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A Computer Analysis of Structures under Impulsive Loading
Etude & la calculatrice électronique d’ouvrages soumis a des charges dynamiques

Untersuchung von Bauwerken unter stoflartiger Belastung mittels Rechengerdten

B. RAWLINGS
Department of Civil Engineering, University of Sydney

Introduction

The mathematical formulation of structural engineering problems for solu-
tion by electronic computer has occupied the attention of a large group of
people over the past ten years. If attention is confined to framed structures,
a convenient division may be made into elastic and plastic analyses of frames,
either under static or dynamic loading conditions. Without endeavouring to
give a comprehensive summary, mention should be made of the elastic, static
procedures using either stiffness or flexibility approaches [1,2,3] which are
based on the linear properties of structural elements, and the extension of the
matrix stiffness approach by Livesley by piecewise-linear steps, to the analysis
of structures containing plastic hinges, so that the behaviour at collapse
follows as a limiting stage. Direct collapse analyses, based upon the assump-
tions of the rigid-plastic theory have also been programmed for a few specific
classes of structure [4].

Turning to the behaviour of structures under dynamic loads, the matrix
formulation of elastic response is well established [5] and will not be further
discussed. In many cases however, it is necessary to examine the behaviour
of a steel structure subjected to impulsive loading sufficiently large to cause
severe permanent deformation. The simple mass-spring concept of a multi-
storey building which has found acceptance to date represents a first approxi-
mation; however the actual behaviour of individual members cannot be ascer-
tained as the structure itself is not analysed in the process.

It is possible to achieve this end by making use of the rigid-plastic theory,
in which it is assumed that no deformation occurs in any member until the
(dynamic) full plastic moment of resistance of the section is exceeded. In this
way the problem of solving the equations of elastic vibration of the various
components of the structure is eliminated, and replaced by a relatively simple
problem of rigid body mechanics. The limitations of validity of such an
approach are discussed elsewhere [6] and will not be mentioned here.

In the present paper a method of analysis is presented which allows a rigid
framed structure to be examined in terms of its deformation under any system
of time-dependent applied forces. By formulating the equations in matrix
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form, the method becomes convenient for application to digital computation,
as only standard matrix manipulations are involved.

The Behaviour of a Framed Structure Under Impulsive Loading

When a structure is deforming in accelerated motion under the action of
impulsive loads it must satisfy simultaneously:

a) The requirements of dynamics, namely that each and every element of the
structure is in equilibrium with the applied loads, internal reactions and
inertia forces accompanying the motion.

b) The requirements of kinematics, namely that the displacements and their
time derivatives are compatible with the assumed mode, and

c) The yield condition for the material, which requires that nowhere within
the structure does there exist a condition of stress incompatible with the
material strength. This third condition is made complex in the case of steel
subject to dynamic loading by the fact that the yield strength is a function
of strain-rate. In the analysis presented here, it will be assumed that the
value of yield stress selected is constant over the range of strain-rates
considered, an assumption which is normally quite close in practice.

In this analysis it is necessary first to formulate all of the dynamic equi-
librium equations for the structure, and to express these in matrix form. These
equations may be derived in two alternative and quite different ways; (1) by
synthesising the structure from its component members, writing down the
equations of motion of each, and making use of the conditions of equilibrium
and displacement compatibility at the joints, or (2) by treating the structure
as a whole, displacing it in each of its degrees of freedom and deriving the
result by using Lagrange’s Equations of Motion.

For convenience the second approach will be taken, and illustrated later
in the paper. Consider a rigid framed structure acted upon by r applied time-
dependent forces |F|. It will be assumed that there are a number of possible
collapse modes, and that there are p positions of peak moment where plastic
hinges may develop. The number of degrees of freedom of the structure, when
hinges have developed at all p points, is s.

The structure may now be treated as an assemblage of rigid links, joined
at those sections where moment peaks exist, and arbitrary moments may be
regarded as being externally applied to these joints.

The kinetic energy of the structure may then be written as

T=X4Mg; (1)
8
and the work done by the moments and forces in a virtual displacement as

AV =—YmA6- FAz, (2)
) T
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where the m’s are the moments applied at the peak moment positions and the
displacements 4 z and the rotations 4 8 are linear functions of the co-ordinates
q. Applying Lagrange’s Equations,

cV d (ET)

&g, T dt\eq,

b

s independent equations are derived, each being a linear relationship between
the applied forces, peak moments and accelerations in each degree of freedom.
These equations may be expressed in matrix form as

[F| = |T|

m
z

. (3)

where |F| is the vector of applied forces, |T| the matrix of terms associated
with the configuration and inertia of the frame, and

m
z' the vector of peak
moments and accelerations.

Behaviour at Collapse

It will be observed that at this stage no account has been taken of the
kinematic or yield conditions associated with any particular mode of collapse
or size of member and, in order to obtain a solution in a particular case, this
information must be incorporated in the analysis. If the applied loads are
small and the various members of the frame are substantial enough to with-
stand these rigidly, no deformation will ensue so that |z|=0. The problem
thus reduces to one in statics, and the loads to cause static collapse may be
computed using the simple plastic theory. If, however the applied loads exceed
those associated with the strength of the frame, collapse will occur in one or
more modes. With each mode of deformation there is an associated kinematic
condition which, in general simplifies the vector |z|; also there is a yield con-
dition for any given frame, wherein the magnitudes and signs of the plastic
hinge moments are defined and these may be substituted into the vector |m|.
The remaining moments, where hinges have not formed are still undefined,
but must, in fact be numerically less than the corresponding full plastic value,
in order not to violate the yield condition. Thus for each mode of deformation

the vector 'TI may be simplified to the form

m M
| = [D]|my, (4)
)

where |D| is a matrix which depends only upon the governing requirements
of the mode, m,, is the dynamic full plastic moment of those hinges that have
formed,
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|m,| is the vector of peak moments where hinges have not developed, and
|7,| is the vector of the independent accelerations associated with the mode.

m,
Hence |F| =|T||D| i 1 (3)
31
m,
= |W| m1 (6)
%1
where
T| |D| = |W]. (7

The matrix must now be partitioned in the form
W] = |W1W2| (8)

in order to remove the column which relates to the term m,,.

Hence [F| = W) m, + |y |5 (9)
1
m
and || — [Wy|m, =W, zll (10)

The matrix |W,| will be square and non-singular in the case of a complete
collapse mode so that the inverse matrix | W,|~! may be derived. Consequently

n,
z

= |W,|1[|F|— W m,]. (11)

This gives the equations governing the response in the particular mode and the
values of the peak moments where hinges have not developed. Consequently
it is possible, knowing | F|, to determine any instant of time the acceleration
of the frame (and thus the velocity and displacement by numerical integration)
and the other peak moments, and to observe whether these violate the yield
condition. Any violation of this would then necessitate subsequent analysis
of behaviour in a new mode, with appropriate initial conditions for displace-
ment, velocity and acceleration. If motion is occurring in a mode with more
than one degree of freedom, kinematic bounds of validity must also not be
violated. These, in general are governed by limiting conditions imposed upon
the independent velocities, which must be tested.

Illustrative Example

For the purpose of illustrating the method a very simple example has been
selected as shown in Fig. 1, the rigid bent 4 BC D E F being subjected to
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applied forces Hy, H; at B and C and to Vy at E. Masses Mz, M, and M,
are attached at these points, the rest of the structure being assumed to have
no inertia.

Taking as the generalised co-ordinates zp, z, and uy as shown in Fig. 2 the

kinetic energy

The work done in a virtual displacement (Fig. 3) is given by —4 V, where
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of the frame members. Applying Lagrange’s Equations, by differentiating
the above expressions with respect to zg, 2o and ug and their derivatives,

3

3
Ho+5 (+mp—2me+mp)—McZc =0,
2

In matrix notation as in Eq. (3) the expressions above become

HB _‘3/h +6/h —3/h * *: ®! ;MB ® b mD
Hol=| - —3/h +6/h —3/h i My - || mg).
Vg : : C—2fl 44l -2l - - Mg||mg

Consider now the case if the structure collapses in the mode shown in Fig. 4,
and it is assumed that the members are of uniform section having a dynamic
full plastic moment of resistance of m,,.

E F

D O
C
B
A Fig. 4.
In this case the vector
m_A — mp
mpg +m,
m
m| =| 70| = | _Te, (12)
D D
mg mg
Mp 0
Zg Zp
|§| = 50 = %ﬁB ’ (13)
Zy 0
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—1
+1 -
. 41
=1 & z
so that D =| - - +1
e -
+3
and Eq. (5) becomes
Hy —3/h +6/h —3/h - : - (Mg -
Hy| = —3/h +6/h —3/h . - My - -
Vg . =2/l +4/1 -2/l; - - Mg
~1
1 =
. ]
S
+1 o
______________________________ ;'*:"]:“_ zB
+3
Hy +9/h =3/ - | My zp
i.e. Hyl| = +6/h . %MC mC
Vg 2/l -+ 4/l e
Zp
H, 9/h -3/ - EMB Mo
Thus Ho|—| - |mp=|+6/kh - (M| |myg
Vg 2/ +4/1; 2p
giving, from (11),
Pyl = : (3/2h) (Mc+4 Mp) |-
i, | S@er M) iy a2
Hy 9/h
. HU - * mp .
Vg 2/

Hence Zp and zz may be determined at any stage of the motion, and m, and
mg observed and tested to ensure that the applied forces Hg, H and Vy do
not induce changes of mode during the deformation process.
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As a second illustration, consider the possibility of deformation in the mode
shown in Fig. 5. In this case there are two degrees of freedom, specified by the

E F

D O

C

B

Fig. 5.
A g
T 4
co-ordinates zp and zp; my = —m,, my=m,, me=m,, my = —m,, mp=0;

iy =0. The mode equation for this case is

m, -1 -
my| |+
M +1-f
mp _1 P

......................................

and the final equation, after partitioning and inversion of the matrix |W,|
becomes

My . - 14 Hy 6/h
:}':B = ]'/MB e e HC == 6/k mp
3 oYM - ||| e | |2

Again, zz and %, may be found at any stage of the motion, and for the con-
tinued existence of the mode;

1. mz must be numerically less than m,,,
2. ip>3./2,
3. 2p>2g/2.

Discussion

Although the principles have been illustrated only by a very simple example,
in which the equations of motion may be derived readily without recourse to
matrix techniques, the method may be applied to frames which are con-
siderably more complex. Furthermore, the computation requires only the
normal procedures of matrix manipulation which form a standard adjunct of
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many computer programmes. As mentioned earlier the formulation of the
equilibrium equations may also be achieved by synthesising the structure
from its component members, and this procedure may be completely pro-
grammed. However this necessitates a number of matrix manipulations and
in many cases the manual analysis using Lagrange’s Equations proves just as
quick and convenient.

The analysis may be extended to cover the case of a rigid-linear strain-
hardening material having the characteristics shown in Fig. 6, provided

Fig. 6.

Hinge Rotation

geometry changes under deformation are small. In this case, for each term in 2
there will be an additional term in 2, and the final equation will take the form

m,
%)

= [Wo[ 7 [[F| = [Wy]m, — |K] |2]],

where |K| is a matrix of strain-hardening terms.
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Summary

The equations of motion are derived, governing the dynamic behaviour of
a rigid-frame steel structure subjected to time-dependent loading of sufficient
intensity to cause permanent deformation. The material is assumed to have
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rigid-plastic characteristics; consequently all elastic response is ignored. The
analysis is formulated in matrix notation in a way enabling a problem to be
examined by means of standard digital computer routines.

Résumé

L’auteur établit les équations de mouvement qui régissent le comportement
dynamique d’un portique métallique soumis & des charges variables dans le
temps et d’intensité suffisante pour provoquer des déformations permanentes.
Se plagant dans les conditions de la théorie rigide-plastique on omet les réac-
tions élastiques. La notation matricielle du calcul permet 1’emploi d’un cal-
culateur numéral selon les méthodes courantes.

Zusammenfassung

Es werden die Bewegungsgleichungen fiir das dynamische Verhalten eines
Stahlrahmens unter zeitabhingiger Belastung einer Intensitét abgeleitet, die
eine dauernde Verformung ergibt. Das Material soll starr-plastisch sein und
deshalb wird keinerlei elastisches Verhalten beriicksichtigt. Die Analyse erfolgt
in Matrixschreibweise in der Art, daB3 ein Problem sich mittels normaler
Digitalrechenverfahren untersuchen 1aft.
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Computer Analysis of Folded Plate Structures
Etude a la calculatrice électronique des toits plissés

Berechnung von Faltwerken mit Hilfe elektronischer Rechengeriite

JOHN E. GOLDBERG WM. D. GLAUZ A. V., SETLUR

Ph. D. Ph. D. M. S.
Purdue University, Lafayette, Indiana, USA

Introduction

Continued and, indeed, apparently increasing interest in folded plate con-
struction suggests that the application of electronic computers to the analysis
and design of such structures be investigated. Two methods of analysis, both
developed for electronic digital computers, are described in the present paper.
The methods consider prismatic folded plate structures which are simply
supported at their ends. Both methods are founded upon the basic equations
of classical plate theory and classical two-dimensional elasticity theory [1, 2]!)
and therefore imply only the assumptions and limitations inherent in those
theories.

The first method is essentially a transliteration to matrix form of a theory
- described in a previous paper [3]. The matrix form is especially convenient for
use on an electronic digital computer and a program is easily prepared which
requires for input only the basic geometry (length, widths, thicknesses, and
inclinations of the individual slabs and beams), material properties and loading.
The program then constructs appropriate matrices and finally produces, as
output, displacements and tractions at desired points within the folded plate
structure.

In the second method, using a technique described previously [4], the basic
equations of plate and elasticity theory are transformed into sets of first-order
ordinary differential equations in the intrinsic variables; namely, Fourier
coefficients of four components of displacement and of four tractions. These
equations are in a form which is convenient for numerical integration on an
electronic digital computer. ' '

Since each of the slabs which form the folded plate is assumed to be simply-
supported at the ends (x=0,a), it is convenient in both methods to represent
loadings, displacements and tractions as compatible generalized half-range
Fourier series. Thus, for example,

1) Numbers in brackets refer to items in the Bibliography.
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maTx

w,, (y) sin , u(z,y) = 2 u, (y)cos
1 a . m=1

max

(1)

AL

w(x,y) =

Loadings p and ¢, displacement v, and tractions M,, M,, N,, N, and @, are
also expanded into sine series. Loading in the z-direction, and tractions M,
N,, and @, are expanded into cosine series.

While Egs. (1) postulate infinite series, only a few terms or harmonics of
the several series are needed to provide the accuracy required in design. The
equations and discussion in the following sections pertain to a single arbitrary
harmonic of the general solution except as stated, and the dependent variables
are the amplitudes or coefficients of the m-th terms in the several pertinent
series.

First Method

Let 2, 4, k be three successive joints of a folded plate system (Fig. 1). For
the m-th harmonie, let d be the column vector of the four components of
displacement at joint 7, the directions being associated with a reference plane

Fig. 1. Portion of folded plate structure. Fig. 2. Differential element showing
positive tractions.

