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IIfal

Zur Einspannwirkung der Lagerung bei schiefen Briicken
The Fixed-end Restraint Due to Skew Bridge Supports

Sur Uencastrement dit auzx appuis de ponts biais
!

FRITZ RESINGER
Dipl.-Ing., Dr. techn., Hochschuldozent, Technische Hochschule Graz

1. Einleitung und Festlegung der Voraussetzungen fiir die systematische
Untersuchung

Durch die schiefe Lagerung von Briicken entstehen infolge der lotrechten
Belastung neben den Durchbiegungen auch Verdrehungen des Tragwerks um
dessen Lingsachse. Diese geometrisch bedingte Koppelung von Biegung und
Torsion ergibt eine elastische Einspannung der Briickenenden und damit eine
Abminderung der Feldbiegemomente, allerdings bei gleichzeitigem Auftreten
von Torsionsmomenten. Der Grad dieser Einspannung wird fir eine gegebene
Belastung abhidngen: Vom Winkel zwischen der Auflagerlinie und der Briicken-
lingsachse, vom Verhiltnis der Biege- zur Torsionssteifigkeit des Tragwerkes
sowie vom Verhéltnis der in Briickenlingsrichtung gemessenen Auflager-
spannweite a zwischen spitzem und stumpfem Winkel zur Feldspannweite [
zwischen den Auflagern in den stumpfen Winkeln. In der vorliegenden Arbeit
wird der Einflu} dieser Faktoren am schiefen Einfeld- sowie am Zweifeld-
balken fiir charakteristische Lastfille systematisch untersucht. Dabei wird
vorausgesetzt, dall die vorhandenen Liéngen- und Breitenverhiltnisse der
Briicke noch die statische Auffassung des Systems als schiefgelagerten Stab
erlauben [1], [2], [3]; der Querschnitt im Feldteil ! (vgl. Fig. 1) konstant und
symmetrisch, in den spitzen Endteilen a nach einem einfachen Gesetz verlduft;
die Auflagerlinien der beiden Widerlager bzw. des Pfeilers parallel sind; Ein-
leitungsprobleme vernachlidssigt werden diirfen und die Torsionsbetrachtung
ohne Beriicksichtigung von Wélbeinfliissen erfolgen kann.

2. Ermittlung der statisch unbestimmten Einspannmomente

Der fiir den einfach statisch unbestimmten schiefen Einfeldbalken ge-
wéhlte Gleichgewichtszustand X, = 1 mit den zugehérigen Biegemomenten
My und Torsionsmomenten M7 wurde in Fig. 1 dargestellt. Der Gleich-
gewichtszustand fiir «gleichméfBig verteilte Vollast» und «Einzellast in Briik-
kenmitte» wurde nach Fig. 2 so gewdhlt, dal am Grundsystem die Ein-
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spannbiegemomente an der Ubergangsstelle zwischen Feldteil und spitzem
Endteil verschwinden. Analog sind fiir den schiefen Zweifeldbalken unter
«gleichmiBig verteilter Vollast» der aus Symmetriegriinden nur zweifach
statisch unbestimmt wird, die Gleichgewichtszustinde X, =1 und X, =1
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Fig. 4. Vollastzustand am Grundsystem des Zweifeldbalkens.

nach Fig. 3 und der Belastungszustand am Grundsystem nach Fig. 4 ange-
nommen. Mit den aus der bekannten Uberlagerung der entsprechenden Mo-
mentenlinien ermittelten Formédnderungswerten

ds ds
dik = ZJMBiMBkEI—B‘FZJMTiMm@T;

ergeben sich die Bedingungsgleichungen fiir die unbekannten X-Werte:

X,8,,48,,=0 fiir den Einfeldbalken und
X811+ Xp8;5+8,=0

X, 84 X5 855+8y = 0 fiir den Zweifeldbalken.

Zur Vereinfachung der Darstellung der §,,-Werte ermitteln wir (mit dem
beliebigen Festwert I5.)

und fithren als Abkiirzungen die charakteristischen dimensionslosen System-
kennwerte

“T1
ein, wobei « das Verhiltnis der Auflager- zur Feldspannweite und B das mit
dem Auflagerwinkel gekoppelte Verhiltnis der Biege- zur Torsionssteifigkeit
ausdriicken. Beriicksichtigt man noch den Verlauf des Querschnitts in den
spitzen Endteilen beim Biegeanteil anndhernd durch den Mittelwert I,./Igz =
1,6 und beim Torsionsanteil mit Ipo/Iy = 2,0, wobei der Zeiger C sich auf
den Wert des konstanten Mittelteiles bezieht, so erhalten wir aus der Uber-
lagerung der Momentenbilder 1 und 2
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81 = (1+a) (1+48),

819 = :[1); [(1+o?)—aB(l+a)(3—a)] fir Vollast,

810 = ? [1 —2ap)] fiir Einzellast

und damit die Einspannmomente am Einfeldbalken:

fiir Vollast
S ) 12
M =X =-52 =Pt ap),
11
fiir Einzellast in Briickenmitte
8 Pl
Ml = X1 = "SA) = ?f2(a118)'
11

Analog ergeben sich aus der Uberlagerung der Momentenverteilungen nach
den Fig. 3 und 4 die Formédnderungswerte fiir den Zweifeldbalken:

811 =2(1+a)(1+p),
813 =0y = (14 ) (1 —p),
8y =3 +a+a?B(}+a

pl?
Sl() 122[1-{-&3—@[8 ]‘+a (3 )]

2
B = ?’l S [L+a+a2B(1+x) (3—a)]

und damit die interessierenden Einspannmomente M, am stumpfen Eck des

Widerlagers und M, an den Pfeilerlagern:

12
M1=X1 39 fa( ﬁ

pl?
M2=X1+X2=ﬁf4(axﬁ)-

An diesen Ergebnissen fallt zunichst auf, daBl die gesuchten Einspannmo-
mente auller den Absolutwerten der Belastung und der Feldspannweite nur
mehr von den beiden dimensionslosen Systemkennwerten « und B abhingen.
Daher kénnen die Ergebnisse in ebenen Diagrammen dargestellt werden, wie
dies in den Fig. 5, 6 und 7 geschehen ist.

Zur Wahl der Bereichsweite der beiden Kennwerte in den Diagrammen sei
kurz folgendes bemerkt:

Die untere Grenze von o« = 0 wurde nur fiir Interpolationszwecke darge-
stellt, da fiir « = 0 der Wert B unendlich wird und damit nur ein Punkt dieser
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Fig. 7. Stiitzmomente infolge Vollast am schiefen Zweifeldbalken.

