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IIa4

Pont courbe considéré comme une poutre a axe brisé
Gekrimmte Bricke als Balken mit geknickter Achse betrachtet

Curved Bridge Considered as a Beam with Broken Axis

W. WIERZBICKI
Prof. Dr., Dr. h. ¢., Membre de ’Académie Polonaise des Sciences, Varsovie

La construction d’un pont courbe se compose d'un certain nombre de poutres
dont chacune doit étre curviligne et plane.

On peut souvent considérer les ponts courbes métalliques & plusieurs tra-
vées et de grande longueur comme des constructions qui, dans leur section
transversale, sont composées de deux ou plusieurs poutres brisées dans le plan
et dont les nceuds sont appuyés sur les piliers du pont. Les jonctions transver-
sales des poutres particuliéres de la construction justifient d’habitude —
comme c’est le cas pour les ponts droits — le calcul des dites poutres comme
des éléments indépendants se trouvant soumis & la charge transmise par le
tablier du pont. Ceci admis, nous pouvons calculer la poutre continue poly-
gonale inscrite dans 1’axe courbe de la voie (fig. 1).

La section transversale aux appuis de la poutre continue, brisée dans le
plan, ne peut étre perpendiculaire qu’a I’axe d’une des deux travées consé-
cutives (a leur joint de jonction). Par conséquent, les sections particulieres des
poutres au droit des appuis, subissent non seulement une inclinaison par
rapport au plan horizontal mais aussi une rotation par rapport aux axes des
travées particulieres. Il nous faut donc recourir a la représentation vectorielle
des moments et des déformations [1], [3].

La poutre présentée sur la fig. 2 repose aux points 1,2,3,...,z,2+1,n—1
sur les appuis mobiles dans le plan paralléle au plan horizontal de ’axe de la
poutre, ses extrémités étant encastrées rigidement aux points 0 et n. Par
conséquent, la poutre présentée est n»+ 2 fois hyperstatique.

Soient M, et M les moments de flexion et M2 les moments de torsion
dans les travées, tandis que B, est I’angle de deux travées consécutives. Les
plans aux traces 0s’ et 0’s’ — correspondant aux vecteurs M, et M, —
découpent dans la poutre continue des coins (nceuds) s’ 0s 0’s’ (fig. 3). Etant
donné que les dimensions des nceuds par rapport & la longueur des travées
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sont petites, nous pouvons admettre que les vecteurs de tous les moments
agissant sur un nceud donné traversent son centre x.

Pour assurer 1’équilibre des nceuds particuliers d’une poutre continue il
faut que la somme vectorielle des moments agissant sur un nceud donné, a
savoir la somme des moments M., M9, — M ., et —INI,,, soit égale & zéro.

‘M.’c =9R2‘+1Sin13z+M.r+lcosﬁ.r? (l)
Me =M, ,cosB, — M, ,sinf,. (2)

\ 2

Les composantes de la déformation de la travée quelconque x—1, x sont
présentées sous forme vectorielle sur la fig. 4. Ci-dessous nous donnons les

notations employées:

@ et @, désignent les angles d’inclinaison de la section transversale de la travée
x— 1, xz au point z — 1 et z, respectivement, par rapport au plan vertical.

@2 I’angle d’inclinaison, par rapport au plan vertical, de la section oblique
de la travée x — 1, x au point z, perpendiculaire & 1’axe de la travée z,
z+1.

0, I’angle de torsion de la travée z—1, z.

g° I’angle de rotation de la section transversale de la travée x, z+1 au

point z, perpendiculaire a ’axe de la travée z, x+ 1, par rapport a

cet axe.

A I’angle de rotation, par rapport & ’axe x—1, 2, de la section oblique
de la travée x — 1, x au point z, perpendiculaire & 1’axe de la travée z,
z+1.

Nous considérons les angles ¢., ¢2 et ¢, comme positifs si, en observant
le pont de son c6té concave, les sections correspondantes tournent a droite.
Les angles 8., et 8% seront positifs si — considérées de gauche & droite — les
sections correspondantes de la poutre tournent a droite par rapport aux axes
des travées particuliéres.
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En projetant les vecteurs ¢, et 8, sur les directions ¢l et 6% on obtient

(Pg = <p;cos,8x—€;sinﬁx, (3)
0% = @.sinfB,_ + 6, cosB,, (4)
compte tenu que: 0, =00 ,+0,. (5)

Les déformations ¢, et ¢, de la travée x — 1, x considérée appuyée librement
aux deux extrémités peuvent étre présentées comme suit
— M:z:l:c _ M;la: 4 z:1:—1
Y*T3EJ 6EJ" EJ’
' M.':cl.z: _ Mxl:c + zz
P*=3EJ 6EJ EJ’

(6)

