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Hlal
Zur Einspannwirkung der Lagerung bei schiefen Brücken

The Fixed-end Restraint Due to Skew Bridge Supports

Sur Vencastrement du aux appuis de ponts biais

FRITZ RESINGER
Dipl.-Ing., Dr. techn., Hochschuldozent, Technische Hochschule Graz

1. Einleitung und Festlegung der Voraussetzungen für die systematische
Untersuchung

Durch die schiefe Lagerung von Brücken entstehen infolge der lotrechten
Belastung neben den Durchbiegungen auch Verdrehungen des Tragwerks um
dessen Längsachse. Diese geometrisch bedingte Koppelung von Biegung und
Torsion ergibt eine elastische Einspannung der Brückenenden und damit eine
Abminderung der Feldbiegemomente, allerdings bei gleichzeitigem Auftreten
von Torsionsmomenten. Der Grad dieser Einspannung wird für eine gegebene
Belastung abhängen: Vom Winkel zwischen der Auflagerlinie und der
Brückenlängsachse, vom Verhältnis der Biege- zur Torsionssteifigkeit des Tragwerkes
sowie vom Verhältnis der in Brückenlängsrichtung gemessenen
Auflagerspannweite a zwischen spitzem und stumpfem Winkel zur Feldspannweite l
zwischen den Auflagern in den stumpfen Winkeln. In der vorliegenden Arbeit
wird der Einfluß dieser Faktoren am schiefen Einfeld- sowie am Zweifeldbalken

für charakteristische Lastfälle systematisch untersucht. Dabei wird
vorausgesetzt, daß die vorhandenen Längen- und Breitenverhältnisse der
Brücke noch die statische Auffassung des Systems als schiefgelagerten Stab
erlauben [1], [2], [3]; der Querschnitt im Feldteil l (vgl. Fig. 1) konstant und
symmetrisch, in den spitzen Endteilen a nach einem einfachen Gesetz verläuft;
die Auflagerlinien der beiden Widerlager bzw. des Pfeilers parallel sind;
Einleitungsprobleme vernachlässigt werden dürfen und die Torsionsbetrachtung
ohne Berücksichtigung von Wölbeinflüssen erfolgen kann.

2. Ermittlung der statisch unbestimmten Einspannmomente

Der für den einfach statisch unbestimmten schiefen Einfeldbalken
gewählte Gleichgewichtszustand X1 1 mit den zugehörigen Biegemomenten
M'B und Torsionsmomenten M'T wurde in Fig. 1 dargestellt. Der
Gleichgewichtszustand für <fgleichmäßig verteilte Vollast» und «Einzellast in Brük-
kenmitte» wurde nach Fig. 2 so gewählt, daß am Grundsystem die Ein-
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spannbiegemomente an der Übergangsstelle zwischen Feldteil und spitzem
Endteil verschwinden. Analog sind für den schiefen Zweifeldbalken unter
«gleichmäßig verteilter Vollast» der aus Symmetriegründen nur zweifach
statisch unbestimmt wird, die Gleichgewichtszustände Xx 1 und X2 1
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Fig. 2. Zustände infolge Vollast und infolge
Einzellast in Brückenmitte am Grundsystem.
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Fig. 4. Vollastzustand am Grundsystem des Zweifeldbalkens.

nach Fig. 3 und der Belastungszustand am Grundsystem nach Fig. 4

angenommen. Mit den aus der bekannten Überlagerung der entsprechenden
Momentenlinien ermittelten Formänderungswerten

EIB
• ^>-™~™gIt

ergeben sich die Bedingungsgleichungen für die unbekannten X-Werte:

Xx Sn + 810 0 für den Einfeldbalken und

-^1^11 +-^2^12 + 810 0 I

„s „ 2 2 \ für den Zweifeldbalken.
-&1 °21 + ^2°22+°20 " J

Zur Vereinfachung der Darstellung der 8ik-Werte ermitteln wir (mit dem
beliebigen Festwert IBC)

5 q EIbc
°<* °ik J—'ik

und führen als Abkürzungen die charakteristischen dimensionslosen
Systemkennwerte

a ElBb2
a==^ und p gi^t*1

ein, wobei a. das Verhältnis der Auflager- zur Feldspannweite und ß das mit
dem Auflagerwinkel gekoppelte Verhältnis der Biege- zur Torsionssteifigkeit
ausdrücken. Berücksichtigt man noch den Verlauf des Querschnitts in den

spitzen Endteilen beim Biegeanteil annähernd durch den Mittelwert IBC\lB
1,5 und beim Torsionsanteil mit ITCjIT 2,0, wobei der Zeiger C sich auf
den Wert des konstanten Mittelteiles bezieht, so erhalten wir aus der
Überlagerung der Momentenbilder 1 und 2
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8u (l + «)(l+j8),

§io TF [(! + «3) - «/5 (1 + «) (3 - «)] für Vollast,

PI8J0 —- [ 1 - 2 « ß] für Einzellast
8

und damit die Einspannmomente am Einfeldbalken:

für Vollast

M^X^-^^^f^ß),
für Einzellast in Brückenmitte

Analog ergeben sich aus der Überlagerung der Momentenverteilungen nach
den Fig. 3 und 4 die Formänderungswerte für den Zweifeldbalken:

S11 2(l+a)(l-t-j3),
812 821 (l+a)(l-aj3),

S10 ^2[H-«3-«)8(l+a)(3-a)],

§20 f|[l+«3 + «2/5(l+a)(3-a)]

und damit die interessierenden Einspannmomente Mx am stumpfen Eck des

Widerlagers und M2 an den Pfeilerlagern:

M1 X1=^f3(oc,ß),

M2 X1 + X2 ^fi(«)ß).

An diesen Ergebnissen fällt zunächst auf, daß die gesuchten Einspannmomente

außer den Absolutwerten der Belastung und der Feldspannweite nur
mehr von den beiden dimensionslosen Systemkennwerten a und ß abhängen.
Daher können die Ergebnisse in ebenen Diagrammen dargestellt werden, wie
dies in den Fig. 5, 6 und 7 geschehen ist.

Zur Wahl der Bereichsweite der beiden Kennwerte in den Diagrammen sei

kurz folgendes bemerkt:
Die untere Grenze von a — 0 wurde nur für Interpolationszwecke dargestellt,

da für a 0 der Wert ß unendlich wird und damit nur ein Punkt dieser
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Fig. 7. Stützmomente infolge Vollast am schiefen Zweifeldbalken.

Kurve sinnvoll ist (gerade Brücke). An der oberen Grenze der dargestellten
a-Werte (a 1) ist wegen des Überganges vom Stab zum Flächentragwerk
(Stabauffassung des Systems verliert seine Berechtigung) keine allzu große
Genauigkeit der Ergebnisse zu erwarten.

Der (8-Wert kann wegen der vorkommenden Auflagerwinkel zwischen null
und unendlich liegen, obwohl das Verhältnis IBjIT für eine Reihe von
ausgeführten Brückenkastenquerschnitten in dem Bereich zwischen 0,5 und 4

ermittelt wurde. Der ganze Bereich war also nur mit einer nichtlinearen Skala

darstellbar. Es bot sich an, den Wert y^ linear aufzutragen, da sich hierfür
die Ergebnisse am Einfeldbalken als Gerade darstellen lassen (Fig. 5 und 6).
Dieselbe Teilung wurde dann auch für den Zweifeldbalken (Fig. 7) beibehalten,
da sich für den hauptsächlich interessierenden Bereich zwischen 0 und 20
noch gute Ablesegenauigkeit ergab.
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3. Betrachtung und Anwendung der Ergebnisse, Vergleich mit den Biegemomenten
des geraden Balkens

Die obere Grenze der Einspannung ist verständlicherweise gegeben durch
das Volleinspannmoment — Pl/8, —pl2fl2). Mit sinkender Torsionssteifigkeit
des Tragwerkes bei sonst gleichbleibenden Verhältnissen fällt auch das negative

Einspannmoment, bis es sogar in den positiven Bereich wechselt. Die
verschiedenen Tendenzen bei Änderung der Brückenbreite, des Auflagerwinkels,

der Steifigkeitsverhältnisse usw. sind durch die entsprechende Änderung

der Kennwerte <x und ß aus den Diagrammen eindeutig zu erkennen.
Der Fall des schiefen Zweifeldbalkens unter gleichmäßig verteilter

Belastung nur in einem schiefen Feld kann mit Hilfe entsprechender Lastzerlegung

(halbe gleichmäßig verteilte Last in beiden Feldern und halbe in den
beiden Feldern gegengleich wirkende Last, die aus Antimetriegründen dem
Einfeldbalken unter Vollast entspricht) aus den ermittelten Ergebnissen am
Ein- und Zweifeldbalken (Fig. 6 und 7) superponiert werden.

