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A Computer Analysis of Structures under Impulsive Loading

Etude ä la calculatrice eiectronique d'ouvrages soumis ä des charges dynamiques

Untersuchung von Bauwerken unter stoßartiger Belastung mittels Rechengeräten

B. RAWLINGS
Department of Civil Engineering, University of Sydney

Introduction

The mathematical formulation of structural engineering problems for Solution

by electronic Computer has occupied the attention of a large group of
people over the past ten years. If attention is confined to framed structures,
a convenient division may be made into elastic and plastic analyses of frames,
either under static or dynamic loading conditions. Without endeavouring to
give a comprehensive summary, mention should be made of the elastic, static
procedures using either stiffness or flexibihty approaches [1,2,3] which are
based on the linear properties of structural elements, and the extension of the
matrix stiffness approach by Livesley by piecewise-linear steps, to the analysis
of structures containing plastic hinges, so that the behaviour at collapse
follows as a limiting stage. Direct collapse analyses, based upon the assumptions

of the rigid-plastic theory have also been programmed for a few specific
classes of structure [4].

Turning to the behaviour of structures under dynamic loads, the matrix
formulation of elastic response is well established [5] and will not be further
discussed. In many cases however, it is necessary to examine the behaviour
of a steel structure subjected to impulsive loading sufficiently large to cause
severe permanent deformation. The simple mass-spring concept of a multi-
storey building which has found acceptance to date represents a first approximation

; however the actual behaviour of individual members cannot be ascer-
tained as the structure itself is not analysed in the process.

It is possible to achieve this end by making use of the rigid-plastic theory,
in which it is assumed that no deformation occurs in any member until the
(dynamic) füll plastic moment of resistance of the section is exceeded. In this
way the problem of solving the equations of elastic Vibration of the various
components of the structure is eliminated, and replaced by a relatively simple
problem of rigid body mechanics. The limitations of validity of such an
approach are discussed elsewhere [6] and will not be mentioned here.

In the present paper a method of analysis is presented which allows a rigid
framed structure to be examined in terms of its deformation under any system
of time-dependent applied forces. By formulating the equations in matrix
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form, the method becomes convenient for application to digital computation,
as only Standard matrix manipulations are involved.

The Behaviour of a Framed Structure Under Impulsive Loading

When a structure is deforming in accelerated motion under the action of
impulsive loads it must satisfy simultaneously:

a) The requirements of dynamics, namely that each and every element of the
structure is in equilibrium with the applied loads, internal reactions and
inertia forces accompanying the motion.

b) The requirements of kinematics, namely that the displacements and their
time derivatives are compatible with the assumed mode, and

c) The yield condition for the material, which requires that nowhere within
the structure does there exist a condition of stress incompatible with the
material strength. This third condition is made complex in the case of steel

subject to dynamic loading by the fact that the yield strength is a function
of strain-rate. In the analysis presented here, it will be assumed that the
value of yield stress selected is constant over the ränge of strain-rates
considered, an assumption which is normally quite close in practice.

In this analysis it is necessary first to formulate all of the dynamic
equilibrium equations for the structure, and to express these in matrix form. These

equations may be derived in two alternative and quite different ways; (1) by
synthesising the structure from its component members, writing down the
equations of motion of each, and making use of the conditions of equilibrium
and displacement compatibility at the joints, or (2) by treating the structure
as a whole, displacing it in each of its degrees of freedom and deriving the
result by using Lagrange's Equations of Motion.

For convenience the second approach will be taken, and illustrated later
in the paper. Consider a rigid framed structure acted upon by r applied tirne-
dependent forces \F\. It wül be assumed that there are a number of possible
collapse modes, and that there are p positions of peak moment where plastic
hinges may develop. The number of degrees of freedom of the structure, when
hinges have developed at all p points, is s.

The structure may now be treated as an assemblage of rigid links, joined
at those sections where moment peaks exist, and arbitrary moments may be

regarded as being externally applied to these joints.
The kinetic energy of the structure may then be written as

T ZlMq* (1)
s

and the work done by the moments and forces in a virtual displacement as

-AV -%mAd-£FAz, (2)
p T
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where the m's are the moments applied at the peak moment positions and the
displacements A z and the rotations A 6 are linear functions of the co-ordinates

q. Applying Lagrange's Equations,

cV_ d_ (cT\
8qs dt\cqs) '

s independent equations are derived, each being a linear relationship between
the applied forces, peak moments and accelerations in each degree of freedom.
These equations may be expressed in matrix form as

[fi in (3)

where \F\ is the vector of applied forces, \T\ the matrix of terms associated

with the configuration and inertia of the frame, and

moments and accelerations.

the vector of peak

Behaviour at Collapse

It will be observed that at this stage no aecount has been taken of the
kinematic or yield conditions associated with any particular mode of collapse
or size of member and, in order to obtain a Solution in a particular case, this
information must be incorporated in the analysis. If the applied loads are
small and the various members of the frame are substantial enough to
withstand these rigidly, no deformation will ensue so that |*| 0. The problem
thus reduces to one in statics, and the loads to cause static collapse may be

computed using the simple plastic theory. If, however the applied loads exceed
those associated with the strength of the frame, collapse will occur in one or
more modes. With each mode of deformation there is an associated kinematic
condition which, in general simplifies the vector \z\; also there is a yield
condition for any given frame, wherein the magnitudes and signs of the plastic
hinge moments are defined and these may be substituted into the vector \m\.
The remaining moments, where hinges have not formed are still undefined,
but must, in fact be numerically less than the corresponding füll plastic value,
in order not to violate the yield condition. Thus for each mode of deformation

the vector may be simplified to the form

\D\
m,

(4)

where \D\ is a matrix which depends only upon the governing requirements
of the mode, mp is the dynamic füll plastic moment of those hinges that have
formed,
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Iwijl is the vector of peak moments where hinges have not developed, and
1*^ is the vector of the independent accelerations associated with the mode.

m,
Hence \F\ \T\ \D\

p
m.

\w\ m

where

in idi \w\

The matrix must now be partitioned in the form

\W\ \wiwt\
in order to remove the column which relates to the term m„

Hence

and

1*1 =l^iK. + l^2|

1^1-1^1^=1^1

m.

(5)

(6)

4)

(8)

(9)

(10)

The matrix | W2\ will be square and non-singular in the case of a complete
collapse mode so that the inverse matrix | W2\-1 may be derived. Consequently

m l^2|-1! \F\-\W.\mJ. (11)

This gives the equations governing the response in the particular mode and the
values of the peak moments where hinges have not developed. Consequently
it is possible, knowing \F\, to determine any instant of time the acceleration
of the frame (and thus the velocity and displacement by numerical integration)
and the other peak moments, and to observe whether these violate the yield
condition. Any violation of this would then necessitate subsequent analysis
of behaviour in a new mode, with appropriate initial conditions for displacement,

velocity and acceleration. If motion is oecurring in a mode with more
than one degree of freedom, kinematic bounds of validity must also not be
violated. These, in general are governed by limiting conditions imposed upon
the independent velocities, which must be tested.

Illustrative Example

For the purpose of illustrating the method a very simple example has been
selected as shown in Fig. 1, the rigid bent ABC DE F being subjected to
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applied forces HB, Hc at B and C and to VE at E. Masses MB, Mc and MB
are attached at these points, the rest of the structure being assumed to have
no inertia.

Taking as the generalised co-ordinates zB, zc and uE as shown in Fig. 2 the
kinetic energy

T \MBi\ + \Mczc + \Mnü\.
The work done in a virtual displacement (Fig. 3) is given by -AV, where

AV HBAzB + HcAzc + VEAuE+mA(^ymB(Q*Z*-3Azc}

-mr

-m, (^).
where the m's are taken as positive if they develop tension on the inside fibres

I c
Hcj—HIIM

H8f—IHM,

\
\
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Fig. 1. Fig. 2.
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of the frame members. Applying Lagrange's Equations, by differentiating
the above expressions with respect to zB, zc and uE and their derivatives,

Hs+h { + mA-2mB + mc)-MBzB 0,

Hc+fr (+mB-2mc + mD)-Mczc

ve +-r(+mD-2mE + mF)-MBüE= 0.

In matrix notation as in Eq. (3) the expressions above become

HB
Hc
vE

-3/A + 6/A -3/A • • ¦ \MB ¦

-3/A + 6/A -3/A • ¦ Mc
-2/Z + 4/Z — 2/Z | • if, m,

Consider now the case if the structure collapses in the mode shown in Fig. 4,
and it is assumed that the members are of uniform section having a dynamic
füll plastic moment of resistance of mp.

In this case the vector

V7777/77777,

Fig. 4.

mA ~mv
mB + mp
mc mc
mD -mp
mE mE
mF 0

Zb *b
Zc ih
2n 0

(12)

(13)
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SO that \D\

-1
+ 1

-1
+ 1

+ 1

+ 1

and Eq. (5) becomes

Hz
Er

•3/A +6/A -3/A • ¦ • \Mj,
-3/A +6/A -3/A

-2ß +4ß -2/Zi •

Mr
M*

-1
+ 1

-1
+ 1

+

mp
mc
mE

i.e.

Thus

HL
Hc

+ 1

+ *

+ 9/A -3/A • | MB
¦ +6/A • \\MC

2ß ¦ + 4/Z; •

mv
mr
m.

Hb 9/A

Hc — mp
VB 2/Z

-3/A • | MB
+ 6/A • \\M0

¦ +m ¦

mr

giving, from (II),
mc
m*

Ih
Q(Mc + 4-ML

(-2Mcß)(4:MBß)

(24/ZA) (12/ZA)
(3l2h)(Mc + 4MB)

#2
Er
'E

9/A

2/Z

ran

Hence zB and zB may be determined at any stage of the motion, and mc and
mE observed and tested to ensure that the applied forces HB, Hc and VE do
not induce changes of mode during the deformation process.
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As a second illustration, consider the possibility of deformation in the mode
shown in Fig. 5. In this case there are two degrees of freedom, specified by the

D
E Fn

\ u

C \
B

A Lv/PAW/s
Fig. 5.

co-ordinates zB and zc;
üE 0. The mode equation for this case is

¦mp, % 0;

mA

mB
mc
mD
™>E

mF
zB

*c
üE

+

+

1 © •

1 • | ¦

1 1

1 •
1

¦

1 •

•
i i

• | • Ji

mp
ZÜÜ'.B.

*B
zC

and the final equation, after partitioning and inversion of the matrix \W2\
becomes

mf
l\MB

114

\jMc

\ HB 6/A

Hc - 6/A mv
L Ve 2/Z

Again, zB and zc may be found at any stage of the motion, and for the
continued existence of the mode;

1. mE must be numerically less than mp,
2. zB>zc\2,
3. zc>zB/2.

Discussion

Although the principles have been illustrated only by a very simple example,
in which the equations of motion may be derived readily without recourse to
matrix techniques, the method may be applied to frames which are
considerably more complex. Furthermore, the computation requires only the
normal procedures of matrix manipulation which form a Standard adjunct of
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many Computer programmes. As mentioned earlier the formulation of the
equilibrium equations may also be achieved by synthesising the structure
from its component members, and this procedure may be completely pro-
grammed. However this necessitates a number of matrix manipulations and
in many cases the manual analysis using Lagrange's Equations proves just as

quick and convenient.
The analysis may be extended to cover the case of a rigid-linear strain-

hardening material having the characteristics shown in Fig. 6, provided

Moment

Hinge Rotation
Fig. 6.

geometry changes under deformation are small. In this case, for each term in z
there will be an additional term in z, and the final equation wül take the form

\W2\-i[\F\-\W1\mp-\K\\z1\],

where |JBC| is a matrix of strain-hardening terms.
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lary

The equations of motion are derived, governing the dynamic behaviour of
a rigid-frame steel structure subjected to time-dependent loading of sufficient
intensity to cause permanent deformation. The material is assumed to have
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rigid-plastic characteristics; consequently all elastic response is ignored. The
analysis is formulated in matrix notation in a way enabling a problem to be

examined by means of Standard digital Computer routines.

Resume

L'auteur etablit les equations de mouvement qui regissent le comportement
dynamique d'un portique metallique soumis ä des charges variables dans le

temps et d'intensite süffisante pour provoquer des deformations permanentes.
Se placant dans les conditions de la theorie rigide-plastique on omet les
reactions elastiques. La notation matricielle du calcul permet l'emploi d'un
calculateur numeral selon les methodes courantes.

Zusammenfassung

Es werden die Bewegungsgleichungen für das dynamische Verhalten eines
Stahlrahmens unter zeitabhängiger Belastung einer Intensität abgeleitet, die
eine dauernde Verformung ergibt. Das Material soll starr-plastisch sein und
deshalb wird keinerlei elastisches Verhalten berücksichtigt. Die Analyse erfolgt
in Matrixschreibweise in der Art, daß ein Problem sich mittels normaler
Digitalrechenverfahren untersuchen läßt.
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Computer Analysis of Folded Plate Structures

Etude ä la calculatrice eiectronique des toits plisses

Berechnung von Faltwerken mit Hilfe elektronischer Rechengeräte

JOHN E. GOLDBERG WM. D. GLAUZ A. V. SETLUR
Ph. D. Ph. D. M. S.

Purdue University, Lafayette, Indiana, USA

Introduction

Continued and, indeed, apparently increasing interest in folded plate
construction suggests that the application of electronic Computers to the analysis
and design of such structures be investigated. Two methods of analysis, both
developed for electronic digital Computers, are described in the present paper.
The methods consider prismatic folded plate structures which are simply
supported at their ends. Both methods are founded upon the basic equations
of classical plate theory and classical two-dimensional elasticity theory [1, 2]1)
and therefore imply only the assumptions and limitations inherent in those
theories.

The first method is essentially a transliteration to matrix form of a theory
described in a previous paper [3]. The matrix form is especially convenient for
use on an electronic digital Computer and a program is easily prepared which
requires for input only the basic geometry (length, widths, thicknesses, and
inclinations ofthe individual slabs and beams), material properties and loading.
The program then constructs appropriate matrices and finally produces, as

output, displacements and tractions at desired points within the folded plate
structure.

In the second method, using a technique described previously [4], the basic
equations of plate and elasticity theory are transformed into sets of first-order
ordinary differential equations in the intrinsic variables; namely, Fourier
coefficients of four components of displacement and of four tractions. These

equations are in a form which is convenient for numerical Integration on an
electronic digital Computer.

Since each of the slabs which form the folded plate is assumed to be simply -

supported at the ends (x 0,a), it is convenient in both methods to represent
loadings, displacements and tractions as compatible generalized half-range
Fourier series. Thus, for example,

l) Numbers in brackets refer to items in the Bibliography.
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m-irX
w (x, y) 2 wm (V)sin

?7l=l «
«(x, V) £ um (y) cos

mtrX
(1)

Loadings p and q, displacement v, and tractions Mx, My, Nx, Ny and Qy are
also expanded into sine series. Loading in the a:-direction, and tractions Mxy,
Nxy and Qx are expanded into cosine series.

