}]

-2),»l[ti,{-j8T[C71(y') + (85-o*)S(y')]+j88[i8f1(y') + (8»-<*)Cf(y')]}
-%{j37[C1(2/') + (8s-c*)Ä(y')]+i88['S1(2/') + (85-«*)C(t/')]}].

in which

y'=2~y> <Xm 4>44' ** «mtanhoTO; c* amcotham;

m77-
(m7r\2 _ /m-nA3

-44)' m> [-a-)'>

S(y') sinh—-?-; <W) —*-Binh—-*-

m,1 a

o o a.

^, „ m-ny' „ m-ny' miryC(2/') cosh ^-; 0x{y') ^-cosh ^ooo24(l+v)' 2 2(l+v)'

ri, =—; xi« z= ; -/to — ¦ r^^ ; ji4 zz1
ra3a m2a (l+v)ra2a 7«2a

3+v 2 2v 1+v. 1
_

3 + v
8 T©7; Sl>5 iT© 8^ iT7' ^"T©© b«~v ^"TT©

Similar formulas may be deduced from Reference [3] for computation of
displacements within the various slabs, if desired.

The equations should be used for a sufficient number of harmonics. For
uniform loading, only the odd harmonics (m= 1, 3,5, etc.) are involved and,

usually, two to four of these will provide sufficient accuracy for design purposes.
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Second Method

It has been shown in a previous paper [4] that, for slabs simply-supported
at their ends, the equations which govern the deformations and tractions may
be written as a system of eight first-order differential equations. In the present
case these become

dw d6 My /mir\2 dv Nv mn
-r- 0; ;t—=--fr + v' — w> t~ ~r/ + v— u>
dy dy D \ a dy H a

du 2Nxy mir
_

dNy mir 4p
dy H(l-v) ~~ä~V' ~dy~ ~a~ xv~^44Zi''

dNxv _rZZZ!-N dMv 2mtr dVy /mir\2 4g
_

dy a x' dy v a *»' dy " \ a x mir'

Mxy D(l-v)^9; Jf.-vJf, + D(^)'(!-»•)«; {U)

Nx vNy-H~(l-v^)u,
¦ w v. ti Eh n Eh3
in which H Dl-v2' 12(l-v2)

Eqs. (14) together with the transformations, Eqs. (16), form a system of
eighth order subject to four boundary conditions at the initial edge and to
four additional conditions at the terminal edge of the complete structure. If,
for example, an edge is unsupported, the conditions are

Ny Nxy Vy My 0. (15)

If the edge is elastically restrained by, say, an edge beam, the tractions at the
edge are related to the displacements through the stiffness matrix of the beam

(i. e., Kjj) with an appropriate directional transformation matrix. Alternatively,
one may consider the edge beam itself as an additional slab which augments
the folded plate structure and which, at its outer edge, is subjected to the
conditions represented by Eqs. (15).

Given specified initial values of the eight intrinsic variables, the equations
are readily integrated with the aid of an electronic Computer and using a
suitable numerical procedure such as the Runge-Kutta fourth-order process
[5]. At each Joint, the transformations

v+ v~ cos Xi +w sin a,; w+ w~ cos «., — v~~ sin a,-;

N+ Ny cos a;- + V~ sin a;-; V+ V~ cos a;- - N~ sin a;-; a;- <f>H — ^
are made within the Computer, and the Integration then proeeeds with the
new variables appropriate to the slab under consideration.

The complete and correct Solution consists of the nonhomogeneous Solution
plus a linear combination of four homogeneous solutions, each obtained by
integrating Eqs. (14) with appropriately chosen initial values and using
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Eqs. (16) at the joints. The case of a structure with free edges will serve to
illustrate the method.

For this case, one constructs four homogeneous solutions (Solutions 1 to 4

in Table 1) by deleting the p and q terms in Eqs. (14) and integrating. The
initial conditions are Eqs. (15) and the values of the initial displacements are
shown in the table. With the p and q terms restored to Eqs. (14), one inte-
grates these equations to obtain the nonhomogeneous case (Solution 5 in the

Table).
Table 1

Solution Initial Values Terminal Values

u V w e Ny Nxy My Vy

1 1 0 0 0 N? x> xy M</> yd)v y
2 0 1 0 0 n2) N<2)A' xy My2) T/(2)' y
3 0 0 1 0 MI«) N(3)±y xy Mj,3» ' y
4 0 0 0 i K*] 2V(4)±y xy M<,4> yw
5 0 0 0 0 N£> iY xy Mj,5> T/(5I

1 y

Each of these solutions yields numerical values for all dependent variables
at the terminal boundary. If this boundary is free, the calculated tractions
are of interest and have values as indicated in the table.