Für den Vergleich der Ergebnisse der Feldmomente mit denen am geraden
Balken haben wir als Stützweite des geraden Tragwerkes L l + a Z(l +a/l)
einzusetzen (vgl. Fig. 1). Es ergeben sich infolge einer Einzellast in Brückenmitte

also die (1 +a/l)-fachen Werte von Pl/4 und für die Vollast die (l+a/l)2-
fachen Werte von pl2/S. Der letztere Faktor ergibt sich auch beim
Stützmoment des geraden Zweifeldbalkens unter Vollast. Ein Vergleich mit den
Ergebnissen am schiefen Balken (Fig. 5, 6 und 7) zeigt deutlich die Wirksamkeit

der schiefen Lagerung, sobald das Tragwerk entsprechende
Torsionssteifigkeit besitzt. Es ergeben sich zum Beispiel für ein Brückentragwerk mit
einem Auflagerwinkel von 45°, a 6 m, b 6 m, l 30 m und E lB\G IT 2,0
und daher a 0,2 und ß 2,0 infolge einer Einzellast in Brückenmitte (nach
Fig. 5) Mm 0,975 Pl/4 und infolge Vollast (nach Fig. 6) Mm l,05pZ2/8,
während sich die entsprechenden Werte am geraden Balken der Stützweite
L 36m zu 1,2 Pl/4, bzw. 1,44 pZ2/8, also 23% bzw. 37% höher ergeben.
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Zusammcn fassung

Die Einspannwirkung der schiefen Lagerung von torsionssteifen Brücken
wird für charakteristische Lastfälle systematisch untersucht und in Dia-
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grammen in Abhängigkeit von zwei dimensionslosen Systemkennwerten
dargestellt. Diese Systemkennwerte sind bestimmt durch den Auflagerwinkel,
das Verhältnis der Biege- zur Torsionssteifigkeit des Tragwerks und das

Verhältnis der Auflager- zur Feldspannweite.

aummary

The fixed-end restraint arising from the skew supports of torsionally rigid
bridges is studied systematically for given characteristic imposed loads; the
results are presented, in the form of diagrams, in relation to two dimensionless

Parameters characterising the System. The value of these parameters is deter-
mined by the skew angle, the ratio of the flexural and torsional rigidities and
the ratio of the distance of the supports to the width of the span.

Resume

Pour les ponts rigides a la torsion, l'encastrement du a des appuis biais
est etudie systematiquement pour des surcharges caracteristiques determinees;
les resultats sont presentes sous forme de diagrammes en fonction de 2 para-
metres caracterisant le Systeme. La valeur de ces parametres est determinee

par l'angle du biais, le rapport des rigidites flexionnelle et torsionnelle et celui
de la distance des appuis ä la portee.
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Schiefe und gekrümmte HobJkasten in Theorie und Versuch

Skew and Curved Box-girders, Theory and Research

Poutres-caissons biaises et courbes selon la theorie et dans les essais

G. HUTTER
Dr. Ing., München, Deutsche Bundesbahn

Ähnlich wie die Straße ist die Eisenbahn in bebautem Gelände gezwungen,
in Anpassung an eine zügige Linienführung bei beliebigen Kreuzungswinkeln
und kleinster Bauhöhe ohne sperrende Gerüste Brücken zu erstellen, die
elegant und trotzdem wirtschaftlich sind. Eine Lösung bieten die geschweißten
Hohlkasten, mit denen der Stahlbau der Vielgestaltigkeit des Spannbetons
Gleichwertiges an die Seite stellen kann.

Die Deutsche Bundesbahn hat die Hohlkasten wegen ihrer Torsionssteifig-
keit besonders auch bei schiefen Ausführungen in der Geraden und in der
Kurve vorteilhaft verwendet. Zum Vergleich von Theorie und Versuch wird
im folgenden an Querschnitten von drei Brücken dieser Bauweise gezeigt, wie
sich'gerechnete und gemessene Spannungen zueinander verhalten. Die drei
Bauwerke sind schief; sie unterscheiden sich aber in konstruktiver Hinsicht
und in ihrer Lagerung.

Zu der Versuchsdurchführung ist zu sagen, daß die Dehnungen in den
meisten Meßpunkten zur Erhöhung der Meßgenauigkeit in 4 um jeweils 45°
gedrehten Richtungen ermittelt wurden, um daraus die Hauptspannungen
nach Größe und Richtung zusammen mit den Schubspannungen ableiten zu
können. Dadurch, daß die Messungen nur auf einer Seite der Wände
durchgeführt sind, werden die Verbiegungserscheinungen nicht ausgeschaltet. Viele
Versuche an senkrechten und schrägen Hohlkasten haben zumeist eine gute
Übereinstimmung mit der Theorie ergeben, wobei die gemessenen Werte
zwischen 90 und 100% der gerechneten lagen.

Fall 1. Hohlkasten nur mit Endscheiben

Die hier behandelte Konstruktion der eingleisigen Holzbachbrücke mit
Schotterbett (Fig. la) stellt einen Grenzfall insoferne dar, als der zweizeilige
Hohlkasten von 22,0 m Stützweite nur schräge Endquerscheiben hat. Der in
Feldmitte eingebaute leichte Querträger ist mit dem oberen und unteren
Deckblech nicht verbunden. Die theoretische Untersuchung des einfach
statisch unbestimmten torsionssteifen Hohlkastens wurde nach Wansleben [1]
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durchgeführt. Trotz des Fehlens von Querscheiben im Feld wird eine
gleichmäßige Belastung der 3 Hauptträger angenommen, da die Schwellen in
ähnlicher Weise verteilend wirken.

Von den untersuchten 3 Schnitten ist in Fig. Ib und lc Schnitt 2, der
1,035 m außerhalb der Mitte liegt, bei vollbelasteter Öffnung mit seinen gemessenen

und gerechneten Spannungswerten dargestellt. Im Schnitt ergaben sich
ein rechnerisches Biegemoment MB 3&2 tm, eine Querkraft Q= — 13,6 t und
ein Torsionsmoment MD 82,7 tm. Unter Berücksichtigung der Schotterbettabschlüsse,

die in der Festigkeitsberechnung vernachlässigt sind, zeigt sich im
unteren Deckblech und in den Stegen eine gute Übereinstimmung von
Versuch und Theorie für die Spannungen crx. Das obere Deckblech wird infolge
der unmittelbaren Auflast aus den Schwellen durchgebogen, wobei zum
Vergleich noch die quergerichteten Spannungen ay angegeben sind. In einem nicht
dargestellten Schnitt, der unter einer durch eine Achse belasteten Schwelle

liegt, konnte aus diesem Spannungsbild über die daraus abgeleiteten lotrechten
Drücke die Schwellenlast zu rund 1/2 der Achslast ermittelt werden, eine Folge
der elastischen Nachgiebigkeit der Schwellen im Schotterbett, die die
Achslasten auf mehrere Schwellen verteilt.

Fig. lc enthält die Summe der Schubspannungen aus Querkraft und
Torsionsmoment: rx=QSjIt + MDj2FRt. Bei Schnitt 2 und den anderen beiden
untersuchten Schnitten zeigte sich, daß die gemessenen Werte im äußeren
Stegblech und in den beiden Deckblechen, den Teilen mit Torsionsschub-

Spannungen, gegenüber der Rechnung etwa um den halben Wert der
Torsionsschubspannungen differieren, im äußeren Steg z.B. um + 90 — 37 + 53kg/cm2
bei rTors + 104 kg/cm2.

Die Versuche ergaben im äußeren Steg eine starke Divergenz zwischen den

gemessenen Schubspannungen und den Rechnungswerten. Die Ursache liegt
zum Teil in der Nichterfüllung der gemachten Voraussetzungen für die
Lasteinleitung in die drei Hauptträgerstege und zum anderen Teil darin, daß die
Anordnung von schrägen Endscheiben allein eine teilweise Umlagerung der
für den unverformbaren Rechteckquerschnitt rechnerisch ermittelten
Torsionsmomente in Biegemomente erzwingt. Daraus erklärt sich auch, daß die gemessenen

Biegespannungen teilweise größer sind als die gerechneten.

Fall 2. Hohlkasten mit schrägen Querscheiben

Es handelt sich hier um die Unterführung der Bornstraße in Dortmund,
bestehend aus 5 eingleisigen Überbauten mit Schotterbett, die als schräge
Durchlaufträger mit 2x17,425 m Stützweite und einzelner Mittelstütze
(Fig. 2 a) ausgebildet sind. Die schrägen Querscheiben liegen im Abstand von
1,935 m. Der Hohlkasten ist als torsionssteifes 2fach statisch unbestimmtes
Gebilde berechnet.
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Als interessant sind die Ergebnisse in den 3 Meßschnitten 31, 32 und 33

(Fig. 2 b) an der Mittelstütze für Vollbelastung beider Öffnungen aufgetragen.
Die Schnitte sind in 37 cm Abstand gelegt, um den Spannungsverlauf im
Gebiet der Einleitung der großen Stützenkraft genauer darstellen zu können.
Fig. 2 c zeigt die gemessenen Schubspannungen rx in den 3 Schnitten. Die
Symmetrie zur Mitte ist gewahrt. Die Auflagerkraft wird über die mittlere
Querscheibe in die beiden Stegbleche eingeleitet. Das untere Deckblech ist
am Schubfluß anders beteiligt als die übliche Theorie erwarten läßt.
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ox im Schnitt 33.
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Die gemessenen Spannungen ox zeigen im Schrägschnitt an der Stütze
(Fig. 2d) gegenüber den rechnerischen Werten bei voller Mitwirkung der
Deckbleche große Spannungsspitzen an den Rändern und einen Abfall gegen
die Mitte zu. Diese Erscheinung der Spannungserhöhung ist der Verminderung
der mitwirkenden Plattenbreite an den Einleitstellen von Einzellasten
zuzuschreiben, eine Erscheinung, die Metzer [2] und Chwalla [3] bereits
eingehend theoretisch untersucht haben. Die Spannungsspitze hat als Größtwert
— 739 kg/cm2 gegenüber —390 kg/cm2 nach der Rechnung. Die Spitze wird
rasch abgebaut, wie Fig. 2f zeigt; bei 74 cm Abstand sind Messung und Rechnung

etwa gleich groß, z.B. an der linken Seite des unteren Flachblechs
— 291 kg/cm2 der Messung gegen — 294 kg/cm2 der Rechnung. Die Symmetrie
nach beiden Seiten zeigt Fig. 2e, ein Beweis dafür, daß die Meßwerte richtig
sind, wenn auch durch das Messen auf der Außenseite allein Verbiegungen,
die den Spannungsverlauf stören, nicht ausgeschaltet werden. Damit kann
man auch die größeren Abweichungen zwischen dem unteren Meßpunkt im
rechten Stegblech mit — 466 kg/cm2 gegenüber dem Randwert im Bodenblech
mit — 739 kg/cm2 erklären.