While Eqs. (1) postulate infinite series, only a few terms or harmonics of
the several series are needed to provide the accuracy required in design. The
equations and discussion in the following sections pertain to a single arbitrary
harmonic of the general Solution except as stated, and the dependent variables
are the amphtudes or coefficients of the m-th terms in the several pertinent
series.

First Method

Let i, j, k be three successive joints of a folded plate system (Fig. 1). For
the m-th harmonic, let d* be the column vector of the four components of
displacement at Joint j, the directions being associated with a reference plane

tM

+ M~—~~' --•,

m
\><N,

PA

I +M

vf\\

(¦Nip\0
le<pe

Fig. 1. Portion of foldod plate structure. Fig. 2. Differential element showing
positive tractions.

(conveniently taken as a horizontal plane) as shown in the figure. The amphtudes

of the four tractions at edges j of slabs jk and ij are represented by the
column vectors JJjjf and F£ and are given by the matrix equations

Fft Tik Kik Tjk if + Tjk Kkj Tkj d£ + Tjk F,k,

Fjf Tn Kn T„ df + Tn Kit Tv df + Tn FH.
(2)
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Here Tik, Kjk, Fik are, respectively, a directional transformation matrix, a
stiffness matrix, and a fixed-edge traction matrix. For a beam at and parallel
to Joint j, the four tractions may be written, similarly, in matrix form as

Fjf TjjKijTjjdf. (3)

The several matrices are defined in Appendix I.
Since Joint j is in equilibrium, the sum of Eqs. (2) and (3) must vanish.

This yields the matrix equation,

[Tn Ka Tij\d* + [TH KH Tn + Tjj Kn Tn + Tjk Kjk Tjk] df
+ [Tjk Kkj Tkj] & * - TH Fn - Tjk Fjk.

Similar equations may be written at each Joint. If there are n joints with
unknown displacements, there will be essentially 4n algebraic equations in
the same number of unknown displacements. Simultaneous Solution may be
effected by any suitable technique such as, for example, the Gauss-Jordan
algorithm or matrix iteration.

Having determined the displacements at each Joint, these may be substituted

into the following formulas to obtain the tractions at desired points
within each slab. For a typical slab, jk,

djk -^'fc "j > "-jk ™iZi "-k> (5)

where djk and dkj are the slab displacement column vectors at j and k respectively,

e.g., the elements of djk are 0-, wik, vjk and Uj,

My =-R1(l-v){ß3[S1(y') + (h-c*)C(y')]-ü2l2}
-D1m1[ej{-ßl[S1(y') + (S1-t*)C(y')]+ßl[C1(y') + (S1-c*)8(y')]}

+ Okißi[Si(y') + (81 -1*)C(y')]+ß2[C,(y1) + (h-c*) S(y')]}] (6)

+D1mi [wjk{ß3 [S, (y') + (83 -c*) C (y')] -ßt [C, (y') + (83 -t*) S (y')]}
+ wkj{ß3[S1(y') + (B3-c*)C(y')]+ßi[C1(y') + (S3-t*)S(y')]}],

Mx R1(l-v){ß3[S1(y')-(S3 + c*)C(y')] + 81l2}

-Dlm1[ei{ß1[Sl(y')-(&s + t*)C{y')]-ßt[C1(y')-(Bt + e*)S{y')]}
-Ok{ßi[S1(y')-(h + t*)C(y')]+ßi[C1(y')-(o2 + c*)S(y')]}](l)

+ D1mi[wjk{-ß3[S1(y')-(83-c*)C(y')]+ßi[C1(y')-(83-rt*)S(y')]}
-^¦{^[Ä1(2/')-(S3 + c*)C(2/')]+i84[C1(2/')-(83 + <*)Ä(2/')]}],

Mxu -R1(l-v)ß3[C1(y')-c*S(y')]
-D1tn1[ej{-ß1[C1(y') + (l-t*)S(y')]+ßa[S1{y') + (l-e*)C(y')]}

+ 6k[ßiC1(y') + (l-t*)S(y')]+ß2[S1(y') + (l-c*)C(y')]}] (8)

+ Dxm2 [wjk{ß3 [C, (y') -c* 8 (y')] -ß4 [S, (y') -1* C (y')]}
+ ^{ß3[Ci(y')-c*8(y')]+ßi[S1(y')-t*C(y')]}],

Qy RzßsSiy'j + Dm^i-ß^iy'j+ßrtCiy'K + d^Siy'j+ß.Ciy')]}
-Dm3{wjk[ß3S(y')-ß4C(y')]+wkj[ß3S(y')+ßiC(y')]}, ^
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Qx -^C (y')ß3-l]-Dm2{ej[-ß1C (y') + ]82S(y)] + öfc[/31C (y')+ß2S (y')]}

+ Dm3{wjk[ß3C(y')-j84S(y')]+wkj[ß3C(y')+ßtS(y')]},
('0)

N„ =-Riß6[01(y')-(c* + S1)S(y')]

-2)2mJ^{iSJÄ1(y')-(86 + I*)C'(2/')]-i86[C,1(y')-(85+c*)Ä(y')]}(ll)
-vkj{ß5[S1(y')~(h+t*)0(y')]+ß6[C1(y')-(h+c*)S(yW

+ D2m1[uJ{-ß1[S1(y') + (St-c*)C{y')]+ßa[Gl(y') + (Sa-t*)S(y'm
-«*{/3T[Ä1(y') + (8.-c*)0(y')]+A[CFi(y,) + (86-'*)'S(y')]}].

iVx Ä4]86[C1(y')-(c*-8a)S(»')]
-D2m1[vjk{-ß5[81{y') + (8i-t*)C(y')]+ß6[C1(y') + (h-c*)8(y')]}

+vkj{ß5[S1(y') + (h-t*)G(y')]+ß6[C1(y') + (8i-c*)S(y')]}]
+ D2m1[uj{ß7[S1(y') + (?i7-c*)C(y')]-ß8[C1(y') + (Z7-t*)S(y')]} (12)

+«*{A[51(y') + (87-e*)0(y')]+A[Cfi(y') + (87-**)'8(y')]}],

N«, ^{2^C'Sl(2/')~(c* + S6)C(2/')] + 1}

+ D2m1[^{J85[C1(2/')-(86 + <*)S(2/')]-i86[Ä1(2/')-(86 + C*)C(2/')]} (13)

- *v iß, [Cr (2/') - (8« + **) S (y')] +ß6 [Sx (y') -(o6 + c*)C (</')]}]

-2),»l[ti,{-j8T[C71(y') + (85-o*)S(y')]+j88[i8f1(y') + (8»-<*)Cf(y')]}
-%{j37[C1(2/') + (8s-c*)Ä(y')]+i88['S1(2/') + (85-«*)C(t/')]}].

in which

y'=2~y> <Xm 4>44' ** «mtanhoTO; c* amcotham;

m77-
(m7r\2 _ /m-nA3

-44)' m> [-a-)'>

S(y') sinh—-?-; <W) —*-Binh—-*-

m,1 a

o o a.

^, „ m-ny' „ m-ny' miryC(2/') cosh ^-; 0x{y') ^-cosh ^ooo24(l+v)' 2 2(l+v)'

ri, =—; xi« z= ; -/to — ¦ r^^ ; ji4 zz1
ra3a m2a (l+v)ra2a 7«2a

3+v 2 2v 1+v. 1
_

3 + v
8 T©7; Sl>5 iT© 8^ iT7' ^"T©© b«~v ^"TT©

Similar formulas may be deduced from Reference [3] for computation of
displacements within the various slabs, if desired.

The equations should be used for a sufficient number of harmonics. For
uniform loading, only the odd harmonics (m= 1, 3,5, etc.) are involved and,

usually, two to four of these will provide sufficient accuracy for design purposes.
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Second Method

It has been shown in a previous paper [4] that, for slabs simply-supported
at their ends, the equations which govern the deformations and tractions may
be written as a system of eight first-order differential equations. In the present
case these become

dw d6 My /mir\2 dv Nv mn
-r- 0; ;t—=--fr + v' — w> t~ ~r/ + v— u>
dy dy D \ a dy H a

du 2Nxy mir
_

dNy mir 4p
dy H(l-v) ~~ä~V' ~dy~ ~a~ xv~^44Zi''

dNxv _rZZZ!-N dMv 2mtr dVy /mir\2 4g
_

dy a x' dy v a *»' dy " \ a x mir'

Mxy D(l-v)^9; Jf.-vJf, + D(^)'(!-»•)«; {U)

Nx vNy-H~(l-v^)u,
¦ w v. ti Eh n Eh3
in which H Dl-v2' 12(l-v2)

Eqs. (14) together with the transformations, Eqs. (16), form a system of
eighth order subject to four boundary conditions at the initial edge and to
four additional conditions at the terminal edge of the complete structure. If,
for example, an edge is unsupported, the conditions are

Ny Nxy Vy My 0. (15)

If the edge is elastically restrained by, say, an edge beam, the tractions at the
edge are related to the displacements through the stiffness matrix of the beam

(i. e., Kjj) with an appropriate directional transformation matrix. Alternatively,
one may consider the edge beam itself as an additional slab which augments
the folded plate structure and which, at its outer edge, is subjected to the
conditions represented by Eqs. (15).

Given specified initial values of the eight intrinsic variables, the equations
are readily integrated with the aid of an electronic Computer and using a
suitable numerical procedure such as the Runge-Kutta fourth-order process
[5]. At each Joint, the transformations

v+ v~ cos Xi +w sin a,; w+ w~ cos «., — v~~ sin a,-;

N+ Ny cos a;- + V~ sin a;-; V+ V~ cos a;- - N~ sin a;-; a;- <f>H — ^
are made within the Computer, and the Integration then proeeeds with the
new variables appropriate to the slab under consideration.

The complete and correct Solution consists of the nonhomogeneous Solution
plus a linear combination of four homogeneous solutions, each obtained by
integrating Eqs. (14) with appropriately chosen initial values and using
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Eqs. (16) at the joints. The case of a structure with free edges will serve to
illustrate the method.

For this case, one constructs four homogeneous solutions (Solutions 1 to 4

in Table 1) by deleting the p and q terms in Eqs. (14) and integrating. The
initial conditions are Eqs. (15) and the values of the initial displacements are
shown in the table. With the p and q terms restored to Eqs. (14), one inte-
grates these equations to obtain the nonhomogeneous case (Solution 5 in the

Table).
Table 1

Solution Initial Values Terminal Values

u V w e Ny Nxy My Vy

1 1 0 0 0 N? x> xy M</> yd)v y
2 0 1 0 0 n2) N<2)A' xy My2) T/(2)' y
3 0 0 1 0 MI«) N(3)±y xy Mj,3» ' y
4 0 0 0 i K*] 2V(4)±y xy M<,4> yw
5 0 0 0 0 N£> iY xy Mj,5> T/(5I

1 y

Each of these solutions yields numerical values for all dependent variables
at the terminal boundary. If this boundary is free, the calculated tractions
are of interest and have values as indicated in the table.

One now writes the terminal boundary conditions in the form

C12V»> + C2 N<*> + C3 Nf + C, Nf -Nf,
C1 N% + C2 N% + C3 N% + C, N% - N%,
C1M^ + C2M^ + C3M<^ + CiM<^ -Mf,
CXV^ +C2v™ +C3V<v +CJP -F«)

(17)

and solves these equations for the C's. These are, in fact, the correct values
of the initial displacements. Now, with the starting values

u Clt v C2 w C3' c4 (18)

a final Integration of Eqs. (14) is made with the loading terms included and
using Eqs. (15) and (16). This calculation yields the amphtudes of displacements

and tractions over the entire structure for the harmonic under consideration.

The entire process is repeated for as many harmonics as are necessary to
attain any desired accuracy.

Example

Fig. 3 shows the cross section and loading of one unit of a north light roof.
The two narrow edge members were treated as beams having bending and
torsional resistance. Curves for a typical quantity, the transverse bending
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Fig. 3. North light folded plate structure.

moment at the section midway between the ends, are shown. One curve shows
these moments computed by the first method using only the first harmonic
(ra= 1). The other curve presents the practically correct Solution obtained as
the sum of several harmonics (m= 1, 3,. 9). Comparison of the two curves
indicates that it may be inadvisable to use, as is sometimes suggested, only
the first harmonic as a basis for design and analysis.

The Computer programs produce complete information on each of the
tractions and displacements for as many transverse sections as may be desired.
The programs, when used on a sufficiently large machine, are entirely self-
contained. They accept as input the basic information such as geometry,
material properties, desired number of harmonics and points at which final
quantities are desired. The first method program then calculates the fixed-
edge tractions and the edge coefficients for each slab and beam, forms the
Joint equations and solves for the Joint displacements. It then computes
tractions and displacements at as many sections and interior points as desired.
The present example required approximately 0.75 minutes on an IBM 7090

Computer to produce results for five sections. The second method program is

similarly self-contained.

Appendix I

As used in Eq. (4), the displacement column vector, df, and the
transformation matrix, Tjk, for slab jk at Joint j are

V
df Vi

6
-ui.

and Tjk —

0

cos <f>jk

0

0 0

sin^ 0

cos</>yfc 0

0 1

(19)
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The stiffness matrices, Kjk and Kkj, for Joint j of slab jk are written as

Kki

Kkj

S{kC1

0

0

s* c2

-syc6
0

0

S{kC3

-s2kc7
0

0

-spc,
spc8

0

0

0

0

-si?c9
"3 ^13

0

0

0

0

-s?c1&
0

0

in which, according to Reference [3],

8ik ™

(l-v2)a' 2 a

C*i 2 Tr ± j8x cosh am — /S2 sinh <x„r

m773

_ Eh%m
1 12(l-v^ sp, *3 ~(l+v)2a'

C5,6 772(±/S3COSham-04SmhaJ,

^7,8 —
a

+ 03 sinh am-ß4 cosh aj, C910 77 -05 cosh am ±j36 sinh am),

13,14 =n{±ß1 COSh am - 08 sinh ccm),

m
a

-C.5» n -m n

Cis.ie «¦ (+ & sinh am + 08 cosh am),

Wl "181 ^12 ^14f (21)

01,4 (amsecham±sinham)-1, ß23 (am csch am + cosh am)"1,

05,8 («m secho^ + y-j-^ sinh amj 06j7 (am csch am ± y-^ cosh amj

When + or + are indicated, the first subscript is associated with the upper
sign and the second subscript with the lower sign.

The matrices for the slab ji are

'8{iC1 -5{'C8 0 0

si{c6 -8{iC1 0 0

0 0 -Stfc -si*c,
0

Kn
0 -s(?a„ -sffc^j

K,

s?c2 si3'c4

s$ct syca
sijc12

0

0

sa c°3 °10
— s{i n sa n°3 U14 °3 u16.