(7)

ou 1, désigne la longueur de la travée x—1, x, T, ; et T, — les forces trans-
versales dues & la charge secondaire sur la travée x — 1, x aux extrémités z — 1
et . L’angle de torsion de la travée x — 1, x di au moment MY est donné par
la formule

0 — Mo,

z GJO * (S)

Etant donné que la somme des angles d’inclinaison, par rapport au plan verti-
cal, de la section oblique de la travée z—1, x au point x (cette section étant
perpendiculaire a 1’axe de la travée x, x + 1) et de la section transversale de la
travée z, x + 1 au point z, doit étre égale & zéro, nous obtenons a chaque nceud,
la condition:

P2 + @1 = 0. (9)

A partir des relations (1)—(8) nous arrivons — en tenant compte de la
relation (9) — & un systéme d’équations linéaires entre les moments de flexion
et de torsion aux appuis du pont.

I
|
; Fig. 5.

X

Les considérations présentées ci-dessus nous permettent de formuler cer-
taines conclusions concernant le travail d’une poutre du pont brisée dans le
plan. Considérons, & titre d’exemple, une poutre continue brisée dans le plan
reposant sur quatre appuis (fig. 5) soumise a une charge uniformément répartie
(charge unitaire ¢ kg/m). Aux points 1 et 2 nous avons des appuis mobiles; les
appuis aux points 0 et 3 sont, il est vrai, & articulations glissantes, cependant
la rotation des sections 0 et 3 par rapport aux axes 01 et 23 demeure impos-
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sible. Vu la symétrie de la charge, la poutre est une fois hyperstatique. Nous
déterminons le moment M, =M, et nous donnons ci-dessous les moments M,
pour différents angles 8 et différentes valeurs de e=EJ/GJ:

B e=1 e=2 e=10
45° —0,0600 gl2 —0,0422 qi2 —0,0124 ql2
30° —0,0777 ql2 —0,0618 gl —0,0239 gl
10° —0,0964 ql2 —0,0930 gl —0,0732 qi2

0° —0,1000 ¢l —0,1000 g2 —0,1000 ¢i2

On voit que l'influence de e sur les moments de flexion decroit & mesure
que I’angle B diminue.

Afin d’évaluer 1'influence exercée par la position de la travée du pont sur
les moments de torsion qui s’y développent, nous allons prendre 1’exemple
d’une poutre & cinq travées (voir fig. 6). La poutre est soumise & une:charge

uniformément répartie, symétrique par rapport au milieu du pont. Nous
prenons 8=30° et la longueur de la travée I =I; la poutre est, en principe,
cinq fois hyperstatique, mais le nombre des inconnues hyperstatiques se réduit
dans ce cas & deux. Le nombre total de moments inconnus aux appuis est
égal & six, & savoir M, M,, M9, MY, M; et M,. Etant donné les conditions
de symétrie, le moment MY =0.

Pour déterminer ces moments, nous nous servons de quatre équations du
type (1) et (2) et de deux équations du type (9). Ainsi nous arrivons a:

M, =—-0,0335ql? M, =—0,0295 ql?,
M, = —0,0900 ¢ 12, INY = —0,0168 ¢ 12,
M, = —0,0688 ql2, MY = —0,0595 g I2.

On voit que, dans la partie centrale du pont, les moments de torsion
décroissent et que la sollicitation des travées particuliéres s’approche de celle
d’une poutre droite. Le calcul d’une poutre pour différents angles 8 nous mene
a la conclusion que, pour de petites valeurs de B (ne dépassant pas 10°), les
poutres en question peuvent étre calculées comme si elles étaient des poutres
droites continues.
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Dans le cas d’un pont courbe & un nombre élevé de travées, il nous faut
établir une équation de liaison, entre les moments aux appuis successifs de la
poutre, analogue & 1’équation des trois moments de la poutre droite continue.
La poutre continue brisée dans le plan a sur chaque appui quatre moments
différents, & savoir M_, M2, M, et M2, ,. Par conséquent, pour établir une
analogie avec 1’équation des trois moments, nous considérons seulement les
moments M2 qui — la poutre étant chargée verticalement — ne varient pas
le long de ses travées particuliéres. Nous obtenons alors une équation de cing
moments successifs de torsion de la forme suivante [2]:

M2, +2cosBIMY,; —6ME +2cosBMO_, +M0_, =@, (10)

ou le symbole MY désigne les moments de torsion de la poutre aux appuis, B:
I’angle entre les travées particuliéres de la poutre et @,: un terme indépendant
de INY. |

Nous résumons maintenant le raisonnement qui nous améne a 1’équation
(10) et nous montrons comment s’en servir pour déterminer toutes les gran-
deurs hyperstatiques dans une poutre continue brisée dans le plan, en nous
basant sur les équations (1)—(9).