Fall 3. Gekrümmter Hohlkasten mit senkrechten Querscheiben

Zur Erläuterung für diese Bauart werden die Ergebnisse der Versuche an
der Unterführung der Stresemannstraße in Hamburg [4] in einem Schnitt
dargestellt. Das Bauwerk ist wieder eingleisig, hat ein Schotterbett und läuft
über zwei Felder mit Stützweiten von 44,336 m +39,557 m durch (Fig. 3a). Die
Widerlager und der Pfeiler und damit die Lager stehen schräg zur Brückenachse.
Bis auf die schrägen Querscheiben über den Lagern sind die Querschotte senkrecht

angeordnet. Der horizontale Krümmungsradius nimmt von 364 m bis
auf 1000 m zu.

Die Brücke als torsionssteifer Ringträger ist 3 fach statisch unbestimmt
gerechnet. Die Untersuchungen haben gezeigt, daß die Krümmung zur Ermittlung

der Biegemomente nicht berücksichtigt werden muß und Torsionsmomente

erzeugt, die sich direkt aus den Biegemomenten ableiten lassen. Der
Querschnitt ist praktisch wölbfrei, so daß keine Wölbkrafttorsion auftritt
(nach Wansleben [5]). Die Endscheiben sind so weich ausgebildet, daß eine

Verwölbung möglich ist. Die Störung am Mittelauflager klingt rasch ab.
Der Kasten wurde so vorverformt, daß die beiden Lager jeder

Unterstützung unter Eigenlast gleichmäßig belastet sind.
Von den verschiedenen untersuchten Schnitten wird nur der senkrechte

Schnitt C — C in der Feldmitte neben der Mittelstütze gezeigt mit den

Normalspannungen ox parallel zur Brückenlängsachse (Fig. 3b) und den Schubspannungen

tx (Fig. 3 c). Als Belastung dienten 2 schwere Lok der Baureihe 44,
die in den beiden Feldern so aufgestellt wurden, daß Größtwerte von Biege-
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moment und Querkraft entstanden. Die Kraftgrößen daraus waren: MB
— 804tm, MD=152tra, Q —92,4t. Trotz der ungünstigen Voraussetzungen

infolge der Schräge und Krümmung stimmen Versuch und Theorie brauchbar

überein. In der Berechnung ist das rechte, höhere Schotterbettabschluß-
blech gleich dem linken, niedrigeren angesetzt, da eine volle Mitwirkung bei
der geringen Aussteifung nicht möglich ist. Die gemessenen Normalspannungen

(Fig. 3b) sind etwas kleiner als die theoretischen. Die Unterschiede sind
teils auf die nicht ganz zutreffenden theoretischen Annahmen, teils auf die
entlastende Wirkung der Lagerreibungskräfte zurückzuführen. Wie im Fall 2

zeichnet sich auch hier wieder die Spannungsspitze in der linken Seite des

Bodenblechs ab als Folge der Einzelkrafteinleitung am Pfeiler mit der zwangsläufigen

Verkleinerung der mittragenden Deckblechbreite.
Die Schubspannungen rx in Fig. 3 c sind die Summenwerte aus Querkraft

und Torsion. Die Übereinstimmung zwischen Messung und Rechnung in Größe
und Verlauf ist gut.
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Zusammenfassung

Versuche der Deutschen Bundesbahn an schiefen und gekrümmten Brücken
haben bestätigt, daß die genaueren theoretischen Verfahren genügen, den
Spannungsverlauf richtig darzustellen. Die Messungen haben gezeigt, daß
Endscheiben allein nicht ausreichen, das volle rechnerische Torsionsmoment
zu erzwingen, sondern daß besonders an den Lasteinleitungsstellen auch
Querscheiben im Feld notwendig sind. Es wurde nachgewiesen, daß die einschnürende

Wirkung großer Einzellasten auf die mitwirkende Plattenbreite beachtliche

Spannungsspitzen hervorruft, die nicht vernachlässigt werden können.

Summary

The tests carried out by the German Railways on skew and curved bridges
confirm that precise theoretical methods provide a satisfactory idea of the
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distribution of stresses. Measurements have shown that end bracings cannot
by themselves provide the required torsional moment and that intermediate
bracings are also required. It has been shown that the reduction of useful
width, caused by high point loads, result in considerably increased stresses,
which cannot be neglected.

Resume

Par les essais qu'ont executes les Chemins de fer allemands sur des ponts
biais et courbes, il se trouve confirme que les methodes theoriques precises
suffisent pour rendre compte de facon satisfaisante de la repartition des
contraintes. Les mesures ont montre que des entretoisements d'extremite ne

peuvent ä eux seuls introduire le moment de torsion total mais qu'il est necessaire

de prevoir egalement des entretoisements en travee. II a ete mis en evi-
dence que la diminution de la largeur utile due ä de fortes charges isolees fait
apparaitre des contraintes considerablement accrues que l'on ne peut negliger.
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Die Pillerseeachbrücke der Osterreichischen Bundesbahnen

Bailway Bridge Over the "Pillerseeache"

Pont-rails sur le «Pillerseeache»

WOLFGANG SCHMID PETER KLEMENT
Dr. Ing., Wien Dr. techn., Wien

1. Einleitung

Eine Begradigung in einem kurzen Abschnitt der Strecke zwischen Salzburg

und Innsbruck zwang die Österreichischen Bundesbahnen, die neue
Pillerseeachbrücke unter einem Winkel von nur 22° über den Flußlauf zu
führen. Die Abmessungen des zweigleisigen schiefen Tragwerkes, eines
dünnwandigen Kastenträgers, sind in Fig. 1 eingetragen. Hierbei ist besonders
bemerkenswert, daß die Stützweite — gemessen in Gleisrichtung — 50,0 m und
senkrecht zur Flußrichtung, bei einer Bauhöhe von rund 1/19 der schrägen
Stützweite, nur 18,57 m beträgt. Die Einfügung der Brücke in das
Landschaftsbild ließ ein Tragwerk mit obenliegender Fahrbahn wünschenswert
erscheinen.

Durch Querscheiben im Abstand von 12,5 m wird die Gesamtlänge der
Konstruktion von 62,5 m in 5 Abschnitte unterteilt. Die drei mittleren Felder
bilden den geraden rechteckigen Teil, die äußeren die dreiecksförmigen Endteile.

Die den Kammermauern zugekehrten lotrechten Abschlußflächen sind
offen.

Das Tragwerk liegt in einer Neigung von 6,28°/0o sowie in einem Übergangs-
bogen. Um den Einfluß des letzteren möglichst auszuschalten, wurde die
Brückenachse so verschwenkt, daß keine größeren Außermittigkeiten als 5 cm
auftraten.

2. Statische Berechnung

2.1. Allgemeines

Die Gleislasten mit dem Schotterbett werden von einer orthotropen Platte
mit Längs- und Querträgern aufgenommen, deren Berechnung nach einem
Näherungsverfahren erfolgte. Ihre Auflagerkräfte werden auf die beiderseitigen

Stege des Hohlkastens übertragen.
Um auch die statische Wirksamkeit des Hauptsystems mit einem erträglichen

Rechenaufwand zu erfassen, wurde es in Teilsysteme zerlegt (Fig. 2).
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c) Querschnitt

627
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Fig. 2. Statisches Primärsystem und Sekundärsysteme.

2.2. Primärsystem (statisches Grundsystem)

Das Primärsystem ist in den Punkten 0A, 20A, OB, 20B gestützt
und nur in den Knotenpunkten, das sind die Schnitte der Querscheiben mit
den Hauptträgerstegen, belastet (Fig. 2a). Der mittlere, gerade Teil des schiefen

Stabes ist torsionssteif. Sein Querschnitt ist im Feld 10—15 zur
Tragwerksachse symmetrisch; in den beiden anschließenden Feldern wird durch
die ungleichen Stegstärken die Stabachse als Verbindungslinie der
Schubmittelpunkte um 33 cm aus der Tragwerksachse verschoben.

Die dreieckförmigen Endfelder wurden näherungsweise als dreiflächige
ideale Gelenkfaltwerke angesehen, die in den Kanten nur Schubkräfte
übertragen und über die Scheibenhöhe eine geradlinige Spannungsverteilung
aufweisen (Fig. 3). Für die praktische Berechnung der lotrechten Durchbiegungen
wurden, da die Spannungen über die Gurtbreite nicht konstant sind, gleich
hohe ideelle Ersatzquerschnitte bestimmt. Die Gurtflächen dieser Ersatzträger,

deren Achsen in den Ebenen 0—5 liegen, waren durch die Bedingung
gegeben, daß ihre Stegrandspannungen mit denen der Faltwerke
übereinstimmen mußten.
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Das Primärsystem ist damit für lotrechte Belastungen einfach statisch
unbestimmt. Durch Entfernung einer der Stützen, zum Beispiel C0B, erhält
man ein statisch bestimmtes Grundsystem. Die Formänderungsgrößen Sifc

lauten:

EJ0Sik=j^MiMkds + j^§TiTkdi (1)

In der vorstehenden Formel umfaßt das erste Glied den Anteil aus den
Biegemomenten, das zweite Glied den Anteil aus den Torsionsmomenten.

Die Auswertung der Gleichung (1), die Berechnung der Unbekannten und
der Schnittkräfte sowie der Formänderungen erfolgte numerisch. Die geringe
Zahl der Knotenpunkte erlaubte es, für die Belastung jedes einzelnen mit

OA

Fig. 3. Dreiflächiges Falt-
work der Endfelder.

Fig. 4. Einflußlinien im Primärsystem
bei Belastung in den Knotenpunkten.
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der Einheitslast 1 t die Auflagerdrücke, Biege- und Torsionsmomente sowie
die Querkräfte und Querscheibenbeanspruchungen an allen Stellen des
Tragwerkes auszurechnen und damit die Einflußlinien zusammenzusetzen. In
Fig. 4 sind einige charakteristische Einflußlinien für Belastungen in den
Knoten über den zugehörigen Hauptträgerstegen aufgetragen.