One now writes the terminal boundary conditions in the form

C12V»> + C2 N<*> + C3 Nf + C, Nf -Nf,
C1 N% + C2 N% + C3 N% + C, N% - N%,
C1M^ + C2M^ + C3M<^ + CiM<^ -Mf,
CXV^ +C2v™ +C3V<v +CJP -F«)

(17)

and solves these equations for the C's. These are, in fact, the correct values
of the initial displacements. Now, with the starting values

u Clt v C2 w C3' c4 (18)

a final Integration of Eqs. (14) is made with the loading terms included and
using Eqs. (15) and (16). This calculation yields the amphtudes of displacements

and tractions over the entire structure for the harmonic under consideration.

The entire process is repeated for as many harmonics as are necessary to
attain any desired accuracy.

Example

Fig. 3 shows the cross section and loading of one unit of a north light roof.
The two narrow edge members were treated as beams having bending and
torsional resistance. Curves for a typical quantity, the transverse bending
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Fig. 3. North light folded plate structure.

moment at the section midway between the ends, are shown. One curve shows
these moments computed by the first method using only the first harmonic
(ra= 1). The other curve presents the practically correct Solution obtained as
the sum of several harmonics (m= 1, 3,. 9). Comparison of the two curves
indicates that it may be inadvisable to use, as is sometimes suggested, only
the first harmonic as a basis for design and analysis.

The Computer programs produce complete information on each of the
tractions and displacements for as many transverse sections as may be desired.
The programs, when used on a sufficiently large machine, are entirely self-
contained. They accept as input the basic information such as geometry,
material properties, desired number of harmonics and points at which final
quantities are desired. The first method program then calculates the fixed-
edge tractions and the edge coefficients for each slab and beam, forms the
Joint equations and solves for the Joint displacements. It then computes
tractions and displacements at as many sections and interior points as desired.
The present example required approximately 0.75 minutes on an IBM 7090

Computer to produce results for five sections. The second method program is

similarly self-contained.

Appendix I

As used in Eq. (4), the displacement column vector, df, and the
transformation matrix, Tjk, for slab jk at Joint j are

V
df Vi

6
-ui.

and Tjk —

0

cos <f>jk

0

0 0

sin^ 0

cos</>yfc 0

0 1

(19)



62 JOHN E. GOLDBERG - WM. D. GLAUZ - A. V. SETLUR Ia2

The stiffness matrices, Kjk and Kkj, for Joint j of slab jk are written as

Kki

Kkj

S{kC1

0

0

s* c2

-syc6
0

0

S{kC3

-s2kc7
0

0

-spc,
spc8

0

0

0

0

-si?c9
"3 ^13

0

0

0

0

-s?c1&
0

0

in which, according to Reference [3],

8ik ™

(l-v2)a' 2 a

C*i 2 Tr ± j8x cosh am — /S2 sinh <x„r

m773

_ Eh%m
1 12(l-v^ sp, *3 ~(l+v)2a'

C5,6 772(±/S3COSham-04SmhaJ,

^7,8 —
a

+ 03 sinh am-ß4 cosh aj, C910 77 -05 cosh am ±j36 sinh am),

13,14 =n{±ß1 COSh am - 08 sinh ccm),

m
a

-C.5» n -m n

Cis.ie «¦ (+ & sinh am + 08 cosh am),

Wl "181 ^12 ^14f (21)

01,4 (amsecham±sinham)-1, ß23 (am csch am + cosh am)"1,

05,8 («m secho^ + y-j-^ sinh amj 06j7 (am csch am ± y-^ cosh amj

When + or + are indicated, the first subscript is associated with the upper
sign and the second subscript with the lower sign.

The matrices for the slab ji are

'8{iC1 -5{'C8 0 0

si{c6 -8{iC1 0 0

0 0 -Stfc -si*c,
0

Kn
0 -s(?a„ -sffc^j

K,

s?c2 si3'c4

s$ct syca
sijc12

0

0

sa c°3 °10
— s{i n sa n°3 U14 °3 u16.