L’équation (9), considérée avec 1’équation (3), donne, pour B, = const.

plcosBf—0,sinf = —g,; (11)
étant donné qu’on obtient, d’apres les équations (4) et (5)
03-1sinf = @, +p cosp (12)
1’équation (11) devient:
Pz COSB—@; 3 —@ cosf—0b, sinf = —¢, ;. (13)

Nous résolvons maintenant le systéme d’équations (1)—(2) par rapport &
M et M,. Il vient

. 1
M, = 9329”15;;1*3

M, = MIctgB—MIL_

—MlctgB, (14)

1

lsing " (15)

Ces formules permettent de calculer les moments de flexion aux appuis
pour chaque travée du pont, aprés avoir résolu 1’équation des cinq moments
de torsion par rapport & M. De plus, elles peuvent servir & établir I’équation
(10). Grace & ces équations nous pouvons notamment écrire les formules (6)
et (7) sous la forme:

2
po = Mgl v meforgp-my 2L, (16)

o, = MYy =L e fotg—me_, -]

sin 8 sin B8 (17)
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_ l _ l _EE‘I—I ,_%x
f‘eEJ‘zGJO’ b=TFg VeTFJ

En introduisant ces notations dans I’équation (13), nous arrivons a 1’équa-
tion (10). L’expression de @, sera alors:

sin 8

Qo = =5 (=92 008 Bt + 0058 —dguy). (18)

Dans le cas ol les travées d 'une poutre continue brisée dans le plan ne sont
pas de longueur égale, on doit introduire les longueurs de ces travées dans la
partie gauche de 1’équation des cinq moments de torsion. Si ’on admet une
variation de ¢, ce n’est que le terme médian de 1’équation qui subira un change-
ment mais, dans la construction des ponts, € varie peu et cette variation
s’exprime par le remplacement, dans 1’équation (10), du coefficient 6 par le
coefficient suivant:

’1 N l

Nous pouvons utiliser 1’équation des cinq moments de torsion de deux
fagons. Premiérement comme un systéme d’équations linéaires et deuxiéme-
ment comme une équation aux différences finies du quatriéme ordre qu’on
intégrera.

La solution de I’équation (10) représente la somme

MY = p? +p, (19)
ol u) désigne une solution particuliére, tandis que p, est la solution générale
de I’équation
MY, o+2cos MY, —6M2 +2cosfME_; + M0, =0. (20)
La solution p, est de la forme:

pp = Cr e+ Cye 0 4 (ye*2 4 (e, (21)
ou Uy, C,, U3 et C; sont des constantes, tandis que « peut étre déterminé

d’apres I’équation
cos 3 1 cos?f

2 - 4

cosha = — +2. (22)
La solution pf dépend de la forme du terme @, donc de la charge appli-
quée au pont.
Si toutes les travées d’une poutre continue brisée dans le plan sont chargées
uniformément, notamment symétriquement par rapport au centre de chaque
travée (fig. 7), on aura

’/‘.;5 =p1= ‘/’x = 'ﬁz+1: (23)
Q:z: = 0. (24)
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Si la charge des travées de la poutre est égale et uniforme, sans cependant
étre symétrique (fig. 8), on a alors:

e =dz1s Y=V, ¥ F P, (25)
sinf ,, .
Q:c = f (',[lm—l,[lx)(l—COSB). (2’6)
a |P Pla _al” Pla ) Pla b Pl a
g q q q
l—| [T [T a | Y [T /
x-1 x xel x-1 x xo1
Fig. 7. Fig. 8.

On présente souvent le terme ¢, comme suit:

Q.=ax+b. (27)
On doit rechercher alors la solution p sous la forme
pd=Az+B (28)

ou a, b, 4 et B sont des constantes.
L’équation (10) revét dans ce cas la forme

M2 o+2cosB (M) —6(M2)+2cosB(MI_,)+Me_, =ax+b. (29)

Apres avoir introduit 1’expression (28) dans 1’équation (29) et identifié les
termes de méme degré en x des deux cotés de 1’équation, nous trouvons les
coefficients 4 et B, ainsi que la solution

ax+b

8 sinz—g

py =

(30)

Ainsi, nous arrivons a la solution suivante de 1’équation aux différences
finies
ax+b

. 25'
851112

mg - Ol exa1+02 6“"”‘1-]-03 ewag+04 e—To2 _ (31)

Les coefficients C,, C,, C; et C, peuvent étre déterminés d’apres les con-
ditions aux appuis des extrémités d’une poutre continue brisée dans le:plan.

Considérons le cas, qui peut étre d’une importance considérable pour les
projets de ponts courbes, & savoir celui d’une poutre continue brisée dans le
plan, appuyée librement aux extrémités, les travées particuliéres de la poutre
étant soumises & une charge uniforme. On admet, en outre, que les angles
formés par les travées sont les mémes et que les longueurs des travées sont
égales (fig. 9).