Kurve sinnvoll ist (gerade Briicke). An der oberen Grenze der dargestellten
a-Werte (x = 1) ist wegen des Uberganges vom Stab zum Flichentragwerk
(Stabauffassung des Systems verliert seine Berechtigung) keine allzu grofle
Genauigkeit der Ergebnisse zu erwarten.

Der B-Wert kann wegen der vorkommenden Auflagerwinkel zwischen null
und unendlich liegen, obwohl das Verhéltnis [/, fir eine Reihe von aus-
gefiihrten Briickenkastenquerschnitten in dem Bereich zwischen 0,5 und 4
ermittelt wurde. Der ganze Bereich war also nur mit einer nichtlinearen Skala

darstellbar. Es bot sich an, den Wert, % linear aufzutragen, da sich hierfir

die Ergebnisse am Einfeldbalken als Gerade darstellen lassen (Fig. 5 und 6).
Dieselbe Teilung wurde dann auch fiir den Zweifeldbalken (Fig. 7) beibehalten,
da sich fir den hauptsichlich interessierenden Bereich zwischen 0 und 20
noch gute Ablesegenauigkeit ergab.
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3. Betrachtung und Anwendung der Ergebnisse, Vergleich mit den Biegemomenten
des geraden Balkens

Die obere Grenze der Einspannung ist verstédndlicherweise gegeben durch
das Volleinspannmoment (— PI/8, —pl?/12). Mit sinkender Torsionssteifigkeit
des Tragwerkes bei sonst gleichbleibenden Verhéiltnissen fillt auch das nega-
tive Einspannmoment, bis es sogar in den positiven Bereich wechselt. Die
verschiedenen Tendenzen bei Anderung der Briickenbreite, des Auflager-
winkels, der Steifigkeitsverhiltnisse usw. sind durch die entsprechende Ande-
rung der Kennwerte « und 8 aus den Diagrammen eindeutig zu erkennen.

Der Fall des schiefen Zweifeldbalkens unter gleichméBig verteilter Bela-
stung nur in einem schiefen Feld kann mit Hilfe entsprechender Lastzerle-
gung (halbe gleichmidfig verteilte Last in beiden Feldern und halbe in den
beiden Feldern gegengleich wirkende Last, die aus Antimetriegriinden dem
Einfeldbalken unter Vollast entspricht) aus den ermittelten Ergebnissen am
Ein- und Zweifeldbalken (Fig. 6 und 7) superponiert werden.

Fiir den Vergleich der Ergebnisse der Feldmomente mit denen am geraden
Balken haben wir als Stiitzweite des geraden Tragwerkes L = [+a =1 (1 +a/l)
einzusetzen (vgl. Fig. 1). Es ergeben sich infolge einer Einzellast in Briicken-
mitte also die (1 +a/1)-fachen Werte von PI/4 und fiir die Vollast die (1 +a/1)3-
fachen Werte von pl?/8. Der letztere Faktor ergibt sich auch beim Stiitz-
moment des geraden Zweifeldbalkens unter Vollast. Ein Vergleich mit den
Ergebnissen am schiefen Balken (Fig. 5, 6 und 7) zeigt deutlich die Wirksam-
keit der schiefen Lagerung, sobald das Tragwerk entsprechende Torsions-
steifigkeit besitzt. Es ergeben sich zum Beispiel fiir ein Briickentragwerk mit
einem Auflagerwinkel von 45°,¢ = 6 m,b =6 m,! =30 mund £ Iz/G I, = 2,0
und daher « = 0,2 und 8 = 2,0 infolge einer Einzellast in Briickenmitte (nach
Fig. 5) M,, = 0,975 Pl/4 und infolge Vollast (nach Fig. 6) M, = 1,05 pi?/8,
wihrend sich die entsprechenden Werte am geraden Balken der Stiitzweite
L =36m zu 1,2 Pl/4, bzw. 1,44 pl?/8, also 239, bzw. 379, hoher ergeben.
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Zusammenfassung

Die Einspannwirkung der schiefen Lagerung von torsionssteifen Briicken
wird fiir charakteristische Lastfialle systematisch untersucht und in Dia-
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grammen in Abhéngigkeit von zwei dimensionslosen Systemkennwerten dar-
gestellt. Diese Systemkennwerte sind bestimmt durch den Auflagerwinkel,
das Verhéltnis der Biege- zur Torsionssteifigkeit des Tragwerks und das
Verhiltnis der Auflager- zur Feldspannweite.

Summary

The fixed-end restraint arising from the skew supports of torsionally rigid
bridges is studied systematically for given characteristic imposed loads; the
results are presented, in the form of diagrams, in relation to two dimensionless
parameters characterising the system. The value of these parameters is deter-
mined by the skew angle, the ratio of the flexural and torsional rigidities and
the ratio of the distance of the supports to the width of the span.

Résumé

Pour les ponts rigides a la torsion, I’encastrement di a des appuis biais
est étudié systématiquement pour des surcharges caractéristiques déterminées;
les résultats sont présentés sous forme de diagrammes en fonction de 2 para-
métres caractérisant le systéme. La valeur de ces paramétres est déterminée
par I’angle du biais, le rapport des rigidités flexionnelle et torsionnelle et celui
de la distance des appuis & la portée.
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Schiefe und gekriimmte Hohlkasten in Theorie und Versuch
Skew and Curved Boz-girders, Theory and Research

Poutres-caissons biaises et courbes selon la théorie et dans les essais

G. HUTTER
Dr. Ing., Miinchen, Deutsche Bundesbahn

Ahnlich wie die StraBe ist die Eisenbahn in bebautem Gelinde gezwungen,
in Anpassung an eine ziigige Linienfithrung bei beliebigen Kreuzungswinkeln
und kleinster Bauhohe ohne sperrende Geriiste Briicken zu erstellen, die ele-
gant und trotzdem wirtschaftlich sind. Eine Losung bieten die geschweiBten
Hohlkasten, mit denen der Stahlbau der Vielgestaltigkeit des Spannbetons
Gleichwertiges an die Seite stellen kann.

Die Deutsche Bundesbahn hat die Hohlkasten wegen ihrer Torsionssteifig-
keit besonders auch bei schiefen Ausfiihrungen in der Geraden und in der
Kurve vorteilhaft verwendet. Zum Vergleich von Theorie und Versuch wird
im folgenden an Querschnitten von drei Briicken dieser Bauweise gezeigt, wie
Sieh:gerechnete und gemessene Spannungen zueinander verhalten. Die drei
Bauwerke sind schief; sie unterscheiden sich aber in konstruktiver Hinsicht
und in ihrer Lagerung.