(conveniently taken as a horizontal plane) as shown in the figure. The ampli-
tudes of the four tractions at edges j of slabs jk and 7j are represented by the
column vectors F;} and F¥ and are given by the matrix equations
Bt = Ty K3 T djf + Ty Ky Ty dif + T By

]

Ef =T, K; Ty, d}+ T, Ki; T dF + T, ‘F—}i' (@)
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Here T}, K;, F, x are, respectively, a directional transformation matrix, a
stiffness matrix, and a fixed-edge traction matrix. For a beam at and parallel
to joint 7, the four tractions may be written, similarly, in matrix form as

F¥ =T,K,T,d}. (3)

iR ¥ R |
The several matrices are defined in Appendix I.
Since joint j is in equilibrium, the sum of Eqgs. (2) and (3) must vanish.
This yields the matrix equation,

[Ty K Tig) A + [T Ky Ty + Ty K3 Ty + T K e Ty ) dF

jt it 3733 . (4)
+ [T Ky T At = — Ty By — Ty B

Jji i

Similar equations may be written at each joint. If there are n joints with
unknown displacements, there will be essentially 4% algebraic equations in
the same number of unknown displacements. Simultaneous solution may be
effected by any suitable technique such as, for example, the Gauss-Jordan
algorithm or matrix iteration.

Having determined the displacements at each joint, these may be substi-
tuted into the following formulas to obtain the tractions at desired points
within each slab. For a typical slab, jk,

d; = Tt dF, dy = Tt d, (5)

where d;;, and d,; are the slab displacement column vectors at j and k respec-
tively, e.g., the elements of d;, are 0;, wj;, v;; and u;,
M, =—RE,(1-»){B5[8,(y') + (85 —c*)C(y")]—8,/2}
=Dy [6;{ =B, [S1 (%) + (3, —t*) C (y")] + B [C1 (y') + (81 —c*) S (¥')]}
+ 0. {81 [S1(y") + (31 —t*) C(y)]+ B [C1 (y') + (8, —c*) 8 (y)]}] (6)
+ Dy My [wy {Bs [S1 (%) + (83— ¢*) C (y)] = B4 [C1 (¥) + (33— t*) S (¥')]}
+wy; {Bs [S1(y') + @5 —c*) C(y)]+ B4 [Cr(y) + (35— 1%) S (¥")1}1,
M, = R,(1-v){Bs[5, (y’)—(83+c*)0(y’)]+81/2}
=Dy [0;{B,[S, (%) — (8, +t*) C(y')] =B [C1 (') — (B2 +¢*) S (y')]}
— 0, {B1 [5: (%) - (3, +t*) y)]+182[0 (%) — (B2 +¢*) S (")} (7)
+ Dy My [y { = Bs [81(¥') — (85 —c*) C (¥")] + B4 [CL(¥") — (B3 +1*) S (y')]}
— e {Bs[S1(4") — (B +¢*) C ()] + B4 [C1 (¥') — (B33 +1%) S (")]}],
M, = — By (1=9)B;[Cy (y) —c* 8 (¢)]
=Dymy [0;{ =B, [C1 (y") + (1 =1*) S (¥ )]+ B[Sy (¢) + (1 —c*) C (¥)]}
+0:[B1Cr () + (1 —1*) S ()] +B[S1 (¥)+ (1 —c*)C )] (8)
+ Dy, [wp {B5 [C1 (¥") —c* S ()] = Ba [S1 () —t* C (y)]}
+ Wi {B3 [C1(y') —c* S (y)]+ B, [S: (¥) —t* C (¥")]}],
Q = Rzﬁas(y')+sz{9 [— }81 () +BC(y)]+ 0, (B S () +B.C (y)]}
— Dy {wy [Bs S (y') —Bs C (¥ )] +wy; [Bs S (¥') + B4 C (y')]}
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R
Q = —72[20(?/’)33—1]_1)%2{9;‘ [-BC (Y )+ B8 (y)]+6,[B.C (') + B8 (y')]}

+ DTy {3 [B5.C (')~ Ba S ()] + 03y B O (8) + 8. S (4]} (o)
N, =—RBs[Ci(y)—(c* +38,) S(y)]
— Dy [, {Bs [S1 (¥') — (35 +¢*) C ()] — B [C1 (¥') — (85+¢*) S (y)]} (11)
— 0 {Bs [S1 (¥') — (85 +1%) C ()] + B6 [C (%) —(35+¢*) S (y")]}]
+ D,y 7y [u; {—B7 (81 (') + (86 —c*) O (y')]+Bs [Cr (y') + (8 — £*) S (¥)]}
—u {B7 [S1 (") + (86 —¢*) C (y)]+Bs [C1 (') + (B —t*) S (¥ )31,
N, = EBs[Ci(y)—(c*—8)8(y)]
— Dy 7y [0, { — Bs [S1 (') + (34— t*) C (y')] +B6 [C1 (¥') + (8 —c*) S (¥')]}
g (B[S (') + (By— 1) € (4 )]+ B [Cy (4') + (By— %) S (¥')T}]
4 Dy, [ 185 [, (4) + (8~ %) O (') — Ba[C4 (4') + (8, — %) S 9} (12)
(B[S, (4') + By — %) C ()] + B [Cy (4') + (B, — 1) S (¥) D],
Noy = 028,08, ()~ (c* 43 C )] +1)

+ Dy, [0, {B5 [C1 (¥') — (B + 1) S(y)]—Bes[S1(y')— (86 +c*)C (y)]} (13)
— v {Bs [C1 (¥") — (B +t*) S (¥")]+Bs [Sy (¥') — (B +¢*) C (y')]}]

— Dy 7 [u; {— B7[CL(¥') + 85— ¢*) S (¥')] +Bs [S1 () + 35 —1*) C (y')]}
— U {B7 [C1(y') + (85— ¢*) S (¥")]+Bs [S1 () + (85 —t*) C (y")]}] ,

in which
b

Yy =§b'—y§ dm=w;7; ; t* = a, tanh a,,; c* = o, cotha,,;
— m _ mm 2. _ m )3
m=T M=) M=)

Ny may N_mry . mmry
S (y’) = sinh P S; (") = sinh =
Cly)=cosh™ %5 Cy(y) =" cosh =L,
D = ER3 _ Eh
17 24(14v)° 2T 2(14w)’
R=4q' R=8q~ R=L- R:ﬁ-
1" mga’ 2T mya’ 87 (1+v)mya’ 1 mya’

2 2 1

=3+v; ey B = _v; 5, = +V; 86=i; 87=3+V.

14v 1¥v 1¥v 1—v 35 14+v

Similar formulas may be deduced from Reference [3] for computation of
displacements within the various slabs, if desired.

The equations should be used for a sufficient number of harmonics. For
uniform loading, only the odd harmoniecs (m=1,3,5,etc.) are involved and,
usually, two to four of these will provide sufficient accuracy for design purposes.



COMPUTER ANALYSIS OF FOLDED PLATE STRUCTURES 59

Second Method

It has been shown in a previous paper [4] that, for slabs simply-supported
at their ends, the equations which govern the deformations and tractions may
be written as a system of eight first-order differential equations. In the present
case these become

dw_ o 40 _ _%{.H(ﬂ)zw. gv _Ny  mm,

dy ’ dy D a ’ dy H ’

d_u= 2 Ny _mm . dNy=MN _4p

dy H(l1-v) a dy a % mn’

dN, mr aM 2mm av, mr\2 4

e TN e M g = () e
(14)

Ty

2
M =D(1_u)ﬁai’9; M,=VM2,+D(%’) (1—»?)w;

N

. =vN,—H="(1-)u,

Eh ER3
1—p2’ ' 12 (1—2)

in which H =

Eqgs. (14) together with the transformations, Eqs. (16), form a system of
eighth order subject to four boundary conditions at the initial edge and to
four additional conditions at the terminal edge of the complete structure. If,
for example, an edge is unsupported, the conditions are

N,=N,, =V,=M,=0. (15)

If the edge is elastically restrained by, say, an edge beam, the tractions at the
edge are related to the displacements through the stiffness matrix of the beam
(i.e., K;;) with an appropriate directional transformation matrix. Alternatively,
one may consider the edge beam itself as an additional slab which augments
the folded plate structure and which, at its outer edge, is subjected to the
conditions represented by Eqgs. (15).

Given specified initial values of the eight intrinsic variables, the equations
are readily integrated with the aid of an electronic computer and using a
suitable numerical procedure such as the Runge-Kutta fourth-order process
[5]. At each joint, the transformations

vt =0 cosx;+wsina; wt = wcosa; —vsinay;

; ; 16
N} = Njcosa;+ V- sina;; Vt=V-cosa;—Nysine;; o = ¢;;—d; (

)

are made within the computer, and the integration then proceeds with the
new variables appropriate to the slab under consideration.

The complete and correct solution consists of the nonhomogeneous solution
plus a linear combination of four homogeneous solutions, each obtained by
integrating Eqs. (14) with appropriately chosen initial values and using
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Egs. (16) at the joints. The case of a structure with free edges will serve to
illustrate the method.

For this case, one constructs four homogeneous solutions (Solutions 1 to 4
in Table 1) by deleting the » and ¢ terms in Eqgs. (14) and integrating. The
initial conditions are Eqs. (15) and the values of the initial displacements are
shown in the table. With the p and ¢ terms restored to Egs. (14), one inte-
grates these equations to obtain the nonhomogeneous case (Solution 5 in the

Table).

Table 1

Solu- Initial Values Terminal Values

tion u ) w 6 Ny Ny M, v,
1 1 0 0 0 N‘(yl) I\T;Iy.‘! Mg(;l) V?(Jl)
g 18314040 N N M 4%
N i N M 4%
4 0 0 0 1 N@(;“ N;‘}) Mch) V}‘,‘”
5 0 0 0 0 N NG MO o

Each of these solutions yields numerical values for all dependent variables
at the terminal boundary. If this boundary is free, the calculated tractions
are of interest and have values as indicated in the table.

One now writes the terminal boundary conditions in the form

C; NP +Cy N® + Oy NP +Cy NP = —ND,

C,;NY+C, N +C3 N +C,N@ = —-NG, -
Oy MD +Cy MD + Oy M + Cy MO = — M, L)
Ci VP +C, VB +C3 VP +C VO = -V®

and solves these equations for the C’s. These are, in fact, the correct values
of the initial displacements. Now, with the starting values

1= Oy, p==0;, w = (4, =0 (18)

a final integration of Egs. (14) is made with the loading terms included and
using Eqs. (15) and (16). This calculation yields the amplitudes of displace-
ments and tractions over the entire structure for the harmonic under considera-
tion. The entire process is repeated for as many harmonics as are necessary to
attain any desired accuracy.

Example
Fig. 3 shows the cross section and loading of one unit of a north light roof.

The two narrow edge members were treated as beams having bending and
torsional resistance. Curves for a typical quantity, the transverse bending
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My (calculated) af mid-section
Lb ft/f1

1 term!m=*

S\, Stermsime13. 91

g e /r h =4" (for all slabs)
Length a=60'-0"

Fig. 3. North light folded plate structure.

moment at the section midway between the ends, are shown. One curve shows
these moments computed by the first method using only the first harmonic
(m=1). The other curve presents the practically correct solution obtained as
the sum of several harmonics (m=1,3,...,9). Comparison of the two curves
indicates that it may be inadvisable to use, as is sometimes suggested, only
the first harmonic as a basis for design and analysis.

The computer programs produce complete information on each of the trac-
tions and displacements for as many transverse sections as may be desired.
The programs, when used on a sufficiently large machine, are entirely self-
contained. They accept as input the basic information such as geometry,
material properties, desired number of harmonics and points at which final
quantities are desired. The first method program then calculates the fixed-
edge tractions and the edge coefficients for each slab and beam, forms the
joint equations and solves for the joint displacements. It then computes trac-
tions and displacements at as many sections and interior points as desired.
The present example required approximately 0.75 minutes on an IBM 7090
computer to produce results for five sections. The second method program is
similarly self-contained.

Appendix I

As used in Eq. (4), the displacement column vector, df, and the trans-
formation matrix, 7}, for slab jk at joint j are

8, 1 0 0 0
0 ing, 0
w_ | M o cos<,'l>;,-,‘c sin ¢ ;. 1
% & and, 4 0 —sing;, cosg; 0] (8
Uj 0 0 0 1
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The stiffness matrices, K, and K;;, for joint j of slab jk are written as

[ sikC,  SiC, 0 o ]
Ko = —SikC, —8SikC, 0 0 .
ST 00 —ske, SOy |
L0 0 SFCyy =80y |
[ Skig, —Sk(C, 0 0o ]
kJ 0 0 8FC, —8¥0, |
B 0 0 S50y 8§ Ce
in which, according to Reference [3],
) Eh3.m s m . . Eh,m
ik — ik ik — 7 Qik ik _ ik
& 12(1—v?)a’ 5 a S % (1+v)2a’
Cis =m(+p,cosha, —fysinha,), Cs¢ = 7*(+B3cosha,—pB,sinha,),
3
Crs = ’m,a_rr (£Bssinhe,, —B,coshay),  Cyi9 =7 (—Bscoshay, +Bgsinha,),
Cis14 = 7 (£ B, cosha,, —Bgsinha,,), C1s16 = 7 (¥ Bysinha,, +Bgcosha,),
m m
C; = a Cs, C,= o Cs, Ci = Cis, Crs = Oy, (21)
B4 = (a,secha,, +sinhe,,)"1, Bsz = (e, csche, + coshe,, )™,
_3—v . “il 3—v i
Bsg = (ocm secho,, F T sinh am) i Baw = (am esch e, + e cosh cxm) :

When + or ¥ are indicated, the first subscript is associated with the upper
sign and the second subscript with the lower sign.
The matrices for the slab j¢ are

L o 0 —S§EC,, — 850,
[sic, 8S7C, 0 0
K. — SPC, SYCy O _O
i 0 0 870, S¥CQ.|
| 0 0 —8§Cy, S0,

For the beam at the joint j the stiffness matrix is

2 -2
By D +2Bjb; mazﬂ 0 0
— Bii b, —2 Bj 0 0
a 3 3
mmby; .. .
0 0 T” B} —2Bjm,
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where
ii _ L h} by mEa? i B R0 miat i _ B hy;0F;m3 7
He= 48m; a® ’ = 24m, a* ’ Bs 6myad
. Eh b m?xn? . 166G b m2 2 |
Bii == gm];az -, D311=—E (1—0.63b—f)m1+—a2 b3,
n
E h%; m?n? 2 E b3, m?=* E b% m? 72
m= (1 g ) ma= (14 ) and me= (14 55ET).

For uniform load, the fixed edge traction column vectors F}k and F}i, at the
joint 4 for the slab jk and ji are

— Ri¥(28;Cosha,,—1) Rii (2B, Cosha,,—1)
7o Ri¥B,Sinh o, T R} B,Sinh «,,
ik = 4 R B, Sinh «,, S 4 R} B, Sinh a,,
Rj[4Bs Cosh ey, — (1 +v)] — R[4 B, Cosh a,, — (1 +)]
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Summary

Two methods for the analysis of folded plate roof structures are presented.
Both methods have been developed for solution with the aid of an electronic
computer. The methods are ‘“‘exact’ in the sense that they are based upon
classical elasticity theory and classical plate theory.

One procedure is formulated along the lines of the displacement method of
structural theory and takes the form of a set of algebraic equations in which
the unknown quantities are the four generalized displacements at each joint
or edge. The coefficients and constants of the set of equations may be generated
within the computer.

The second procedure is based upon numerical integration of an appropriate
eighth-order set of differential equations. This procedure differs from the usual
methods for handling shell problems in that the dependent variables are taken
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to be the intrinsic quantities. The output of the procedure is thus directly in
terms of the quantities of interest, including displacements, rotations and
stresses at all points on the antinodal lines.