Die Auswertung der Einflußlinie für C0A für beide Hauptträgerstege ergibt
für Eigengewicht angenähert null; für die Verkehrslasten sind negative
Lagerdrücke möglich. Um eine Verankerung der Lager zu vermeiden, wurden die
Punkte 0^4 und OB angehoben. Neben der erforderlichen Sicherheit gegen
ein Abheben wurde damit eine günstigere Verteilung der Lagerdrücke auf die
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Widerlager erreicht. Das Biegemoment in Brückenmitte wird damit zwar
um 44% erhöht, entspricht jedoch auch dann nur dem eines geraden Einfeldbalkens

von 38 m Stützweite.

2.3. Sekundärsysteme

Die in Fig. 2 b dargestellten Sekundärsysteme sind Durchlaufträger über
4 Felder von je 12,5 m Stützweite, die in den Ebenen der lotrechten Kastenwände

liegen. Sie übertragen die zwischen den Knotenpunkten des Primärsystems

angreifenden Lasten auf die Hauptknotenpunkte. Die Verschieblichkeit

dieser Punkte ist mit der Berechnung des Primärsystems berücksichtigt.

2.4. Besultierende Spannungen

Zur Bestimmung der resultierenden Spannungen mußten die Beanspruchungen

aus den Teilsystemen addiert werden. Zu den Spannungen aus dem
Primär- und Sekundärsystem kamen im Obergurtblech die Beanspruchungen
der orthotropen Platte hinzu. Da die mitwirkende Breite der Gurtbleche für
beide Systeme zufolge erheblicher Unterschiede in den Abständen der
Momentennullpunkte verschieden groß ist, mußten getrennt für jedes Teilsystem
aus den Momentenlinien die mitwirkenden Plattenbreiten und damit die
Spannungen berechnet werden. Die Momentenlinien wurden durch Fourier-
reihen dargestellt und für jedes Glied die mitwirkende Breite bestimmt. Als
kleinstes Fourierglied wurde jenes berücksichtigt, dessen halbe Längswelle
der Steghöhe des Kastens entspricht.

Für die Längsspannung o zum Beispiel an einer beliebigen Stelle der

Untergurtplatte gilt dann allgemein:

Mp M81 MS2

<T-^ + "^7 + _^7' (2)

wobei sich der Index «p» auf das Primärsystem, die Indizes S 1 und S2 auf
die den beiden Stegen zugeordneten Sekundärsysteme beziehen. Für die
Auswertung der durchgeführten Dehnungsmessungen schreiben Mrir diesen
Ausdruck in der Form

ty ccMp+ßMsl + yMS2. (2 a)

3. Konstruktion

Grundsätzlich wurden in der Werkstätte alle Verbindungen geschweißt,
während auf der Baustelle die Stöße vernietet wurden. Die Ober- und
Untergurtplatten sind an den Querscheiben gestoßen, die Stege knapp daneben.
Die hohen Schubkräfte, die vor allem an den Tragwerksenden durch die
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Torsionsmomente hervorgerufen werden, verlangten dort, zieht man
Vergleiche mit einem einfachen Balken, eine erhebliche Verstärkung der
Querschnitte. Es war also notwendig, die Gurtplatten über die ganze Brückenlänge
mit gleicher Stärke durchzuführen, so daß im geraden Mittelstück nur die

Stegstärken ungleich sind.
Die geringeren Anarbeitungskosten ließen es als wirtschaftlich erscheinen,

die Längsträger der orthotropen Platte auf die Querträger aufzusetzen und
nicht, wie üblich, in die Querträger einzubinden. An den offenen schrägen
Endflächen wurde zur Aufnahme der örtlichen Lasten ein Endquerträger
angeordnet; sein Anschluß im Punkt 0 ist in Fig. 5 dargestellt. Die hoch-

Schnitt o-o

+ 1 +

1 +

+ 1

f I +

r

L_

Schnitt b-b

748 i? T«we<

^f* \
^^^^^% + +1

i+l <i\ -**>^^^ ' ^^ + +!
+ +!

1

J Fig. 5. Anschluß des schrägen
Endquerträgers.

stehende Längsrippe in der Mitte der orthotropen Platte soll für die
Durchführung von Erhaltungsarbeiten die Ausräumung des Schotterbettes unter
nur einem Gleis ermöglichen. Die gleichfalls durch Längsträger ausgesteifte
Untergurtplatte wurde, um die Biegespannungen aus ihrem Eigengewicht
klein zu halten, in Abständen von 6,25 m an der oberen Platte aufgehängt.

Von den vier Punktkipplagern wurde nur das bei 20 A als Festlager
ausgebildet. Verformungen aus Temperaturänderungen und Verkehrslast ver-



DIE PILLERSEEACHBRÜCKE DER ÖSTERREICHISCHEN BUNDESBAHNEN 631

langten an sich Beweglichkeiten in verschiedenen Richtungen. Da ein
vollkommen zwängungsfreies Spiel, wollte man nicht aufwendige allseits bewegliche

Lager verwenden, kaum zu erreichen war, wurden alle Rollenlager in
Richtung der Gleisachse beweglich angeordnet.

Das Gesamtgewicht der Konstruktion aus St 44 S und St 44 T beträgt
342 t, die Lager wogen 10 t. Den Entwurf, die Lieferung und den Zusammenbau

des Stahltragwei'kes besorgte die Firma Waagner-Biro AG., Wien-Graz.

4. Werksfertigung und Montage

Das Tragwerk mußte beim Zusammenbau vorschriftsmäßig für die
Verformungen aus ständiger Last, Anheben der äußeren Lager und Verkehrslast,
letztere zu 25%, überhöht werden. Infolge der unter diesen Belastungen
auftretenden Torsionsmomente und Verdrehungen mußten durch die Sprengung
nicht nur die vertikalen Durchbiegungen der Stege, sondern auch die
horizontalen Verschiebungen der Gurte ausgeglichen werden. Um dies mit der
größtmöglichen Genauigkeit zu erreichen, wurde das Tragwerk in der Werkstätte

vollständig räumlich zusammengebaut. Nach Einstellen der Sprengung
wurden die Nietlöcher auf den vollen Durchmesser aufgerieben. Bei den

großen Werkstoffdicken war dies auch aus wirtschaftlichen Erwägungen von
Vorteil.

Der Zusammenbau auf der Baustelle erfolgte auf Gerüsten. Die Einzelteile
wurden aufgelegt und vernietet. Mit dem Ausrichten der Stöße war auch die
Einhaltung der plangemäßen Form sichergestellt.

5. Messungen

5.1. Allgemeines

Nach Fertigstellung der Brücke wurden, um das statische Verhalten und
die Genauigkeit der Näherungsrechnung zu überprüfen, vom Meßzug der
Österreichischen Bundesbahnen Durchbiegungs- und Dehnungsmessungen
durchgeführt1). Als Belastung stand eine Lok mit dem in Fig. 6 dargestellten
Achsschema und einem Gesamtgewicht von rund 61t zur Verfügung.

5.2. Durchbiegungsmessungen

Für die Durchbiegungsmessungen wurden an einem freistehenden Gerüst
unter der Brücke sogenannte Stangenpotentiometer befestigt, deren Taststifte
an den betrachteten Knotenpunkt angesetzt waren. Die Bewegungen des

Die Messungen standen unter Leitung von Zentralinspektor Ing. Schenkir.
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Taststiftes während einer Überfahrt der Lok wurden von einem Dreischleifen-
Oszillographen aufgezeichnet. In Fig. 7 sind für die drei Knotenpunkte 5 A,
IOA und 15 A die Durchbiegungen über beiden Gleisachsen aufgetragen.
Eine Gegenüberstellung mit den Werten der statischen Berechnung (1.

Näherung) zeigt stärkere Unterschiede. Man kann allein aus den Krümmungen

1,43

d) (1) (1)0)

1,43

Gesomtgewicht
-rund 61t

Fig. 6. Lastschema der
Probelokomotive.

Fig. 7. Einflußlinien für lotrechte
Durchbiegungen bei Belastung
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der Biegelinien erkennen, daß die Abweichungen aus der Nichterfüllung der
gemachten Voraussetzungen über die Steifigkeit der dreieckförmigen
Endfelder herrühren. Der Annahme eines Q-förmigen torsionsschlaffen
Gelenkfaltwerkes steht die Tatsache gegenüber, daß die rahmenartigen Anschlüsse
der schiefen Endquerträger und der Zwischenquerträger einen in der Rechnung

nicht berücksichtigten Beitrag zur Torsionssteifigkeit bieten. Hinzu
kommt als Folge des durchlaufenden Eisenbahnoberbaus und der Fahrbahnübergänge

eine teilweise Einspannung des Tragwerkes in die Widerlager.
Man kommt, will man das Grundkonzept der statischen Berechnung nicht
verlassen, den tatsächlichen Verhältnissen näher, wenn man die lotrechte
Steifigkeit der Ersatzquerschnitte für die Endfelder entsprechend vergrößert.
So sind in Fig. 7 auch die Biegelinien eines Tragwerkes gezeichnet, dessen
ideelle Gurtflächen in den Endfeldern gegenüber den aus der Faltwerktheorie
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Fig. 8. Gemessene und gerechnete Einflußlinien für Spannungen im Untergurt (c—f) und
Obergurt (g—k) bei Belastung in den Gleisachsen.
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ermittelten Werten zunächst versuchsweise verdoppelt wurden (2. Näherung).
Sie zeigen eine wesentlich bessere Übereinstimmung mit den Messungen und
lassen erkennen, daß mit einem entsprechenden Arbeitsaufwand auch eine
weitere Annäherung möglich ist. Dabei darf man neben der bereits erwähnten
Einspannung in die Widerlager auch nicht übersehen, daß bei der Berechnung
der Steifigkeiten alle über die orthotrope Platte hinausragenden Aufbauten
vernachlässigt wurden. Weiter wirkt sich durchbiegungsvermindernd aus, daß
der Belastungsversuch mit einer vierachsigen Lok durchgeführt wurde, während

für die Rechnung eine Einzellast mit gleichem Gesamtgewicht angenommen

wurde.