Zu der Versuchsdurchfithrung ist zu sagen, daB die Dehnungen in den
meisten MeBpunkten zur Erhohung der Melgenauigkeit in 4 um jeweils 45°
gedrehten Richtungen ermittelt wurden, um daraus die Hauptspannungen
nach GroBe und Richtung zusammen mit den Schubspannungen ableiten zu
kénnen. Dadurch, dal3 die Messungen nur auf einer Seite der Winde durch-
gefiihrt sind, werden die Verbiegungserscheinungen nicht ausgeschaltet. Viele
Versuche an senkrechten und schrigen Hohlkasten haben zumeist eine gute
Ubereinstimmung mit der Theorie ergeben, wobei die gemessenen Werte
zwischen 90 und 1009, der gerechneten lagen.

Fall 1. Hohlkasten nur mit Endscheiben

Die hier behandelte Konstruktion der eingleisigen Holzbachbriicke mit
Schotterbett (Fig. 1a) stellt einen Grenzfall insoferne dar, als der zweizellige
Hohlkasten von 22,0 m Stiitzweite nur schrige Endquerscheiben hat. Der in
Feldmitte eingebaute leichte Quertriger ist mit dem oberen und unteren
Deckblech nicht verbunden. Die theoretische Untersuchung des einfach sta-
tisch unbestimmten torsionssteifen Hohlkastens wurde nach WANSLEBEN [1]
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durchgefiihrt. Trotz des Fehlens von Querscheiben im Feld wird eine gleich-
méfige Belastung der 3 Haupttrager angenommen, da die Schwellen in dhn-
licher Weise verteilend wirken.

Von den untersuchten 3 Schnitten ist in Fig. 1b und 1lc¢ Schnitt 2, der
1,035 m auBerhalb der Mitte liegt, bei vollbelasteter Offnung mit seinen gemes-
senen und gerechneten Spannungswerten dargestellt. Im Schnitt ergaben sich
ein rechnerisches Biegemoment M ;=332 tm, eine Querkraft ¢ = —13,6 t und
ein Torsionsmoment M ;,=282,7 tm. Unter Beriicksichtigung der Schotterbett-
abschliisse, die in der Festigkeitsberechnung vernachlissigt sind, zeigt sich im
unteren Deckblech und in den Stegen eine gute Ubereinstimmung von Ver-
such und Theorie fiir die Spannungen o,. Das obere Deckblech wird infolge
der unmittelbaren Auflast aus den Schwellen durchgebogen, wobei zum Ver-
gleich noch die quergerichteten Spannungen ¢, angegeben sind. In einem nicht
dargestellten Schnitt, der unter einer durch eine Achse belasteten Schwelle
liegt, konnte aus diesem Spannungsbild iiber die daraus abgeleiteten lotrechten
Driicke die Schwellenlast zu rund !/, der Achslast ermittelt werden, eine Folge
der elastischen Nachgiebigkeit der Schwellen im Schotterbett, die die Achs-
lasten auf mehrere Schwellen verteilt.

Fig. 1c enthélt die Summe der Schubspannungen aus Querkraft und Tor-
sionsmoment: v, =@ S/It+ Mp/2 Fpt. Bei Schnitt 2 und den anderen beiden
untersuchten Schnitten zeigte sich, dal} die gemessenen Werte im duleren
Stegblech und in den beiden Deckblechen, den Teilen mit Torsionsschub-
spannungen, gegeniiber der Rechnung etwa um den halben Wert der Torsions-
schubspannungen differieren, im dufleren Steg z. B. um +90—37 = + 53 kg/em?
bei 75, = + 104 kg/em?.

Die Versuche ergaben im dulleren Steg eine starke Divergenz zwischen den
gemessenen Schubspannungen und den Rechnungswerten. Die Ursache liegt
zum Teil in der Nichterfiilllung der gemachten Voraussetzungen fiir die Last-
einleitung in die drei Haupttragerstege und zum anderen Teil darin, daf die
Anordnung von schrigen Endscheiben allein eine teilweise Umlagerung der
fir den unverformbaren Rechteckquerschnitt rechnerisch ermittelten Torsions-
momente in Biegemomente erzwingt. Daraus erkliart sich auch, daf} die gemes-
senen Biegespannungen teilweise grofler sind als die gerechneten.

Fall 2. Hohlkasten mit schrigen Querscheiben

Es handelt sich hier um die Unterfiihrung der Bornstraffe in Dortmund,
bestehend aus 5 eingleisigen Uberbauten mit Schotterbett, die als schrige
Durchlauftrager mit 2Xx 17,425 m Stitzweite und einzelner Mittelstiitze
(Fig. 2a) ausgebildet sind. Die schriagen Querscheiben liegen im Abstand von
1,935 m. Der Hohlkasten ist als torsionssteifes 2fach statisch unbestimmtes
Gebilde berechnet.
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Als interessant sind die Ergebnisse in den 3 MeBschnitten 31, 32 und 33
(Fig. 2b) an der Mittelstiitze fiir Vollbelastung beider Offnungen aufgetragen.
Die Schnitte sind in 37 cm Abstand gelegt, um den Spannungsverlauf im
Gebiet der Einleitung der groBen Stiitzenkraft genauer darstellen zu kénnen.
Fig. 2c zeigt die gemessenen Schubspannungen 7, in den 3 Schnitten. Die
Symmetrie zur Mitte ist gewahrt. Die Auflagerkraft wird iiber die mittlere
Querscheibe in die beiden Stegbleche eingeleitet. Das untere Deckblech ist
am Schubflufl anders beteiligt als die iibliche Theorie erwarten 148t.
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Die gemessenen Spannungen o, zeigen im Schrigschnitt an der Stiitze
(Fig. 2d) gegeniiber den rechnerischen Werten bei voller Mitwirkung der
Deckbleche grole Spannungsspitzen an den Réndern und einen Abfall gegen
die Mitte zu. Diese Erscheinung der Spannungserhéhung ist der Verminderung
der mitwirkenden Plattenbreite an den Einleitstellen von Einzellasten zuzu-
schreiben, eine Erscheinung, die METZER [2] und CEWALLA [3] bereits ein-
gehend theoretisch untersucht haben. Die Spannungsspitze hat als Gro3twert
— 1739 kg/em? gegeniiber — 390 kg/em? nach der Rechnung. Die Spitze wird
rasch abgebaut, wie Fig. 2f zeigt; bei 74 cm Abstand sind Messung und Rech-
nung etwa gleich groBl, z.B. an der linken Seite des unteren Flachblechs
—291 kg/em? der Messung gegen — 294 kg/em? der Rechnung. Die Symmetrie
nach beiden Seiten zeigt Fig. 2e, ein Beweis dafiir, daB} die MeBwerte richtig
sind, wenn auch durch das Messen auf der Aullenseite allein Verbiegungen,
die den Spannungsverlauf stéren, nicht ausgeschaltet werden. Damit kann
man auch die gréleren Abweichungen zwischen dem unteren Mefpunkt im
rechten Stegblech mit —466 kg/cm? gegeniiber dem Randwert im Bodenblech
mit — 739 kg/em? erkldren.