Résumé

Il est présenté deux méthodes de calcul des couvertures en voiles poly-
gonaux; leur conception présuppose ’emploi d’une calculatrice électronique
dans la pratique. Ces deux méthodes sont «exactes» en ce sens qu’elles se
fondent sur la théorie classique de I’élasticité et celle des plaques.

La premiére procéde de la méthode des déformations et prend la forme d’un
systéme d’équations algébriques dans lesquelles les inconnues sont les quatre
déplacements généralisés a chaque joint ou aréte. Les coefficients et constantes
du systéme peuvent étre déterminés par la calculatrice.

La seconde méthode est basée sur l'intégration numérique d’un systéme
approprié d’équations différentielles du 8e ordre. Elle difféere des méthodes
habituellement utilisées dans les problémes relatifs aux voiles en ce que les
variables dépendantes sont prises comme grandeurs intrinséques. Ce sont
ainsi des grandeurs d’intérét immédiat que les résultats fournis représentent:
déplacements, rotations et contraintes en tous les points des lignes anti-nodales.

Zusammenfassung

In der Arbeit werden zwei Berechnungsmethoden fiir als Faltwerke aus-
gebildete Dachkonstruktionen erlautert. Beide Methoden sind fiir die Losung
mit Hilfe elektronischer Rechengerite entwickelt worden. Die Methoden sind
«exakty, in dem Sinne, daBl beide auf der klassischen Elastizitdtstheorie und
der klassischen Plattentheorie aufbauen.

Die eine Art des Vorgehens basiert auf der Deformationsmethode der Trag-
werktheorie und erscheint in der Form eines Systems algebraischer Gleichun-
gen, in welchem die Unbekannten die 4 verallgemeinerten Verschiebungen an
jedem Rand oder an jeder Kante darstellen. Die Koeffizienten und Kon-
stanten des Gleichungssystems konnen mit dem Elektronenrechner gewonnen
werden.

Die zweite Methode basiert auf der numerischen Integration eines ent-
sprechenden Systems von Differentialgleichungen der 8. Ordnung. Dieses
Vorgehen unterscheidet sich von den iiblichen Methoden zur Behandlung von
Schalenproblemen, indem die abhéngigen Variablen als Eigenwerte betrachtet
werden.

Diese Methode liefert so direkt die gesuchten Werte fiir Verschiebungen,
Drehungen und Spannungen an allen Punkten der Gelenklinien.
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Analysis of the Nielsen System Bridge by Digital Computer
Calcul des ponts Nielsen ou de type analogue a l’aide d’une calculatrice

Berechnung von Briickentrigern nach dem Nielsen-System mat Hilfe von digitalen

Rechengerdten
HIROYUKI KOJIMA MASAO NARUOKA
Lecturer of Civil Eng., Tokushima Univ., Professor of Civil Eng., Nagoya Univ.,
Japan Japan
Introduction

It has been said that in the tied arch (Langer girder) bridge with inclined
hangers, the truss action of the inclined hangers reduces the bending moment
of the arch (girder), and that such bridges are more economical than the usual
types of bridge with vertical hangers. Many Nielsen System bridges have been
erected in Sweden, and there are papers dealing with the analysis of the system
by the force method. However, no bridge on this system has yet been con-
structed in Japan and little work has been done in connection with the system
in that country. The recent construction of the Fehmarnsundbriicke in Ger-
many induced the authors to initiate analytical work on the Nielsen System
bridge by the displacement method. This paper describes the analytical
solution, its programming and application, and the model test. The main
reasons why the displacement method was used are as follows:

1. It is simpler than the force method for purposes of analysis.

2. The mechanical tabulation of the stiffness matrix is possible and is more
convenient for use with a digital computer.

3. It is possible to use the same analytical procedure not only for Nielsen
System bridges, but also for similar bridges with vertical hangers.

Part I. Analysis by the Displacement Method

The fundamental equation in the displacement method for the member ¢
of a plane frame is expressed by Eq. (1) in Cartesian coordinates (Fig. 1),

By = — 12E 1 (yj_yi){(yj_yi) (u-—ui)—(x"_x") (vj_vi)}

B Lij Ls ] “
_6Elij (yj'_yi)(0j+9i) (1)
B Lij
_ EAij (xj—a:z) (xj—xi)(u'_ui)_'_(yji_yi)(vj—-vi) A
Z'i' li:i l'ij ’ lij
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X

T
P, . |

Fig. 1
i (1)
EA (yj—yi){(xj_xi)(uj_ui)+(yj—_yi)(1;.—’yi)}’
by Ly Lij bj
6E1; - 2E1;
M, > {( l._y‘)(u,-—ui)"(lei__m(”f_”i)}J" T (6;+26;).
ij ij ij

where,

Bii:Qy;, and IM;; : are the components of the force acting on the end 4 of the
member 27 in the direction of the z-axis and the y-axis, and the moment
at the same point, respectively;

u;,v; and 6;: are the displacement of the end ¢ of the member 7j in the direc-
tion of the z- and y-axes, and the rotation of the tangent at the end ¢
of the elastic curve of the member ¢, respectively,

E I,;: flexural rigidity of the member 47,

E A;;: extensional rigidity of the member 17,

l;;: length of the member 7.

ij
Substituting Eq. (1) in the equilibrium equations at the panel point ¢ we
have the following Eq. (2):

{2 (@)} u— 2 (@) (w)]+[{Z (bz,)} v;— 2 (by) (v;)]
+[{- z (ci5)} 05— 2 (c5) (6;)] = By,

[{ Z (bij)} Z ( (uj)] o [{Z 5 }U Z (C_L
+[{ Z (C35)} 0+ 2 (C35) (8))] = @i,

[{ Z zJ}u+Z (5] ( )]+[{Z u}v Z (vj)]

+{ 23 (AN 0+ (d:) 0,1 = M

where, P,, Q, and M,: are the components of the external force applied to the
panel point ¢ in the direction of the - and y-axes, and the external

moment applied to the panel point 7, respectively
a;; ~d;;: the coefficients calculated by the following Eq. (3):

i) (v;)]
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1281y (g3 , EAy (=)

WMETE R L B
Qs = 128 1;; (2 —2)* + EA; (y;—y)?

R A L B (3)
b, = (EAiJ‘ _ 12E’Iﬁ) (@; — ) (¥, —¥:) Gy = 6E1; (y;—y:)
AR & » Ls TR Iy
Z _6EI; (z—x,) i _2E1I;

T L Ol

If Eq. (2) is formulated at each panel point of the frame, the stiffness matrix
is obtained. The arrangement of the element can be tabulated mechanically
according to the following procedures:

1. Number the panel points of the given frame from left to right.

2. Calculate the six coefficients for each member from the given data.

3. Prepare the space in which the element of the stiffness matrix will be
written, and write the same numbers as the panel points in the outer side
of the row and column of submatrices 1, 2, 3, 4 and 7.

4. Write the coefficients a, b and ¢ of the unknown terms », v and 6 of Eq. (2.1)
in submatrices 1, 2 and 3.

5. Write the coefficients b, @ and ¢ of the terms u, v and 6 of Eq. (2.2) in sub-
matrices 4, 5 and 6.

6. Write the coefficients ¢, ¢ and d of the terms %, v and 8 of Eq. (2.3) in sub-
matrices 7, 8 and 9 (Table 1).

At steps 4, 5 and 6, each element must be written according to the rule
shown in Table 1, observing the panel points in the order of the numbers.

Up to step 6, no consideration is paid to the conditions of the supports and
hinged points. In the following step 7 these must be considered in order to
complete the stiffness matrix.

7. When the conditions of the supports are taken into consideration, the
unnecessary rows and columns are eliminated. In this case, u=v=0=0,
u=v=0 and v=0 are obtained at the fixed support, hinged support and
horizontally movable support, respectively. The unnecessary columns
corresponding to the support numbers are first eliminated, and thereafter
the rows corresponding to these columns are eliminated.

8. From the conditions of the hinged points, the columns of 8 corresponding
to the number of hinged points and the rows of submatrices 7, 8 and 9 of
the same number must be eliminated. In this case, where the system con-
tains the member hinged to the other member at both ends, the coefficients
a ~d must be calculated in advance on the assumption 7 =0 for the member.

In the stiffness matrix thus completed, the elements are symmetrical about
the main diagonal and at the same time about the subdiagonal in each sub-
matrix except the signs.



Table 1. Rule for Arrangement of Element of Stiffness Maitrix

Unknown Terms

Equili- % v 8 Right
brium Hand
eq. coef. of u; coef. of uy coef. of v; coef. of vy coef. of 8; coef. of §; Terms
diagonal non-diagonal diagonal non-diagonal diagonal non-diagonal
element element element element element element
sub matrix 1 sub matrix 2 sub matrix 3
2H=0 2 ai —ai 2 by ~by; -2 ¢y —cif P;
sub matrix 4 sub matrix 5 sub matrix 6
V=0 2 by —bij 2 @ij —aiy 2 Cy Cis Q1
sub matrix 7 ‘ sub matrix 8 sub matrix 9
2M=0 ~2 €1 cij 2iCy ~Cij 22 dy dig M;

VHONEVN OVSVIN - VIHICOX TANAX0YIH ]9

€®l
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The matrix inversion of the above stiffness matrix leads to the influence
coefficients of the displacement and rotation of each panel point due to unit
panel point loads. In order to calculate the sectional forces of each member,

the following Eq. (4) is used, after obtaining B, O and M in Eq. (1):

M S’:RU ( xj) qu — _{sBij (xj —xi) +Q‘i)‘ (y] —yi)}’
l i z! j 2

ij
— %, (%‘l- ?/i)_aij (lefxi)_

7] ij

(4)

The signs of the sectional forces are the same as those used in ordinary
structural analysis.

Part II. Programming for the NEAC 2203 Computer

All the steps of the analytical method described in Part I were programmed
for the electronic digital computer NEAC 2203. The block diagram is shown
in Fig. 2. The memory of the NEAC 2203 comprises a total of 12,000 words
and the calculable maximum number of the panel is 14 for all types of the
system, because magnetic tape is not used.

Each step of the programme is almost same as those described in Part I,
and only the following steps are different; that is to say, in the computation
of the stiffness matrix, steps 7 and 8 are calculated in advance in the internal
magnetic drum for every row of the stiffness matrix, and its elements are
transferred to be stored in the external magnetic drum.

The following data are prepared as input data:

1. Length of the member projected to the z- and y-coordinates, (x; —x,;) and
(Y —Ys)-

2. Sectional area 4;; and moment of inertia I;; of each member.

Total number of members connected to each panel point and the point

number of the other end of the member.

Type of loads and their position of application.

Total number of members.

Total number of panel points including supports.

Total number of hinged panel points except supports.

Minimum point number of the hinged panel points.

s

PR RE

The data are arranged from lower numbers to higher numbers with regard
to the number of the panel point and also in the same order with regard to the
number of the other end of the member connected to a certain panel point. From
these data, the computer can determine automatically whether the bridge to be
analysed is a Lohse girder, Langer girder, or tied arch bridge, and can adopt
the calculation corresponding to each system. The result of the computer
calculation is printed in the form of the influence coefficients of the displace-
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initialize
[ ]

computation and storage of the coefficients of equilibrium eq.
T

r

arrangement of the coefficients of stiffnes matrix for every row
without consideration of type

[ ]
judgment of type

1

elimination of unnecessary elements by taking into consideration
the condition of the supports and hinged panel points

transfer of the elements of the equilibrium eq. from the internal
drum to the external drum

count

computation of inverse matrix

Dl

transfer of the elements of the inversed matrix from the external
drum to the internal drum

non-existent judgment of

load existence

existent

computation of the sectional forces for unit external load

1

printing of the sectional forces

printing of the influence coefficients of displacement and rotation
if necessary

S

Fig. 2. Block Diagram.
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ment and rotation of each panel point and the sectional forces of each member.
According to this programme, not only Nielsen System bridges, but also
ordinary tied arch, Langer girder and Lohse girder bridges with vertical
hangers can be calculated.

Part ITI. Example of Calculation

The Langer girder bridge with nine panels shown in Fig. 3, will be cal-
culated. The assumed values for A and I are as follows:

for member 01, A =137 ecm?, for member 13, 35,57,79, 4 =123 ¢cm?2, for member

In addition to above data, the necessary input data described in Part II
are (5)=33, (6)=19, (7)=9 and (8)=1.

4 M2 —line Niz —line
-2.0} ,/r"‘(T,‘“1~~.
o2 4 ! | R 0 2 4 6 8 b 12 18 1 18
N\ | T 67 8 10 12 14 16 I8 N -7
W/ L 005X i
20t v ~ +) i
W 7 0.10F e L ( i i %4
i \: Ve ™ : : ,/’
awr N 0.15F S N
J '
Nzz—line N1g—line
0 RS = 0
~o I’/’ | \\\ L/,
05t \ ML (+) P 0N ) L~
~ 1 - 10 ~ i e
[0 r b P J_-__ll.—“ e =5 \.L____L-—’—J”
- |5k
-050} Qzz—line M4 ~line
-0.25r /. -20f /I——"}"*‘T\\
. 1y “f_——-lr"[:)—':'-~~..r__-- g = ; ,4[,/ : (=) ; &'\\\
1 )Iz’ \\\ : ||' : /’I
025} L4 20t N ¥
i/’ B \\ {T) /
1 P N, 7/
A 0 4
1 |

Fig. 4. Influence Lines of Sectional Force of Example 1.
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The machine time was 50 min. for calculating the influence coefficients of
the bending moment, normal and shearing forces of all members for each
panel point load, including printing time. The element of stiffness matrix
was 45X 45.

The influence coefficients of the sectional forces of several members 24, 12, 10
and 46 due to unit vertical load are shown in Fig. 4. In Fig. 4, the full line
shows the influence line for the system having inclined hangers and the broken
line gives the influence line for the system having vertical hangers at even
point numbers in Fig. 3 instead of inclined hangers. As may be understood
from Fig. 4, the bending moment decreases remarkably in the case of inclined
hangers, compared with the case of vertical hangers, whereas the normal and
shearing forces do not vary significantly.

The total weight of steel was 86.4 tons for a bridge of span = 58.995 m,
effective width = 6.0 m and carrying Class I Design Load in accordance with
the Japanese Standard Specification for Steel Highway Bridges (provisional,
June 12, 1962). This shows a steel saving of about 109, compared with an
ordinary Langer girder bridge with vertical hangers.

Part IV. Model Test

As an experimental verification of the theoretical analysis, a model test
was performed for the tied arch shown in Fig. 5. The model material was

3
3
<
</

0 ’
ol TR A I A 8 =
| 5x28.2 = 4l cm N

® point where sirain measured

Fig. 5. Model Tied Arch.

polymethylmethacrylate. The sectional area and moment of inertia of the
upper chord, and the sectional area of the ties and inclined hangers are 3.0 cm?,
5.0625 cm?, 1.0 cm?, and 0.2 cm?, respectively. The compressive force which
acts in the inclined hangers due to the truss action can be eliminated by the
tensile force due to the dead load. In this test, preloads were applied to all
panel points of the lower chord, and then a concentrated load was applied.
The result is shown in Fig. 6. In Fig. 6, the full line shows the theoretical
values, the chain line the mean of several observed values, and the broken
line the theoretical values for an ordinary tied arch bridge with vertical hangers.
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Fig. 6. Result of Model Test (point load P=3.5kg).