For the beam at the Joint j the stiffness matrix is

,2^2

Kii

B»D» +2B{>bj

-B$b„
0

0

-2&i
0

0

0

0

— 2 77 m bi

a

tr m bj
a

Tdi-°3 3B$

B» -2B»m3

(23)
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where

Eh%b„ m2772
1 48m! a2 '

EhilbMmP^
4 ~

2m2o2 '

2 ~
24mx a4 '

Z)»=i^| 1-0.63

2Ä6

ßjj ^ Eh}ib%w?^
6m2a3

(1-0-63^)^ + „2 °3J '

/, Eh%m2tr2\ / 2Eb%m2ir2\ / Eb2um2-tr2\
^=(1+-^oW-)' m-(1+-©tv-)' and m-(1+lokr)'
For uniform load, the fixed edge traction column vectors Fjk and i^, at the
Joint j for the slab jk and 71 are

Fjk

-R{* (2ß3 Cosh <xm-l)
it2*|53Sinham

4i?3^6Sinham
^[406 Cosh am-(l+v)]

E«(2j83Cosham-l)
ÄKj83Sinh«w
4**0, Sinh «m

L - i?£* [4& Cosh «,„-(!+„)]
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Summary

Two methods for the analysis of folded plate roof structures are presented.
Both methods have been developed for Solution with the aid of an electronic
Computer. The methods are "exaet" in the sense that they are based upon
classical elasticity theory and classical plate theory.

One procedure is formulated along the lines of the displacement method of
structural theory and takes the form of a set of algebraic equations in which
the unknown quantities are the four generalized displacements at each Joint
or edge. The coefficients and constants ofthe set of equations may be generated
within the Computer.

The second procedure is based upon numerical Integration of an appropriate
eighth-order set of differential equations. This procedure differs from the usual
methods for handling shell problems in that the dependent variables are taken
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to be the intrinsic quantities. The output of the procedure is thus directly in
terms of the quantities of interest, including displacements, rotations and
stresses at all points on the antinodal lines.

Resume

II est presente deux methodes de calcul des couvertures en voiles poly-
gonaux; leur coneeption presuppose l'emploi d'une calculatrice eiectronique
dans la pratique. Ces deux methodes sont «exactes» en ce sens qu'elles se

fondent sur la theorie classique de l'elasticite et celle des plaques.
La premiere procede de la methode des deformations et prend la forme d'un

Systeme d'equations algebriques dans lesquelles les inconnues sont les quatre
deplacements generalises ä chaque Joint ou arete. Les coefficients et constantes
du Systeme peuvent etre determines par la calculatrice.

La seconde methode est basee sur l'integration numerique d'un Systeme
approprie d'equations differentielles du 8e ordre. Elle differe des methodes
habituellement utilisees dans les problemes relatifs aux voiles en ce que les

variables dependantes sont prises comme grandeurs intrinseques. Ce sont
ainsi des grandeurs d'interet immediat que les resultats fournis representent:
deplacements, rotations et contraintes en tous les points des lignes anti-nodales.

Zusammenfassung

In der Arbeit werden zwei Berechnungsmethoden für als Faltwerke
ausgebildete Dachkonstruktionen erläutert. Beide Methoden sind für die Lösung
mit Hilfe elektronischer Rechengeräte entwickelt worden. Die Methoden sind
«exakt», in dem Sinne, daß beide auf der klassischen Elastizitätstheorie und
der klassischen Plattentheorie aufbauen.

Die eine Art des Vorgehens basiert auf der Deformationsmethode der Trag-
werktheorie und erscheint in der Form eines Systems algebraischer Gleichungen,

in welchem die Unbekannten die 4 verallgemeinerten Verschiebungen an
jedem Rand oder an jeder Kante darstellen. Die Koeffizienten und
Konstanten des Gleichungssystems können mit dem Elektronenrechner gewonnen
werden.

Die zweite Methode basiert auf der numerischen Integration eines
entsprechenden Systems von Differentialgleichungen der 8. Ordnung. Dieses

Vorgehen unterscheidet sich von den üblichen Methoden zur Behandlung von
Schalenproblemen, indem die abhängigen Variablen als Eigenwerte betrachtet
werden.

Diese Methode liefert so direkt die gesuchten Werte für Verschiebungen,
Drehungen und Spannungen an allen Punkten der Gelenklinien.
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Analysis of the Nielsen System Bridge by Digital Computer

Calcul des ponts Nielsen ou de type analogue ä l'aide d'une calculatrice

Berechnung von Brückenträgern nach dem Nielsen-System mit Hilfe von digitalen
Rechengeräten

HIROYTJKI KOJIMA MASAO NARUOKA
Lecturer of Civil Eng., Tokushima Univ., Professor of Civil Eng., Nagoya Univ.,

Japan Japan

Introduction

It has been said that in the tied arch (Langer girder) bridge with inclined
hangers, the truss action of the inclined hangers reduces the bending moment
of the arch (girder), and that such bridges are more economical than the usual

types of bridge with vertical hangers. Many Nielsen System bridges have been

erected in Sweden, and there are papers dealing with the analysis of the system
by the force method. However, no bridge on this system has yet been
constructed in Japan and little work has been done in connection with the system
in that country. The recent construction of the Fehmarnsundbrücke in
Germany induced the authors to initiate analytical work on the Nielsen System
bridge by the displacement method. This paper describes the analytical
Solution, its programming and application, and the model test. The main
reasons why the displacement method was used are as follows:

1. It is simpler than the force method for purposes of analysis.
2. The mechanical tabulation of the stiffness matrix is possible and is more

convenient for use with a digital Computer.
3. It is possible to use the same analytical procedure not only for Nielsen

System bridges, but also for similar bridges with vertical hangers.

Part I. Analysis by the Displacement Method

The fundamental equation in the displacement method for the member ij
of a plane frame is expressed by Eq. (1) in Cartesian coordinates (Fig. 1),

** - - 12fIij ^4yi)\^(Uj-Ui)-^ (,,-„)}
H) Hj y Hj Hl I

72 7Hj Hj

la l. {^K-^)+^ («v-4
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(1)
EAii{yi — yZ\{xi — xZ), (w,--w©

Hi la l Hl Hl

[YVl 6 Ein \(Vi — Vi), - (Xi — Xi), ,1 2EIH,n „„,Wi} —jt^y'j K - ui) ~ /^ (vi -vi)\ + —r^ (ei + 2 ei) ¦
Hl Hl Hl J Hl

where,

^ü > &ij > and ä^ij! are the components of the force acting on the end i of the
member ij in the direction of the z-axis and the i/-axis, and the moment
at the same point, respectively;

ui,vi and dt: are the displacement of the end i of the member ij in the direc¬

tion of the x- and y-axes, and the rotation of the tangent at the end t

of the elastic curve of the member ij, respectively,
EIti: flexural rigidity of the member ij,
EA^: extensional rigidity of the member ij,
l^ : length of the member ij.

Substituting Eq. (1) in the equilibrium equations at the panel point i we
have the following Eq. (2):

[{ 2 (av)}"t-Z K) K)] + KZ (M) »i -2 (M («/)]

+ [{-Z(^)}öi-Z(%)(^)] -F>i,

[{ 2 (M M* - 2 (M (%)] + K2 (%)}»i - 2 (<%) («,)]

+ [{ Z(8«)}*i + Z(gtf)(»/)]-ö*.
[{-2 (%)} «i + 2 (on) («*)] + KZ (<©)} »< - Z (%) (»,)]

+ [{ 2 Z(«W< + Z (<*»)(**)] *<•
where, Pt, Qt and Mi: are the components of the external force applied to the

panel point i in the direction of the x- and y-a,xes, and the external
moment applied to the panel point i, respectively
ai}- ~dti: the coefficients calculated by the following Eq. (3):

(2)
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\2EIti (y;-y,)2 EAtj (%-xtf
V 13 72 ¦*¦ 7 72 '

•W *# 'i; *#

'i; 'ij '# 'f; (3)

6 P^« _ 1*BIV\ (Xj-xJ (ft-y^ 6EItJ (fr-y^

i> 72 7 ' aij 7

If Eq. (2) is formulated at each panel point ofthe frame, the stiffness matrix
is obtained. The arrangement of the element can be tabulated mechanically
according to the following procedures:

1. Number the panel points of the given frame from left to right.
2. Calculate the six coefficients for each member from the given data.
3. Prepare the space in which the element of the stiffness matrix wül be

written, and write the same numbers as the panel points in the outer side
of the row and column of submatrices 1, 2, 3, 4 and 7.

4. Write the coefficients a, b and c of the unknown terms u, v and 9 of Eq. (2.1)
in submatrices 1, 2 and 3.

5. Write the coefficients b, ä and c of the terms u, v and 9 of Eq. (2.2) in
submatrices 4, 5 and 6.

6. Write the coefficients c, c and d of the terms u, v and 9 of Eq. (2.3) in
submatrices 7, 8 and 9 (Table 1).

At steps 4, 5 and 6, each element must be written according to the rule
shown in Table 1, observing the panel points in the order of the numbers.

Up to step 6, no consideration is paid to the conditions of the supports and
hinged points. In the following step 7 these must be considered in order to
complete the stiffness matrix.
7. When the conditions of the supports are taken into consideration, the

unnecessary rows and columns are eliminated. In this case, u v 9 0,

u v 0 and u 0 are obtained at the fixed support, hinged support and
horizontally movable support, respectively. The unnecessary columns
corresponding to the support numbers are first eliminated, and thereafter
the rows corresponding to these columns are eliminated.

8. From the conditions of the hinged points, the columns of 9 corresponding
to the number of hinged points and the rows of submatrices 7, 8 and 9 of
the same number must be eliminated. In this case, where the System
contains the member hinged to the other member at both ends, the coefficients
a r^d must be calculated in advance on the assumption 1 0 for the member.

In the stiffness matrix thus completed, the elements are symmetrical about
the main diagonal and at the same time about the subdiagonal in each sub-
matrix except the signs.



Table 1. Rule for Arrangement of Element of Stiffness Matrix

03
00

Equilibrium

eq.

Unknown Terms

eoef. of M;

diagonal
element

coef. of uj
non-diagonal

element

coef. of Vi

diagonal
element

coef. of Vj
non-diagonal

element

coef. of dt

diagonal
element

coef. of 8)

non-diagonal
element

Right
Hand
Terms

«
B
o
k!
d
W
M
W

o
M

l
>
O

d
o

Efi o

sub matrix 1

2 aa _a«
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The matrix inversion of the above stiffness matrix leads to the influence
coefficients of the displacement and rotation of each panel point due to unit
panel point loads. In order to calculate the sectional forces of each member,
the following Eq. (4) is used, after obtaining ?$, Q and ä)i in Eq. (1):

M. m~{x'~Xi) N. -k..{x'-Xi)+&~{yi~yi)\
rl xi\ l Hi Hi t^\

Hi Hl

The signs of the sectional forces are the same as those used in ordinary
structural analysis.

Part II. Programming for the NEAC 2203 Computer

All the steps of the analytical method described in Part I were programmed
for the electronic digital Computer NEAC 2203. The block diagram is shown
in Fig. 2. The memory of the NEAC 2203 comprises a total of 12,000 words
and the calculable maximum number of the panel is 14 for all types of the
system, because magnetic tape is not used.

Each step of the programme is almost same as those described in Part I,
and only the following steps are different; that is to say, in the computation
of the stiffness matrix, steps 7 and 8 are calculated in advance in the internal
magnetic drum for every row of the stiffness matrix, and its elements are
transferred to be stored in the external magnetic drum.

The following data are prepared as input data:

1. Length of the member projected to the x- and y-coordinates, (x} — x{) and

(yj-yZ)-
2. Sectional area Atj and moment of inertia 7i7- of each member.
3. Total number of members connected to each panel point and the point

number of the other end of the member.
4. Type of loads and their position of application.
5. Total number of members.
6. Total number of panel points including supports.
7. Total number of hinged panel points except supports.
8. Minimum point number of the hinged panel points.

The data are arranged from lower numbers to higher numbers with regard
to the number of the panel point and also in the same order with regard to the
number ofthe other end ofthe member connected to a certain panel point. From
these data, the Computer can determine automatically whether the bridge to be

analysed is a Lohse girder, Langer girder, or tied arch bridge, and can adopt
the calculation corresponding to each system. The result of the Computer
calculation is printed in the form of the influence coefficients of the displace-
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initialize

±
computation and storage of the coefficients of equilibrium eq.

±
arrangement of the coefficients of stiffnes matrix for every row

without consideration of typeIjudgment of type

T
elimination of unnecessary elements by taking into consideration

the condition of the supports and hinged panel points

transfer of the elements of the equilibrium eq. from the internal
drum to the external drum

co

computation of inverse matrix

"5;
transfer of the elements of the inversed matrix from the external

drum to the internal drum

non-existent judgment of
load existence

existent

computation of the sectional forces for unit external load

T
printing of the sectional forces

co

printing of the influence coefficients of displacement and rotation
if necessary

Fig. 2. Block Diagram.
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ment and rotation of each panel point and the sectional forces of each member.
According to this programme, not only Nielsen System bridges, but also

ordinary tied arch, Langer girder and Lohse girder bridges with vertical
hangers can be calculated.

Part III. Example of Calculation

The Langer girder bridge with nine panels shown in Fig. 3, will be
calculated. The assumed values for A and I are as follows:

for member ÖT, A 137 cm2, for member T3, 35,57, 79, A 123 cm2, for member
12, A 51.2 cm2, for member 34,45, 56, 67,78, 89, A 40.15 cm2, for member
02, 24,46, 68, 8—TÖ, A 223.7 cm2 and I 834865 cm4.

In addition to above data, the necessary input data described in Part II
are (5) 33, (6) 19, (7) 9 and (8) 1.

7 9

_pzKr^44444~l
•Ä 2 4 6 (MiÖ i2 14 I6~A

L, 9« 6.555° 58.995m
"

J

Fig. 3. Skelton Diagram of Example 1.
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The machine time was 50 min. for calculating the influence coefficients of
the bending moment, normal and shearing forces of all members for each
panel point load, including printing time. The element of stiffness matrix
was 45 x 45.

The influence coefficients ofthe sectional forces of several members 24,12,10
and 46 due to unit vertical load are shown in Fig. 4. In Fig. 4, the füll line
shows the influence line for the system having inclined hangers and the broken
line gives the influence line for the system having vertical hangers at even
point numbers in Fig. 3 instead of inclined hangers. As may be understood
from Fig. 4, the bending moment decreases remarkably in the case of inclined
hangers, compared with the case of vertical hangers, whereas the normal and
shearing forces do not vary significantly.

The total weight of steel was 86.4 tons for a bridge of span 58.995 m,
effective width 6.0 m and carrying Class I Design Load in accordance with
the Japanese Standard Specification for Steel Highway Bridges (provisional,
June 12, 1962). This shows a steel saving of about 10% compared with an
ordinary Langer girder bridge with vertical hangers.