Fall 3. Gekriimmter Hohlkasten mit senkrechten Querscheiben

Zur Erliuterung fiir diese Bauart werden die Ergebnisse der Versuche an
der Unterfithrung der Stresemannstrafle in Hamburg [4] in einem Schnitt dar-
gestellt. Das Bauwerk ist wieder eingleisig, hat ein Schotterbett und lduft
iiber zwei Felder mit Stiitzweiten von 44,336 m 4+ 39,557 m durch (Fig. 3a). Die
Widerlager und der Pfeiler und damit die Lager stehen schriag zur Briickenachse.
Bis auf die schriagen Querscheiben iiber den Lagern sind die Querschotte senk-
recht angeordnet. Der horizontale Kriimmungsradius nimmt von 364 m bis
auf 1000 m zu.

Die Briicke als torsionssteifer Ringtriager ist 3fach statisch unbestimmt
gerechnet. Die Untersuchungen haben gezeigt, dafl die Kriimmung zur Ermitt-
lung der Biegemomente nicht beriicksichtigt werden mufl und Torsions-
momente erzeugt, die sich direkt aus den Biegemomenten ableiten lassen. Der
Querschnitt ist praktisch wolbfrei, so daBl keine Wolbkrafttorsion auftritt
(nach WANSLEBEN [5]). Die Endscheiben sind so weich ausgebildet, dal3 eine
Verwolbung moglich ist. Die Storung am Mittelauflager klingt rasch ab.

Der Kasten wurde so vorverformt, daB die beiden Lager jeder Unter-
stiitzung unter Eigenlast gleichmafig belastet sind.

Von den verschiedenen untersuchten Schnitten wird nur der senkrechte
Schnitt C —C in der Feldmitte neben der Mittelstiitze gezeigt mit den Normal-
spannungen o, parallel zur Briickenlingsachse (Fig. 3b) und den Schubspan-
nungen 7, (Fig. 3c). Als Belastung dienten 2 schwere Lok der Baureihe 44,
die in den beiden Feldern so aufgestellt wurden, daBl GroBtwerte von Biege-
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moment und Querkraft entstanden. Die KraftgroBen daraus waren: My =
= —804tm, M,=152tm, = —92,4t. Trotz der ungiinstigen Voraussetzun-
gen infolge der Schrige und Kriimmung stimmen Versuch und Theorie brauch-
bar iiberein. In der Berechnung ist das rechte, hohere Schotterbettabschluf3-
blech gleich dem linken, niedrigeren angesetzt, da eine volle Mitwirkung bei
der geringen Aussteifung nicht moglich ist. Die gemessenen Normalspannun-
gen (Fig. 3b) sind etwas kleiner als die theoretischen. Die Unterschiede sind
teils auf die nicht ganz zutreffenden theoretischen Annahmen, teils auf die
entlastende Wirkung der Lagerreibungskrifte zuriickzufiihren. Wie im Fall 2
zeichnet sich auch hier wieder die Spannungsspitze in der linken Seite des
Bodenblechs ab als Folge der Einzelkrafteinleitung am Pfeiler mit der zwangs-
laufigen Verkleinerung der mittragenden Deckblechbreite.

Die Schubspannungen 7, in Fig. 3¢ sind die Summenwerte aus Querkraft
und Torsion. Die Ubereinstimmung zwischen Messung und Rechnung in GroBe
und Verlauf ist gut.
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Zusammenfassung

Versuche der Deutschen Bundesbahn an schiefen und gekriimmten Briicken
haben bestatigt, dall die genaueren theoretischen Verfahren geniigen, den
Spannungsverlauf richtig darzustellen. Die Messungen haben gezeigt, daB
Endscheiben allein nicht ausreichen, das volle rechnerische Torsionsmoment
zu erzwingen, sondern daf3 besonders an den Lasteinleitungsstellen auch Quer-
scheiben im Feld notwendig sind. Es wurde nachgewiesen, dall die einschnii-
rende Wirkung grofler Einzellasten auf die mitwirkende Plattenbreite beacht-
liche Spannungsspitzen hervorruft, die nicht vernachlissigt werden koénnen.

Summary

The tests carried out by the German Railways on skew and curved bridges
confirm that precise theoretical methods provide a satisfactory idea of the
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distribution of stresses. Measurements have shown that end bracings cannot
by themselves provide the required torsional moment and that intermediate
bracings are also required. It has been shown that the reduction of useful
width, caused by high point loads, result in considerably increased stresses,
which cannot be neglected.

Résumé

Par les essais qu’ont exécutés les Chemins de fer allemands sur des ponts
biais et courbes, il se trouve confirmé que les méthodes théoriques précises
suffisent pour rendre compte de fagon satisfaisante de la répartition des con-
traintes. Les mesures ont montré que des entretoisements d’extrémité ne
peuvent a eux seuls introduire le moment de torsion total mais qu’il est néces-
saire de prévoir également des entretoisements en travée. Il a été mis en évi-
dence que la diminution de la largeur utile due & de fortes charges isolées fait
apparaitre des contraintes considérablement accrues que 1’on ne peut négliger.
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Die Pillerseeachbriicke der Osterreichischen Bundesbahnen
Razilway Bridge Over the *“ Pillerseeache”

Pont-rails sur le « Pillerseeache»

WOLFGANG SCHMID PETER KLEMENT
Dr. Ing., Wien Dr. techn., Wien

1. Einleitung

Eine Begradigung in einem kurzen Abschnitt der Strecke zwischen Salz-
burg und Innsbruck zwang die Osterreichischen Bundesbahnen, die neue
Pillerseeachbriicke unter einem Winkel von nur 22° {iber den FluBllauf zu
filhren. Die Abmessungen des zweigleisigen schiefen Tragwerkes, eines diinn-
wandigen Kastentriagers, sind in Fig. 1 eingetragen. Hierbei ist besonders be-
merkenswert, dal3 die Stiitzweite — gemessen in Gleisrichtung — 50,0 m und
senkrecht zur FluBirichtung, bei einer Bauhohe von rund !/,, der schrigen
Stiitzweite, nur 18,57 m betriagt. Die Einfiigung der Briicke in das Land-
schaftsbild lieB ein Tragwerk mit obenliegender Fahrbahn wiinschenswert
erscheinen.