Conclusion

The analytical solution of Nielsen System bridges by the displacement
method and especially the formulation of the stiffness matrix have been
described. It was programmed for the NEAC 2203 computer for the purpose
of automatic calculation. According to this programme, not only Nielsen
System bridges, but also any pin- and rigid-jointed plane frame which is
simply supported can be analysed. This paper shows only one example, but,
as can be understood from Parts III and IV, this system is advantageous as
compared with a similar system with vertical hangers. Finally, a model test
showed that the solution proposed by the authors is useful.

Taking advantage of the programme, the authors are now studying three
types of Nielsen System bridge and the general characteristics will be published
in the near future.

Summary

This paper describes a theoretical analysis which is applicable to all types
of Nielsen System bridge with arbitrarily inclined hangers and its programming
for calculation by computer. It consists of 4 parts:
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Part 1: Theoretical analysis by the displacement method.

Part 2: Programming for the NEAC 2203 computer.

Part 3: Calculation for a Langer girder bridge with inclined hangers.
Part 4: Model test.

This method of analysis can be applied not only to Nielsen System bridges,
but also to similar bridges with vertical hangers such as tied arch, Langer
girder and Lohse girder bridges.

Résumé

Les auteurs présentent une méthode de calcul de tout pont de type Nielsen
avec suspentes d’inclinaison arbitraire et exposent1’établissement du programme
de la calculatrice. On trouvera quatre parties principales:

1. Calcul par la méthode des déformations.

2. Etablissement du programme de la calculatrice NEAC 2203.
3. Calcul d’un pont bow-string a suspentes inclinées.

4. Essais sur modele.

Outre les poutres Nielsen, cette méthode de calcul est applicable & d’autres
ponts similaires & suspentes verticales tels que 1’arc a tirant, les ponts a poutres
bow-string du type Langer ou de Lohse.

Zusammenfassung

Die Autoren beschreiben eine theoretische Untersuchungsmethode, welche
sich auf alle Arten von Nielsen-Tragern mit beliebig geneigten Hangestangen
anwenden laf3t. Ferner wird die Programmierung fiir die elektronische Berech-
nung erldutert. Die Arbeit besteht aus vier Teilen:

1. Teil: Theoretische Untersuchung mit Hilfe der Deformationsmethode.

2. Teil: Programmierung fiir den NEAC 2203-Rechner.

3. Teil: Berechnung fiir einen Langerschen Briickentriger mit geneigten
Héangestangen.

4. Teil: Modelluntersuchung.

Diese Berechnungsmethode kann nicht nur auf Nielsen-Triager, sondern
auch auf dhnliche Briickentriger mit vertikalen Hangestangen, z. B. Bogen
mit Zugband, Langer- und Lohse-Briickentriger angewendet werden.
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Berechnung von Stockwerkrahmen nach Theorie II. Ordnung 1)
Calculation of Multi-storey Portal Structures in Accordance with IInd Order Theory

Etude des portiques étagés par calcul du 2e ordre

HORST KRETZSCHMAR HEINZ MULLER

Dr.-Ing. Dr.-Ing.
Technische Universitiat Dresden, Lehrstuhl fur Statik der Baukonstruktionen und Stahlbau

1. Aufgabenstellung und Losungsweg

Die bekannten Formulierungen der baustatischen Ansitze sind im allge-
meinen fiir den Einsatz digitaler Rechenautomaten nicht oder wenig geeignet.
Fiir die Berechnung ausgezeichneter Groflen des Spannungs- und Verschie-
bungszustandes von Stockwerkrahmen mit einem orthogonalen Netz nicht
unterbrochener Stiel- und Riegelziige und an den Knotenpunkten biegesteif
oder gelenkig angeschlossenen Stdaben nach Theorie II. Ordnung wird hier
eine fiir Rechenautomaten geeignete Formulierung mitgeteilt.

Von den Verfahren der Baustatik wurde die vereinfachte Deformations-
methode (Vernachldssigung der elastischen Stablingeninderungen) ausge-
withlt. Sie besitzt gegeniiber der KraftgroBenmethode bei den zu betrachtenden
Stockwerkrahmen den Vorteil einer meist kleineren Zahl der Unbekannten.
So sind zum Beispiel fiir einen Stockwerkrahmen mit biegesteifen Stab-
anschliissen bei der vereinfachten Deformationsmethode » (n + 1) unbekannte
Verformungsgroflen, dagegen bei der KraftgroBenmethode 3v(n—1) unbe-
kannte Schnittkrifte einzufithren, wenn mit v die Zahl der Geschosse und
mit n die Zahl der Stielziige bezeichnet wird. Noch wesentlicher erscheint
der Umstand, dafl der Formalismus der Rechnung bei der KraftgroBenmethode
durch die Art der Stabanschliisse wesentlich stérker beeinflult wird als bei
der Deformationsmethode. Bei der Reduktionsmethode sind, soweit nicht
Schnittgroflen unterdriickt werden, 37 unbekannte Gréfen in vertikaler oder
3v unbekannte Groflen in horizontaler Richtung fortzuleiten. Sind in Fort-
leitungsrichtung verschiedene Stabanschliisse vorhanden, so erhdht sich die
Zahl der Unbekannten oder diese miissen abgeldst werden. In beiden Fillen
wird der Formalismus der Rechnung erschwert.

Fiir die Auflésung des nach der vereinfachten Deformationsmethode er-

1) Dieses Thema wurde im Rahmen eines Forschungsauftrages am Lehrstuhl fiir
Statik der Baukonstruktionen und Stahlbau, Lehrstuhlinhaber Prof. Dr.-Ing. habil.
G. Biirgermeister, bearbeitet.
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haltenen Gleichungssystems scheidet eine iterative Behandlung aus, da im
Gegensatz zur Theorie I. Ordnung hier Konvergenzschwierigkeiten zu erwarten
sind. Die spezielle Belegung des Gleichungssystems empfiehlt fir die direkte
Behandlung eine zweistufige Losung. Dadurch kénnen auch bei relativ klei-
nem Speicherraum griflere Systeme berechnet werden.

Zur Organisation eines fiir Digitalrechenautomaten geeigneten Rechenab-
laufes werden die beiden dufleren Stielziige mit dem obersten Riegelzug und der
Verbindungslinie der Fullpunkte wie in [4] zu einem Rechteck ergéinzt. Aufler-
dem sind die anderen Riegel- und Stielziige bis zur Berandung des Recht-

(v-1)n+1 von—g
_ £
+n
I (v-1)n—¥_—

: : ; =
i1 i i+ .
in—]
=
i-n {j—l)n—*——
T
n+i <
2n —4
~N
r
{ 2 r n-1 n g
3
™ ] rr;z hcecd oy eccrd S,

-n+ -2 -1 )
Ll'i ’l‘ Lz"'!" "“ Lr"!“l-n-r’l

Fig. 1. Einordnung des Stockwerkrahmens in ein Rechteckraster.

eckes zu erginzen. Es entsteht dadurch ein Rechteck mit »n Rasterpunkten,
die gemédfl Fig. 1 zu numerieren sind. Diejenigen Rasterabschnitte, die sich
nicht mit dem vorgegebenen Stockwerkrahmen decken, werden als unbelastete,
beiderseits gelenkig angeschlossene Stibe aufgefafit. GleichermaBien werden
bei der Berechnung der Vorzahlen a;, ;,, @ pi1jnt1> @n, 0 (5. Fig. 4) die
Verbindungen der Rasterpunkte jn, jn+1 als unbelastete, beiderseits ge-
lenkig angeschlossene Stibe betrachtet.

Informationen iiber die Art der Anschliisse der Stibe an die Knoten werden
durch entsprechende Markierungen der Groflen J eingegeben. Der Zahlen-
wert und die Markierung der Grofle J sind aus Fig. 2 ersichtlich2).

Da bei einer Untersuchung nach Theorie II. Ordnung die Vor- und Be-
lastungszahlen vom Léangskraftzustand abhingig sind, mufl die gesamte Be-
rechnung in Form einer Iteration, die mit geschétzten Langskriften einge-
leitet wird, durchgefiihrt werden. Es wird hier der stabilisierende Einflul

2) Der Zei3-Rechenautomat ZRA 1, fir den das behandelte Problem programmiert
wurde, verfiigt tiber die drei Markierungsmoglichkeiten @ 1, @ 2 und @ 1 Q 2.
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von Léngskriften N >0 (Zugkrifte) bei der Ermittlung der Knoten- und
Stabdrehwinkel vernachléssigt.
Der Ablauf der Rechnung ist aus Fig. 3 ersichtlich.

Lagerung Markierung[  J;
e’ ol
H keine 0
e Trdgheits-
1 moment
g’» t Q des Stabes
i K - ; ik
Ok Tragheits-
N ] Q moment
7 2 des Stabes
i K . ik
BN
[ESSSRNY k . .
_ ) Tragheits-
N - moment
N keine
3 —E ' des Stabes
i k : i,k
EaSNN|

Fig. 2. Kennzeichnung der Stabanschliisse durch Markierung der Grofe J.

(>

ol

Berechnung der Hilfsfunktionen «, 8, y und der Steifigkeitswerte ST, SII

Berechnung der Lastmomente und der Stabendmomente im geometrisch
bestimmten Hauptsystem

Berechnung der Vor- und Belastungszahlen
Ermittlung der Knotendrehwinkel in der 1. Stufe der Berechnung

Ermittlung der unabhéngigen Stabdrehwinkel (2. Stufe der Berechnung)
und der endgiiltigen Knotendrehwinkel

Rekursion der Schnittkrafte
Gleichgewichtskontrolle der Losung
P (Wiederholung des Berechnungszyklus)

P

Fig. 3. Schematische Darstellung des Rechenablaufes.
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2. Gleichgewichtsbhedingungen

Die Gleichgewichtsbedingungen 6 4, =0 (i = 1,2,..., vn) an den Knoten-
ketten I'; und die Gleichgewichtsbedingungen 6 4, ,,;, =0 (j=u+1,u+2,...,v)
an den GeschoBketten I',, ,; fiihren auf ein Gleichungssystem der Form ge-
miB Fig. 4a. Die Geschosse j =1, 2, ..., u sind horizontal unverschieblich.
GemiB Fig. 4b werden die Vorzahlen zu Matrizen und die Belastungszahlen
sowie die unbekannten Knoten- und Stabdrehwinkel zu Spaltenvektoren zu-
sammengefalt. Von den (v-u)-Spalten einer Matrix B; ist die Spalte (j-u)
mit einem Spaltenvektor b, ; belegt, sofern 1= (j—u)<(v—wu) ist, und die
Spalte (j—u+ 1) mit einem Spaltenvektor b; ;,,, sofern 1 <(j—u+1)= (v—u)

1 o O ) a
> 000 ° ‘g,‘ e
o 00 o 02 2(.;0
q oo o o o
N+ o oo ) o o o
o oo o o o <] o
o coo o o o o
2n o 00 o ) ) o
(j-1n+ 2 e o N oo o °
o coo0 (o] oo o o
i ] Qo 0O o] o0 o o
i-n o o 0 o] o0 (=] (o]
o oo ° oo o ] —
] ooo o ool o + o =0
] 000 o] o0 (o] ©
(] 0 o [} oo o o]
v-1)n+i ° ° 0 9 o 9
e} coo ) o o
o 00 o o o [e]
Gfi (o] [o o] o Py-n O\rn,u
v-ntd
ventu
ve-ntutt 0 o o0oloo oo o] wuH Ov-n+u4l,0
P o0 0oloooo o v -1 Qv-n+v-1,00
o 0oo0oofooo0o0 0 W, Oyv.n+v,0
ventwv y )
Fig. 4a. Belegung des Gleichungssystems.
i
2
A, D, B, X, b1.0
n
n+1
D, A, D, B. X2 b,
2n
{(j-1)n+1
i Di-| A;j | D B Xj bio
jin
. + =0
Dv-2 Awl Dv-1 Bv—I xv-i bv-l.O
tv-1)n+1
Dv-l Av Bv xv bv,O
v.n
ventd
v-n+u
v-n+uti p , N , i
ves| Bl B | B | B | B C y c
1 2 -1 v 0
vintv ) y

Fig. 4b. Aufbau des Gleichungssystems aus Matrizen.
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ist. Die restlichen Spalten sind mit Nullvektoren o belegt. Hierbei ist o ein
Spaltenvektor mit » Nullen.

sz(o,o,...,bjj,bj'j+1,0,...,0),
U-Dnt1,vnti AV n+1, e n+j+l
Ai—1) n+2, v n+j AG_Dn+2,vn+i+l
byy= a. ’ b ji1= G s
1, v ntj t,rn+j+1
_a’jn-,r n+j _ _CLj n, v n+j+l i

3. Behandlung des Gleichungssystems

Ansatz firr die zweistufige Entwicklung

Das Gleichungssystem wird in zwei Stufen aufgeldst. In der ersten Stufe
werden im vn-fach geometrisch unbestimmten System die Knotendrehwinkel
®;,0 infolge dullerer Belastung und die Knotendrehwinkel ¢, ; infolge der

Verschiebungszusténde ¢; = 1 (j =u+1, u+2, ..., v) berechnet?). Die Spal-
tenvektoren der Knotendrehwinkel des Riegelzuges j infolge der Verschie-
bungszustinde ,,; =1, ..., ¢, =1 werden in einer n-zeiligen Matrix X;
zusammengefalt.

X = (% ur1 % usns - %50).

Die endgiiltigen Knotendrehwinkel des (vn+wv—u)-fach geometrisch un-
bestimmten Systems werden in der Form erhalten

x]=x1,0+XJy (f=1,2,...,?)).

Erste Stufe der Losung

Mit den Matrizen
Z'=(xj,0:Xj)a F'=(bj,DsBj)'

J ]

werden die » Knotengleichungen des Riegelzuges j im vn-fach geometrisch
unbestimmten System:

Dj—lzj—1+AjZJ+D]Zj+1+F]=0 (?.= 1,2,...,”).

Dieses dreigliedrige Matrizengleichungssystem fiir die unbekannten Ma-
trizen Z; (j = 1, 2, ..., v) wird analog wie ein dreigliedriges Gleichungssystem
skalarer Unbekannten [1] gelost. Die Elimination wird am Beispiel fiir v = 4
entwickelt.

3) Die Knoten- und Stabdrehwinkel werden ebenso wie die Stabendmomente und die
dulleren Knotenmomente positiv definiert, wenn sie im Uhrzeigersinn drehen.



80

Mit
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As,]'—l) = AJ' —_ Kj—l Dj—l s
F?—l) = F]' _ Kj_l F_'(;J—_?) 2
K,_, = Dj—l ( AS.J‘_—lz))—l

J

lautet die Elimination fiir v = 4

Z, -Z, -Z, - Z,

K,| 4, D, F,
D,| 4, D, F,

D, A4,|D,|F,

D,| A4,|F,

K,| |4P|D,| |F®
D,| 4,| D, | F,

D,| A4, |F,

K, AP D, |F®
D, A,|F,

AP |FP

Die unbekannten Matrizen folgen dann aus

Die Gescholigleichungen 8A4,,.; (j=u+1, u+2, ..

Z, = — (Av-D)-1 -,

Z, = — (Ay-D)"1(Fy-V+ D, Z,,,) G=v-1,v=-2,...,1).