5.3. Dehnungsmessungen

Die Dehnungsmessungen wurden in einem Querschnitt 1,25 m von der
Querscheibe OA—20 B entfernt im torsionssteifen Teil durchgeführt (Fig. Ib).
Die Meßstellen sind in Fig. 1 c eingetragen. Es wurden Dehnungsmeßstreifen
verwendet; die Aufzeichnung erfolgte wie bei den Durchbiegungsmessungen
mit einem Oszillographen.

Sieht man von den Zusatzbeanspruchungen der orthotropen Platte durch
die örtlichen Lasten und deren teilweisen Übertragung auf den Untergurt
durch die Aufhängung der Platte ab, so ergibt sich die Einflußlinie einer
beliebigen Längsspannung nach Formel (2 a) als Summe der mit konstanten
Faktoren multiplizierten Einflußlinien der Momente des Primärsystems und
der beiden Sekundärsysteme. Zur Veranschaulichung dieses Zusammenhangs
sind in Fig. 8 a und b zunächst diese Momente für den betrachteten
Querschnitt aufgetragen, wobei die Steifigkeit der Endfelder nach der 2. Näherung
bestimmt wurde. Die Gegenüberstellung der Einflußlinien für die Spannungen
im Untergurt (Fig. 8 c—f) nach Rechnung und Messung zeigt eine grundsätzliche

Übereinstimmung an den Meßstellen im Bereich nahe den lotrechten
Kastenwänden, wo nur das Primärsystem und ein Sekundärsystem wirksam
sind. Überlagern sich die Schnittkräfte aus beiden Sekundärsystemen mit
den Einflüssen der örtlichen Belastungen, so ist die Errechnung der <x-, ß-
und y-Werte aus den Versuchsergebnissen schwieriger.

Dies ist besonders bei den in Fig. 8 g—k dargestellten Meßergebnissen
im Obergurt des Kastens, das heißt in der orthotropen Platte, deutlich
erkennbar.

Zusammenfassung

Die zweigleisige Pillerseeachbrücke wurde, der konstruktiven Gestaltung
des Stahltragwerkes entsprechend, in ihrem geraden mittleren Teil als
torsionssteifer, einzelliger Hohlkasten und in den dreieckförmigen Endteilen als

Q-förmiges Faltwerk angesehen und die Berechnung nach der Theorie des

biege- und teilweise torsionssteifen Stabes durchgeführt. Die am Bauwerk
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durchgeführten Messungen lassen erkennen, daß eine Vernachlässigung der
durch Rahmenwirkung hervorgerufenen Torsionssteifigkeit der offenen
Endfelder stärkere Abweichungen zwischen Rechnung und Messung zur Folge
hat. Trägt man dieser Tatsache durch eine Erhöhung der lotrechten Steifigkeit

der anstelle Qförmiger Faltwerke angenommenen Ersatzquerschnitte
Rechnung, so erhält man ein durchaus zutreffendes Bild des wirklichen
Spannungszustandes

Summary

The steel framework of the double-track railway bridge over the Piller-
seeache may be regarded, in its straight central portion, as a torsionally rigid,
monocellular box-girder, and, in its triangulär end portions, as a Q-shaped,
folded structure. For the purposes of calculation, it is assimilated to a bar
possessing flexural rigidity and partial torsional rigidity. From measurements
carried out on the finished structure, it is evident that there are considerable
differences between the calculated and the measured values, as a result of the
neglect of the torsional rigidity in the ends, due to the frame effect. If this
fact is taken into account by increasing the vertical rigidity of the sections
substituted for the Q-shaped folded structures, a thoroughly satisfactory
picture of the actual state of the stresses is obtained.

Resume

L'ossature metallique du pont-rails ä double voie sur le Pillerseeache peut
etre consideree, dans sa partie centrale droite, comme une poutre-caisson
monocellulaire rigide ä la torsion et, dans ses extremites triangulaires, comme
un voile prismatique en Q; pour le calcul, on l'a assimilee ä une barre rigide
ä la flexion et partiellement rigide ä la torsion. Des mesures effectuees sur
l'ouvrage, il ressort que l'omission, dans les extremites, de la resistance ä la
torsion due a l'effet de cadre fait apparaitre des differences importantes entre
le calcul et les mesures. Si l'on tient compte de ce fait en augmentant la rigidite
verticale des sections substituees au voile prismatique en fj, on obtient une
image tout ä fait satisfaisante de l'etat reel des contraintes.
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Pont courbe considere comme une poutre ä axe brise

Gekrümmte Brücke als Balken mit geknickter Achse betrachtet

Curved Bridge Considered as a Beam with Broken Axis

W. WIERZBICKI
Prof. Dr., Dr. h. c, Membre de 1'Aeademie Polonaise des Sciences, Varsovie

La construction d'un pont courbe se compose d'un certain nombre de poutres
dont chacune doit etre curviligne et plane.

On peut souvent considerer les ponts courbes metalliques ä plusieurs
travees et de grande longueur comme des constructions qui, dans leur section
transversale, sont composees de deux ou plusieurs poutres brisees dans le plan
et dont les nceuds sont appuyes sur les piliers du pont. Les jonctions transversales

des poutres particulieres de la construction justifient d'habitude —
comme c'est le cas pour les ponts droits — le calcul des dites poutres comme
des eiements independants se trouvant soumis a la charge transmise par le
tablier du pont. Ceci admis, nous pouvons calculer la poutre continue
polygonale inscrite dans l'axe courbe de la voie (fig. 1).

«is

Fig. 1.

La section transversale aux appuis de la poutre continue, brisee dans le

plan, ne peut etre perpendiculaire qu'ä l'axe d'une des deux travees conse-
cutives (ä leur Joint de jonction). Par consequent, les sections particulieres des

poutres au droit des appuis, subissent non seulement une inclinaison par
rapport au plan horizontal mais aussi une rotation par rapport aux axes des

travees particulieres. II nous faut done recourir ä la representation vectorielle
des moments et des deformations [1], [3].

La poutre presentee sur la fig. 2 repose aux points 1, 2,3,.. ,x,z+ l,ft— 1

sur les appuis mobiles dans le plan parallele au plan horizontal de l'axe de la
poutre, ses extremites etant encastrees rigidement aux points 0 et n. Par
consequent, la poutre presentee est n + 2 fois hyperstatique.

Soient Mx et M'x les moments de flexion et 9Jl!J les moments de torsion
dans les travees, tandis que ßx est l'angle de deux travees consecutives. Les

plans aux traces Os' et 0''s' — correspondant aux vecteurs Mx et M'x —
decoupent dans la poutre continue des coins (nceuds) s'Os 0's' (fig. 3). Etant
donne que les dimensions des nceuds par rapport ä la longueur des travees
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sont petites, nous pouvons admettre que les vecteurs de tous les moments
agissant sur un noeud donne traversent son centre x.

Pour assurer l'equilibre des nceuds particuliers d'une poutre continue il
faut que la somme vectorielle des moments agissant sur un noeud donne, ä

savoir la somme des moments M'x, 9JJ0., — Mx+1 et — 9Jl?+1, soit egale ä zero.

M'x SW°+1 sin ßx + Mx+1 cos ßx. (1)

m°x m°x+1 coSj8x - Mx+1 sin ßx. (2)

x-1
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__ 4K.

x*1
1 /.
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Les composantes de la deformation de la travee quelconque x — 1, x sont
presentees sous forme vectorielle sur la fig. 4. Ci-dessous nous donnons les

notations employees:

(pxet<p'x designent les angles d'inclinaison de la section transversale de la travee
x — 1, x au point x — 1 et x, respectivement, par rapport au plan vertical.
l'angle d'inclinaison, par rapport au plan vertical, de la section oblique
de la travee x— 1, x au point x, perpendiculaire a l'axe de la travee x,

x+l.
1 'angle de torsion de la travee x — 1, x.
1 'angle de rotation de la section transversale de la travee x, x +1 au

point x, perpendiculaire ä l'axe de la travee x. x+l, par rapport ä

cet axe.
l'angle de rotation, par rapport ä Taxe x— 1, x, de la section oblique
de la travee x — 1, x au point x, perpendiculaire ä l'axe de la travee x,
x+ 1.

Nous considerons les angles cpx, cpx et <p'x comme positifs si, en observant
le pont de son cöte concave, les sections correspondantes tournent ä droite.
Les angles d'x et 8X seront positifs si — considerees de gauche ä droite — les

sections correspondantes de la poutre tournent ä droite par rapport aux axes
des travees particulieres.

<P?

0°r

e'x
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En projetant les vecteurs q>'x et d'x sur les directions cpx et 9X on obtient

<Px <p'x cos^x - B'x sin ßx, (3)

ex=cP'xsinßx + e'xcosßx, (4)

compte tenu que: d'x 9X_1 + 9X. (5)

Les deformations <px et tp'x de la travee x — 1, x consideree appuyee librement
aux deux extremites peuvent etre presentees comme suit

MJx_M^lx Z^ m9x~ 3EJ 6EJ + EJ ' [ '

=M^lx_Mxlx %^
9x 3EJ 6EJ^~ EJ' ^'

oü lx designe la longueur de la travee x — 1, x, %x_1 et S£x — les forces
transversales dues ä la charge secondaire sur la travee x—l,x aux extremites x — 1

et x. L'angle de torsion de la travee x— 1, x du au moment 5ß° est donne par
la formule

R W°J* IMd* -GJi' (8)

Etant donne que la somme des angles d'inclinaison, par rapport au plan vertical,

de la section oblique de la travee x— 1, x au point x (cette section etant
perpendiculaire ä l'axe de la travee x, x+ 1) et de la section transversale de la
travee x, x+l au point x, doit etre egale ä zero, nous obtenons ä chaque noeud,
la condition:

9>2+9*+i 0. (9)

A partir des relations (1)—(8) nous arrivons — en tenant compte de la
relation (9) — ä un Systeme d'equations lineaires entre les moments de flexion
et de torsion aux appuis du pont.

m°, 2

\
V<

t«. Flg. 5.