Durch Querscheiben im Abstand von 12,5 m wird die Gesamtlinge der
Konstruktion von 62,5 m in 5 Abschnitte unterteilt. Die drei mittleren Felder
bilden den geraden rechteckigen Teil, die dufleren die dreiecksformigen End-
teile. Die den Kammermauern zugekehrten lotrechten Abschlufiflichen sind
offen.

Das Tragwerk liegt in einer Neigung von 6,289/, sowie in einem Ubergangs-
bogen. Um den Einflul des letzteren moglichst auszuschalten, wurde die
Briickenachse so verschwenkt, daf3 keine grofleren Aullermittigkeiten als 5cm
auftraten.

2. Statische Berechnung

2.1. Allgemeines

Die Gleislasten mit dem Schotterbett werden von einer orthotropen Platte
mit Langs- und Quertragern aufgenommen, deren Berechnung nach einem
Naherungsverfahren erfolgte. Thre Auflagerkrifte werden auf die beiderseiti-
gen Stege des Hohlkastens tibertragen.

Um auch die statische Wirksamkeit des Hauptsystems mit einem ertrig-
lichen Rechenaufwand zu erfassen, wurde es in Teilsysteme zerlegt (Fig. 2).
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Fig. 2. Statisches Priméarsystem und Sekundirsysteme.

2.2. Primdrsystem (statisches Grundsystem)

Das Primirsystem ist in den Punkten 04, 204, 0B, 20 B gestiitzt
und nur in den Knotenpunkten, das sind die Schnitte der Querscheiben mit
den Haupttrigerstegen, belastet (Fig. 2a). Der mittlere, gerade Teil des schie-
fen Stabes ist torsionssteif. Sein Querschnitt ist im Feld 10—15 zur Trag-
werksachse symmetrisch; in den beiden anschlieBenden Feldern wird durch
die ungleichen Stegstérken die Stabachse als Verbindungslinie der Schub-
mittelpunkte um 33 cm aus der Tragwerksachse verschoben.

Die dreieckférmigen Endfelder wurden niherungsweise als dreiflichige
ideale Gelenkfaltwerke angesehen, die in den Kanten nur Schubkrifte iiber-
tragen und tiber die Scheibenhdhe eine geradlinige Spannungsverteilung auf-
weisen (Fig. 3). Fiir die praktische Berechnung der lotrechten Durchbiegungen
wurden, da die Spannungen iiber die Gurtbreite nicht konstant sind, gleich
hohe ideelle Ersatzquerschnitte bestimmt. Die Gurtflichen dieser Ersatz-
triager, deren Achsen in den Ebenen 0—5 liegen, waren durch die Bedingung
gegeben, dall ihre Stegrandspannungen mit denen der Faltwerke iiberein-
stimmen muBten.
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Das Primérsystem ist damit fiir lotrechte Belastungen einfach statisch
unbestimmt. Durch Entfernung einer der Stiitzen, zum Beispiel C, 5, erhilt
man ein statisch bestimmtes Grundsystem. Die Forminderungsgrofien 8,
lauten:

EJ,5, - f%ﬂMiMkds+J%_§1;des. (1)

In der vorstehenden Formel umfaf3t das erste Glied den Anteil aus den Biege-
momenten, das zweite Glied den Anteil aus den Torsionsmomenten.

Die Auswertung der Gleichung (1), die Berechnung der Unbekannten und
der Schnittkrifte sowie der Forméanderungen erfolgte numerisch. Die geringe
Zahl der Knotenpunkte erlaubte es, fiir die Belastung jedes einzelnen mit

o
3
S
g
o
o

O] et = g MCoa
s e l—"
/23:1\
Fig. 3. Dreiflichiges Falt- e
werk der Endfelder. MTloa-15a P
"] GL.1
Maloa-sa | Ng|SL2—
Fig. 4. EinfluBlinien im Primirsystem 7 y
bei Belastung in den Knotenpunkten. 2o Aioa

der Einheitslast 1t die Auflagerdriicke, Biege- und Torsionsmomente sowie
die Querkriafte und Querscheibenbeanspruchungen an allen Stellen des Trag-
werkes auszurechnen und damit die EinfluBlinien zusammenzusetzen. In
Fig. 4 sind einige charakteristische EinfluBlinien fir Belastungen in den
Knoten iiber den zugehorigen Haupttragerstegen aufgetragen.

Die Auswertung der EinfluBllinie fiir €, , fiir beide Haupttrigerstege ergibt
fiir Eigengewicht angendhert null; fiir die Verkehrslasten sind negative Lager-
driicke moglich. Um eine Verankerung der Lager zu vermeiden, wurden die
Punkte 04 und 0B angehoben. Neben der erforderlichen Sicherheit gegen
ein Abheben wurde damit eine giinstigere Verteilung der Lagerdriicke auf die
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Widerlager erreicht. Das Biegemoment in Briickenmitte wird damit zwar
um 449, erhoht, entspricht jedoch auch dann nur dem eines geraden Einfeld-
balkens von 38 m Stiitzweite.

2.3. Sekunddrsysteme

Die in Fig. 2b dargestellten Sekundérsysteme sind Durchlauftriger iiber
4 Felder von je 12,5 m Stiitzweite, die in den Ebenen der lotrechten Kasten-
winde liegen. Sie iibertragen die zwischen den Knotenpunkten des Primér-
systems angreifenden Lasten auf die Hauptknotenpunkte. Die Verschieblich-
keit dieser Punkte ist mit der Berechnung des Primérsystems beriicksichtigt.

2.4. Resultierende Spannungen

Zur Bestimmung der resultierenden Spannungen muf3ten die Beanspruchun-
gen aus den Teilsystemen addiert werden. Zu den Spannungen aus dem Pri-
mir- und Sekundérsystem kamen im Obergurtblech die Beanspruchungen
der orthotropen Platte hinzu. Da die mitwirkende Breite der Gurtbleche fiir
beide Systeme zufolge erheblicher Unterschiede in den Abstdnden der Mo-
mentennullpunkte verschieden groBl ist, mufiten getrennt fiir jedes Teilsystem
aus den Momentenlinien die mitwirkenden Plattenbreiten und damit die
Spannungen berechnet werden. Die Momentenlinien wurden durch Fourier-
reihen dargestellt und fiir jedes Glied die mitwirkende Breite bestimmt. Als
kleinstes Fourierglied wurde jenes beriicksichtigt, dessen halbe Léngswelle
der Steghohe des Kastens entspricht.