Part IV. Model Test

As an experimental verification of the theoretical analysis, a model test
was performed for the tied arch shown in Fig. 5. The model material was

A3 5

i]
4 r. 6

5»28 2 ' 141 cm

• point where strain measured

Fig. 5. Model Tied Arch.

polymethylmethacrylate. The sectional area and moment of inertia of the
upper chord, and the sectional area ofthe ties and inclined hangers are 3.0 cm2,
5.0625 cm4, 1.0 cm2, and 0.2 cm2, respectively. The compressive force which
acts in the inclined hangers due to the truss action can be eliminated by the
tensile force due to the dead load. In this test, preloads were applied to all
panel points of the lower chord, and then a concentrated load was applied.
The result is shown in Fig. 6. In Fig. 6, the füll line shows the theoretical
values, the chain line the mean of several observed values, and the broken
line the theoretical values for an ordinary tied arch bridge with vertical hangers.
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bendmg stress of upper flange
at point A3 {kg/cm2)

Compound stress of Upper flonge
at point A3 (kg/cm2))

,T 1-

f \ t+»: > n

H (-)

axial stress of point A3 (kg/cm2)

r-~^

r -t+)

\ t-) /

deflection of point 4 (mm)

axial stress of point TI (kg/cnr*)

©©

oxial stress of point H2 (kg/cm2)

Fig. 6. Result of Model Test (point load P= 3.5 kg).

Conclusion

The analytical Solution of Nielsen System bridges by the displacement
method and especially the formulation of the stiffness matrix have been
described. It was programmed for the NEAC 2203 Computer for the purpose
of automatic calculation. According to this programme, not only Nielsen
System bridges, but also any pin- and rigid-jointed plane frame which is

simply supported can be analysed. This paper shows only one example, but,
as can be understood from Parts III and IV, this system is advantageous as

compared with a similar system with vertical hangers. Finally, a model test
showed that the Solution proposed by the authors is useful.

Taking advantage of the programme, the authors are now studying three

types of Nielsen System bridge and the general characteristics will be published
in the near future.

Summary

This paper describes a theoretical analysis which is applicable to all types
of Nielsen System bridge with arbitrarily inclined hangers and its programming
for calculation by Computer. It consists of 4 parts:
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Part 1: Theoretical analysis by the displacement method.
Part 2: Programming for the NEAC 2203 Computer.
Part 3: Calculation for a Langer girder bridge with inclined hangers.
Part 4: Model test.

This method of analysis can be applied not only to Nielsen System bridges,
but also to similar bridges with vertical hangers such as tied arch, Langer
girder and Lohse girder bridges.

Resume

Les auteurs presentent une methode de calcul de tout pont de type Nielsen
avec suspentes d 'inclinaison arbitraire et exposent 1 'etablissement du programme
de la calculatrice. On trouvera quatre parties principales:

1. Calcul par la methode des deformations.
2. Etablissement du programme de la calculatrice NEAC 2203.
3. Calcul d'un pont bow-string ä suspentes inclinees.
4. Essais sur modele.

Outre les poutres Nielsen, cette methode de calcul est applicable ä d'autres
ponts similaires ä suspentes verticales tels que l'arc ä tirant, les ponts ä poutres
bow-string du type Langer ou de Lohse.

Zusammenfassung

Die Autoren beschreiben eine theoretische Untersuchungsmethode, welche
sich auf alle Arten von Nielsen-Trägern mit beliebig geneigten Hängestangen
anwenden läßt. Ferner wird die Programmierung für die elektronische Berechnung

erläutert. Die Arbeit besteht aus vier Teilen:

1. Teil: Theoretische Untersuchung mit Hilfe der Deformationsmethode.
2. Teil: Programmierung für den NEAC 2203-Rechner.
3. Teil: Berechnung für einen Langerschen Brückenträger mit geneigten

Hängestangen.
4. Teü: Modelluntersuchung.

Diese Berechnungsmethode kann nicht nur auf Nielsen-Träger, sondern
auch auf ähnliche Brückenträger mit vertikalen Hängestangen, z. B. Bogen
mit Zugband, Langer- und Lohse-Brückenträger angewendet werden.
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Berechnung von Stockwerkrahmen nach Theorie II. Ordnung J)

Calculation of Multi-storey Portal Structures in Accordance with Und Order Theory

Etude des portiques etages par calcul du 2e ordre

HORST KRETZSCHMAR HEINZ MÜLLER
Dr.-Ing. Dr.-Ing.

Technische Universität Dresden, Lehrstuhl für Statik der Baukonstruktionen und Stahlbau

1. Aufgabenstellung und Lösungsweg

Die bekannten Formulierungen der baustatischen Ansätze sind im
allgemeinen für den Einsatz digitaler Rechenautomaten nicht oder wenig geeignet.
Für die Berechnung ausgezeichneter Größen des Spannungs- und
Verschiebungszustandes von Stockwerkrahmen mit einem orthogonalen Netz nicht
unterbrochener Stiel- und Riegelzüge und an den Knotenpunkten biegesteif
oder gelenkig angeschlossenen Stäben nach Theorie IL Ordnung wird hier
eine für Rechenautomaten geeignete Formulierung mitgeteilt.

Von den Verfahren der Baustatik wurde die vereinfachte Deformationsmethode

(Vernachlässigung der elastischen Stablängenänderungen) ausgewählt.

Sie besitzt gegenüber der Kraftgrößenmethode bei den zu betrachtenden
Stockwerkrahmen den Vorteil einer meist kleineren Zahl der Unbekannten.
So sind zum Beispiel für einen Stockwerkrahmen mit biegesteifen
Stabanschlüssen bei der vereinfachten Deformationsmethode v (n + 1) unbekannte
Verformungsgrößen, dagegen bei der Kraftgrößenmethode Zv(n— 1)
unbekannte Schnittkräfte einzuführen, wenn mit v die Zahl der Geschosse und
mit n die Zahl der Stielzüge bezeichnet wird. Noch wesentlicher erscheint
der Umstand, daß der Formalismus der Rechnung bei der Kraftgrößenmethode
durch die Art der Stabanschlüsse wesentlich stärker beeinflußt wird als bei
der Deformationsmethode. Bei der Reduktionsmethode sind, soweit nicht
Schnittgrößen unterdrückt werden, 3w unbekannte Größen in vertikaler oder
3v unbekannte Größen in horizontaler Richtung fortzuleiten. Sind in Fort-
leitungsrichtung verschiedene Stabanschlüsse vorhanden, so erhöht sich die
Zahl der Unbekannten oder diese müssen abgelöst werden. In beiden Fällen
wird der Formalismus der Rechnung erschwert.

Für die Auflösung des nach der vereinfachten Deformationsmethode er-

1) Dieses Thema wurde im Rahmen eines Forschungsauftrages am Lehrstuhl für
Statik der Baukonstruktionen und Stahlbau, Lehrstuhlinhaber Prof. Dr.-Ing. habil.
G. Bürgermeister, bearbeitet.
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haltenen Gleichungssystems scheidet eine iterative Behandlung aus, da im
Gegensatz zur Theorie I. Ordnung hier Konvergenzschwierigkeiten zu erwarten
sind. Die spezielle Belegung des Gleichungssystems empfiehlt für die direkte
Behandlung eine zweistufige Lösung. Dadurch können auch bei relativ kleinem

Speicherraum größere Systeme berechnet werden.
Zur Organisation eines für Digitalrechenautomaten geeigneten Rechenablaufes

werden die beiden äußeren Stielzüge mit dem obersten Riegelzug und der

Verbindungslinie der Fußpunkte wie in [4] zu einem Rechteck ergänzt. Außerdem

sind die anderen Riegel- und Stielzüge bis zur Berandung des Recht-

(v-t)tvH

n+t

-n+1 -2

i+l

n-1

T
(v-1)n-|-

»-4
ti-1)n -f-

1 o'

Fig. 1. Einordnung des Stockwerkrahmens in ein Rechteckraster.

eckes zu ergänzen. Es entsteht dadurch ein Rechteck mit vn Rasterpunkten,
die gemäß Fig. 1 zu numerieren sind. Diejenigen Rasterabschnitte, die sich
nicht mit dem vorgegebenen Stockwerkrahmen decken, werden als unbelastete,
beiderseits gelenkig angeschlossene Stäbe aufgefaßt. Gleichermaßen werden
bei der Berechnung der Vorzahlen ajnin, ain+1,jn+1, ajnJn+1 (s. Fig. 4) die

Verbindungen der Rasterpunkte jn, jn+l als unbelastete, beiderseits
gelenkig angeschlossene Stäbe betrachtet.

Informationen über die Art der Anschlüsse der Stäbe an die Knoten werden
durch entsprechende Markierungen der Größen J eingegeben. Der Zahlenwert

und die Markierung der Größe J sind aus Fig. 2 ersichtlich2).
Da bei einer Untersuchung nach Theorie II. Ordnung die Vor- und

Belastungszahlen vom Längskraftzustand abhängig sind, muß die gesamte
Berechnung in Form einer Iteration, die mit geschätzten Längskräften eingeleitet

wird, durchgeführt werden. Es wird hier der stabilisierende Einfluß

2) Der Zeiß-Rechenautomat ZRA 1, für den das behandelte Problem programmiert
wurde, verfügt über die drei Markierungsmöglichkeiten Q 1, Q 2 und Q 1 Q 2.
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von Längskräften N>0 (Zugkräfte) bei der Ermittlung der Knoten- und
Stabdrehwinkel vernachlässigt.

Der Ablauf der Rechnung ist aus Fig. 3 ersichtlich.

Lagerung Markierung >i,k

^»^k

T7&V I

keine

j^P^i

Trögheits
moment

des Stabes

i,k

^ö^k Trögheits
moment

des Stabes

i,k

keine

Trägheitsmoment

des Stabes

i,k

Fig. 2. Kennzeichnimg der Stabanschlüsse durch Markierung der Größe J.

W

Berechnung der Hilfsfunktionen a, ß, y und der Steifigkeitswerte S1, S11

Berechnung der Lastmomente und der Stabendmomente im geometrisch
bestimmten Hauptsystem

Berechnung der Vor- und Belastungszahlen

Ermittlung der Knotendrehwinkel in der 1. Stufe der Berechnung

Ermittlung der unabhängigen Stabdrehwinkel (2. Stufe der Berechnung)
und der endgültigen Knotendrehwinkel

Rekursion der Schnittkräfte

Gleichgewichtskontrolle der Lösung

P (Wiederholung des Berechnungszyklus)

r\
Fig. 3. Schematische Darstellung des Rechenablaufes.
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2. Gleichgewichtsbedingungen

Die Gleichgewichtsbedingungen 8Ai 0 (i 1,2,..., vn) an den Knotenketten

rt und die Gleichgewichtsbedingungen S A „ n+j — 0 (j u +1, u + 2,..., v)

an den Geschoßketten rrn+j führen auf ein Gleichungssystem der Form
gemäß Fig. 4a. Die Geschosse j 1, 2, .,u sind horizontal unverschieblich.
Gemäß Fig. 4b werden die Vorzahlen zu Matrizen und die Belastungszahlen
sowie die unbekannten Knoten- und Stabdrehwinkel zu Spaltenvektoren
zusammengefaßt. Von den (u-w)-Spalten einer Matrix B; ist die Spalte (j-u)
mit einem Spaltenvektor bj:j belegt, sofern 1 ^ (j — u) g (v — u) ist, und die

Spalte (j — u + l) mit einem Spaltenvektor 63-,+1, sofern 1 ^ (7 — u + 1) ^ (v — u)

2n
Cj-1) n+l

(v-l)n + t

V n

V n+l
V n+ u

V n+u+1
V n+v-1
V n+ v

1

2

2n
(j-1)n + t

lv-1)n + 1

v n

v n + 1

vn + u
v -n + u+1
v n+v-1
v n+ v

0 0

000
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ff
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0
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0
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0 0
0 0
0 0

0
0
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0
0
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0

0
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0 0 0
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0
0
0
0

0
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0
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0
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0
0

0

fcl+1 avn+u4l,0
Ovn+v-1,0
Qvn+v.O

0

Fig. 4 a. Belegung des Gleichungssystems.

A, D, B,

•

*,

+

b,.o

D, A2 D2 B2 x2 b2,0

Di-, A, D, B, «J bj.o

Dv-2 Av-, Dv-, Bv, Xv-I bv-,.0

Dv-, Av Bv Xv bv,0

b; B2 b:
j

B;-, b; C y c0

Fig. 4b. Aufbau des Gleichungssystems aus Matrizen.
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ist. Die restlichen Spalten sind mit Nullvektoren o belegt. Hierbei ist o ein
Spaltenvektor mit n Nullen.

Bj (o, o, bj j, bjJ+1 ,o o),

bi,i

a(j-l) n+l, c n+l

a(j-l)n+2,cn+j

"i, v n+j
'1,1+1

a,(1-1) n+l, v n+j+1

a0'-l))i+2, i-n+j'+l

"i, v n+1+1

_ j n,v n+1+1

3. Behandlung des Gleichungssystems

Ansatz für die zweistufige Entwicklung

Das Gleichungssystem wird in zwei Stufen aufgelöst. In der ersten Stufe
werden im un-fach geometrisch unbestimmten System die Knotendrehwinkel
9i 0 infolge äußerer Belastung und die Knotendrehwinkel q>t • infolge der
Verschiebungszustände tp} 1 (7 u+l, u + 2, v) berechnet3). Die
Spaltenvektoren der Knotendrehwinkel des Riegelzuges j infolge der
Verschiebungszustände tpu+1 1, tpv 1 werden in einer %-zeüigen Matrix X;-

zusammengefaßt.

1 ~ \Xj,u+l'Xj,u+2> ¦>*},l

Die endgültigen Knotendrehwinkel des (vn + v— u)-ia,ch geometrisch
unbestimmten Systems werden in der Form erhalten

xi xi,o + xiy (7 1,2,...,«).

Erste Stufe der Lösung

Mit den Matrizen

Zi (xi, o>X})> Fj (bj, 0 > Bj) ¦

werden die n Knotengleichungen des Riegelzuges 7 im vn-f&ch. geometrisch
unbestimmten System:

!>,•_! Z,_x + A, Zt + DjZj+1 + Fj 0 (7 1,2,...,«).
Dieses dreigliedrige Matrizengleichungssystem für die unbekannten

Matrizen Zj (7 1, 2, v) wird analog wie ein dreigliedriges Gleichungssystem
skalarer Unbekannten [1] gelöst. Die Elimination wird am Beispiel für v 4

entwickelt.