Zwezite Stufe der Losung

Fig. 4b
j;lel’-xj-i- Cy+e,=0.
Mit x;=x;0+X;y
wird y ==(C+ 3 BjX)" (co+jilB;xj‘o).

4. Aufbau der Vor- und Belastungszahlen

Hilfsfunktionen «, B, y und Steifigkeitswerte S1, S

Mit den Hilfsfunktionen

o

_ esine—e?cose 8= €2 —esine
" 2(1—cose) —esine’ " 2(l—cose)—esine’

Ta 4

., v) lauten gemil
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nach [2], die aus den Argumenten ¢ der Stiele (i —n,¢) und der Riegel (¢,7+1)
Zv'i—n,ig 0 oder ']:i—n,i =0

0
Cim,i = h; }/%n__ml fiir alle restlichen ¢ (1 <i<wn),
K

N;;4120 oder J; ;,;, =0

. — . . f 5 . ® =
€ii+1 l M e alle restlichen ¢ (1<i<vn—1)
"1 EJ;

folgen, werden die Hilfswerte

1 ok Car Bik : . s fi J; 1 # 0 und keine Markierung
Sik Vi, Mit @1 Sk =)o 1OWELS fir J; x ¥ 0 und @ 1-Markierung
Vi Mit @ 2 0 J; r + 0 und @ 2-Markierung

gebildet, woraus die Steifigkeitswerte

st By Bl
i—n,1 h t—n,t* i—n,? h. i—n,1?
] ]
1 _ EJi,z'+1 I 11 _ EJi,i+1 1T
S, =it . S R — Lt 373 8 )
%,1+1 l t,2+12 i,i+1 l 1,1+1
r [

folgen. Die Zuordnung der Stiellingen %; (j =1, 2, ..., v) zu den Stielen
(¢ —n,t) bzw. der Riegellingen . (r =1, 2, ..., n—1) zu den Riegeln (¢,2+1)
wird durch Markierung der GroBen N_y), ;, bzw. N;, ;.. gesteuert. Die
Markierung der Hilfswerte s, sII ist auf die Steifigkeitswerte S, S zu iiber-

tragen.

Stabendmomente vm geometrisch bestimmten Hauptsystem

Die Stabendmomente eines Stabes ¢, k im geometrisch bestimmten Haupt-
system sind fiir eine Einzellast nach Fig. 5a bzw. fiir eine gleichméfBige Strek-
kenlast nach Fig. 5b in der Form

M, = —Pl(sIfl 45111,

1,

Ml?:,i = —PZ(SIIfI +SIfII)

® Fo® ®© L ®
€L ——1 l*c’{‘c’

L ——— = — L
Fig. 5a. Belastung des Stabes 7% durch Fig. 5b. Belastung des Stabes 7% durch

eine Einzellast. eine gleichméfige Streckenlast p=P/Al.
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angebbar. Unter Verwendung der in [3] mitgeteilten Beziehungen fir die
Stabendmomente im geometrisch bestimmten Hauptsystem werden die f-
Werte fiir eine Einzellast '

I ' —&)]= — -
= o—sinfc(1-§]5 - 5(1-8),
2 e ¢
11 S 42
f esine (€€)3 &
Fiir eine gleichmiBige Streckenlast werden die f-Werte durch Integration zu
sin <2
2 . 2 1
s - . _ - (1—
fi= go—sinfe(l-§]—2~5(1-8),
sin &
2 2. €
11 G 2
/ Ssine (¢£) A T €2

erhalten.
Im Falle ¢ = 0 vereinfachen sich die Ausdriicke zu

F = gl2e-sereret-T).
R ]

wobei fiir Einzellasten A = 0 zu setzen ist.

Bei mehreren, gleichzeitig auftretenden Querbelastungsfillen und vorge-
schriebenen Léngskriften werden die Stabendmomente eines Stabes durch
Superposition gewonnen.

Vor- und Belastungszahlen

Die Vor- und Belastungszahlen werden analog zu [1] als virtuelle Arbeiten
an den Knoten- und GeschoBketten gebildet.

airi = Li“n:'i+Li—1,i+Ri,’i+1+'R'i,'i+n (1’ = 1:2) .. .,’un),
I _ [0, wenn S}.; mit @ 2-Markierung (h <)

el S}, fiir alle sonstigen Fille ’

0 : it @ 1-Marki ;

R, % wenn S, mi .Q a:rklerung (i<k),

' S} . fiir alle sonstigen Fille
@441 = SzI,Ii+1 (t=12,...,vn-1),
@ i4n = S’:L!,I'i+n (?' =1, 2: -..,?)n—'ﬂ),

0, wenn SI_, ; mit @ 2-Markierung G=u+1l,u+2,...,v)

— 1N,

Piones = { — (8%, ;+SIL, ;) fiir alle sonstigen Fille -1n<i<jn,

i-n,1 -n,t
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mit ¢ 1-Markierung G=u+l,u+2,...,2)

(—2)n<iz(j—1)n,

G=u+l,u+2,...,v),

i 0, wenn S, ;
S — (8%, s+ 8L, ;) fir alle sonstigen Fille
j.n ..
Z ﬂl—n,i -+ Ni—ﬂ,ihj fiir Ni—n,i <0
1=F—1)n+1
Cyn+i,onti = in
Ti—n,i fiir Ni—'n.,i 2 0
i=G-TDn+1
T S . wenn SI . mit @ 1-Markierung
Ll 2(S}_, ¢ +8%, ) fur alle sonstigen Fille.
\/
s:i[;i«}{ (i=0,1,...,v'n)
Sty Li=1,20v)
S%-n_i =0 (i=vn+l,v'n+2,...,vn+n)
v'n
1 0>i
4 i1
T 0> ui,i

I
+ P {s;_n,-, mit 02}

P P
I

T Si-n,i*gii = 0

——

+ P{SIH,; it oa}

P P
o =X

T Si-1,iai,i = 0
=

. p{sI;,H., mitQI}

PI P
T Sii+1+ai,i = 0ii
i

I
+ P [si,“n mit 01}

P P

I
T Sii+n*0ii = q;

L pfai=o)

g; ili=12,..,vn)

AN

Fig. 6. FluBdiagramm zur Berechnung der Vorzahl a;,;.
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Die Fullzeiger der Vorzahlen a legen die Stellung nach Zeile und Spalte
im symmetrischen Gleichungssystem nach Fig. 4a fest.

@0 = M?t n+M11, 1+M1 1+1+M1 i+n Mi (3 =12,.. -,’Un),
in
a!’ﬂ+j.0=_[bj+ Z (M? 111+'M?1, n)] (7.=u+1:u+2)---:v)'
t=FG—-1)n+1

Dabei bedeuten

M;: duBeres Knotenmoment am Knoten 1,
b;: virtuelle Arbeit der duBeren Krifte an der kinematischen Kette I, ;

J
mit ; = 1.

Sind an einem Knoten ¢ simtliche Stdbe gelenkig angeschlossen, dann
werden unter anderm folgende Vor- und Belastungszahlen null: a; ;, a;;_,,
a; ;41> ;o und die zugehodrige Matrix 4; wird singulir. Die im Abschnitt 3
angegebene Elimination kann jedoch beibehalten werden, wenn in einem sol-
chen Falle a; ; = 1 gesetzt wird (siehe Fig. 6).

5. Rekursion der Schnittkrifte

Die Rekursion der Schnittkrafte wird fiir die Biegemomente (vgl. Fig. 7)
und Querkrifte an den unteren Enden der Stiele sowie fiir die Liangskrifte
der Stiele gezeigt.

0, wenn S}_, ; mit ¢ 1 markiert ist
M, . ={M? . ;+8l, i(@in—4;), wenn S, , mit @2 markiert ist
M? nt+S}—n1(P1. n+SIInz(pt (SE—R 1+S"]-:In‘l- ¢]’
wenn S]_, ; weder mit @1 noch mit @ 2 markiert ist.

1
Qi_n,i = 7 (M _pi+M;; +ME_)+Ni ;.

)

Fiir beide Schnittgroflen gilt:

i=12 ...,v;
G—1)n<iZjm;
p;=0fiirte=—n+1, —n+2,...,0;
Y; = 0 fir jSu.

MY, _, ist das Moment der Querbelastung des Stieles (¢ —n,7) bezogen auf
das Stabende ¢ (Lastmoment).
Nini=Nygin—Quinnt @i — K (t=vn,on—-1,...,1),
wobei zu setzen ist N, ;,, = 0 fir i =vn,vn—-1, ..., vn—(n+1) und

Qvn,vn+1 = 0.
K, ist die senkrechte Knotenlast am Knoten .
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()
I I
Si-n,i* Si-n,j
M‘i’-n,i‘M‘i),i-n i=1,2..,v-n)
P;
\Pj (j=1,2,...,v)
v,n
TO0=]
— . .
+]+i=> ]
+{j-1)n=>i
—
+it1>i
4p {sli-,,.; mit 01}
P P
I s
-+P {si-—n,I mit 02]
3 P
L] 1 I : o %
T Mi-n,i +Si-n,i Pi-n* Si-n,i i — Mion,i + T O0=>Mi,;
L 1 1
~Si-n,i #Sien,i) ¥j M +Si-n,i{@i-¥)) = Mi-n,i
I 1 (]
-+ Mi-n +Si-n,i Pi-n ¥Si-n,i Fi~ 0 =>Mi-n T Miji-nt
1 1 I
~ASioni*Sin, ¥ > Miji-n +Sioni (o= ) My -y
e
--P[i =j -n}
Pl P
Fe
Pl P

Mi‘ﬂ,i ) Mf,i-n (l s IIZI Xl :V)

A
Fig. 7. FluBdiagramm zur Berechnung der Stabendmomente der Stiele.

Die Schnittkrifte an den iibrigen Stabenden und die Léangskréifte der
Riegel werden analog berechnet.
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Zusammenfassung

Durch geeignete Beschreibung der Systemstruktur und durch Ausnutzung
der Markierungsmoglichkeiten des verwendeten Digitalautomaten kann die
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Matrix der Vor- und Belastungszahlen fiir orthogonale Stockwerkrahmen
giinstig gebildet und die Schnittkraftermittlung zweckméfBig gestaltet werden.

Die zweistufige Entwicklung der Knotendrehwinkel gestattet, die Losung
des Gleichungssystems auf die Losung zweier Teilsysteme zuriickzufiihren.
Das kleinere Teilsystem ist vollstindig belegt. Fir die Auflosung des gro-
Beren Teilsystems, welches die Form eines dreigliedrigen Matrizengleichungs-
systems besitzt, wurde ein spezieller Algorithmus verwendet.

Summary

By means of a suitable description of the configuration of the structure
and by utilising the delimitation potentialities of the digital computer em-
ployed, the matrix of the lefthand and of the load terms in the expressions
for orthogonal multi-storey portal structures can be formed in an advantageous
manner, and the determination of the forces in the sections can be appro-
priately performed.

The two-step development of the nodal angles of rotation enables the
solution of the system of equations to be reduced to the solution of two partial
systems. The minor partial system is fully covered, while for the solution
of the major partial system, which has the form of a three-term matrix equa-
tion system, a particular algorithm was used.

Résumé

Une description adéquate de la structure du systéme et I’'utilisation des
possibilités d’enregistrement de la calculatrice digitale employée permettent
d’établir facilement les matrices des coefficients et des charges relatives aux
portiques étagés orthogonaux et d’en déterminer les sollicitations.

Les angles de rotation des nceuds sont calculés en deux phases, ce qui
ramene la résolution du systéme d’équations & celle de deux systémes partiels.
Le plus petit systéme est complétement saturé. Un algorithme spécial a été
utilisé pour la résolution du plus grand dont la forme est celle d’un systéme
d’équations matricielles & 3 termes.
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A Generalised Method of Analysis of Elastic Plane Frames
Une méthode généralisée d’étude des charpentes élastiques planes

Verallgemeinerte Berechnung ebener, elastischer Stabwerke

W. MERCHANT D. M. BROTTON
Department of Structural Engineering, Manchester College of Science and Technology

Notation

Axial load
4> M5 End bending moments
Modulus of Elasticity
Moment of Inertia of cross-section
Cross-sectional area
Chord length of member

Length along deflected profile

IZZE—I Euler load

T~ RN

o
I

? Bending stiffness

[

End shortening due to bowing
Total axial displacement
Stability functions

End rotations

Modified axial stiffness
Distance along the chord
Distance along deflection profile
Deflection, z along the chord

I N

L 8 —~
NN
SSIICN
— W

Member Behaviour

The linear theory of frameworks is a first order small deflection theory.
There are some aspects of elastic frame behaviour which require second order
theory to elucidate. Thus the calculation of the deflection of a tight string due
to a lateral disturbing force is a non-linear problem even though the string
may itself behave in a linear manner. This is an instance where change of
geometry effects are significant. Another example is the determination of the
distribution of loads in hyperstatic trusses which requires a consideration of
the second order effects in the members themselves including the change of
length due to bowing.
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Consider a prismatic member under axial load and end bending moments

as shown in Fig. 1.
M

oAl /%%\BB

< P
85 \ee

Fig. 1.

The bending moment M at section (x,y) is given by:
T d2y

Using the end conditions y =0 when =0 and x =1, the solution is:

1

x x
y=?[?(MA+MB) ]+Asmwy l+BCOS7T|/ 7

Mg+ M, COS"VFET

where A=-
Psinvr]/%
and B = %,

Now length along deflected profile ' = f ds =J 1+
0

: . 4 1 (dy\?
*. End shortening due to bowing ¢é=0'-l=-||5=]) d=z

and w5 = () n (5 ;1:) (1)

In framework analysis by the stiffness method the member end rotations
are first calculated, it is, therefore, more convenient to change the variables
in equation (1).

The fundamental member equations introduced in ref. [1] are

M, =skl, +sckby,
Mg = sckl, +skby
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and these combine with equation (1) to give:
6, P
f-an(z 7)) -6n.
B 1E

Graphs of B (plotted logarithmically for convenience) against g—; for various

values of % are given in Fig. 2.
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The effect of bowing can be incorporated in frame analysis by the intro-
duction of a modified axial stiffness.
Thus the total axial displacement 4 is given by:

Pl Pl

Where (4 E)’ is the modified axial stiffness.
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Frame Analysis

An iterative method is required since the modified member stiffness coeffi-
cients are functions of 8, 8 and P; also 8 is a function of P since it involves

input

|

Y

set up equations

|

v

solve equations for
displacements

|

calculate member
forces P, S, M

!

Modify stiffness
coefficients

calciulate

A

A

calculate £

}

correct axial load for &
and calculate (K A)’

convergence
N\

3
no

output

Fig. 3.
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the stability functions s and c¢. The path followed by the calculation can be
clearly seen in the flow diagram in Fig. 3, it begins with a linear analysis
which corresponds to the assumption that 8=0 and yields estimates of the
joint rotations and the axial loads in the members. These enable 8 and (4 E)’
to be calculated and the estimates of the axial loads in the members and the
values of the stability functions to be improved. The process can be repeated
until similar results are produced on successive cycles.

A computer programme which will carry out the calculation automatically
has been prepared for the Ferranti Atlas computer.

Example

Consider the hyperstatic cantilever truss shown in Fig. 4. The value of E
has been taken as 13000 ton/sq.in. and the cross-sectional properties of the
members are given in Table 1.