Fir die Langsspannung o zum Beispiel an einer beliebigen Stelle der
Untergurtplatte gilt dann allgemein:

(2)

wobei sich der Index «p» auf das Priméarsystem, die Indizes S1 und S2 auf
die den beiden Stegen zugeordneten Sekundirsysteme beziehen. Fiir die
Auswertung der durchgefiihrten Dehnungsmessungen schreiben wir diesen
Ausdruck in der Form

oc=oM,+BMg,+yMg,. (2a)

3. Konstruktion

Grundsitzlich wurden in der Werkstdtte alle Verbindungen geschweilit,
wahrend auf der Baustelle die St6e vernietet wurden. Die Ober- und Unter-
gurtplatten sind an den Querscheiben gestoBen, die Stege knapp daneben.
Die hohen Schubkrifte, die vor allem an den Tragwerksenden durch die
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Torsionsmomente hervorgerufen werden, verlangten dort, zieht man Ver-
gleiche mit einem einfachen Balken, eine erhebliche Verstirkung der Quer-
schnitte. Es war also notwendig, die Gurtplatten iiber die ganze Briickenldnge
mit gleicher Stdrke durchzufiihren, so dafl im geraden Mittelstiick nur die
Stegstirken ungleich sind.

Die geringeren Anarbeitungskosten lieBen es als wirtschaftlich erscheinen,
die Langstrager der orthotropen Platte auf die Quertriger aufzusetzen und
nicht, wie iiblich, in die Quertriger einzubinden. An den offenen schrigen
Endflichen wurde zur Aufnahme der ortlichen Lasten ein Endquertréiger
angeordnet; sein Anschlufl im Punkt 0 ist in Fig. 5 dargestellt. Die hoch-
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stehende Léngsrippe in der Mitte der orthotropen Platte soll fiir die Durch-
fiihrung von Erhaltungsarbeiten die Ausrdumung des Schotterbettes unter
nur einem Gleis ermdglichen. Die gleichfalls durch Liangstriger ausgesteifte
Untergurtplatte wurde, um die Biegespannungen aus ihrem Eigengewicht
klein zu halten, in Abstdnden von 6,25 m an der oberen Platte aufgehingt.

Von den vier Punktkipplagern wurde nur das bei 20 A als Festlager aus-
gebildet. Verformungen aus Temperaturinderungen und Verkehrslast ver-
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langten an sich Beweglichkeiten in verschiedenen Richtungen. Da ein voll-
kommen zwidngungsfreies Spiel, wollte man nicht aufwendige allseits beweg-
liche Lager verwenden, kaum zu erreichen war, wurden alle Rollenlager in
Richtung der Gleisachse beweglich angeordnet.

Das Gesamtgewicht der Konstruktion aus St 44 S und St 44 T betriagt
342 t, die Lager wogen 10 t. Den Entwurf, die Lieferung und den Zusammen-
bau des Stahltragwerkes besorgte die Firma Waagner-Bird AG., Wien-Graz.

4. Werksfertigung und Montage

Das Tragwerk muflite beim Zusammenbau vorschriftsméfBig fiir die Ver-
formungen aus stindiger Last, Anheben der dulleren Lager und Verkehrslast,
letztere zu 259%,, iiberhoht werden. Infolge der unter diesen Belastungen auf-
tretenden Torsionsmomente und Verdrehungen muliten durch die Sprengung
nicht nur die vertikalen Durchbiegungen der Stege, sondern auch die hori-
zontalen Verschiebungen der Gurte ausgeglichen werden. Um dies mit der
grofltmoglichen Genauigkeit zu erreichen, wurde das Tragwerk in der Werk-
stiatte vollstindig raumlich zusammengebaut. Nach Einstellen der Sprengung
wurden die Nietlocher auf den vollen Durchmesser aufgerieben. Bei den
groBen Werkstoffdicken war dies auch aus wirtschaftlichen Erwiagungen von
Vorteil.

Der Zusammenbau auf der Baustelle erfolgte auf Geriisten. Die Einzelteile
wurden aufgelegt und vernietet. Mit dem Ausrichten der St6l3e war auch die
Einhaltung der plangemiflen Form sichergestellt.

5. Messungen

a.1. Allgemeines

Nach Fertigstellung der Briicke wurden, um das statische Verhalten und
die Genauigkeit der Niherungsrechnung zu iiberpriifen, vom MeBzug der
Osterreichischen Bundesbahnen Durchbiegungs- und Dehnungsmessungen
durchgefiihrt!). Als Belastung stand eine Lok mit dem in Fig. 6 dargestellten
Achsschema und einem Gesamtgewicht von rund 61 t zur Verfiigung.

8.2. Durchbregungsmessungen

Fiir die Durchbiegungsmessungen wurden an einem freistehenden Geriist
unter der Briicke sogenannte Stangenpotentiometer befestigt, deren Taststifte
an den betrachteten Knotenpunkt angesetzt waren. Die Bewegungen des

1) Die Messungen standen unter Leitung von Zentralinspektor Ing. Schenkir.
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Taststiftes withrend einer Uberfahrt der Lok wurden von einem Dreischleifen-
Oszillographen aufgezeichnet. In Fig. 7 sind fiir die drei Knotenpunkte 5 A4,
104 und 15 A4 die Durchbiegungen iiber beiden Gleisachsen aufgetragen.
Eine Gegeniiberstellung mit den Werten der statischen Berechnung (1. Na-
herung) zeigt stirkere Unterschiede. Man kann allein aus den Kriimmungen
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der Biegelinien erkennen, dafl die Abweichungen aus der Nichterfiillung der
gemachten Voraussetzungen iiber die Steifigkeit der dreieckférmigen End-
felder herrithren. Der Annahme eines [ -formigen torsionsschlaffen Gelenk-
faltwerkes steht die Tatsache gegeniiber, daBl die rahmenartigen Anschliisse
der schiefen Endquertrager und der Zwischenquertriger einen in der Rech-
nung nicht beriicksichtigten Beitrag zur Torsionssteifigkeit bieten. Hinzu
kommt als Folge des durchlaufenden Eisenbahnoberbaus und der Fahrbahn-
libergéinge eine teilweise Einspannung des Tragwerkes in die Widerlager.
Man kommt, will man das Grundkonzept der statischen Berechnung nicht
verlassen, den tatsidchlichen Verhiltnissen niher, wenn man die lotrechte
Steifigkeit der Ersatzquerschnitte fiir die Endfelder entsprechend vergréBert.
So sind in Fig. 7 auch die Biegelinien eines Tragwerkes gezeichnet, dessen
ideelle Gurtflichen in den Endfeldern gegeniiber den aus der Faltwerktheorie
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ermittelten Werten zundchst versuchsweise verdoppelt wurden (2. Naherung).
Sie zeigen eine wesentlich bessere Ubereinstimmung mit den Messungen und
lassen erkennen, daBl mit einem entsprechenden Arbeitsaufwand auch eine
weitere Anndherung moglich ist. Dabei darf man neben der bereits erwihnten
Einspannung in die Widerlager auch nicht iibersehen, dal} bei der Berechnung
der Steifigkeiten alle iiber die orthotrope Platte hinausragenden Aufbauten
vernachliassigt wurden. Weiter wirkt sich durchbiegungsvermindernd aus, daf}
der Belastungsversuch mit einer vierachsigen Lok durchgefiihrt wurde, wéh-
rend fir die Rechnung eine Einzellast mit gleichem Gesamtgewicht angenom-
men wurde.