3) Die Knoten- und Stabdrehwinkel werden ebenso wie die Stabendmomente und die
äußeren Knotenmomente positiv definiert, wenn sie im Uhrzeigersinn drehen.
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Mit Ay-V-Ai-K^D,^,
F<?-»=Fj-Kj_1F<tf>,
Ki_1 =D;._1(^^))-i

lautet die Ehmination für v 4

'Z\ -Z2 -Z3 -Z4

Ki A1 öi Fi

D, A2 D2 F*

D2 A3 D3 F3

D3 A F4

Af D2 FS»

D2 A3 D3 F3

D3 A, F4

Af D3 Ff>

D3 A, F4

Af F<3)

Die unbekannten Matrizen folgen dann aus

z„ -K°-i>)-iF<y-©
Zj - (^-«)"i (Fy-D + D,ZJ+1) (j v-l,v-2,...,l).

Zweite Stufe der Lösung

Die Geschoßgleichungen hAvn+j (j u + l, u + 2,

Fig. 4 b
v) lauten gemäß

Mit

wird

i l
xJ xJi0+Xjy

y =-(C+Z B'jXj)-* (c0+ J B',xM).
7 1 ;'=1

4. Aufbau der Vor- und Belastungszahlen

Hilfsfunktionen <x, ß, y und Steifigkeitswerte S1, Su

Mit den Hilfsfunktionen

e sin c — e2 cos e

2(1 — cose) — esine' ß
e' — e sin e

2(1 —cose) -esine' Y
<x2-ß2
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nach [2], die aus den Argumenten e der Stiele (i — n,i) und der Riegel (i,i + l)
0

"*-"¦* hi

0

lti,i+l

4
^-n,i 0 oder Jf_nji 0

Ni ,1 für' " alle restlichen i (l^i^vn),EL
iVM+1>0 oder JM+1 0

Ni,i+ll für
EL'i,i+l

folgen, werden die Hüfswerte

*lk

0

H,k Si\yiikmitQV 'A

Yi.k mit Q2

0

ßi,k

alle restlichen i (l^i^vn—l)

Ji,k o

Jt j. + 0 und keine Markierungieweils für !• „ _ „0 J Ji i. 4= 0 und § 1-Markierungi, A:

o J^ fc + 0 und Q 2 -Markierung

gebildet, woraus die Steifigkeitswerte

Si •

EXt-»,t „i°i—n,i '

m _ EJi,i+i ,i on _ EJi>i+1 jj"s.i+l — 7 öi,i+l

folgen. Die Zuordnung der Stiellängen A;- (7 1, 2, w) zu den Stielen
(i — n,i) bzw. der Riegellängen lr (r 1, 2, ...,»— 1) zu den Riegeln (i,i+ 1)

wird durch Markierung der Größen N^_-^nin bzw. Njnjn+1 gesteuert. Die
Markierung der Hilfswerte s1, s11 ist auf die Steifigkeitswerte S1, Su zu
übertragen.

Stabendmomente im geometrisch bestimmten Hauptsystem

Die Stabendmomente eines Stabes i,k im geometrisch bestimmten Hauptsystem

sind für eine Einzellast nach Fig. 5 a bzw. für eine gleichmäßige Strek-
kenlast nach Fig. 5 b in der Form

MlA= -PZ(S"/i + Si/n)

© J\ c

- CL -
-* L —

N h-M- r^ Pilllllllllllll 4
L-c-4*- c-*-

- CL ~-A
-^ L —»-

Fig. 5a. Belastung des Stabes ik durch
eine Einzellast.

Fig. 5b. Belastung des Stabes ik durch
eine gleichmäßige Streckenlast p P/A'.
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angebbar. Unter Verwendung der in [3] mitgeteilten Beziehungen für die
Stabendmomente im geometrisch bestimmten Hauptsystem werden die f-
Werte für eine Einzellast

f1 ?lr.^[«(1-0]i-?<1-fl'

Für eine gleichmäßige Streckenlast werden die /-Werte durch Integration zu

eA
2 smT 1

<=A

2 Sln "2
/n =—3-^-sin (e I)^- + 4e3Sine A e2

erhalten.
Im Falle e 0 vereinfachen sich die Ausdrücke zu

fi l(2f-8f + P + f^-^),

wobei für Einzellasten A 0 zu setzen ist.
Bei mehreren, gleichzeitig auftretenden Querbelastungsfällen und

vorgeschriebenen Längskräften werden die Stabendmomente eines Stabes durch
Superposition gewonnen.

Vor- und Belastungszahlen

Die Vor- und Belastungszahlen werden analog zu [1] als virtuelle Arbeiten
an den Knoten- und Geschoßketten gebildet.

ai.i Li-n,i + Li-i,i + ßi,i+i + Ri,i+n (i l,2,...,vn),
T —

J®' wenn ^n,% mit Q 2-Markierung
M ~ \S\ti für alle sonstigen Fälle ''

p _ JO, wenn Sjk mit Ql-Markierung
*k ~\S\k für alle sonstigen Fälle )'

ai.i+i =8i}i+i (i l,2,...,vn-l),
ai,i+n &i?i+n (i 1,2, ...,vn-n),

™i, v n+i _ JO, wenn S\_ni mit Q2-Markierung (7' u+ l,w + 2, .,v)
\ — (Sj_n> i + $£[„_ {) für alle sonstigen Fälle (7 — 1) n< i ^ jn,
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%~ n, v n+}
0, wenn S\_nA mit Q 1-Markierung (7 u+1,u + 2, ...,v)
- (Si-n,i + £>i-n,i) für alle sonstigen Fälle (7 - 2) n <i < (7 -1) n,

v n+l, v n+i

2 2U,i + N,_nJ h, für Ni_n>i < 0
i=(j-l)n+l

in
T Ti für N- >0Z-i -*t— n,% ±ui ¦"<—n,t u

U= (3-1)k+1

fS|_nf, wenn (S'J_TOii mit Q 1 -Markierung
2(»S$i_Bii4-jSJIn>1) für alle sonstigen Fälle.

Si,i + i (I 0,1,...,vn)

S;.nii (i= l,2,...,vn)

Sj-n i =0 (i vn+1, vn + 2,...,v n+n)

-¦ 0 *1

-- i+1 -»i

-- O-^-aii

-¦ P {Si-n j mit Q2[

(j U+1,U + 2,...,V),

-¦ p{sl,,i mit 02

Sl-1,1 a i,i =» Ojj

-¦PS

¦¦ S^i+i + a j,i -*. a;

•¦ P (s^i+n mit Q'

"" Si,i+n+°i,i ¦?• Oj 1

itii + 1 mit Q1J

" ¦ P {«"1,1 0}

P

+ 1*01

-- P [i vn}

h (i-l,2 vn)

Fig. 6. Flußdiagramm zur Berechnung der Vorzahl at.
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Die Fußzeiger der Vorzahlen a legen die Stellung nach Zeile und Spalte
im symmetrischen Gleichungssystem nach Fig. 4a fest.

«i,o Mli-n + Mli-i + Mli+i + Mli+n-Mi (i=l,2,...,vn),
avn+i,0 ~[bi+ f (Mtn.i + ^li-n)] (j u+l,u + 2,...,v).

t (7-l)n+l
Dabei bedeuten

Mt: äußeres Knotenmoment am Knoten i,
by. virtuelle Arbeit der äußeren Kräfte an der kinematischen Kette rvn+i

mit ifij 1.

Sind an einem Knoten i sämtliche Stäbe gelenkig angeschlossen, dann
werden unter anderm folgende Vor- und Belastungszahlen null: at t, at t_x,
ai,i+i> ai,o und die zugehörige Matrix Aj wird singulär. Die im Abschnitt 3

angegebene Elimination kann jedoch beibehalten werden, wenn in einem
solchen Falle aiti= 1 gesetzt wird (siehe Fig. 6).

5. Rekursion der Schnittkräfte

Die Rekursion der Schnittkräfte wird für die Biegemomente (vgl. Fig. 7)

und Querkräfte an den unteren Enden der Stiele sowie für die Längskräfte
der Stiele gezeigt.

0, wenn S\_ni mit Q 1 markiert ist
Mi-n.i + Si-n.i (<Pi-n-$})> wenn Sj_n>f mit Q 2 markiert ist

Mtn,i + Sl-n,i<Pi-n + S¥-n,i<Pi " («U; + S^t) f,
wenn Sj_ni weder mit Q 1 noch mit Q2 markiert ist.

Qi-n,i -^(Mi-^i + M^ + Mf^J + N^,,^.
Für beide Schnittgrößen gilt:

7 1, 2 v;
(j—l)n<i^jn;
<Pt 0 für i —n+l, —n + 2, ...,0;
ipj 0 für j^u.

Mft_n ist das Moment der Querbelastung des Stieles (i — n,i) bezogen auf
das Stabende i (Lastmoment).

Ni-n,i ^i.i+n-Qi.i+i+Qi.i-i-^i (i =vn,vn-\, 1),

wobei zu setzen ist Ni>i+n 0 für i vn, vn—1, vn — (n+l) und

Ki ist die senkrechte Knotenlast am Knoten i.

Mi-n,i
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P1 c1
^i-n,!1 ^i-n.i

0 0
Mi-n,i'Mi,i-n (i ,,2...,vn)

%

<i>i (1=1.2 v)

I v.n

¦0*J
-) + )==> j

-(i-On^»i
f->-

-i + =S> i

-p{s^.ni; mit Ql}

P

-P{si-n,i mi,Q2|

P P
0 I I" Mi-n,i + Si-n,i Pi-n+Sj-n,i tp, ~ -M?-n,l +

-(SN-n.i+sl-n,,)^ ^M;.nii + Si-n,i(9i-'/'i)"»Mi-n,i

-M?,i-n + S?„iifpi.n+sI-„1iV>r
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Fig. 7. Flußdiagramm zur Berechnung der Stabendmomente der Stiele.

Die Schnittkräfte an den übrigen Stabenden und die Längskräfte der
Riegel werden analog berechnet.
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Zusammenfassung

Durch geeignete Beschreibung der Systemstruktur und durch Ausnutzung
der Markierungsmöglichkeiten des verwendeten Digitalautomaten kann die
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Matrix der Vor- und Belastungszahlen für orthogonale Stockwerkrahmen
günstig gebildet und die Schnittkraftermittlung zweckmäßig gestaltet werden.

Die zweistufige Entwicklung der Knotenchehwnikel gestattet, die Lösung
des Gleichungssystems auf die Lösung zweier Teilsysteme zurückzuführen.
Das kleinere Teilsystem ist vollständig belegt. Für die Auflösung des
größeren Teilsystems, welches die Form eines dreigliedrigen Matrizengleichungssystems

besitzt, wurde ein spezieller Algorithmus verwendet.

Summary

By means of a suitable description of the configuration of the structure
and by utilising the delimitation potentialities of the digital Computer
employed, the matrix of the lefthand and of the load terms in the expressions
for orthogonal multi-storey portal structures can be formed in an advantageous
manner, and the determination of the forces in the sections can be appro-
priately performed.

The two-step development of the nodal angles of rotation enables the
Solution of the system of equations to be reduced to the Solution of two partial
Systems. The minor partial system is fully covered, while for the Solution
of the major partial system, which has the form of a three-term matrix equation

system, a particular algorithm was used.

Resume

Une description adequate de la structure du Systeme et l'utilisation des

possibilites d'enregistrement de la calculatrice digitale employee permettent
d'etablir facilement les matrices des coefficients et des charges relatives aux
portiques etages orthogonaux et d'en determiner les sollicitations.

Les angles de rotation des nceuds sont calcules en deux phases, ce qui
ramene la resolution du Systeme d'equations ä celle de deux systemes partiels.
Le plus petit Systeme est completement sature. Un algorithme special a ete
utüise pour la resolution du plus grand dont la forme est celle d'un Systeme
d'equations matricieües ä 3 termes.
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A Generalised Method of Analysis of Elastic Plane Frames

Une methode generalisee d'etude des charpentes elastiques planes

Verallgemeinerte Berechnung ebener, elastischer Stabwerke

W. MERCHANT D. M. BROTTON

Department of Structural Engineering, Manchester College of Science and Technology

Notation

p Axial load

MA,Mh End bending moments
E Modulus of Elasticity
I Moment of Inertia of cross-section
A Cross-sectional area
l Chord length of member
V Length along deflected profile

Pe —-~— Euler load
t*

k
TP T

-=— Bending stiffness

t End shortening due to bowing
A Total axial displacement
s,c Stability functions
sa>8b End rotations
{AE)' Modified axial stiffness
x Distance along the chord
s Distance along deflection profile
y Deflection, x along the chord

Member Behaviour

The linear theory of frameworks is a first order small deflection theory.
There are some aspects of elastic frame behaviour which require second order
theory to elucidate. Thus the calculation of the deflection of a tight string due

to a lateral disturbing force is a non-linear problem even though the string
may itself behave in a linear manner. This is an instance where change of
geometry effects are significant. Another example is the determination of the
distribution of loads in hyperstatic trusses which requires a consideration of
the second order effects in the members themselves including the change of
length due to bowing.
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Consider a prismatic member under axial load and end bending moments
as shown in Fig. 1.

B

-p

Fig. 1.

The bending moment M at section (x,y) is given by:

dx,—l{MA + MB) + Py -EI^.M M^

Using the end conditions y 0 when x 0 and x l, the Solution is:

y -^^MA+MB)-^A + A sin tt ]/ -^r- - + B cos tr V -p-y,PEl

where

and

l.e

A

B

MB + MAcosiry4L

P sin ¦.

y
l

M

k

A
P '

IM4 P_ x\
h\MB' PE' l)

P x\
' Pe' &

i i

Now length along deflected profile V \ds * + « I;? I dx,

dy _ Ms
dx~ k h\.

1 C /dyV
.'. End shortening due to bowing f V — l — — I -^-1

o

dx

and
l ~\k h\MB' PEj- (1)

In framework analysis by the stiffness method the member end rotations
are first calculated, it is, therefore, more convenient to change the variables
in equation (1).

The fundamental member equations introduced in ref. [1] are

MA sk9A +sck9B,
MB sck9A+sk9B
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and these combine with equation (1) to give:

l 0%f, ik'B=ß 9%

Ba
Graphs of ß (plotted logarithmically for convenience) against -r- for various

P °ß
values of p— are given in Fig. 2.
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"eT

The effect of bowing can be incorporated in frame analysis by the
introduction of a modified axial stiffness.

Thus the total axial displacement A is given by:

PI PIA r-£AE^g (AE)'

Where (A E)' is the modified axial stiffness.
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Pl +RJß2 _ Pl
AE+PLtJB-4AEf'

AE_ i+_ß9%
(AE)' T P w*I'

Pe AV

Frame Analysis

An iterative method is required since the modified member stiffness coefficients

are functions of ß, 9B and P; also ß is a function of P since it involves

input

set up equations

r
solve equations for

displacements

^

¦¦'

calculate member
forces P, S, M

> r

Modify stiffness calclulate
coefficients K

P, s,c

calculate f

correct axial load for f
and calculate (EA)'

test
convergence

yes

Output
Fig. 3.
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the stabihty functions s and c. The path foüowed by the calculation can be

clearly seen in the flow diagram in Fig. 3, it begins with a linear analysis
which corresponds to the assumption that ß 0 and yields estimates of the
Joint rotations and the axial loads in the members. These enable ß and (AE)'
to be calculated and the estimates of the axial loads in the members and the
values of the stability functions to be improved. The process can be repeated
until similar results are produced on successive cycles.