For the beam at the Joint j the stiffness matrix is

,2^2

Kii

B»D» +2B{>bj

-B$b„
0

0

-2&i
0

0

0

0

— 2 77 m bi

a

tr m bj
a

Tdi-°3 3B$

B» -2B»m3

(23)
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where

Eh%b„ m2772
1 48m! a2 '

EhilbMmP^
4 ~

2m2o2 '

2 ~
24mx a4 '

Z)»=i^| 1-0.63

2Ä6

ßjj ^ Eh}ib%w?^
6m2a3

(1-0-63^)^ + „2 °3J '

/, Eh%m2tr2\ / 2Eb%m2ir2\ / Eb2um2-tr2\
^=(1+-^oW-)' m-(1+-©tv-)' and m-(1+lokr)'
For uniform load, the fixed edge traction column vectors Fjk and i^, at the
Joint j for the slab jk and 71 are

Fjk

-R{* (2ß3 Cosh <xm-l)
it2*|53Sinham

4i?3^6Sinham
^[406 Cosh am-(l+v)]

E«(2j83Cosham-l)
ÄKj83Sinh«w
4**0, Sinh «m

L - i?£* [4& Cosh «,„-(!+„)]
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Summary

Two methods for the analysis of folded plate roof structures are presented.
Both methods have been developed for Solution with the aid of an electronic
Computer. The methods are "exaet" in the sense that they are based upon
classical elasticity theory and classical plate theory.

One procedure is formulated along the lines of the displacement method of
structural theory and takes the form of a set of algebraic equations in which
the unknown quantities are the four generalized displacements at each Joint
or edge. The coefficients and constants ofthe set of equations may be generated
within the Computer.

The second procedure is based upon numerical Integration of an appropriate
eighth-order set of differential equations. This procedure differs from the usual
methods for handling shell problems in that the dependent variables are taken



64 JOHN E. GOLDBERG - WM. D. GLAUZ - A. V. SETLUR la 2

to be the intrinsic quantities. The output of the procedure is thus directly in
terms of the quantities of interest, including displacements, rotations and
stresses at all points on the antinodal lines.

Resume

II est presente deux methodes de calcul des couvertures en voiles poly-
gonaux; leur coneeption presuppose l'emploi d'une calculatrice eiectronique
dans la pratique. Ces deux methodes sont «exactes» en ce sens qu'elles se

fondent sur la theorie classique de l'elasticite et celle des plaques.
La premiere procede de la methode des deformations et prend la forme d'un

Systeme d'equations algebriques dans lesquelles les inconnues sont les quatre
deplacements generalises ä chaque Joint ou arete. Les coefficients et constantes
du Systeme peuvent etre determines par la calculatrice.

La seconde methode est basee sur l'integration numerique d'un Systeme
approprie d'equations differentielles du 8e ordre. Elle differe des methodes
habituellement utilisees dans les problemes relatifs aux voiles en ce que les

variables dependantes sont prises comme grandeurs intrinseques. Ce sont
ainsi des grandeurs d'interet immediat que les resultats fournis representent:
deplacements, rotations et contraintes en tous les points des lignes anti-nodales.

Zusammenfassung

In der Arbeit werden zwei Berechnungsmethoden für als Faltwerke
ausgebildete Dachkonstruktionen erläutert. Beide Methoden sind für die Lösung
mit Hilfe elektronischer Rechengeräte entwickelt worden. Die Methoden sind
«exakt», in dem Sinne, daß beide auf der klassischen Elastizitätstheorie und
der klassischen Plattentheorie aufbauen.

Die eine Art des Vorgehens basiert auf der Deformationsmethode der Trag-
werktheorie und erscheint in der Form eines Systems algebraischer Gleichungen,

in welchem die Unbekannten die 4 verallgemeinerten Verschiebungen an
jedem Rand oder an jeder Kante darstellen. Die Koeffizienten und
Konstanten des Gleichungssystems können mit dem Elektronenrechner gewonnen
werden.

Die zweite Methode basiert auf der numerischen Integration eines
entsprechenden Systems von Differentialgleichungen der 8. Ordnung. Dieses

Vorgehen unterscheidet sich von den üblichen Methoden zur Behandlung von
Schalenproblemen, indem die abhängigen Variablen als Eigenwerte betrachtet
werden.

Diese Methode liefert so direkt die gesuchten Werte für Verschiebungen,
Drehungen und Spannungen an allen Punkten der Gelenklinien.
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