9.3. Dehnungsmessungen

Die Dehnungsmessungen wurden in einem Querschnitt 1,25 m von der
Querscheibe 0 A—20 B entfernt im torsionssteifen Teil durchgefiihrt (Fig. 1b).
Die MeBstellen sind in Fig. 1c eingetragen. Es wurden DehnungsmeBstreifen
verwendet; die Aufzeichnung erfolgte wie bei den Durchbiegungsmessungen
mit einem Oszillographen.

Sieht man von den Zusatzbeanspruchungen der orthotropen Platte durch
die ortlichen Lasten und deren teilweisen Ubertragung auf den Untergurt
durch die Aufhédngung der Platte ab, so ergibt sich die EinfluBllinie einer
beliebigen Ldngsspannung nach Formel (2a) als Summe der mit konstanten
Faktoren multiplizierten EinfluBllinien der Momente des Primérsystems und
der beiden Sekundirsysteme. Zur Veranschaulichung dieses Zusammenhangs
sind in Fig. 8a und b zunéchst diese Momente fiir den betrachteten Quer-
schnitt aufgetragen, wobei die Steifigkeit der Endfelder nach der 2. Naherung
bestimmt wurde. Die Gegeniiberstellung der Einflullinien fir die Spannungen
im Untergurt (Fig. 8c—f) nach Rechnung und Messung zeigt eine grundsétz-
liche Ubereinstimmung an den MeBstellen im Bereich nahe den lotrechten
Kastenwinden, wo nur das Primérsystem und ein Sekundérsystem wirksam
sind. Uberlagern sich die Schnittkrifte aus beiden Sekundirsystemen mit
den Einfliissen der ortlichen Belastungen, so ist die Errechnung der «-, 8-
und y-Werte aus den Versuchsergebnissen schwieriger.

Dies ist besonders bei den in Fig. 8g—k dargestellten Melergebnissen
im Obergurt des Kastens, das heil3t in der orthotropen Platte, deutlich er-
kennbar.

Zusammenfassung

Die zweigleisige Pillerseeachbriicke wurde, der konstruktiven Gestaltung
des Stahltragwerkes entsprechend, in ihrem geraden mittleren Teil als tor-
sionssteifer, einzelliger Hohlkasten und in den dreieckférmigen Endteilen als
[ -formiges Faltwerk angesehen und die Berechnung nach der Theorie des
biege- und teilweise torsionssteifen Stabes durchgefiihrt. Die am Bauwerk
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durchgefiihrten Messungen lassen erkennen, dafl eine Vernachlidssigung der
durch Rahmenwirkung hervorgerufenen Torsionssteifigkeit der offenen End-
felder starkere Abweichungen zwischen Rechnung und Messung zur Folge
hat. Tragt man dieser Tatsache durch eine Erhchung der lotrechten Steifig-
keit der anstelle [ -formiger Faltwerke angenommenen Ersatzquerschnitte
Rechnung, so erhilt man ein durchaus zutreffendes Bild des wirklichen Span-
nungszustandes.

Summary

The steel framework of the double-track railway bridge over the Piller-
seeache may be regarded, in its straight central portion, as a torsionally rigid,
monocellular box-girder, and, in its triangular end portions, as a [ -shaped,
folded structure. For the purposes of calculation, it is assimilated to a bar
possessing flexural rigidity and partial torsional rigidity. From measurements
carried out on the finished structure, it is evident that there are considerable
differences between the calculated and the measured values, as a result of the
neglect of the torsional rigidity in the ends, due to the frame effect. If this
fact is taken into account by increasing the vertical rigidity of the sections
substituted for the [ -shaped folded structures, a thoroughly satisfactory
picture of the actual state of the stresses is obtained.

Résumé

L’ossature métallique du pont-rails a double voie sur le Pillerseeache peut
étre considérée, dans sa partie centrale droite, comme une poutre-caisson
monocellulaire rigide a la torsion et, dans ses extrémités triangulaires, comme
un voile prismatique en [_; pour le calcul, on I’a assimilée & une barre rigide
a la flexion et partiellement rigide & la torsion. Des mesures effectuées sur
I'ouvrage, il ressort que ’omission, dans les extrémités, de la résistance a la
torsion due & 'effet de cadre fait apparaitre des différences importantes entre
le calcul et les mesures. Si l’on tient compte de ce fait en augmentant la rigidité
verticale des sections substituées au voile prismatique en [, on obtient une
image tout a fait satisfaisante de 1’état réel des contraintes.
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Pont courbe considéré comme une poutre a axe brisé
Gekrimmte Bricke als Balken mit geknickter Achse betrachtet

Curved Bridge Considered as a Beam with Broken Axis

W. WIERZBICKI
Prof. Dr., Dr. h. ¢., Membre de ’Académie Polonaise des Sciences, Varsovie

La construction d’un pont courbe se compose d'un certain nombre de poutres
dont chacune doit étre curviligne et plane.

On peut souvent considérer les ponts courbes métalliques & plusieurs tra-
vées et de grande longueur comme des constructions qui, dans leur section
transversale, sont composées de deux ou plusieurs poutres brisées dans le plan
et dont les nceuds sont appuyés sur les piliers du pont. Les jonctions transver-
sales des poutres particuliéres de la construction justifient d’habitude —
comme c’est le cas pour les ponts droits — le calcul des dites poutres comme
des éléments indépendants se trouvant soumis & la charge transmise par le
tablier du pont. Ceci admis, nous pouvons calculer la poutre continue poly-
gonale inscrite dans 1’axe courbe de la voie (fig. 1).

La section transversale aux appuis de la poutre continue, brisée dans le
plan, ne peut étre perpendiculaire qu’a I’axe d’une des deux travées consé-
cutives (a leur joint de jonction). Par conséquent, les sections particulieres des
poutres au droit des appuis, subissent non seulement une inclinaison par
rapport au plan horizontal mais aussi une rotation par rapport aux axes des
travées particulieres. Il nous faut donc recourir a la représentation vectorielle
des moments et des déformations [1], [3].