It is assumed that sufficient restraints are provided to prevent out of plane

Table 1
A
Y
gl 2 3
. - . }
Members Area in.2 Inertia in.4
1—2, 2—3 1.88 0.68
45, 56 3.56 4.28 i
5—2, 6—3 1.88 0.68 /
=2, 3 2.12 0.98 (
5—1, 6—2 ' : 4 it oM .
A
A
Fig. 4.
i AXIAL LOADS IN OUTER PANEL DIAGONALS
8
LINEAR ANALYSIS L—
COMPRESSION —
IN MEMBER / STABILITY BOWING
5-3 LYSI
IN TONS 94 //
8 2 a 6 8 10 12
\ W| IN TONS
-4
TENSION LINEAR ANALYSIS
IN MEMBER
s-zNS
IN TO -8 [
srAeluT\
BOWING ANALYSIS
i3 LOADING PATTERN M = 10w TONS. INS| TFig. 5.
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buckling. Fig. 5 shows various aspects of the non-linear behaviour of the truss
as determined by the computer programme. The deviations from linear
behaviour are to be noted.

This work forms part of a comprehensive investigation into the behaviour
of framed structures using the Atlas Computer and the authors are indebted
to Mr. G. Arnold and Mr. B. Dyer, Research Assistants in the Department,
who have carried out the programming.

References

1. MErcHANT and SarLEM: “The Use of Stability Functions in the Analysis of Rigid
Frames.’’ International Association for Bridge and Structural Engineering. Stockholm
July 1960.

Summary

In previous work on the stability of framed structures it has been assumed
that the distortions are small enough for the equations to be written in terms
of the original geometry.

The present paper in addition to stability effects deals with the effects of
axial changes in the length of members due to bending and it is illustrated
by a consideration of the changes in the proportions of the shear carried in the
diagonals of a hyperstatic cantilever truss. The calculations have been carried
out using an automatic digital computer.

Résumé

On avait admis jusqu’ici dans tous les travaux sur la stabilité des char-
pentes, que les déformations étaient assez faibles pour permettre de formuler
les équations en fonction de la géométrie initiale.

En plus de l'influence de la stabilité, la présente communication traite des
effets des modifications axiales dues a la flexion sur la longueur des piéces. On
a pris pour exemple ’étude de la variation de la part de l’effort tranchant
supporté par les diagonales d’une ferme cantilever hyperstatique. On a utilisé
pour les calculs une calculatrice automatique digitale.

Zusammenfassung

In fritheren Arbeiten iiber die Stabilitit von Stabwerken wurde angenom-
men, dafl der Einflul der Verformung bei den geometrischen Angaben ver-
nachlissigt werden kann.

Die vorliegende Arbeit befallt sich neben den Einfliissen der Stabilitdt auch
mit den Ladngendnderungen der Stdbe infolge Biegung. Als Beispiel wird das
Verhéltnis der Diagonalkrafte infolge Querkraft in einem statisch unbestimm-
ten Konsolfachwerk untersucht. Die Berechnungen wurden mit Hilfe eines
Digital-Computers ausgefiihrt.
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Détermination des sollicitations dans une chaine de portiques
pentagonaux juxtaposés

Bestimmung der Beanspruchungen in Rahmen fir vielschiffige Hallen

Determination of the Stresses in Multi-bay Pitched Roof Portal Frames

J. FOUCRIAT

Paris

1. Méthode employée, conventions, notations

Nous nous proposons de résoudre des chaines de portiques pentagonaux
juxtaposés composés soit:

— de nefs symétriques en nombre impair (fig. 1) ou en nombre pair (fig. 2);
— de nefs asymétriques en nombre impair (fig. 3) ou en nombre pair (fig. 4).

| | 1 2 3 4 1 S 1

Fig. 1. Nombre impair de nefs symétriques.

| 2 3 4

Fig. 2. Nombre pair de nefs symétriques.

Fig. 3. Nombre impair de nefs asymétriques.

I 2 3 4 ] 6

Fig. 4. Nombre pair de nefs asymétriques.

Nous nous limiterons au cas ou:

a) Les épures de toutes les nefs de la chaine sont identiques.

b) Les inerties [ et sections 4 des éléments homologues de toutes les nefs sont
identiques & ’exception des nefs terminales.

c) Les appuis au sol sont soit parfaitement encastrés, soit parfaitement arti-
culés.
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1.1. Notation

Les travées sont numérotées a partir de la gauche.
Dans chaque travée, les sections sont numérotées comme indiqué fig. 1 a 4.

1.2. Conventions

Pour chaque nef, la circulation se fera dans le sens des aiguilles d’une
montre.

Les charges seront positives si elles sont dirigées vers Uintérieur de la nef.

Les moments de flexion (forces amont) seront positifs dans le sens des aiguilles
d’une montre, les efforts tranchants dirigés vers 1’extérieur de la nef seront
positifs, les efforts normaux de compression seront positifs.

Les déformations angulaires produites par des moments de flexion positifs
sont positives.

1.3. Méthode employée

Choisissons comme inconnues les moments de flexion:

— aux encastrements éventuels au sol,
— a la clef des nefs impaires,
— aux crosses et a la clef des nefs paires.

En supprimant la continuité de flexion dans les sections ci-dessus, on obtient
un «systeme de référence isostatique»; soient dans ce systéme:

d;; la variation angulaire en ¢ due & un couple unité en j,
Dy, la variation angulaire en ¢ dans le cas de charge %.

En chaque section, 2, on vérifie la condition de continuité:
Employons la notation matricielle
(M;) | 85 | = — (D).

Les inconnues M; sont données par:

:._1 (Dik) -

Pour un état de charge donné, le probléeme se raméne donc:

— au calcul de | §;;

— & l'inversion de | 8

ij

— au calcul de |Dy;|

— & la multiplication —| 3,

1 | Dyl
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1.4. Remarques concernant la matrice

Ire remarque: L’ordre de la matrice est déterminé par la nature physique
du probléme:

— si les nefs sont encastrées au sol m=3n.
— sl les nefs sont articulées au sol m=2n—-1.
’, 2 s _* T | ’ .
Ze remarque: Le théoréme de réciprocité montre que | ,; | est symétrique.

| S S |

3e remarque: L’examen des coupures nous montre que | &;; ’ aura la struc-

ture représentée fig. 5 et 6, les termes nuls étant laissés en blanc.

Les sous matrices situées sur la diagonale sont symétriques.

Les sous matrices de part et d’autre de la diagonale sont 1’'une a I’autre
transposées.

Les sous matrices diagonales, de la seconde a l’avant-derniére, sont iden-
tiques.

L L] L] L]
fére trovee { e ofe o
- . . - .
” . o e 9 L - L] . .
2eme trovée { o o oo e o o s|e o &
® o el ® o eje o o
LI . ® ojles & o
travee impuire{ s w oW alE e
" e 0 0 " e
e o e o o o e o o o e|e o o
Iruvée paire { s o 0o 0o s 5o s s o o|s o o
* 0 0 0 0 ole o o 2 oo o @
* & o o @ * & 0
L LI L L3 L L]
e o o 0 o e o o
¢ o o 0 o e o 2 o osfe s o
e o & ® o |0 e & o ojleo o o
o & o o & o|le o o o oo o o
si.fravée terminale { v o o e ofe v e
i i s s o . sfe o o
1mpa|re L] . L ] * e ° @ 9
si. tfravée terminale { e 6 o ¢ o o . #
paire « s 0 0 0 o .
4 & ¢ ©® & & & ¢

Fig. 5. Structure de la matrice pour un systéme encastré au sol.

tére travee PR
e e & oo o
Zéme!rave'e{ efleN e ofe o
ale » ele & o
travée impaire e e e s o
. @ o ® e o s|® & o
travee paire { T AT
® & o ajle o e|® & o
* o o * e e
e o o o e & oo aje
® ¢ o o e oo e
e & & o|s o eoje ole
* o o e e, 0
® & & ole o
si trovée ferminale paire e« o o oo . e
e o ® ojle o -
si travee terminale impaire s oh ]

Fig. 6. Structure de la matrice pour un systéme articulé au sol.
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Les sous matrices de part et d’autre de la diagonale sont identiques & partir

de la 3e ligne, jusqu’a la derniére ligne si la travée terminale est impaire et
jusqu’a I’avant-derniere ligne si la travée terminale est paire.

2. Organisation des calculs

La capacité restreinte de notre ordinateur nous impose de scinder le calcul

, Inversion de }wé; L calcul de |Dy|,

en 4 phases: calcul des termes de | §,;
produit —|8;; 7! |D;;|. Un programme sera établi pour chaque phase. Les

résultats (perforés) seront introduits comme données dans la phase suivante.

2.1. Calcul des termes de l 3 ’ (matrice d’élasticité)

f

Compte tenu des remarques faites en 1.4, nous savons que nous devrons
calculer au plus: ‘
— pour une structure encastrée au sol 5

75 termes pour un nombre impair de travées (62 dans le cas de nefs symé-
triques.

78 termes pour un nombre pair de travées (65 dans le cas de nefs symé-
triques.

— pour une structure articulée au sol

36 termes pour un nombre impair de travées (70 dans le cas de nefs symé-
triques).

73 termes pour un nombre pair de travées (31 dans le cas de nefs symé-
triques).

Remarquons que, sans le choix adéquat des coupures, le nombre de termes
d;; & calculer aurait été m/2 (m + 1) soit par exemple pour 5 nefs encastrées au
sol m=15, m/2(m+1)=120 au lieu de 75.

L’établissement, grace au théoreme de Castigliano, des formules permettant
de calculer les termes 3,; ne présente pas de difficultés.

Donnons, a titre d’exemple, le calcul du terme diagonal correspondant &
la clef d’une travée paire courante d’une nef symétrique 5, ,.

4/\
M=1
(2a-h)h ¥ =
B s eV
1

\
!
/

f \ - Al + A+ == Iy
of [ 5l et a1y ReEAYE i
n| §:/20 30 ': !
o ' 1 ' 1
ol T R N AT 5 et i

| 2af L F 2af L v l

h } h 1

fL "ﬂ'

Fig. 7. Calcul du terme diagonal correspondant & la clef d’'une travée paire courante.



SOLLICITATIONS DANS UNE CHAINE DE PORTIQUES JUXTAPOSES 97

La fig. 7 donne les diagrammes des moments de flexion et des efforts tran-
chants (Inertie ferme I — poteau k1,
Section réduite ferme A — poteau x 4).
Déformation due auw moment de flexion (pour K —1) — Inertie courante — 1.

1[2h( h* (2a—h)2h2) 23(1+ ht (2a—h)2h2)] _

8i_4=§ﬁ4a2fﬂ+ sarr | YT\ Taap T TaaEp

1 1 [2A° 4a 4a?
|2 pa e ] et 3q2g44ag2f
6[a2f2[k+h (23 k) h(lc 4as)+4has+4saf].

Déformation due @ Ueffort tranchant

Gy _2h[ B (2a—hP] 2s[ At RRh+2f)? 1
E 7T g A |4a2f? 4a2f? A |4a2f2s2 4a2fs: | s2|°
Déformation totale — somme des déformations de flexion et d’effort tran-
chant.

I1 est commode de disposer des 4 programmes suivants de calcul des 3;:

— nefs symétriques encastrées au sol,
— nefs symétriques articulées au sol,
— nefs asymétriques encastrées au sol,
— nefs asymétriques articulées au sol.

2.2. Inversion de la matrice’ 34

C’est un probléme classique. Nous disposons d’un programme qui nous
permet, compte tenu du nombre réduit de mémoires disponibles, 1'inversion
d’une matrice d’ordre inférieur ou égal & 22, soit de traiter:

7 nefs encastrées: matrice d’ordre 21,
11 nefs articulées: matrice d’ordre 21.

2.3. Calcul des termes (D,;,)

I1 est établi un programme pour chacun des cas de surcharges envisagés
ci-dessous:

— charge verticale uniforme sur tous les versants de gauche,

— charge verticale uniforme sur tous les versants de droite,

— charge uniforme perpendiculaire & tous les versants de gauche,
— charge uniforme perpendiculaire & tous les versants de droite,
— effort horizontal au faitage de toutes les nefs,

— effort horizontal & toutes les noues,

— effort horizontal & la crosse gauche de la Ire nef,

— effort horizontal & la crosse droite de la derniére nef,

— charge horizontale uniforme sur le ler poteau,

— charge horizontale uniforme sur le dernier poteau.
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Ceci permet de couvrir en général tous les états de charges fixés par les
réglements francgais. Pour un cas non traité, il est possible d’établir un nouveau
programme ou de calculer manuellement.

Le calcul des D,;, est conduit & 1’aide du théoréme de Castigliano.

Les remarques de 2.1 sont valables, la périodicité de la structure permet,
pour chaque cas de charge, de calculer un nombre de termes D, <m.

2.4. Calcul de @‘1 (—Dy)

Ce calcul ne pose pas de probleme nouveau. En fait, comme le réglement
francais de la construction métallique en cours de préparation oblige de cal-
culer des sollicitations pondérées (le coefficient de pondération est r> 1), nous
calculons le produit:

055 [t 27 (—Dy).

3. Conclusions

Dans le processus de calcul ci-dessus, 1’essentiel est:

1. L’emploi de la méthode des coupures qui permet de résoudre le probléme
en 4 étapes, par conséquent, sans épuiser la capacité de 1’ordinateur, de traiter
le cas d’un nombre élevé de nefs. Le choix d’une méthode d’approximations
successives ne nous aurait pas donné cette facilité.

2. Le choix judicieux des inconnues qui permet d’annuler un grand nombre
de termes §;;, de tirer profit de la périodicité pour réduire le nombre de §;; et
D, & calculer.

Résumé

Le processus de calcul exposé dans ce mémoire permet, de résoudre, a 1’aide
d’un ordinateur de capacité limitée, un systéme hautement hyperstatique, en
choisissant judicieusement les inconnues et en fractionnant le calcul en étapes
successives. L’emploi du calcul matriciel facilite grandement ce fractionnement.

Zusammenfassung

Der beschriebene Berechnungsvorgang gestattet, mit Hilfe einer elektro-
nischen Rechenmaschine begrenzter Speicherkapazitidt ein hochgradig statisch
unbestimmtes System zu losen durch eine giinstige Wahl der Unbekannten
und durch eine Aufteilung der Berechnung in mehreren Rechnungsgingen.
Die Benutzung von Matrizen erleichtert diese Aufteilung erheblich.

Summary

The process of design shown in this paper permits to solve, with the help
of a computer of limited storage capacity, a highly indeterminate system by
carefully choosing the unknowns and by fractionning the design in successive
stages. The use of matrix design highly helps this fractionning.
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Ponts a poutres multiples sans entretoises
Briicken mat velen Lingstrigern ohne Quertrdger

Multe-Girder Bridges without Cross- Beams

JEAN COURBON
Paris

1. Méthode de calcul

Soit I D'inertie constante commune aux n poutres sous chaussée (4;)
(j=1,2,...n). Ces poutres sont reliées par la dalle sous chaussée que nous
assimilons & une infinité de poutres transversales infiniment rapprochées.

xA

7.9%] I (VY51 I (8

Yi Y ¥n ¥
Soient p;, (x) et v; (x) la charge répartie et le déplacement vertical compté

positivement vers le bas de la poutre (A4;). La charge p; (x)dx appliquée & la
poutre (4;) entre les abscisses x et x+dx se décompose en deux parts:

a) La part pj (x)dx supportée par la poutre (4;):

dtv;

daxt’

b) La part p; (x)dx supportée par la poutre transversale fictive de largeur dx:

i=n

pj (x) = 1_;1 Bji v ().