Les considerations presentees ci-dessus nous permettent de formuler cer-
taines conclusions concernant le travail d'une poutre du pont brisee dans le

plan. Considerons, ä titre d'exemple, une poutre continue brisee dans le plan
reposant sur quatre appuis (fig. 5) soumise ä une charge uniformement repartie
(charge unitaire q kg/m). Aux points 1 et 2 nous avons des appuis mobiles; les

appuis aux points 0 et 3 sont, il est vrai, ä articulations glissantes, cependant
la rotation des sections 0 et 3 par rapport aux axes Ol et 23 demeure impos-
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sible. Vu la symetrie de la charge, la poutre est une fois hyperstatique. Nous
determinons le moment Mx
pour differents angles ß et differentes valeurs de € EJ/GJ0:

¦¦ M2 et nous donnons ci-dessous les moments M2

ß «=1 e=2 €=10

45°
30°
10°
0°

- 0,0600 qP

- 0,0777 qP

- 0,0964 qP

-0,1000 qP

- 0.0422 qP
-0.0618 qP

- 0,0930 qP
-0.1000 qP

-0,0124 qP
-0,0239 qP
-0,0732 qP
-0,1000 qP

On voit que l'influence de e sur les moments de flexion decroit ä mesure

que l'angle ß diminue.
Afin d'evaluer l'influence exercee par la position de la travee du pont sur

les moments de torsion qui s'y developpent, nous allons prendre 1'exemple
d'une poutre ä cinq travees (voir fig. 6). La poutre est soumise ä une'charge

Miml
V

\\,\\M
Fig. 6.

uniformement repartie, symetrique par rapport au milieu du pont. Nous

prenons j3 30° et la longueur de la travee lx l; la poutre est, en principe,
cinq fois hyperstatique, mais le nombre des inconnues hyperstatiques se reduit
dans ce cas ä deux. Le nombre total de moments inconnus aux appuis est

egal ä six, ä savoir M[, M2, 9JJ?, 50Z§, M'2 et M3. Etant donne les conditions
de symetrie, le moment 9JJg 0.

Pour determiner ces moments, nous nous servons de quatre equations du

type (1) et (2) et de deux equations du type (9). Ainsi nous arrivons ä:

M3 -0,0335 ql2,

M2 -0,0900 ql2,

M1 -0,0688 ql\

M2 -0,0295 ql2,
SJRo _o,0168 ql2,

wi -0,0595.7 z2.

On voit que, dans la partie centrale du pont, les moments de torsion
decroissent et que la sollicitation des travees particulieres s'approche de celle
d'une poutre droite. Le calcul d'une poutre pour differents angles ß nous mene
ä la conclusion que, pour de petites valeurs de ß (ne depassant pas 10°), les

poutres en question peuvent etre calculees comme si elles etaient des poutres
droites continues.
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Dans le cas d'un pont courbe ä un nombre eleve de travees, il nous faut
etablir une equation de liaison, entre les moments aux appuis successifs de la
poutre, analogue ä 1'equation des trois moments de la poutre droite continue.
La poutre continue brisee dans le plan a sur chaque appui quatre moments
differents, ä savoir M'x, 9Jix, Mx+1 et 9ftx+1. Par consequent, pour etablir une
analogie avec 1'equation des trois moments, nous considerons seulement les
moments Wlx qui — la poutre etant chargee verticalement — ne varient pas
le long de ses travees particulieres. Nous obtenons alors une equation de cinq
moments successifs de torsion de la forme suivante [2]:

m°x+2 + 2 cos ß m°x+1 - 6 3KX + 2 cos ß W^ + Mx_2 Qx (10)

oü le symbole 9Jlx designe les moments de torsion de la poutre aux appuis, ß:
l'angle entre les travees particulieres de la poutre et Qx: un terme independant
dem».

Nous resumons maintenant le raisonnement qui nous amene a 1'equation
(10) et nous montrons comment s'en servir pour determiner toutes les gran-
deurs hyperstatiques dans une poutre continue brisee dans le plan, en nous
basant sur les equations (1)—(9).

L'equation (9), consideree avec 1'equation (3), donne, pour ßx const.

<pxco3ß-6'xsmß -<px; (11)

etant donne qu'on obtient, d'apres les equations (4) et (5)

9x_1smß 9'x_1 + 9xcosß (12)

l'equation (11) devient:

<p'xcosß -<p'x-i~ <Pxcoaß-öxsinß -<Px+i- (13)

Nous resolvons maintenant le Systeme d'equations (1)—(2) par rapport ä

M'xetMx. II vient

M'x-m^^ß-mootgß, (14)

Mx m°ctgß-mx-1J[ß. (is)

Ces formules permettent de calculer les moments de flexion aux appuis
pour chaque travee du pont, apres avoir resolu l'equation des cinq moments
de torsion par rapport ä <$RX. De plus, elles peuvent servir ä etablir l'equation
(10). Gräce a ces equations nous pouvons notamment ecrire les formules (6)
et (7) sous la forme:

9x mx+1^ß+wxfctgß-wx_1-^-ß++x, (i6)

^ TO2+1sm^"TOS/ctg'8-9KS-1sIn^ + !/,- (17)
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\ / fr fr Ast—1 i, jL«.
f =6ej 2gj0' +*=irj> ^ ei-

En introduisant ces notations dans l'equation (13), nous arrivons ä l'equation

(10). L'expression de Qx sera alors:

Qx ^(-fxoosß + fx_1 + 4,xcosß-lpx+1). (18)

Dans le cas oü les travees d'une poutre continue brisee dans le plan ne sont
pas de longueur egale, on doit introduire les longueurs de ces travees dans la
partie gauche de l'equation des cinq moments de torsion. Si l'on admet une
Variation de e, ce n'est que le terme median de l'equation qui subira un change-
ment mais, dans la construction des ponts, e varie peu et cette Variation
s'exprime par le remplacement, dans l'equation (10), du coefficient 6 par le
coefficient suivant:

2(cos2ß + 2-r|tsin2j8j pour /1=-
l

GJ„

Nous pouvons utiliser l'equation des cinq moments de torsion de deux
facons. Premierement comme un Systeme d'equations lineaires et deuxieme-
ment comme une equation aux differences finies du quatrieme ordre qu'on
integrera.

La Solution de l'equation (10) represente la somme

TOx=Mx+/xx (19)

oü /x° designe une Solution particuliere, tandis que fxx est la Solution generale
de l'equation

9Kx+2 + 2cosi85!Rx+1-6TOx+2cosJ8TOx_1 + 9D?x_2 0. (20)

La Solution \x.x est de la forme:

\ix C1exa^ + C2e-xa> + C3exa* + CAe'x^, (21)

oü C1, C2, C3 et Ci sont des constantes, tandis que a peut etre determine
d'apres l'equation

i cosß ,/cos2ß 7
cosha ^-± V -+2.2 J 4

(22)

La Solution /xx depend de la forme du terme Qx, done de la charge appli-
quee au pont.

Si toutes les travees d'une poutre continue brisee dans le plan sont chargees
uniformement, notamment symetriquement par rapport au centre de chaque
travee (fig. 7), on aura

fix =^'x-\ «A* ta+i» (23)

Qx 0. (24)



PONT COURBE CONSIDERE COMME UNE POUTRE A L AXE BRISEE 643

Si la charge des travees de la poutre est egale et uniforme, sans cependant
etre symetrique (fig. 8), on a alors:

<Ai=,/4-i> iljx >Px+i> tlj'x + <l>x,

Qx S-j£(+'x->Px)(l-cosß).

D N I I «IIIHII D̂
*?•» x-1

Fig. 7.

b p q b

TTTTTTTTl I hTTTTTTTi

Fig. 8.

°U^

(25)

(26)

~3

On presente souvent le terme Qx comme suit:

Qx ax + b. (27)

On doit rechercher alors la Solution fix sous la forme

{,%=Ax + B (28)

oü a, b, A et B sont des constantes.

L'equation (10) revet dans ce cas la forme

mx+2+2cosß(mx+1)-6(mx)+2cosß(m°x_1)+mx_2 ax+b. (29)

Apres avoir introduit l'expression (28) dans l'equation (29) et identifie les

termes de meme degre en x des deux cötes de l'equation, nous trouvons les
coefficients A et B, ainsi que la Solution

ax + b
/4

8 sin2!
(30)

Ainsi, nous arrivons ä la Solution suivante de l'equation aux differences
finies

smo CieXai + q2e-xai + Q3ei«s + Cte-xa,_
ax + b

_

8sin2|
(31)

Les coefficients C1, C2, C3 et C4 peuvent etre determines d'apres les
conditions aux appuis des extremites d'une poutre continue brisee dans lejplan.

Considerons le cas, qui peut etre d'une importance considerable pour les

projets de ponts courbes, ä savoir celui d'une poutre continue brisee dans le

plan, appuyee librement aux extremites, les travees particulieres de la poutre
etant soumises ä une charge uniforme. On admet, en outre, que les angles
formes par les travees sont les memes et que les longueurs des travees sont
egales (fig. 9).

D'apres les conditions aux extremites des poutres, il vient

aR8 aR»=if1 jf;=o, (32)
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c'est a dire que les moments de torsion et de flexion aux appuis sont nuls
(x 0, x n).