A Computer programme which will carry out the calculation automatically
has been prepared for the Ferranti Atlas Computer.

Example

Consider the hyperstatic cantilever truss shown in Fig. 4. The value of E
has been taken as 13000 ton/sq.in. and the cross-sectional properties of the
members are given in Table 1.

It is assumed that sufficient restraints are provided to prevent out of plane

Table 1

Members Area in.2 Inertia in.4

1—2, 2—3 1.88 0.68
4—5, 5—6 3.56 4.28
5—2, 6—3 1.88 0.68
4—2, 5—3
5—1, 6—2 2.12 0.98

Fig. 4.
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buckling. Fig. 5 shows various aspects of the non-linear behaviour of the truss
as determined by the Computer programme. The deviations from linear
behaviour are to be noted.

This work forms part of a comprehensive investigation into the behaviour
of framed structures using the Atlas Computer and the authors are indebted
to Mr. G. Arnold and Mr. B. Dyer, Research Assistants in the Department,
who have carried out the programming.
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Summary

In previous work on the stability of framed structures it has been assumed
that the distortions are small enough for the equations to be written in terms
of the original geometry.

The present paper in addition to stability effects deals with the effects of
axial changes in the length of members due to bending and it is illustrated
by a consideration of the changes in the proportions of the shear carried in the
diagonals of a hyperstatic cantilever truss. The calculations have been carried
out using an automatic digital Computer.

Resume

On avait admis jusqu'ici dans tous les travaux sur la stabilite des

charpentes, que les deformations etaient assez faibles pour permettre de formuler
les equations en fonction de la geometrie initiale.

En plus de rinfluence de la stabilite, la presente communication traite des
effets des modifications axiales dues ä la flexion sur la longueur des pieces. On
a pris pour exemple l'etude de la Variation de la part de l'effort tranchant
supporte par les diagonales d'une ferme cantilever hyperstatique. On a utilise
pour les calculs une calculatrice automatique digitale.

Zusammenfassung

In früheren Arbeiten über die Stabilität von Stabwerken wurde angenommen,

daß der Einfluß der Verformung bei den geometrischen Angaben
vernachlässigt werden kann.

Die vorliegende Arbeit befaßt sich neben den Einflüssen der Stabilität auch
mit den Längenänderungen der Stäbe infolge Biegung. Als Beispiel wird das
Verhältnis der Diagonalkräfte infolge Querkraft in einem statisch unbestimmten

Konsolfachwerk untersucht. Die Berechnungen wurden mit Hilfe eines

Digital-Computers ausgeführt.
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Determination des sollicitations dans une chaine de portiques

pentagonaux juxtaposes

Bestimmung der Beanspruchungen in Rahmen für vielschiffige Hallen

Determination of the Stresses in Multi-bay Pitched Roof Portal Frames

J. FOUCRIAT
Paris

1. Methode employee, Conventions, notations

Nous nous proposons de resoudre des chaines de portiques pentagonaux
juxtaposes composes soit:

— de nefs symetriques en nombre impair (fig. 1) ou en nombre pair (fig. 2);

— de nefs asymetriques en nombre impair (fig. 3) ou en nombre pair (fig. 4).

Fig. 1. Nombre impair de nefs symetriques.

Fig. 2. Nombre pair de nefs symetriques.

Fig. 3. Nombre impair de nefs asymetriques.

Fig. 4. Nombre pair de nefs asymetriques.

Nous nous limiterons au cas oü:

a) Les epures de toutes les nefs de la chaine sont identiques.
b) Les inerties / et sections A des elements homologues de toutes les nefs sont

identiques ä 1'exception des nefs terminales.
c) Les appuis au sol sont soit parfaitement encastres, soit parfaitement arti¬

cule©
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1.1. Notation

Les travees sont numerotees ä partir de la gauche.
Dans chaque travee, les sections sont numerotees comme indique fig. 1 ä 4.

1.2. Conventions

Pour chaque nef, la circulation se fera dans le sens des aiguilles d'une
montre.

Les charges seront positives si elles sont dirigees vers l'interieur de la nef.
Les moments de flexion (forces amont) seront positifs dans le sens des aiguilles

d'une montre, les efforts tranchants diriges vers l'exterieur de la nef seront
positifs, les efforts normaux de compression seront positifs.

Les deformations angulaires produites par des moments de flexion positifs
sont positives.

1.3. Methode employee

Choisissons comme inconnues les moments de flexion:

— aux encastrements eventuels au sol,

— ä la clef des nefs impaires,
— aux crosses et ä la clef des nefs paires.

En supprimant la continuite de flexion dans les sections ci-dessus, on obtient
un «Systeme de reference isostatique»; soient dans ce Systeme:

Sy la Variation angulaire en i due ä un couple unite en j,
Dik la Variation angulaire en i dans le cas de charge k.

En chaque section, i, on verifie la condition de continuite:

£Mj8ij+Dik=0.
Employons la notation matricielle

[M,) 8„ =-(D'ik)

Les inconnues M* sont donnees par:

(If,)«- hj~x{P>ik)-

Pour un etat de charge donne, le probleme se ramene donc:

— au calcul de hi
— ä l'inversion de 8«

— au calcul de \Dik\

— ä la multipli satic)n - 8i; -1 \Dik
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1.4. Remarques concernant la matrice

Ire remarque: L'ordre de la matrice est determine par la nature physique
du probleme:

— si les nefs sont encastrees au sol m 3 n.
— si les nefs sont articulees au sol m 2 n — 1.

Sy I est symetrique.2e remarque: Le theoreme de reciprocite montre que

3e remarque: L 'examen des coupures nous montre que Si;- aura la structure

representee fig. 5 et 6, les termes nuls etant laisses en blanc.
Les sous matrices situees sur la diagonale sont symetriques.
Les sous matrices de part et d'autre de la diagonale sont l'une ä l'autre

transposees.
Les sous matrices diagonales, de la seconde ä l'avant-derniere, sont

identiques.

© *
2eme travee

travee impaire

travee paire

si travee terminale

impaire

si trave'e terminale
paire

Fig. 5. Structure de la matrice pour un Systeme encastre au sol.

1 ere travee

2eme trave'e

travee impaire

travee paire

©
{

si travee terminale paire

si travee terminale impaire

Fig. 6. Structure de la matrice pour un Systeme articule au sol.
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Les sous matrices de part et d'autre de la diagonale sont identiques ä partir
de la 3e ligne, jusqu'ä la derniere ligne si la travee terminale est impaire et
jusqu'ä l'avant-derniere ligne si la travee terminale est paire.

2. Organisation des calculs

La capacite restreinte de notre ordinateur nous impose de scinder le calcul

en 4 phases: calcul des termes de Sy Inversion de Sy calcul de \Dik\,

produit — Sy r1 \Dik\. Un programme sera etabli pour chaque phase. Les

resultats (perfores) seront introduits comme donnees dans la phase suivante.

2.1. Calcul des termes de Sy (matrice d'elasticite)

Compte tenu des remarques faites en 1.4, nous savons que nous devrons
calculer au plus: •'¦

— pour une structure encastree au sol

75 termes pour un nombre impair de travees (62 dans le cas de nefs
symetriques.

78 termes pour un nombre pair de travees (65 dans le cas de nefs
symetriques.

— pour une structure articulee au sol

36 termes pour un nombre impair de travees (70 dans le cas de nefs
symetriques).

73 termes pour un nombre pair de travees (31 dans le cas de nefs
symetriques).

Remarquons que, sans le choix adequat des coupures, le nombre de termes
Sy ä calculer aurait ete m/2 (m+ 1) soit par exemple pour 5 nefs encastrees au
sol m=-15, m/2(m+ 1) 120 au lieu de 75.

L'etablissement, gräce au theoreme de Castigliano, des formules permettant
de calculer les termes Sy ne presente pas de difficultes.

Donnons, ä titre d'exemple, le calcul du terme diagonal correspondant ä

la clef d'une travee paire courante d'une nef symetrique Si4.

M 1

!2o-h h ,--\r-
tiJ

2a 2af

Fig. 7. Calcul du terme diagonal correspondant ä la clef d'une travee paire courante.
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La fig. 7 donne les diagrammes des moments de flexion et des efforts tran-
chants (Inertie ferme / — poteau kl,

Section reduite ferme A— poteau a.A).
Deformation due au moment de flexion (pour E — 1) — Inertie courante — 1.

2hl h* (2a-h)2h2
kl\4a2f2

2hh

+
-h)2h2\ 2_sl
a2/2 )+T\ 1 +

/i4

4 a2/5
+

\a-h)2h2
4a2f2

1 1

6Ia2f2[ k

Deformation due ä l'effort tranchant

+ A4 (2s-^j +hs (^-4a s\ +ih2 a2s + 4sa2 f2

G_

E 8i-4
2h
aA

h2 (2a-h)2'
±a2f

+
h* h2(h + 2f)2

|

4 a2 f2 s2 s2\'ia2f2 J A I4a2f2s2

Deformation totale — somme des deformations de flexion et d'effort
tranchant.

II est commode de disposer des 4 programmes suivants de calcul des Sy:

— nefs symetriques encastrees au sol,
—¦ nefs symetriques articulees au sol,

— nefs asymetriques encastrees au sol,

—¦ nefs asymetriques articulees au sol.

2.2. Inversion de la matrice

C'est un probleme classique. Nous disposons d'un programme qui nous
permet, compte tenu du nombre reduit de memoires disponibles, l'inversion
d'une matrice d'ordre inferieur ou egal ä 22, soit de traiter:

7 nefs encastrees: matrice d'ordre 21,
11 nefs articulees: matrice d'ordre 21.

2.3. Calcul des termes (Dik)

II est etabli un programme pour chacun des cas de surcharges envisages
ci-dessous:

— charge verticale uniforme sur tous les versants de gauche,
— charge verticale uniforme sur tous les versants de droite,
— charge uniforme perpendiculaire ä tous les versants de gauche,
— charge uniforme perpendiculaire ä tous les versants de droite,
— effort horizontal au faitage de toutes les nefs,

— effort horizontal ä toutes les noues,
— effort horizontal ä la crosse gauche de la Ire nef,
— effort horizontal ä la crosse droite de la derniere nef,
— charge horizontale uniforme sur le ler poteau,
— charge horizontale uniforme sur le dernier poteau.
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Ceci permet de couvrir en general tous les etats de charges fixes par les

reglements francais. Pour un cas non traite, il est possible d'etablir un nouveau
programme ou de calculer manuellement.

Le calcul des Dik est conduit ä l'aide du theoreme de Castigliano.
Les remarques de 2.1 sont valables, la periodicite de la structure permet,

pour chaque cas de charge, de calculer un nombre de termes Dik<m.

2.4. Calcul de [Sy j"1 (-Dik)
Ce calcul ne pose pas de probleme nouveau. En fait, comme le reglement

francais de la construction metallique en cours de preparation oblige de
calculer des sollicitations ponderees (le coefficient de ponderation est r> 1), nous
calculons le produit: " -12rJk(-Da).8*j

3. Conclusions

Dans le processus de calcul ci-dessus, 1'essentiel est:

1. L'emploi de la methode des coupures qui permet de resoudre le probleme
en 4 etapes, par consequent, sans epuiser la capacite de l'ordinateur, de traiter
le cas d'un nombre eleve de nefs. Le choix d'une methode d'approximations
successives ne nous aurait pas donne cette facilite.

2. Le choix judicieux des inconnues qui permet d'annuler un grand nombre
de termes Sy, de tirer profit de la periodicite pour reduire le nombre de Sy et
Dik ä calculer.

Resume

Le processus de calcul expose dans ce memoire permet de resoudre, ä l'aide
d'un ordinateur de capacite limitee, un Systeme hautement hyperstatique, en
choisissant judicieusement les inconnues et en fractionnant le calcul en etapes
successives. L'emploi du calcul matriciel facilite grandement ce fractionnement.

Zusammenfassung

Der beschriebene Berechnungsvorgang gestattet, mit Hilfe einer elektronischen

Rechenmaschine begrenzter Speicherkapazität ein hochgradig statisch
unbestimmtes System zu lösen durch eine günstige Wahl der Unbekannten
und durch eine Aufteilung der Berechnung in mehreren Rechnungsgängen.
Die Benutzung von Matrizen erleichtert diese Aufteilung erheblich.

Summary

The process of design shown in this paper permits to solve, with the help
of a Computer of limited storage capacity, a highly indeterminate system by
carefully choosing the unknowns and by fractionning the design in successive

stages. The use of matrix design highly helps this fractionning.
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Ponts ä poutres multiples sans entretoises

Brücken mit vielen Längsträgern ohne Querträger

Multi-Girder Bridges without Cross-Beams

JEAN COURBON
Paris

1. Methode de calcul

Soit / 1'inertie constante commune aux n poutres sous chaussee (Aj)
(7 1,2, n). Ces poutres sont reliees par la dalle sous chaussee que nous
assimüons ä une infinite de poutres transversales infiniment rapprochees.

X \

il

1

dx

t
L

(A,) (Aj) (An)

0 f

l; '1 'n y

Soient Pj (x) et Vj (x) la charge repartie et le deplacement vertical compte
positivement vers le bas de la poutre (Aj). La charge Pj(x)dx appliquee ä la
poutre (Aj) entre les abscisses x et x + dx se decompose en deux parts:

a) La part p] (x)dx supportee par la poutre (Aj):

b) La part p!j (x)dx supportee par la poutre transversale fictive de largeur dx:
i n

p"j(x) ZßJ{vt{x).
i=l

ßj( etant les elements de la matrice carree C symetrique d'ordre n reliant les

fleches aux charges pour la poutre fictive transversale (B) de largeur unite.
En ecrivant que Pj (x) est la somme de p'j (x) et de p] (x), nous obtenons

les equations d'equilibre:
.74 v i=n

EI-T-i+Tißjivi(x)=Vj{x) (j=l,2,...,n). (1)
dX i=i
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Ces equations forment un Systeme d'equations differentielles lineaires ä
coefficients constants que l'on pourrait resoudre par la theorie classique. Mais
nous developperons Pj(x) en serie de sinus dans l'intervalle (0,iy):

Vj(x)=r'fn^m~, (2)
r l -Li

les coefficients IJr etant definis par:
L

2 [ T TT X
LIrj y \ Pi (x)sm —f— d x.

o

Nous chercherons u, (x) sous la forme d'une serie de sinus:

(3)

Vj(x)= 2 F/sin~ (4)
r=l L

En portant les valeurs (2) et (4) dans les equations (1), nous trouvons:

V

Sr etant defini par:

-4-+ZßnV{ n*j (7 1,2,...,»). (5)
°r i=l

s'-*£m1- (6)

L'Interpretation mecanique des equations (5) est immediate: les coefficients
Vj sont les fleches au droit des poutres (Aj) de la poutre fictive (B) reposant sur
des appuis elastiques Aj de meme coefficient d'elasticite Sr et soumise au droit de

ces appuis aux charges concentrees IJ^.
Pour aller plus loin, prenons pour inconnues les reactions QTj des appuis

elastiques: yr
Qrj i~- (7)

Nous pouvons ecrire les equations (5) sous forme matricielle:

(u+src)Q' nr. (8)

Nous avons designe par U la matrice unite et par IJr et Qr les matrices
colonnes dont les elements sont V7j et Qfj. La matrice U + SrC est symetrique
et reguliere; son inverse est donc une matrice symetrique Hr dont nous designe-
rons les elements par Hru. Donc:

i n
Qr HrI7r ou Q) - 2 ürnni- (9)

1=1

Cette formule montre que Hrjt est la reaction developpee par l'appui Aj
lorsque la poutre B est soumise ä l'action d'une charge unite placee au droit
de l'appui Ai. L'equivalence des reactions H^ et de la charge unite se traduit
par les relations, valables quel que soit r:

n
(10)

7 tt j=n.
^JyjHrji=yi.

j=i y"=l
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En outre, la symetrie de la matrice Hr conduit ä un theoreme de reciprocite
dont l'enonce est evident.