B;; étant les éléments de la matrice carrée C' symétrique d’ordre n reliant les
fleches aux charges pour la poutre fictive transversale (B) de largeur unité.

En écrivant que p; (z) est la somme de p;(z) et de pj (x), nous obtenons
les équations d’équilibre:

d4?)j i=n .
daxt +i§118ji”i(x)=pj(x) =12,...,n). (1)

pi(x) =K1

EI
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Ces équations forment un systéme d’équations différentielles linédaires &
coefficients constants que I’on pourrait résoudre par la théorie classique. Mais
nous développerons p; (z) en série de sinus dans l'intervalle (0, L):

ey . rmTx
pi(@) = ¥ Mjsin—, (2)
r=1
les coefficients II7 étant définis par:
, E
2 . rwx
17 =ffpj(x)s1n T dx. (3)

0
Nous chercherons v; (x) sous la forme d’une série de sinus:

r=w
v () = > Vysin_ =~ (4)
r=1 L
En portant les valeurs (2) et (4) dans les équations (1), nous trouvons:
Vr i=n .
L+ X B,V =1 (Gj=1,2,...,n). (5)
Sr i=1
S, étant défini par:
S n 6
= AART (6)

L’interprétation mécanique des équations (5) est immédiate: les coefficients
Vi sont les fleches au droit des poutres (A;) de la poutre fictive (B) reposant sur
des appuis élastiques A; de méme coefficient d’élasticité S, et soumise au droit de
ces appurs aux charges concentrées 117,

Pour aller plus loin, prenons pour inconnues les réactions ¢7 des appuis
élastiques: vy

& =3 (7)

r

Nous pouvons écrire les équations (5) sous forme matricielle:
(U+8,0)Q =1 (8)

Nous avons désigné par U la matrice unité et par II" et Q" les matrices
colonnes dont les éléments sont I} et ¢;. La matrice U+ S,C est symétrique
et réguliére; son inverse est donc une matrice symétrique H” dont nous désigne-
rons les éléments par H7;. Donc:

i=n
Q =H'II" ou Q= » HjII;. (9)

i=1
Cette formule montre que Hj; est la réaction développée par 1’appui 4;
lorsque la poutre B est soumise & 1’action d’une charge unité placée au droit

de I’appui 4;. L’équivalence des réactions Hj; et de la charge unité se traduit
par les relations, valables quel que soit 7:

ji=n i=n
jZ1H§i =1, _Zl y; Hj; = y;. (10)
= i=
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En outre, la symétrie de la matrice H” conduit & un théoréme de réciprocité
dont 1’énoncé est évident.

Ceci posé, le moment fléchissant M; (x) dans la poutre (4;)

d*v;
M;(x)=—-EI dx‘“’g
s’écrit, compte tenu des expressions (4), (6) et (7):

E: S rmx

R (11)
L’effort tranchant 7} (x) s’en déduit:
dM, 'O L roz
- = jr— Apmt— r 2
T@) = = T:le Qjeos - (12)
Supposons maintenant une seule poutre chargée, (4,) par exemple
P ( Z I} sin zx
Nous avons @} =H;, I1], et les formules (11) et (12) deviennent:
M;(x) = Z Hgsm L s (13)
=
© L Fra
T;(x) = ., ;—H,kﬂk COS —7— (14)

Remarquons qu’en vertu de la premiére équation (10)

i=n r=w

12
LM = ) s Msin 77 = (2) (15)
j=1 r=1

et il est aisé de voir que le second membre de cette équation représente le

moment fléchissant y; (x) dans la poutre (4,) supposée isolée sous ’action de
la charge répartie Py (). De méme:

S L rex dpy
ZT ~ Mgeos 7% = “F% _ 1, ). (16)
Les formules (13) et (14) sont bien entendu valables lorsque k=j. Mais

dans ce cas on peut améliorer la convergence des séries qui figurent au second
membre de ces formules en introduisant 1’expression de p; ()

Les formules (13) et (14) deviennent, dans ce cas ol (4,) est seule chargée

2
M;(x) L

r(l— H’)smrzx, (17)
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rmx

T; (x) _Zé H?;) cos —— 7 (18)

En effet 1— H}; tend rapidement vers zéro lorsque r augmente, car si 1’on
applique une seule charge unité au droit de 1’appui 4; de la poutre (B):

=1, [p=0(ks+j), @=Hy
et I’équation d’équilibre relative & 1’appui A4; de la poutre (B) a pour expres-

sion, d’apres (8): k=n
Hj; = Srkglﬁjk Hj,

et S, défini par (6) tend rapidement vers zéro lorsque r augmente indéfiniment.
Examinons plus particuliérement le cas d’une charge concentrée P placée
dans la section d’abscisse « de la poutre (4,). Nous avons:

.2 P . raa
I = I sin—g—
La formule (13) donne le moment fléchissant M¥ («,z) dans la section
d’abscisse x de la poutre (4;)

rmoa . T

(e, ) Z H’k sin —— 7 sin——. (19)

Nous avons done, compte tenu de la symétrie de la matrice H":
M¥ (o, x) = M}, ().

Donc, le moment fléchissant dans la section d’abscisse x de la poutre (A;) sous
Paction d’une charge unité placée dans la section d’abscisse o de la poutre (A4,)
est égal au moment flechissant dans la section d’abscisse « de la poutre (A4;) sous
Paction d’une charge unité placée dans la section d’abscisse x de la poutre (4;).

La formule (14) donne ensuite ’effort tranchant T} («,x) dans la section
d’abscisse x de la poutre (4;):

r=cw
2P rwe rmx
Tk =E — H7, sin ——cos —. 20
7 (e, ) [ M &SI —p—CO8 —¢ (20)

Tous les cas de charge peuvent se déduire par superposition & partir des
formules (19) et (20) qui donnent les ordonnées des lignes d’influence.
Pour terminer, traitons le cas d’une charge répartie de densité p appliquée
a la poutre (4;). On peut, soit utiliser 1’expression de T}
4p . ;
= ff:(l _cosra) = -, Ppour rimpair
0 pour r pair

soit utiliser les expressions (19) et (20):

& L
M]-(x)=6[M§‘(a,x)pdoc, ’I;-(x)=gT,-"(oc,x)pdoc.
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On trouve ainsi:

@
4p L2 rmwa
M@ = ), Pl Hysn T (21)
(r=1,3,5...)
- 4p rma

2. Exécution du calcul

Le calcul par la méthode précédente est long et fastidieux lorsqu’on 1’exé-
cute & ’aide d’une machine de bureau, si I’on veut vérifier plusieurs sections
en prenant un nombre raisonnable de termes des séries. Par contre, il est par-
faitement adapté aux possibilités des ordinateurs électroniques tels que 1’ordi-
nateur IBM 7090 pour lequel un programme a été établi.

Les données a fournir sont les suivantes:

L portée des poutres principales,
[ distance entre axes des poutres principales,
n nombre des poutres principales,

ro nombre des termes des séries pris en compte,
_6Ei 6 Lt

v1=—5 $1=_zjz7» nombre sans dimensions.

Dans 1’expression de vy,, I désigne l’inertie des poutres principales et 2
I’inertie de la dalle par métre de largeur.

Le programme est conc¢u pour n <25 et r, < 12.

L’ordinateur fournit trois groupes de résultats:

La premiére partie du programme fournit les réactions exercées par les
appuis 4; sur la poutre (B) lorsque cette poutre est soumise a 1’action d’une
charge unité placée au droit de I’appui 4;, et ces réactions sont données pour
les différentes valeurs du coefficient S, (r=1,2,...,7,). Ces réactions sont les
éléments des matrices H”. Pour cette détermination, 1’ordinateur utilise la
formule des cinq moments relative a la théorie des poutres sur appuis élastiques,
plus commode que 1'inversion de la matrice U + S, C.

La deuxiéme partie du programme fournit, pour une charge unité placée a
I’abscisse o sur la poutre (4;):

1. La part de charge p («, ) supportée a l’abscisse 2 par la poutre (4,).

2. Le moment fléchissant M7 («,x) & 1’abscisse z dans la poutre (4,).

3. L’effort tranchant dans les sections 2 =0 et x = L de la poutre (4,).

4. Le moment fléchissant m} («,x) au droit de la poutre (4,) dans la poutre
transversale fictive de largeur unité située & 1’abscisse .

Pour simplifier le calcul, nous nous sommes bornés aux valeurs particuliéres

de « et de x de la forme « = K~I§'- et x= K’%, K et K’ étant des nombres entiers.
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Compte tenu des symétries, il suffit de faire varier K de 044, K'de 04 8,7de 1 ég
n+1
2

Pour ce calcul la machine utilise les séries données dans la premiére partie
de cette étude.
Enfin la derniére partie du programme donne l’intégration des lignes

d’influence obtenues dans la seconde partie. Cette intégration fournit 1’aire

lorsque n est pair et de 1 & lorsque n est impair, enfin j de 1 & n.

des lignes d’influence des efforts dans une section d’abscisse x=K ’% de la

poutre (A4;) lorsque la charge unité se déplace sur la poutre (4;) entre les
abscisses 0 et L. Pour ce calcul, I’ordinateur utilise les méthodes classiques
d’intégration numérique de la Résistance des Matériaux basées sur l’inter-
polation par des polynémes.

Le temps de calcul de 1’ordinateur IBM 7090 est de l’ordre d’une minute.

Résumé

Dans la premiére partie de ce mémoire, on montre que le calcul d’un pont
a poutres multiples sous chaussée sans entretoises revient essentiellement au
calcul des réactions d’appui d’une poutre reposant sur des appuis élastiques
en nombre égal au nombre des poutres, pour un certain nombre de valeurs
des coefficients d’élasticité des appuis. Dans la seconde partie, on indique
quelles sont les données & fournir & 1’ordinateur électronique, et quels sont les
résultats fournis par I’ordinateur.

Zusammenfassung

Im ersten Teil dieses Aufsatzes wird gezeigt, dafl die Berechnung einer
Briicke mit vielen Lingstrigern unter der Fahrbahn im wesentlichen auf die
Berechnung der Auflagerreaktionen eines Trigers auf elastischen Stiitzen,
deren Anzahl gleich derjenigen der Tridger ist, zuriickgefiihrt werden kann,
indem die Rechnung fiir eine gewisse Anzahl verschiedener Auflagersenkbar-
keiten durchgefiihrt wird. Im zweiten Teil der Arbeit wird angegeben, welche
Angaben in das Rechenprogramm eingefithrt werden miissen und welche
Resultate durch den Elektronenrechner geliefert werden.

Summary

In the first part of this paper it is demonstrated that the calculation of a
multi-girder bridge under a carriageway without cross-beams is essentially
tantamount to the calculation of the support reactions of a girder resting on
elastic supports equal in number to the number of girders, for a certain number
of values of the coefficients of elasticity of the supports. In the second part,
the data to be supplied to the electronic computer, and the results provided
by the computer, are indicated.
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Calcul des poutres croisées, compte tenu de la torsion
Berechnung von Trdgerrosten unter Beriicksichtigung der Torsion

Calculation of Interconnected Beams, Taking Torsion into Consideration

ROGER LACROIX
Paris

1. Définition des systémes étudiés

La présente note concerne les réseaux formés de deux cours de poutres
croisées (A) et (B), soumis & des charges normales & leur plan, et répondant
aux conditions ci-apres:

— Les poutres des deux cours se croisent a angle droit.

— Les poutres (A), au nombre de m, sont toutes d’égale longueur; elles sont
de section constante, et simplement appuyées a leurs extrémités.

— Les poutres (B), au nombre de n, sont toutes identiques et soumises aux
mémes conditions d’appui; leurs appuis sont d’une part les poutres (A),
sur lesquelles elles sont encastrées, et d’autre part, éventuellement, des
appuis extérieurs, simples ou doubles (encastrements).

— Les poutres (B) ont une rigidité de torsion négligeable.

— Les appuis des n poutres (B) divisent chaque poutre (A) en »n + 1 intervalles
égaux.

Nous désignerons par:

L la longueur d’une poutre (A).

E I la rigidité de flexion d’une poutre (A).

G H la rigidité de torsion d’une poutre (A).

l I’espacement de deux poutres (B) consécutives.

E J la rigidité de flexion d’une poutre (B).

I D’espacement de deux poutres (A) consécutives; !’ est affecté d’un indice
si cet espacement n’est pas constant.

EI,GH
/
EJ /4

n poutres (B)

= Fig. 1.

m poutres(A)
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2. Systémes de charges propres

Le systéme élémentaire, dont la résolution forme la base de la méthode
proposée, est celui qui est constitué d’un cours de poutres (A), réunies par
une seule poutre (B).

En supposant la poutre (B) chargée, chaque poutre (A) forme pour celle-ci
un appui élastique double; la poutre (B) est en effet soumise, de la part de la
poutre (A), & une réaction verticale R proportionnelle & sa fleche v, et & un
couple € proportionnel & la rotation w de la tangente & sa fibre moyenne au
nceud correspondant. Dans le cas ot la poutre (B) est située & mi-portée des
poutres (A), les coefficients de proportionnalité sont:

— pour les réactions verticales:

v L3
S=®-war
— pour les couples:
w L
'=¢-om

A ce cas peut étre ramené immédiatement celui de deux poutres (B) dis-
posées symétriquement par rapport au milieu des poutres (A): en décomposant
les charges appliquées en systémes de charges symétrique et antisymétrique,
les deux poutres (B) prennent des déformations égales, ou opposées, et le
probléme & résoudre est encore celui d’une poutre continue sur appuis élas-
tiques, les élasticités des appuis étant différentes suivant le systéme de charges
considéré, symétrique ou antisymétrique.

Dans le cas d’un nombre quelconque n de poutres (B), cette méthode peut
étre généralisée de la fagon suivante:

Soit une poutre (A), divisée en n + 1 intervalles par n points B,, B,, ... B,,.
On appelle systéme de charges propre relatif aux points B un systéme de char-
ges 41,9, - - ., 4y, , appliquées respectivement en ces points, et tel que les fleches
V1,0, ...,v, en ces mémes points soient proportionnelles aux charges:

h_%B_ ... ._U_g
51 9s 9n

On montre que pour » points B existent n systémes de charges propres
distincts, définis & un coefficient multiplicateur prés, et & chacun desquels
correspond une valeur différente de S1).