Etant donne que, dans le cas considere, a b 0, les conditions aux extremites

— en vertu de l'equation (31) et des relations (14) et (15) — peuvent
etre exprimees ä l'aide des equations:

C1 + C2 + C3 + Ci 0,

C1 en ai + C2 e~n ai + C3 en <** + C4 e~n a°- 0,

C1 e(«+««i + C2 e-<"+Uai + C3 e(»+«a3 + C4 e-<n+1)a* 0,
C1 e°i + C2 e-0"- + C3 e«* + C4 e~a* 0.

(33)

x-1
ZZT-1Ä4

ii=^rfi<''^
Fig. 9.

Dans le cas oü le determinant du Systeme ci-dessus differe de zero, c'est-ä-
dire dans le cas oü

1

g«ar.l

1

g-m ai

1 1

o—netz

e(n+l)ai g-(?i+l)ai g(?H-l)a-2 g-(?H-l)a2

eai g-ai ea2 e-a2

4=0. (34)

on a Cj C2 C3 C4 0. Ceci traduit que, pour toutes les travees de la poutre,
les moments aux appuis, qu'ils soient de torsion ou de flexion, sont egaux a

zero, autrement dit, chaque travee peut etre consideree comme une poutre
appuyee librement aux deux extremites.

Dans d'autres cas, si les constantes d'Integration ne sont pas egales ä zero,
il nous faut prendre en consideration les moments 9JJX au-dessus des appuis
des ponts; ceci admis, les moments de flexion aux appuis agissant aux extremites

des travees particulieres d'une poutre continue peuvent etre determines
ä l'aide des relations (14) et (15); il est possible, alors, de calculer les moments
de flexion dans les sections transversales des travees particulieres.

Si une poutre continue brisee dans le plan est appuyee librement ä l'une
des extremites, 1'autre extremite reposant sur un appui glissant mais non
rotatif, on aura:

9JJg=0, ^=0, M'n=0, 9n=0. (35)

Si la rotation de la section n est empechee, nous introduisons le moment
3Jl£ W (pour le moment inconnu). Nous allons done resoudre, par rapport
aux grandeurs Cx, C2, C3 et C4 les quatre equations suivantes:

9tt§ 0, Mt 0, Mn 0, Wn W. (36)
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En introduisant les coefficients C comme fonctions du moment inconnu
dans l'equation (4) et en posant que la rotation 9'„ de la section finale de la
poutre est egale ä zero, nous arrivons a l'equation du type:

F{m°) 0 (37)

pour le moment inconnu 9R°. En considerant le dit moment comme une charge
additionnelle sollicitant la poutre continue, nous pouvons calculer les autres
moments Wx; ä l'aide des relations (14) et (15), nous calculons les moments
de flexion aux appuis.
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Resume

Le pont courbe peut etre considere, dans nombre de cas, comme une
construction continue, composee (dans la section transversale) de deux ou plusieurs
poutres continues brisees dans le plan et appuyees aux nceuds sur les piliers
du pont. Cette communication presente les relations entre les moments aux
appuis ainsi qu'entre les deformations; ces expressions sont analysees et on
en tire les conclusions appropriees. On attache une importance toute parti-
culiere ä l'equation de cinq moments de torsion successifs dans la poutre,
ainsi qu'aux consequences qui en decoulent. On presente en outre des formules

pour le calcul des moments flechissants aux appuis ä partir des moments de
torsion.

Zusammenfassung

Eine gekrümmte Brücke kann in der Regel als eine kontinuierliche
Konstruktion betrachtet werden, die aus zwei oder mehreren Hauptträgern mit
geknickter Achse besteht. Die Hauptträger ruhen in den Knotenpunkten auf
den Brückenpfeilern.

In der vorliegenden Arbeit werden Beziehungen für die Stützmomente und
Formänderungen eines durchlaufenden Balkens mit geknickter Achse
angegeben und aus den abgeleiteten Formeln die entsprechenden Schlußfolgerungen

für die Verwendung als Hauptträger von gekrümmten Brücken gezogen.
Eine besondere Bedeutung kommt der Gleichung der fünf aufeinanderfolgen-
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den Torsionsmomente und ihrer Deutung zu, wobei Formeln angegeben werden,

die einen Übergang von den Torsionsmomenten zu den Biegungsmomenten
ermöglichen.

Summary

The curved bridge may be regarded, in numerous cases, as a continuous
structure, made up (in the cross section) of two or more continuous girders,
broken in plan and supported at the joints on the pillars of the bridge. This

paper explains the relationships between the moments at the supports and
also between the deformations; these expressions are analysed and the appro-
priate conclusions drawn. Particular importance is attached to the equation
of five successive torsional moments in the girder, and also to the consequen-
ces thereof. Formulae are also provided for the calculation of the bending
moments in the supports on the basis of the torsional moments.
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Space Frame Action and Load Distribution in Skew Bridges

Comportement tridimensionnel et distribution des charges dans les ponts biais

Bäumliche Tragwirkung und Lastverteilung in schiefen Brücken

M. S. AGGOUR
Dr., Professor at the Faculty of Engineering, Cairo University, Giza, U. A.R.

Introduction

The usual method of calculating the stresses in the different parts of a
bridge is to split it up into a group of vertical and horizontal plane frames
and trusses acting independently of each other, the vertical loads being taken
by the vertical main girders, the horizontal loads by the horizontal wind
bracings and then transmitted through the transverse frames to the bearings
of the bridge. In reality the whole bridge acts as a space structure; the vertical
loads produce stresses not only in the main girders, but also in the wind
bracings and transverse frames. In case of a skew bridge, the effect of the space
frame action is much greater than in the case of a Square bridge on account
of the much greater twisting moments produced at the end transverse frames.

The object of this research is to investigate how skew bridges with two or
more main girders connected rigidly together by cross frames and wind bracings
will behave if they are treated as space structures. The results of the space
frame calculation are compared with those obtained by the ordinary method
and it has been found that the design of a safe skew bridge should be carried
out as a space structure. Furthermore some types of Square bridges are treated
as space structures in order to compare their behaviour with that of skew
bridges.

Space Frame Method of Calculation

The space structure is considered to be composed of several plane frames
or trusses connected together at their lines of intersection. Along these lines
the plane frames or trusses will act mutually on one another. The corresponding
actions and reactions are called edge forces, since their lines of action in the
case of plane frames with negligible lateral stiffness coincide with the edge.
After the determination of these edge forces, the calculation of the space frame is
carried back to the calculation of several plane frames or trusses loaded by
external forces and edge forces in their own planes.

The general shape of a bridge with two main girders, an upper and a lower
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wind bracing, and two end cross frames, is a closed polyhedron. If the main
girders are trusses or plate girders with parallel chords, the polyhedron will
possess six surfaces and twelve edges. For the equilibrium of each plane
surface of the polyhedron, the external loads and edge forces acting upon this
surface must satisfy the three conditions of equilibrium in the plane. If the
bridge is supported by means of four vertical and three horizontal reactions,
the total number of unknown reactions and edge forces is 7 + 12=19, the
number of equations of equilibrium is 6x3=18, and therefore the space frame
is once statically indeterminate.

By eliminating one of the four vertical reactions, or by omitting either of
the two end cross frames or one diagonal in the upper or the lower wind
bracing, we obtain a statically determinate space structure. On the other
hand, each additional cross frame increases the number of unknowns by one
(4 edge forces and 3 equations of equil.) so that a bridge with two main
girders, two wind bracings, two end cross frames and (n) intermediate cross
frames, supported by seven reactions (four vertical and three horizontal) is

(w+1) times statically indeterminate. This means that the redundant edge
forces can be obtained from (n+1) equations. This is true not only when all
the component parts of the bridge are statically determinate plane plate
girders or trusses, but also when they are statically indeterminate ones, because
the additional indeterminacy of the plane trusses can be calculated separately.

Furthermore, skew bridges are not symmetrical with regard to vertical
planes, as are Square bridges, but they can in most cases be made symmetrical
with regard to a vertical axis through the centre of the bridge. By Splitting up
the acting vertical or horizontal loads into symmetrical and asymmetrical
loadings, the number of redundant forces can be reduced by one half.

Skew Bridges with Two Main Girders

In order to study the effect of the stiffness of the end portals as well as the
effect of the intermediate transverse frames on the stress distribution, four
different cases of a single track railway bridge, Fig. 1, have been investigated:
a) A through bridge with two wind bracings and two end portals.
b) A through bridge with two wind bracings, two end, and two intermediate

portals.
c) A deck bridge with two wind bracings and two end cross frames.
d) A deck bridge with two wind bracings, two end, and two intermediate

cross frames.

The general arrangement and cross sections of members of main girders
and wind bracings are the same in all four cases, but the stiffness of the end

portals in the case of deck bridges is about 25 times greater than that in the
case of through bridges.
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All these bridges are supported by four vertical and three horizontal
reactions and thus bridges a) and c) are once, while bridges b) and d) are three
times statically indeterminate space structures.

In order to compare the behaviour of Square and skew bridges as space
structures, two Square through and deck bridges with only two end transverse

frames have been calculated. The influence line of the redundant edge
force (Y) between the plane surfaces of the upper wind bracing and the end
transverse frame, for the Square and the skew through bridges, due to
vertical loads moving either in the plane of one main girder or along the centre
line of the bridge, are shown in Fig. 2.

In the Square through bridge, the influence line for a unit load moving
in the plane of one main girder has negative ordinates on the left half and
equal positive ordinates on the right half. All ordinates of the influence line
for an axle load of two tons moving along the centre line of the bridge are
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therefore zero. In the Square deck bridge, the edge force Y for any vertical
loading is negligible. In skew bridges, on the contrary, all the ordinates of the
influence line for the edge force Y due to a load moving in the plane of one
main girder have the same sign, and all the ordinates of the influence line for
a load of two tons moving along the centre line of bridge are therefore nearly
doubled.

It follows, therefore, that in the calculation of Square bridges with two
main girders, the space frame action can usually be neglected. It is only of a
certain importance in double track railway bridges and roadway bridges
subject to eccentric loading. On the contrary, in all skew bridges the actual
forces in the main girders, wind bracings, and transverse bracings differ very
much from those obtained by the usual method of calculation. In order to
obtain a safe structure, skew bridges have to be treated as space frames.