Ceci pose, le moment flechissant Mj (x) dans la poutre (Aj):

s'ecrit, compte tenu des expressions (4), (6) et (7):
r= ro

„ dMi SP L _ rirx ,,„,

nr V L* - rirX
M4x)=Lz^72Qrism-r- (11)

r=l
L'effort tranchant TAx) s'en deduit:

dMj _ "y L_
dx ^-iirr ¦*'"""" jjr=l

Supposons maintenant une seule poutre chargee, (Ak) par exemple:

Pk(x) 2 77£sin—=^.
r=l Li

Nous avons Qr Hrjknj., et les formules (11) et (12) deviennent:

MiW E ^Hhm^r-^, (is)
r=l
r= co

W =Z^^^cos!T^- (14)
r l r» » » L '

Remarquons qu'en vertu de la premiere equation (10)

i=n r=co

7=1 r=l r n ¦"

et il est aise de voir que le second membre de cette equation represente le
moment flechissant jj.k(x) dans la poutre (Ak) supposee isolee sous l'action de
la charge repartie pk (x). De meme:

gW-E^oo^-te-^,. „6,

Les formules (13) et (14) sont bien entendu valables lorsque k j. Mais
dans ce cas on peut ameliorer la convergence des series qui figurent au second
membre de ces formules en introduisant l'expression de fij(x)

r=co

©
L2 „. rirxV^ L2

W= LZ2PZ2nriS™r'ir'r= x

Les formules (13) et (14) deviennent, dans ce cas oü (Aj) est seule chargee:
r=oo

Mj(x)=H(x)-YJ^-2nrj(l-Hrjj)sinr-^, (17)
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r=co

Tj(x) =Tj(x)-YJ~nr(l-Hrjj)oos~. (18)

En effet l—Hrjj tend rapidement vers zero lorsque r augmente, car si l'on
applique une seule charge unite au droit de l'appui Aj de la poutre (B):

nr =1, nj- o(k+j), Qzk Hkj

et l'equation d'equilibre relative ä l'appui Aj de la poutre (B) a pour expression,

d'apres (8): k=n
i-fTji SrZ ßjkH)k

k=l
et Sr defini par (6) tend rapidement vers zero lorsque r augmente indefiniment.

Examinons plus particulierement le cas d'une charge concentree P placee
dans la section d'abscisse a de la poutre (Ak). Nous avons:

2P ma.n* -rsm^4-
La formule (13) donne le moment flechissant Mk(a.,x) dans la section

d'abscisse x de la poutre (Aj)
r=oo

.„, V1 2PL Tr rttoL r ttx ,,„,Mf(oc,x) 2^ -^H^sm—j-sm—j-. (19)
2 PL Tr rttct.. mx

~T4sm^4

Nous avons donc, compte tenu de la symetrie de la matrice Hr:

M) (ex, x) M'k (x, et).

Donc, le moment flechissant dans la section d'abscisse x de la poutre (Aj) sous
l'action d'une charge unite placee dans la section d'abscisse a de la poutre (Ak)
est egal au moment flechissant dans la section d'abscisse a de la poutre (Ak) sous
l'action d'une charge unite placee dans la section d'abscisse x de la poutre (Aj).

La formule (14) donne ensuite l'effort tranchant Tjk(<x,x) dans la section
d'abscisse x de la poutre (Aj):

r=oo

T"^x- E 77^sin^cos!:7r- (20)
r=l

Tous les cas de charge peuvent se deduire par superposition ä partir des

formules (19) et (20) qui donnent les ordonnees des lignes d'influence.
Pour terminer, traitons le cas d'une charge repartie de densite p appliquee

ä la poutre (Ak). On peut, soit utiliser l'expression de Tlrk

4p
nrk =^4P(\-cosrtr)

rtr

soit utiliser les expressions (19) et (20):

pour r impair

0 pour r pair

L L
Mj(x) =$Mk(<x,x)pd<x, Tj(x) =5Tjk(<x,x)pdor.

0 0
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On trouve ainsi:
CO

**<*>- E i&Hh*™rj£> (21)
(r=l,3,5...)

T}<*> E ^*h«»rjzr- w

2. Execution du calcul

Le calcul par la methode precedente est long et fastidieux lorsqu'on 1'execute

ä l'aide d'une machine de bureau, si l'on veut verifier plusieurs sections
en prenant un nombre raisonnable de termes des series. Par contre, il est
parfaitement adapte aux possibilites des ordinateurs electroniques tels que
l'ordinateur IBM 7090 pour lequel un programme a ete etabli.

Les donnees ä fournir sont les suivantes:

L portee des poutres principales,
l distance entre axes des poutres principales,
n nombre des poutres principales,
r0 nombre des termes des series pris en compte,

6Ei a 6L*i
y, „ S-, „ „ r, nombre sans dimensions.' * 1° x tri61

Dans l'expression de yx, I designe 1'inertie des poutres principales et i
1'inertie de la dalle par metre de largeur.

Le programme est concu pour n^ 25 et r0^ 12.

L'ordinateur fournit trois groupes de resultats:
La premiere partie du programme fournit les reactions exercees par les

appuis At sur la poutre (B) lorsque cette poutre est soumise ä l'action d'une
charge unite placee au droit de 1 'appui Aj, et ces reactions sont donnees pour
les differentes valeurs du coefficient Sr(r= 1,2, .,r0). Ces reactions sont les

elements des matrices Hr. Pour cette determination, l'ordinateur utilise la
formule des cinq moments relative ä la theorie des poutres sur appuis elastiques,
plus commode que l'inversion de la matrice U + SrC.

La deuxieme partie du programme fournit, pour une charge unite placee ä
l'abscisse <x sur la poutre (Aj):
1. La part de charge p'J (<x,x) supportee ä l'abscisse x par la poutre (^4^.
2. Le moment flechissant M\(<x,x) ä l'abscisse x dans la poutre (Aj).
3. L'effort tranchant dans les sections x 0 et x L de la poutre (At).
4. Le moment flechissant m\ (a, x) au droit de la poutre (At) dans la poutre

transversale fictive de largeur unite situee ä l'abscisse x.

Pour simplifier le calcul, nous nous sommes bornes aux valeurs particulieres
de a et de x de la forme a K-^- et x K' -^, K et K' etant des nombres entiers.
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nCompte tenu des symetries, il suffit de faire varier K de 0 ä 4, K' de 0 ä 8© de 1 ä

lorsque n est pair et de 1 ä —^— lorsque n est impair, enfin j de 1 ä n.

Pour ce calcul la machine utilise les series donnees dans la premiere partie
de cette etude.

Enfin la derniere partie du programme donne l'integration des lignes
d'influence obtenues dans la seconde partie. Cette Integration fournit l'aire
des lignes d'influence des efforts dans une section d'abscisse x K' — de la

poutre (Aj) lorsque la charge unite se deplace sur la poutre (Aj) entre les

abscisses 0 et L. Pour ce calcul, l'ordinateur utilise les methodes classiques
d'integration numerique de la Resistance des Materiaux basees sur l'inter-
polation par des polynömes.

Le temps de calcul de l'ordinateur IBM7090 est de l'ordre d'une minute.

Resume

Dans la premiere partie de ce memoire, on montre que le calcul d'un pont
ä poutres multiples sous chaussee sans entretoises revient essentiellement au
calcul des reactions d'appui d'une poutre reposant sur des appuis elastiques
en nombre egal au nombre des poutres, pour un certain nombre de valeurs
des coefficients d'elasticite des appuis. Dans la seconde partie, on indique
quelles sont les donnees ä fournir ä l'ordinateur eiectronique, et quels sont les

resultats fournis par l'ordinateur.

Zusammenfassung

Im ersten Teil dieses Aufsatzes wird gezeigt, daß die Berechnung einer
Brücke mit vielen Längsträgern unter der Fahrbahn im wesentlichen auf die

Berechnung der Auflagerreaktionen eines Trägers auf elastischen Stützen,
deren Anzahl gleich derjenigen der Träger ist, zurückgeführt werden kann,
indem die Rechnung für eine gewisse Anzahl verschiedener Auflagersenkbar -

keiten durchgeführt wird. Im zweiten Teil der Arbeit wird angegeben, welche

Angaben in das Rechenprogramm eingeführt werden müssen und welche
Resultate durch den Elektronenrechner geliefert werden.

Summary

In the first part of this paper it is demonstrated that the calculation of a

multi-girder bridge under a carriageway without cross-beams is essentially
tantamount to the calculation of the support reactions of a girder resting on
elastic supports equal in number to the number of girders, for a certain number
of values of the coefficients of elasticity of the supports. In the second part,
the data to be supplied to the electronic Computer, and the results provided
by the Computer, are indicated.
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Calcul des poutres croisees, compte tenu de la torsion

Berechnung von Trägerrosten unter Berücksichtigung der Torsion

Calculation of Interconnected Beams, Taking Torsion into Consideration

ROGER LACROIX
Paris

1. Definition des systemes etudies

La presente note concerne les reseaux formes de deux cours de poutres
croisees (A) et (B), soumis ä des charges normales ä leur plan, et repondant
aux conditions ci-apres:

— Les poutres des deux cours se croisent ä angle droit.
— Les poutres (A), au nombre de m, sont toutes d'egale longueur; elles sont

de section constante, et simplement appuyees ä leurs extremites.
— Les poutres (B), au nombre de n, sont toutes identiques et soumises aux

memes conditions d'appui; leurs appuis sont d'une part les poutres (A),
sur lesquelles elles sont encastrees, et d'autre part, eventuellement, des

appuis exterieurs, simples ou doubles (encastrements).
— Les poutres (B) ont une rigidite de torsion negligeable.
— Les appuis des n poutres (B) divisent chaque poutre (A) en n+ 1 intervalles

egaux.

Nous designerons par:

L la longueur d'une poutre (A).
EI la rigidite de flexion d'une poutre (A).
GH la rigidite de torsion d'une poutre (A).
I l'espacement de deux poutres (B) consecutives.
EJ la rigidite de flexion d'une poutre (B).
V l'espacement de deux poutres (A) consecutives; V est affecte d'un indice

si cet espacement n'est pas constant.
EI,GH

n poulres (B)

m poutres(A)
Fig. 1.
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2. Systemes de charges propres

Le Systeme elementaire, dont la resolution forme la base de la methode
proposee, est celui qui est constitue d'un cours de poutres (A), reunies par
une seule poutre (B).

En supposant la poutre (B) chargee, chaque poutre (A) forme pour celle-ci
un appui elastique double; la poutre (B) est en effet soumise, de la part de la
poutre (A), ä une reaction verticale R proportionnelle ä sa fleche v, et ä un
couple C proportionnel ä la rotation w de la tangente ä sa fibre moyenne au
nceud correspondant. Dans le cas oü la poutre (B) est situee ä mi-portee des

poutres (A), les coefficients de proportionnalite sont:

— pour les reactions verticales:

o v L3s Zii ' 48 EI'
— pour les couples:

c
L

~ 4 GH'

A ce cas peut etre ramene immediatement celui de deux poutres (B) dis-
posees symetriquement par rapport au milieu des poutres (A): en decomposant
les charges appliquees en systemes de charges symetrique et antisymetrique,
les deux poutres (B) prennent des deformations egales, ou opposees, et le
probleme ä resoudre est encore celui d'une poutre continue sur appuis
elastiques, les elasticites des appuis etant differentes suivant le Systeme de charges
considere, symetrique ou antisymetrique.

Dans le cas d'un nombre quelconque n de poutres (B), cette methode peut
etre generalisee de la facon suivante:

Soit une poutre (A), divisee en n+ 1 intervalles par n points B1,B2, Bn.
On appelle Systeme de charges propre relatif aux points B un Systeme de charges

q±, q2,. qn, appliquees respectivement en ces points, et tel que les fleches

vltv2, ¦ ¦ -,vn en ces memes points soient proportionnelles aux charges:

ü « .ü* _, ü» A
ll % In

On montre que pour n points B existent n systemes de charges propres
distincts, definis ä un coefficient multiplicateur pres, et ä chacun desquels
correspond une valeur differente de S1).

') Voir le memoire de J. Cotjrbon et R. Lacroix: fi Calcul des reseaux de poutres
croisees.» Ann. des Pts. et Ch. Mai-Juin et Juillet-Aoüt 1957. Ce memoire detaille le
calcul des coefficients S, valeurs propres de la matrice des coefficients de proportionnalite
des charges et des fleches.
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Dans le cas qui nous occupe, oü les poutres (A) sont de section constante,
et oü les n + 1 intervalles formes par les points B sont egaux, et de longueur l,
les charges propres q1,q2, ¦ ¦ ¦ qn sont les multiples d'une meme charge par les
coefficients:

7 r-tt 2m nrtrklr sin L.= sin k„ T sin -,ur n+l 2'r n+l ">r n + l
r prenant successivement les valeurs 1,2,.. .,n pour chacun des n systemes
de charges propres.