1) Voir le mémoire de J. CourBoN et R. Lacroix: «Calcul des réseaux de poutres
croisées.» Ann. des Pts. et Ch. Mai-Juin et Juillet-AotGt 1957. Ce mémoire détaille lo
calcul des coefficients S, valeurs propres de la matrice des coefficients de proportionnalité
des charges et des fleches.
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Dans le cas qui nous occupe, ou les poutres (A) sont de section constante,
et ol les n + 1 intervalles formés par les points B sont égaux, et de longueur /,

les charges propres q,.¢s,, - . . g, sont les multiples d’'une méme charge par les
coefficients:
T . 27w .. nrmw
k, , = 8in— ky , = sin k,,=sin—-
1,r n+1’ 2,7 n+1’ ’ n,r ,n+1’
r prenant successivement les valeurs 1,2,...,n pour chacun des n systémes

de charges propres.
Le coefficient de proportionnalité des charges aux fleches est alors donné
par:

rmw

o % 13 2+cosn+1
r—_— .
q; 6 E1 2(1—00‘.57:_;_1'1)2

Les coefficients k; , n’étant définis qu’a un facteur prés, il est commode de

i=n
les mettre sous une forme normée, c’est-a-dire telle que > k%, =1.
i=1

A

Q:r= ynilsinirﬁ, (1)

En posant nL+1=H et K =221 les coefficients deviennent:

v, 1 2+cosrf
S, =—"=— ; 2
avee T q; K 2(1—cosrf)? (2)
De la méme fagon, un systéme de couples de torsion 7,,7,, ... 7, appliqués
a la poutre (A) sera dit systéme propre si les rotations de torsion w,, w,, . ..,w,

engendrées par ces couples satisfont aux relations:

oy, U ©

Pour une poutre de section constante rigidement encastrée & la torsion &
ses deux extrémités, les coefficients des couples formant chacun des systémes
propres sont identiques aux coefficients ),, définis par la formule (1), et la
constante d’élasticité relative au systéme de rang r s’écrit:

l 1
F"=2G’H 1—cosrf’ (3)

Un systéme de charges (ou de couples de torsion) quelconques P, appliquées
aux points B, B,, ..., B, peut se décomposer en la somme de n systémes de
charges (ou couples de torsion) propres, par:

F=3 1.4, (4)
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les coefficients /I, étant donnés par:

i=n

Hr ziglPi Qir' (5)

Considérons maintenant un réseau comprenant m poutres (A) et n poutres (B)
et supposons les poutres (B,),(B,),...,(B,) soumises respectivement & des
systémes de charges (ou de couples) @, (2)). Qs,- (2)), - - ., @,p+ (D)), systémes ne
différant les uns des autres que par leur intensité, proportionnelle aux coeffi-
cients @);, des systémes propres, définis par la formule (1).

L’équilibre du réseau est réalisé si:

— les réactions verticales des poutres (A) sur les poutres (B),

— les couples de torsion exercés sur les poutres (A) par les poutres (B),

— les fleches des poutres (A),

— les rotations de torsion des poutres (A), au droit de chaque poutre (B), sont
proportionnels aux coefficients @;,.

Toutes les poutres (B) ont alors des déformations affines, et le calcul du
réseau se ramene & celui d’une poutre (B) reposant sur des appuis élastiques
doubles, dont les constantes d’élasticité sont définies par les formules (2) et (3).

Nous avons donc ainsi le moyen de calculer les réactions mutuelles des
poutres (A) et (B), c’est-a-dire la répartition des charges entre les différentes
poutres (A), dans le cas oli un systéme de charges (ou de couples) quelconques
est appliqué au droit des poutres (B). En effet, un systéme quelconque peut
étre décomposé en la somme de » systémes de charges propres, au moyen des
formules (4) et (5).

Si R;;, est la réaction exercée par la poutre (4;) sur la poutre (B,) sous
’action du systéme de charges propres de rang r, la réaction de la poutre (4,)
sur la poutre (B;) sous I’action du systéme de charges réellement appliqué sera:

r=n
Ry = 2 I Ry,.
r=1

Le cas le plus général, ou les charges ne sont pas appliquées au droit des
poutres (B) mais entre celles-ci, peut étre ramené & celui-ci par I’'introduction
des charges équivalentes:

Les réactions mutuelles des poutres (A) et (B), ne dépendant que des fléches
et rotations de torsion des poutres (A) et (B) en leurs points communs, ne sont
pas modifiées en effet si on remplace les charges appliquées au systéme par
des charges situées au droit des poutres (B), pourvu qu’elles engendrent en
ces points les mémes déformations que les charges réellement appliquées. En
d’autres termes, il suffit de remplacer les charges réelles, appliquées en des
points quelconques de la surface du réseau, par des charges équivalentes ainsi
définies:

Les charges équivalentes P, P,, ..., P, a un systéme de charges quelconque
(D)) sont les charges concentrées qui, appliquées aux points B, B,,..., B,
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d’une poutre (A) supposée libre, déterminent en ces points les mémes fleches
et les mémes rotations de torsion que le systéme (3)).

En définitive, le calcul des réactions mutuelles des poutres d’un réseau
soumis & un systéme de charges quelconque se compose des étapes suivantes:

1. Remplacement des charges données par des charges équivalentes, situées
uniquement au droit des poutres (B).

2. Décomposition des charges équivalentes en systémes de charges propres.

. Calcul de la poutre sur appuis élastiques doubles, et des réactions mutuelles

des poutres (A) et (B), pour chaque systéme de charges propres.

4. Composition des réactions obtenues, pour obtenir le résultat cherché, c’est-
a-dire les réactions mutuelles des poutres (A) et (B) sous I’action des charges
appliquées.

w

3. Calcul de la poutre continue sur appuis élastiques doubles

Soit une poutre reposant sur n + 1 appuis élastiquesdoubles 4, 4,, 4,,...,4,,
et formant n travées de longueurs l,,l,,...1, et soit S; et I'; les constantes
d’élasticité d’un appui, définies par:

i Wy
S, ==~ et Fi:J—W—;’ (6)
v; étant I’abaissement de 1’appui supportant une charge R,, et w, sa rotation
sous I’action d’un couple M.

La poutre forme un systéme hyperstatique de degré 27 et la méthode des
travaux virtuels appliquée en pratiquant des coupures de la poutre au milieu
de chaque travée permet de calculer les moments fléchissants et efforts tran-
chants, au droit des coupures, par un systéme linéaire de 2n équations & 2n
inconnues.

Nous croyons cependant préférable de rechercher les couples et les réactions
exercés par les poutres sur leurs appuis, au moyen d’une méthode de relaxation,
bien que le systéme linéaire obtenu soit de 27 + 2 équations & 27 + 2 inconnues.
En effet, on obtient ainsi directement les inconnues cherchées (réactions
mutuelles des poutres (A) et (B)), au moyen d’un systéme d’équations étagées,
a coefficients simples, méme dans le cas d’une poutre d’inertie variable pou-
vant comporter ou non des appuis fixes (articulations ou encastrements).

Considérons la travée A4, ; 4; soumise & un systéme de charges qui don-
nerait lieu, si cette travée était sur appuss fizes et encastrée, a des réactions
d’appui 7;_, et r;, et & des couples exercés par la poutre sur ses appuis, m;_,

et m; (dans le cas d’une poutre d’inertie constante, par exemple, soumise &
. l 12 " 12
une charge uniforme p, r§_1=r;’=p§, mi 1= —Pig» M= +P5

que la rotation de 1’appui A4, est déterminée par les couples exercés sur cet

). En écrivant
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appui par les deux travées adjacentes, et de méme, que sa fléche est propor-
tionnelle & la somme des réactions d’appui de ces deux travées, il vient:

v; —U; V:— V.
_ ! ) 1+1 ! ) 1+1
M, =mi—k;y (wi—_‘“—) k1+1( T '_)
1

li+1 t+1

Vi 1+ —V, , | =,
+md—h0%—4%f4)—h0%d—&%—ﬂ)
1

R, =7+ ]l‘:i+1 (wi _ 'Uil_ vi+1) + ki (“’z‘+1 e ”i+1)

i+1 l'¢+1 li+1
!
+ kiq (w- V; — z+1) + k1+1 ( Yy 'Uz+1)
1+
liva lia 1+1 Liva

.k ( Y ) ( Y —Ui)
i\ @i l
1 1

Mi-i
\ Vitl

i L R i

Ri- R; Riy)

Fig. 2.

Dans ces équations, k; et k; sont les facteurs de rigidité de la travée 4, ; 4;,
supposée symétrique; leurs valeurs sont respectivement:

h=4fJ " M=2fJ

1 1

(7)

pour une poutre d’inertie constante J 2).
En exprimant les déformations en fonction des efforts au moyen des rela-
tions (6), on obtient un systeme linéaire de 2 n + 2 équations & 27 + 2 inconnues,

2) Pour une poutre d’inertie variable, & et £" sont de la forme k = 41?‘]0 aet k' = 2ETJO B.

Pour les poutres & goussets plans ou paraboliques, les valeurs de « et f de méme que les
moments m et m’ figurent dans 'ouvrage de R. GuLpAN: « Rahmentragwerke und Durch-
lauftréger» (Springer-Verlag).
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étagé, chaque équation contenant au plus six inconnues. Dans le cas fréquent
ou toutes les travées et tous les appuis sont identiques, ces équations s’écrivent,
en posant:
kI'=1vy, KT =y, (k+k)S = A
Y M +(1+2y) M, +y' M, —AlR,_{+Al R, , =m]+m;.
(y+y )M —(y+y ) My —2M B+ (1 +4A) IR, —2XI R,y = 1r] +1r;.

(8)

Le tableau ci-aprés donne un exemple du systéme obtenu pour une poutre
comportant trois travées, avec une charge unité disposée sur un appui de rive.

Re | Mot Ry M/l R» Mo/l Rs Ma/L Ze
membre

1423 |~r+y)| =22 |=(+y)| — - - — | =0

—2A 1+y A y’ — - — — =
—2X | y+y | 1442 — -2 |[—=(+y)| — — =

-2 ¥ — 1+2y A y’ =— — =0

—_ — —22 'y-+-'yl 1+42 —_ -2 ~—(y+y’) =

— — —A y’ — 1+2y A y’ =

— — — — -2 y+y 1422 y+vy =1

— — — — —A y’ A L+y =

4. Calcul d’un réseau a I’aide d’une machine électronique

Le programme décrit ci-aprés s’applique au calcul des ponts comportant
des poutres identiques et également espacées, reliées par des entretoises elles-
mémes identiques régulierement espacées. Moyennant une légére modification,
le programme pourrait étre facilement adapté au cas ol les poutres sont de
sections non identiques, et non régulierement espacées.

Le programme établi assure la décomposition des charges données en sys-
témes de charges propres, le calcul de la poutre continue sur appuis doubles
élastiques correspondant a chacun de ces systémes, et la recomposition des
réactions obtenues, pour aboutir finalement aux réactions mutuelles des
poutres sous 1’action des charges appliquées.

Les données & introduire sont:

1. Les caractéristiques du réseau:

— nombre de poutres: m

— nombre d’entretoises: n

— espacement des entretoises: [

— espacement des poutres: U

— rigidités des poutres: EI,GH

— rigidité des entretoises: EJ (et éventuellement les facteurs « et ).
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2. Les caractéristiques du systéeme de charges:

— dans le sens longitudinal: valeurs des charges équivalentes P, 5, ..., P,
appliquées au droit des entretoises.

— dans le sens transversal; valeurs des moments et réactions m;, m;, r;, r;
engendrés par les charges dans les travées supposées encastrées.

Les résultats sont les charges et les couples supportés par les poutres sous
I’effet du systéme de charges appliqué. L’utilisateur du programme peut done
ignorer 1’existence des systémes de charges propres: le seul travail préalable
consiste a rechercher les charges équivalentes P;; ce travail peut d’ailleurs
étre notablement facilité par l’emploi de tableaux donnant directement les
charges P, en fonction des fleches v; prises par la poutre sous ’action des
charges données.

De plus, en donnant successivement toutes les valeurs convenables aux
coefficients définissant les répartitions longitudinale et transversale des charges,
il est aisé, en une seule opération, d’obtenir la surface d’influence de chacune
des réactions mutuelles des poutres.

Le principal avantage du programme, écrit en langage FORTRAN, est
d’étre congu pour des machines de capacité modeste, telles que IBM 1620,
BULL y 30, ou CAB 500.

Le programme réalisé permet de calculer des réseaux comprenant 2 a 20
poutres, et 1 & 10 entretoises, ou pas d’entretoises. Dans ce dernier cas, les
systémes propres sont les termes successifs du développement de la charge en
série de sinus suivant la portée des poutres.

5. Applications aux ponts a poutres sous chaussée en béton

Dans le cas d’un pont & poutres multiples sous chaussée, en béton armé ou
précontraint, la dalle sous chaussée est le plus souvent utilisée comme mem-
brure commune aux poutres et aux entretoises. Les moments d’inertie I et J
des poutres et des entretoises se déterminent en général sans difficulté parti-
culiére.

Pour la rigidité de torsion G H, on distinguera le cas de la poutre formée
d’une dme, avec ou sans talon, de celui de la poutre-caisson. Pour la poutre-
caisson, la rigidité de torsion pourra étre calculée en assimilant la section de la
poutre a celle d’'un tube mince. Dans le cas d’une poutre & ame simple, la
rigidité sera la somme de celles des rectangles qui composent la poutre: dalle,
ame et talon. La rigidité de torsion d’une section rectangulaire de ctés a et b
est de la forme GH=}Gbadv, v étant un coefficient inférieur a 1, tendant
vers 1 lorsque le rapport de b & a croit indéfiniment, et dont les valeurs en
fonction du rapport b/a figurent dans la plupart des traités de résistance des
matériaux. Cependant, pour les rectangles formés par la dalle sous chaussée
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et ’ame de la poutre, il est plus exact de considérer que le rapport b/a est
infini, plutét que de prendre en compte sa valeur exacte, comme on peut s’en
rendre compte par 1’analogie de la membrane.

Enfin, la méthode proposée néglige la raideur des entretoises en torsion.
Cette approximation est admissible en général, car la rigidité de torsion d’une
entretoise est la somme des rigidités de son ame et de sa membrure, et comme
celle-ci est commune aux entretoises et aux poutres, sa raideur de torsion a
déja été prise en compte dans le calcul de la raideur G H des poutres. Le seul
élément que I’on néglige est donc finalement la rigidité de torsion des Ames
des entretoises.

Résumé

La méthode proposée raméne le calcul des réseaux de poutres croisées &
celui d’une poutre continue sur appuis doubles élastiques pour différentes
valeurs des coefficients d’élasticité des appuis.

Le calcul de la poutre continue est conduit par une méthode de relaxation,
qui permet d’aboutir a un systéme d’équations linéaires étagées a coefficients
simples, méme lorsque la poutre est d’inertie variable.

Le programme de calcul & la machine électronique permet d’obtenir les
valeurs des réactions mutuelles des poutres, sans qu’il soit nécessaire de con-
naitre le principe de la méthode de résolution.

Zusammenfassung

Die vorgeschlagene Methode fiihrt die Berechnung von Triigerrosten auf
die Untersuchung eines Durchlauftrigers auf elastisch senk- und drehbaren
Stiitzen zurtick, wobei die Rechnung fiir verschiedene Werte der Senkbarkeit
der Auflager durchzufiihren ist.

Die Berechnung des Durchlauftrigers wird mit Hilfe einer Relaxations-
methode durchgefiihrt, die auf ein System gestaffelter linearer Gleichungen
mit einfachen Koeffizienten fiihrt, auch wenn der Triger ein variables Trig-
heitsmoment aufweist.

Das Rechenprogramm fiir den Elektronenrechner liefert die Werte der
gegenseitigen Triager-Reaktionen, ohne dal das Losungsprinzip bekannt sein
mulbB.

Summary
The method suggested in this paper reduces the calculation of grillages of

interconnected beams to that of a continuous beam on double elastic supports
for different values of the coefficients of elasticity of the supports.
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The calculation of the continuous beam is performed by a relaxation
method, which enables a system of stepped linear equations, with simple
coefficients, to be obtained, even when the beam is of variable inertia.

The programming for the computer makes it possible to obtain the values
for the mutual reactions of the beams, without it being necessary to know the
principle of the method of solution.
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