D’apres les conditions aux extrémités des poutres, il vient

M =My =M, =M, =0, (32)
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c’est a dire que les moments de torsion et de flexion aux appuis sont nuls
(x=0,x=mn). :

Etant donné que, dans le cas considéré, a =b =0, les conditions aux extré-
mités — en vertu de 1’équation (31) et des relations (14) et (15) — peuvent
étre exprimées a 1’aide des équations:

Cl eno + 02 g—nal + 03 eno + 04 e—noz — () ,
01 e(n+1)<x1 + 02 e—(71+1) o1 03 e(n+1) a3 04 6_( n+l)as — 0 ,
Cie+Cre+0ze2+Cie > =0,

(33)

Fig. 9.

Dans le cas ol le déterminant du systéme ci-dessus différe de zéro, c’est-a-
dire dans le cas ou

1 1 1 1

enol e—no enas e—nag
emthoa  pg—(ntlar  gn+los  g—(n+1las

afx 1 e—al e(xg e—(!2

ona O, =0,=C;=C,=0. Ceci traduit que, pour toutes les travées de la poutre,
les moments aux appuis, qu’ils soient de torsion ou de flexion, sont égaux &
zéro, autrement dit, chaque travée peut étre considérée comme une poutre
appuyée librement aux deux extrémités.

Dans d’autres cas, si les constantes d’intégration ne sont pas égales & zéro,
il nous faut prendre en considération les moments MY au-dessus des appuis
des ponts; ceci admis, les moments de flexion aux appuis agissant aux extré-
mités des travées particuliéres d’une poutre continue peuvent étre déterminés
a l’aide des relations (14) et (15); il est possible, alors, de calculer les moments
de flexion dans les sections transversales des travées particuliéres.

Si une poutre continue brisée dans le plan est appuyée librement & 1’une
des extrémités, 1’autre extrémité reposant sur un appui glissant mais non
rotatif, on aura:

My=0, M,=0, M,=0, 6,=0. (35)

Si la rotation de la section n est empéchée, nous introduisons le moment
MY, = IM? (pour le moment inconnu). Nous allons done résoudre, par rapport
aux grandeurs C,, C,, C; et C, les quatre équations suivantes:

MY=0, M, =0, M, =0, I =M. (36)
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En introduisant les coefficients €' comme fonctions du moment inconnu
dans 1’équation (4) et en posant que la rotation 6, de la section finale de la
poutre est égale & zéro, nous arrivons a 1’équation du type:

F(MO) =0 (37)

pour le moment inconnu M°. En considérant le dit moment comme une charge
additionnelle sollicitant la poutre continue, nous pouvons calculer les autres
moments M?; & 1’aide des relations (14) et (15), nous calculons les moments
de flexion aux appuis.
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Résumé

Le pont courbe peut étre considéré, dans nombre de cas, comme une cons-
truction continue, composée (dans la section transversale) de deux ou plusieurs
poutres continues brisées dans le plan et appuyées aux noeuds sur les piliers
du pont. Cette communication présente les relations entre les moments aux
appuis ainsi qu’entre les déformations; ces expressions sont analysées et on
en tire les conclusions appropriées. On attache une importance toute parti-
culiéere & 1’équation de cinq moments de torsion successifs dans la poutre,
ainsi qu’aux conséquences qui en découlent. On présente en outre des formules
pour le calcul des moments fléchissants aux appuis & partir des moments de
torsion.

Zusammenfassung

Eine gekriimmte Briicke kann in der Regel als eine kontinuierliche Kon-
struktion betrachtet werden, die aus zwei oder mehreren Haupttrigern mit
geknickter Achse besteht. Die Haupttrager ruhen in den Knotenpunkten auf
den Briickenpfeilern.

In der vorliegenden Arbeit werden Beziehungen fiir die Stiitzmomente und
Forménderungen eines durchlaufenden Balkens mit geknickter Achse ange-
geben und aus den abgeleiteten Formeln die entsprechenden SchluBfolgerun-
gen fiir die Verwendung als Haupttriger von gekrimmten Briicken gezogen.
Eine besondere Bedeutung kommt der Gleichung der finf aufeinanderfolgen-
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den Torsionsmomente und ihrer Deutung zu, wobei Formeln angegeben wer-
den, die einen Ubergang von den Torsionsmomenten zu den Biegungsmomenten
ermoglichen.

Summary

The curved bridge may be regarded, in numerous cases, as a continuous
structure, made up (in the cross section) of two or more continuous girders,
broken in plan and supported at the joints on the pillars of the bridge. This
paper explains the relationships between the moments at the supports and
also between the deformations; these expressions are analysed and the appro-
priate conclusions drawn. Particular importance is attached to the equation
of five successive torsional moments in the girder, and also to the consequen-
ces thereof. Formulae are also provided for the calculation of the bending
moments in the supports on the basis of the torsional moments.
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