Le coefficient de proportionnalite des charges aux fleches est alors donne

par:

sr
ii '

p 2 + cos
r-n

n+l
6EI 4- cos

r-n \2
zz+4)

Les coefficients kir n'etant definis qu'ä un facteur pres, il est commode de
i=n

les mettre sous une forme normee, c'est-ä-dire teile que 2 ^!,r= 1
•

fi W T i== 1

En posant ~4— 9 et K —tx—, les coefficients deviennent:r n+l l3

Qi,r f~ishxird, (1)

a Vi 1 2 + cosr9
aveC 8r — -W 5Ti mi- 2)

q{ K 2(1 — cosrö)2

De la meme facon, un Systeme de couples de torsion t1,t2, rn appliques
ä la poutre (A) sera dit Systeme propre si les rotations de torsion ou1,cü2, .,con
engendrees par ces couples satisfont aux relations:

{t>1 c°2
¦ ¦

to" rTl T2 T,i

Pour une poutre de section constante rigidement encastree ä la torsion ä

ses deux extremites, les coefficients des couples formant chacun des systemes
propres sont identiques aux coefficients Qir definis par la formule (1), et la
constante d'elasticite relative au Systeme de rang r s'ecrit:

r=-t 1— (3)r 2GH 1-cosrÖ' K '

Un Systeme de charges (ou de couples de torsion) quelconques P, appliquees
aux points B1,B2,. .,Bn peut se decomposer en la somme de n systemes de

charges (ou couples de torsion) propres, par:

Pi YnrQir (4)
r=l
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les coefficients LIT etant donnes par:

nr YPiQir- (5)
t=i

Considerons maintenant un reseau comprenant m poutres (A) et n poutres (B)
et supposons les poutres (BX),(B2), ,(Btl) soumises respectivement ä des

systemes de charges (ou de couples) Qlr- (£), Q2r- (Z), ¦ ¦ ¦, Qnr- (E)> systemes ne
differant les uns des autres que par leur intensite, proportionnelle aux coefficients

Qir des systemes propres, definis par la formule (1).
L'equilibre du reseau est realise si:

— les reactions verticales des poutres (A) sur les poutres (B),
— les couples de torsion exerces sur les poutres (A) par les poutres (B),
— les fleches des poutres (A),
— les rotations de torsion des poutres (A), au droit de chaque poutre (B), sont

proportionnels aux coefficients Qir.

Toutes les poutres (B) ont alors des deformations affines, et le calcul du
reseau se ramene ä celui d'une poutre (B) reposant sur des appuis elastiques
doubles, dont les constantes d'elasticite sont definies par les formules (2) et (3).

Nous avons donc ainsi le moyen de calculer les reactions mutuelles des

poutres (A) et (B), c'est-ä-dire la repartition des charges entre les differentes
poutres (A), dans le cas oü un Systeme de charges (ou de couples) quelconques
est applique au droit des poutres (B). En effet, un Systeme quelconque peut
etre decompose en la somme de n systemes de charges propres, au moyen des
formules (4) et (5).

Si Rijr est la reaction exercee par la poutre (Aj) sur la poutre (Bt) sous
l'action du Systeme de charges propres de rang r, la reaction de la poutre (Aj)
sur la poutre (Bt) sous l'action du Systeme de charges reellement applique sera:

r=n
Kjj 2j lir -™ij> •

r=l
Le cas le plus general, oü les charges ne sont pas appliquees au droit des

poutres (B) mais entre celles-ci, peut etre ramene ä celui-ci par 1'introduction
des charges equivalentes:

Les reactions mutuelles des poutres (A) et (B), ne dependant que des fleches
et rotations de torsion des poutres (A) et (B) en leurs points communs, ne sont
pas modifiees en effet si on remplace les charges appliquees au Systeme par
des charges situees au droit des poutres (B), pourvu qu'elles engendrent en
ces points les memes deformations que les charges reellement appliquees. En
d'autres termes, il suffit de remplacer les charges reelles, appliquees en des

points quelconques de la surface du reseau, par des charges equivalentes ainsi
definies:

Les charges equivalentes P1,P2,. .,Pn ä un Systeme de charges quelconque
(2) sont les charges concentrees qui, appliquees aux points BltB2,. .,Bn
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d'une poutre (A) supposee libre, determinent en ces points les memes fleches
et les memes rotations de torsion que le Systeme (2).

En definitive, le calcul des reactions mutuelles des poutres d'un reseau
soumis ä un Systeme de charges quelconque se compose des etapes suivantes:

1. Remplacement des charges donnees par des charges equivalentes, situees

uniquement au droit des poutres (B).
2. Decomposition des charges equivalentes en systemes de charges propres.
3. Calcul de la poutre sur appuis elastiques doubles, et des reactions mutuelles

des poutres (A) et (B), pour chaque Systeme de charges propres.
4. Composition des reactions obtenues, pour obtenir le resultat cherche, c'est-

ä-dire les reactions mutuelles des poutres (A) et (B) sous l'action des charges
appliquees.

3. Calcul de la poutre continue sur appuis elastiques doubles

Soit une poutre reposant sur n+ 1 appuis elastiques doubles A0,AVA2,. .,An,
et formant n travees de longueurs lx, l2,... ln et soit St et 7^ les constantes
d'elasticite d'un appui, definies par:

*-J et r^w;' <6>

vt etant 1 'abaissement de l'appui supportant une charge Rt, et wr sa rotation
sous l'action d'un couple Mt.

La poutre forme un Systeme hyperstatique de degre 2«, et la methode des

travaux virtuels appliquee en pratiquant des coupures de la poutre au milieu
de chaque travee permet de calculer les moments flechissants et efforts tran-
chants, au droit des coupures, par un Systeme lineaire de 2n equations ä 2n
inconnues.

Nous croyons cependant preferable de rechercher les couples et les reactions
exerces par les poutres sur leurs appuis, au moyen d'une methode de relaxation,
bien que le Systeme lineaire obtenu soit de 2 n + 2 equations ä 2 n + 2 inconnues.
En effet, on obtient ainsi directement les inconnues cherchees (reactions
mutuelles des poutres (A) et (B)), au moyen d'un Systeme d'equations etagees,
ä coefficients simples, meme dans le cas d'une poutre d'inertie variable
pouvant comporter ou non des appuis fixes (articulations ou encastrements).

Considerons la travee At_xAj soumise ä un Systeme de charges qui don-
nerait lieu, si cette travee etait sur apqmis fixes et encastree, ä des reactions
d'appui r\_x et r'[, et ä des couples exerces par la poutre sur ses appuis, wif_a
et m'l (dans le cas d'une poutre d'inertie constante, par exemple, soumise ä

l l2 l2
une charge uniforme pp'i-i — r'i=P^ m'i-i— ~Pjö> m"i +Ptö)- En ecrivant

que la rotation de l'appui Aj est determinee par les couples exerces sur cet
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appui par les deux travees adjacentes, et de meme, que sa fleche est
proportionnelle ä la somme des reactions d'appui de ces deux travees, il vient:

7? - r' 4-
ki+1 Vi-Vi+l\ k'i+l / Vj-Vi+l\Ki -ri+l \°>i 7 1+7 [^i+l 7

n+i \ 't+i / «•t+i \ H+i I
h+i /, «»-^+i\ K+i Vj-Vi+i\+ j—\coi+1 I +-—loi,
'i+l \ ""i+l / H+l \ 'i+l /

h

i-
m»

rZ
m> o^
ai > 0 /

r > o i
V>0 \

¦i-l i

4y'<*<

\ >M|-I

^Mi ^^
'

"in
\^H
Aj-, ^^^_ vi Ai

-——^"T^i
A,*l

l| L,,l

Ri-i Ri+i

Fig. 2.

Dans ces equations, kt et k't sont les facteurs de rigidite de la travee Aj_xAj,
supposee symetrique; leurs valeurs sont respectivement:

4EJ 2EJ
ki —;— et kili h

(7)

pour une poutre d'inertie constante J2).
En exprimant les deformations en fonction des efforts au moyen des

relations (6), on obtient un Systeme lineaire de 2 n + 2 equations ä 2 n + 2 inconnues,

2) Pour une poutre d'inertie variable, k et k' sont de la forme k —j— <% et k' —=— ß.

Pour les poutres ä goussets plans ou paraboliques, les valeurs de a et ß de meme que les
moments m et m' figurent dans l'ouvrage de R. Gtjxdan: «Rahmentragwerke und
Durchlaufträger» (Springer-Verlag).
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etage, chaque equation contenant au plus six inconnues. Dans le cas frequent
oü toutes les travees et tous les appuis sont identiques, ces equations s'ecrivent,
en posant:

kT=y, kT=y', (k + k') S XI2: (8)

y'Mi_1 + (l + 2y)Mi + y'Mt+1-\lRi_1 + \lRi+1 m'! + m'i.

(y + y')Mi_1-(y + y')Mi+1-2\lRi_1 + (l+4\)lRi-2\lRi+1 lr"i+lr'i.
(9)

Le tableau ci-apres donne un exemple du Systeme obtenu pour une poutre
comportant trois travees, avec une charge unite disposee sur un appui de rive.

Po Maß Ri Mt/l Ri M2ß R3 M3/l
2e

membre

1 + 2A -(y + y) -2A -(y + y) — 0

-A l+r A V — — — — 0

-2A y + y' 1 + 4A — -2A -(y + y) — — 0

-A V — l + 2y A V — — 0

— — -2A y + y' 1 + 4A — -2A -(y + y') 0

— — -A y — l+2y A V 0

— — — — -2A y + y' 1 + 2A y + y' 1

— — — — -A y A 1 + y 0

4. Calcul d'un reseau ä l'aide d'une machine eiectronique

Le programme decrit ci-apres s'applique au calcul des ponts comportant
des poutres identiques et egalement espacees, reliees par des entretoises elles-

memes identiques regulierement espacees. Moyennant une legere modification,
le programme pourrait etre facilement adapte au cas oü les poutres sont de
sections non identiques, et non regulierement espacees.

Le programme etabli assure la decomposition des charges donnees en
systemes de charges propres, le calcul de la poutre continue sur appuis doubles
elastiques correspondant ä chacun de ces systemes, et la recomposition des

reactions obtenues, pour aboutir finalement aux reactions mutuelles des

poutres sous l'action des charges appliquees.
Les donnees ä introduire sont:

1. Les caracteristiques du reseau:

— nombre de poutres:
— nombre d'entretoises:
— espacement des entretoises:
— espacement des poutres:
— rigidites des poutres:
—¦ rigidite des entretoises:

m
n
l
V

EI,GH
E J (et eventuellement les facteurs a et ß).
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2. Les caracteristiques du Systeme de charges:

— dans le sens longitudinal: valeurs des charges equivalentes PX,P2,.. .,Pn
appliquees au droit des entretoises.

—-dans le sens transversal; valeurs des moments et reactions m^, m?, r^, r'[
engendres par les charges dans les travees supposees encastrees.

Les resultats sont les charges et les couples Supportes par les poutres sous
l'effet du Systeme de charges applique. L'utüisateur du programme peut donc
ignorer l'existence des systemes de charges propres: le seul travail prealable
consiste ä rechercher les charges equivalentes Pt; ce travail peut d 'ailleurs
etre notablement facilite par l'emploi de tableaux donnant directement les

charges P{ en fonction des fleches vt prises par la poutre sous l'action des

charges donnees.
De plus, en donnant successivement toutes les valeurs convenables aux

coefficients definissant les repartitions longitudinale et transversale des charges,
il est aise, en une seule Operation, d'obtenir la surface d'influence de chacune
des reactions mutuelles des poutres.

Le prineipal avantage du programme, ecrit en langage FORTRAN, est
d'etre concu pour des machines de capacite modeste, telles que IBM 1620,

BULL y 30, ou CAB 500.

Le programme realise permet de calculer des reseaux comprenant 2 ä 20

poutres, et I ä 10 entretoises, ou pas d'entretoises. Dans ce dernier cas, les

systemes propres sont les termes successifs du developpement de la charge en
serie de sinus suivant la portee des poutres.

5. Applications aux ponts ä poutres sous chaussee en beton

Dans le cas d'un pont ä poutres multiples sous chaussee, en beton arme ou
precontraint, la dalle sous chaussee est le plus souvent utilisee comme membrure

commune aux poutres et aux entretoises. Les moments d'inertie I et J
des poutres et des entretoises se determinent en general sans difficulte
particuliere.

Pour la rigidite de torsion GH, on distinguera le cas de la poutre formee
d'une äme, avec ou sans talon, de celui de la poutre-caisson. Pour la poutre-
caisson, la rigidite de torsion pourra etre calculee en assimilant la section de la
poutre ä celle d'un tube mince. Dans le cas d'une poutre ä äme simple, la
rigidite sera la somme de celles des rectangles qui composent la poutre: dalle,
äme et talon. La rigidite de torsion d'une section rectangulaire de cotes a et b

est de la forme GH \Gba3v, v etant un coefficient inferieur ä 1, tendant
vers 1 lorsque le rapport de b ä a croit indefiniment, et dont les valeurs en
fonction du rapport bfa figurent dans la plupart des traites de resistance des

materiaux. Cependant, pour les rectangles formes par la dalle sous chaussee
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et l'äme de la poutre, il est plus exaet de considerer que le rapport bja est
infini, plutöt que de prendre en compte sa valeur exaete, comme on peut s'en
rendre compte par 1'analogie de la membrane.

Enfin, la methode proposee neglige la raideur des entretoises en torsion.
Cette approximation est admissible en general, car la rigidite de torsion d'une
entretoise est la somme des rigidites de son äme et de sa membrure, et comme
celle-ci est commune aux entretoises et aux poutres, sa raideur de torsion a

dejä ete prise en compte dans le calcul de la raideur GH des poutres. Le seul
element que l'on neglige est donc finalement la rigidite de torsion des ämes
des entretoises.

Resume

La methode proposee ramene le calcul des reseaux de poutres croisees ä

celui d'une poutre continue sur appuis doubles elastiques pour differentes
valeurs des coefficients d'elasticite des appuis.

Le calcul de la poutre continue est conduit par une methode de relaxation,
qui permet d'aboutir ä un Systeme d'equations lineaires etagees k coefficients
simples, meme lorsque la poutre est d'inertie variable.

Le programme de calcul ä la machine eiectronique permet d'obtenir les
valeurs des reactions mutuelles des poutres, sans qu'ü soit necessaire de
connaitre le principe de la methode de resolution.

Zusammenfassung

Die vorgeschlagene Methode führt die Berechnung von Trägerrosten auf
die Untersuchung eines Durchlaufträgers auf elastisch senk- und drehbaren
Stützen zurück, wobei die Rechnung für verschiedene Werte der Senkbarkeit
der Auflager durchzuführen ist.

Die Berechnung des Durchlaufträgers wird mit Hilfe einer Relaxationsmethode

durchgeführt, die auf ein System gestaffelter linearer Gleichungen
mit einfachen Koeffizienten führt, auch wenn der Träger ein variables
Trägheitsmoment aufweist.

Das Rechenprogramm für den Elektronenrechner liefert die Werte der
gegenseitigen Träger-Reaktionen, ohne daß das Lösungsprinzip bekannt sein
muß.

Summary

The method suggested in this paper reduces the calculation of grillages of
interconnected beams to that of a continuous beam on double elastic supports
for different values of the coefficients of elasticity of the supports.
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The calculation of the continuous beam is performed by a relaxation
method, which enables a system of stepped linear equations, with simple
coefficients, to be obtained, even when the beam is of variable inertia.

The programming for the Computer makes it possible to obtain the values
for the mutual reactions of the beams, without it being necessary to know the
principle of the method of Solution.
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