Results Obtained for Vertical Loads

The influence lines for certain members of the skew deck bridges c) and d)
for an axle load of two tons moving along the centre line of bridge, are shown
in Fig. 3. The corresponding influence lines obtained by the ordinary method
of calculation are also shown for comparison. The investigation of these
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influence lines and the calculation of the defiections allow the following general
conclusions to be reached.

a) Bridges with Two End Cross Frames

The maximum reactions for the skew deck bridge are increased at the
obtuse ends by about 23% and reduced at the acute ends by the same amount.
For the skew through bridge this deviation is only 11%. The forces in all
the truss members except the diagonals near the obtuse ends are reduced.
The greatest decrease is 32% for the deck bridge and 15% for the through
bridge. The total forces in the diagonals of the end cross frames of the deck
bridge are increased by 130%, while the stresses in the end portals of the
through bridge are increased by 290%. A still greater increase takes place
for the total forces in the diagonals of the two wind bracings.

By neglecting the space frame action in the calculation of such skew bridges,
a considerable amount of material is wasted in the main girders. On the other
hand, the wind bracings and end cross frames will not be safe, if they are
calculated for wind loads only, as is usual, since they are subject to considerable
additional forces due to the twisting moments at the end cross frames.

b) Bridges with Two End and Two Intermediate Cross Frames

The space frame calculation gives an additional reduction of the forces in
nearly all the members of the main girders, and a corresponding increase in
the middle diagonals of the two wind bracings. For vertical loads acting in
the plane of one main girder, the decrease in the forces of that loaded girder
is more pronounced than that for loads acting along the centre line of the
bridge. The intermediate cross frames reduce the defiections due to vertical
loads, thereby increasing the stiffness against vibrations due to moving loads.
By increasing the stiffness or the number of the intermediate cross frames
this effect can be improved.

Skew Bridges with Several Main Girders Connected Rigidly by Cross Frames and
Wind Bracings

Two types of skew bridges with different angles of the skew have been

investigated. Both bridges consist of four simple main girders of the plate-
girder type, connected together by five rigid cross bracings as well as an upper
and a lower wind bracing, Fig. 4. The bridges are symmetrical about the
vertical axis through the mid point (m). In the first bridge the skew corresponds
to the wholespan, tanax= 12/7.5= 1.6; in the second bridge the skew is about
0.43 of the span, tan a2 0.686. These bridges have been fully calculated as

space structures when they are provided with the upper wind bracing only,
and then with the upper and lower wind bracings.
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Bridge with the Bigger Skew

In this case the bridge is provided with an upper wind bracing only, and
can be regarded as consisting of two separate statically determinate bridges
0 — 6 — 8—14 and 0' —6' —8' —14' connected together by three intermediate
cross frames e,m,e'. The System is statically determinate if the three
intermediate cross frames are disconnected and is a nine times statically indeterminate

space structure when they are connected. For symmetrical loading,
the total number of redundant forces is only five, and for asymmetrical loading,
the number of redundant forces is only four.

If the lower wind bracing is added to the above bridge, the structure will
be a 13 times statically indeterminate space structure. If we consider the
bridge with one wind bracing only as a statically determinate second main
System, each of the diagonals of the lower wind bracing will correspond to a

new redundant force, and therefore the total number of redundant forces is
9 + 4=13. The second main System is four times statically indeterminate for
any loading, and twice for symmetrical or asymmetrical loading.

Bridge with the Smaller Skew

The bridge with an upper bracing is nine times statically indeterminate for
any loading. It will be five times statically indeterminate for symmetrical,
and four times for asymmetrical loadings. In the bridge with two wind bracings,
we have six new redundant forces which reduce to three for symmetrical or
asymmetrical loadings.
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Results Obtained for Main Girders

a) Bridges with one Wind Bracing Only

For the bridge with the bigger skew, for a füll loading of the outside main
girder (^4), the vertical reaction at support 6 increases by 8% and that at
support 0 decreases by 16% with regard to those found by the ordinary method
of calculation. For the inside main girder, both end reactions are reduced by
about 52% for a füll loading of this girder. For the critical loading, the decrease

in the vertical reaction at the acute end of the outside girder is only 6% while
a very great increase of 87% occurs at the obtuse end. For the inside main
girder both reactions are reduced by 25% and 18% at the acute and obtuse
ends respectively.

The maximum bending moment for the outside girder of the bridge is
decreased by 27% for a füll loading of that girder, and by 18% for the critical
loading. For the inside main girder the reductions in the bending moments
are 55% and 27%, respectively.

For the bridge with the smaller skew, the results obtained for the reactions
and bending moments ränge between those found for a similar square bridge
and those for the bridge with the bigger skew.

In all bridges considered, the relief in the maximum bending moment due
to the loading of one main girder is much greater for the inside girders than
for the outside girders, owing to the fact that the two adjacent girders in the
first case take a greater part of the load than the one adjacent girder in the
second case. It is therefore recommended that the outside girders should be
made stronger than the inside girders. This is not only favourable for equal
distribution of the bending stresses over the four main girders, but also for
the stiffness of the bridge. Furthermore, the maximum defiections in the
outside girders will be reduced.

b) Bridges with Two Wind Bracings

The relief in the bending moment of the outside girders for the loading of
one of these girders is about one and a half times as great as in the bridge
with one bracing, and the inside girders are also slightly more relieved. The
effect of the second bracing is much greater in skew bridges than in square
bridges.

Results Obtained for Cross Frames and Wind Bracings

For a loading acting in the plane of the cross frame itself, the stresses in
this cross frame are about 1.5 times greater than those produced in the adjacent
cross frames. It follows, therefore, that all cross frames of the bridge are
stressed, whether the load is acting in their own plane or in the plane of other
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adjacent cross frames, and it is incorrect to assume, that each cross frame is
stressed only by the loads acting in its own plane.

The critical loading producing maximum compressive stress in the middle
strut of these cross frames consists of a füll loading of the inside main girders
B and B', while that producing maximum tensile stress in the middle lower
strut consists of a füll loading of the main girders B' and A'.

These critical loadings are the same for bridges with one and with two
wind bracings, but the second bracing has a tendency to increase slightly the
forces in the cross frames of square bridges and reduce those in the cross
frames of skew bridges. It is more favourable for the load distribution to make
the cross frames as stiff as possible.

Comparing the critical forces in the wind diagonals of these bridges, the
forces in these diagonals in the case of one wind bracing only, are less than
one-half of those obtained in case of two wind bracings.

It follows therefore that the lower wind bracing will relieve the main
girders and the cross frames of the bridge from part of the load, but the two
upper and lower wind bracings will receive additional forces. The two wind
bracings have an effect on the load distribution which is less than that obtained
by arranging stiffer cross frames.

Conclusions

1. At the obtuse end of the outside mam girders of all skew bridges, the
reactions are very much greater than those obtained by the ordinary method
of calculation. It is important to take this into consideration in the design of
the abutments in order to avoid unequal settlement.

2. The more the skew of the bridge is increased, the greater is the reduction
in the maximum bending moment in both main girders.

3. The position of the maximum bending moment is near the centre of the
main girders of square bridges, but it is shifted towards the acute ends in skew
bridges. The greater is the skew of the bridge, the greater is the shift of the
position of the max. bending moment.

4. The deviations mentioned for bridges with one wind bracing are still
more pronounced in cases where the bridge is provided with two wind bracings.

5. The bending moment and shearing forces in the cross frames increase
considerably when the skew of the bridge becomes greater. In the bridge with
the smaller skew, they are twice as great as, and in the bridge with the bigger
skew five times greater than, the corresponding values in square bridges.

6. The forces in the wind diagonals are affected when the angle of the skew
becomes greater. In the bridge with two wind bracings, the forces in the wind
diagonals are five times greater than those of the bridges with one bracing in
the case of the square bridge, and twice as great in the case of the bridge
with the greater skew.
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7. By taking into account the load distribution and space frame action in
the design of skew bridges, a considerable amount of material can bc saved in
the main girders. On the other hand, the additional forces in the cross frames
and wind bracings produced by vertical loads must be taken into consideration
in the design in order to obtain a safe structure.

Summary

The object of this research is to investigate how skew bridges with two or
more main girders, connected rigidly together by cross frames and wind
bracings, wül behave if they are treated as space structures. The author has
found that by taking into account the load distribution and space frame
action in the design of skew bridges, a considerable amount of material can be
saved in the main girders. On the other hand, the additional forces in the
cross frames and wind bracings produced by vertical loads must be taken into
consideration in order to obtain a safe structure.

Resume

L'auteur etudie le comportement tridimensionnel des ponts biais compor-
tant deux ou plusieurs poutres maitresses, solidarisees par des entretoisements
et des contreventements. II montre que l'on peut reduire considerablement les

poids des poutres maitresses lorsque l'on considere la distribution des charges
et le comportement tridimensionnel de la structure; pour realiser un ouvrage
presentant toute securite, il faut bien entendu tenir compte des sollicitations
supplementaires des entretoisements et des contreventements dues aux charges
verticales.

Zusammenfassung

Der Zweck der vorliegenden Arbeit ist, festzustellen, wie sich schiefe
Brücken mit zwei bzw. mehreren Hauptträgern, welche mit Querrahmen und
Windverbänden verbunden sind, als Raumtragwerke verhalten. Es wurde
bewiesen, daß die Berechnung solcher Brücken unter Berücksichtigung der
durch die räumliche Wirkung erzielten Lastverteilung zu einer erheblichen
Materialersparnis bei den Hauptträgern führt; jedoch müssen die zusätzlichen
Kräfte in den Querrahmen und Windverbänden, welche durch die vertikalen
Lasten hervorgerufen werden, mit Rücksicht auf die Sicherheit der Konstruktion

berücksichtigt werden.
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