La poutre présentée sur la fig. 2 repose aux points 1,2,3,...,z,2+1,n—1
sur les appuis mobiles dans le plan paralléle au plan horizontal de ’axe de la
poutre, ses extrémités étant encastrées rigidement aux points 0 et n. Par
conséquent, la poutre présentée est n»+ 2 fois hyperstatique.

Soient M, et M les moments de flexion et M2 les moments de torsion
dans les travées, tandis que B, est I’angle de deux travées consécutives. Les
plans aux traces 0s’ et 0’s’ — correspondant aux vecteurs M, et M, —
découpent dans la poutre continue des coins (nceuds) s’ 0s 0’s’ (fig. 3). Etant
donné que les dimensions des nceuds par rapport & la longueur des travées
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sont petites, nous pouvons admettre que les vecteurs de tous les moments
agissant sur un nceud donné traversent son centre x.

Pour assurer 1’équilibre des nceuds particuliers d’une poutre continue il
faut que la somme vectorielle des moments agissant sur un nceud donné, a
savoir la somme des moments M., M9, — M ., et —INI,,, soit égale & zéro.

‘M.’c =9R2‘+1Sin13z+M.r+lcosﬁ.r? (l)
Me =M, ,cosB, — M, ,sinf,. (2)

\ 2

Les composantes de la déformation de la travée quelconque x—1, x sont
présentées sous forme vectorielle sur la fig. 4. Ci-dessous nous donnons les

notations employées:

@ et @, désignent les angles d’inclinaison de la section transversale de la travée
x— 1, xz au point z — 1 et z, respectivement, par rapport au plan vertical.

@2 I’angle d’inclinaison, par rapport au plan vertical, de la section oblique
de la travée x — 1, x au point z, perpendiculaire & 1’axe de la travée z,
z+1.

0, I’angle de torsion de la travée z—1, z.

g° I’angle de rotation de la section transversale de la travée x, z+1 au

point z, perpendiculaire a ’axe de la travée z, x+ 1, par rapport a

cet axe.

A I’angle de rotation, par rapport & ’axe x—1, 2, de la section oblique
de la travée x — 1, x au point z, perpendiculaire & 1’axe de la travée z,
z+1.

Nous considérons les angles ¢., ¢2 et ¢, comme positifs si, en observant
le pont de son c6té concave, les sections correspondantes tournent a droite.
Les angles 8., et 8% seront positifs si — considérées de gauche & droite — les
sections correspondantes de la poutre tournent a droite par rapport aux axes
des travées particuliéres.
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En projetant les vecteurs ¢, et 8, sur les directions ¢l et 6% on obtient

(Pg = <p;cos,8x—€;sinﬁx, (3)
0% = @.sinfB,_ + 6, cosB,, (4)
compte tenu que: 0, =00 ,+0,. (5)

Les déformations ¢, et ¢, de la travée x — 1, x considérée appuyée librement
aux deux extrémités peuvent étre présentées comme suit
— M:z:l:c _ M;la: 4 z:1:—1
Y*T3EJ 6EJ" EJ’
' M.':cl.z: _ Mxl:c + zz
P*=3EJ 6EJ EJ’

(6)

(7)

ou 1, désigne la longueur de la travée x—1, x, T, ; et T, — les forces trans-
versales dues & la charge secondaire sur la travée x — 1, x aux extrémités z — 1
et . L’angle de torsion de la travée x — 1, x di au moment MY est donné par
la formule

0 — Mo,

z GJO * (S)

Etant donné que la somme des angles d’inclinaison, par rapport au plan verti-
cal, de la section oblique de la travée z—1, x au point x (cette section étant
perpendiculaire a 1’axe de la travée x, x + 1) et de la section transversale de la
travée z, x + 1 au point z, doit étre égale & zéro, nous obtenons a chaque nceud,
la condition:

P2 + @1 = 0. (9)

A partir des relations (1)—(8) nous arrivons — en tenant compte de la
relation (9) — & un systéme d’équations linéaires entre les moments de flexion
et de torsion aux appuis du pont.

I
|
; Fig. 5.

X

Les considérations présentées ci-dessus nous permettent de formuler cer-
taines conclusions concernant le travail d’une poutre du pont brisée dans le
plan. Considérons, & titre d’exemple, une poutre continue brisée dans le plan
reposant sur quatre appuis (fig. 5) soumise a une charge uniformément répartie
(charge unitaire ¢ kg/m). Aux points 1 et 2 nous avons des appuis mobiles; les
appuis aux points 0 et 3 sont, il est vrai, & articulations glissantes, cependant
la rotation des sections 0 et 3 par rapport aux axes 01 et 23 demeure impos-
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sible. Vu la symétrie de la charge, la poutre est une fois hyperstatique. Nous
déterminons le moment M, =M, et nous donnons ci-dessous les moments M,
pour différents angles 8 et différentes valeurs de e=EJ/GJ:

B e=1 e=2 e=10
45° —0,0600 gl2 —0,0422 qi2 —0,0124 ql2
30° —0,0777 ql2 —0,0618 gl —0,0239 gl
10° —0,0964 ql2 —0,0930 gl —0,0732 qi2

0° —0,1000 ¢l —0,1000 g2 —0,1000 ¢i2

On voit que l'influence de e sur les moments de flexion decroit & mesure
que I’angle B diminue.

Afin d’évaluer 1'influence exercée par la position de la travée du pont sur
les moments de torsion qui s’y développent, nous allons prendre 1’exemple
d’une poutre & cinq travées (voir fig. 6). La poutre est soumise & une:charge

uniformément répartie, symétrique par rapport au milieu du pont. Nous
prenons 8=30° et la longueur de la travée I =I; la poutre est, en principe,
cinq fois hyperstatique, mais le nombre des inconnues hyperstatiques se réduit
dans ce cas & deux. Le nombre total de moments inconnus aux appuis est
égal & six, & savoir M, M,, M9, MY, M; et M,. Etant donné les conditions
de symétrie, le moment MY =0.

Pour déterminer ces moments, nous nous servons de quatre équations du
type (1) et (2) et de deux équations du type (9). Ainsi nous arrivons a:

M, =—-0,0335ql? M, =—0,0295 ql?,
M, = —0,0900 ¢ 12, INY = —0,0168 ¢ 12,
M, = —0,0688 ql2, MY = —0,0595 g I2.

On voit que, dans la partie centrale du pont, les moments de torsion
décroissent et que la sollicitation des travées particuliéres s’approche de celle
d’une poutre droite. Le calcul d’une poutre pour différents angles 8 nous mene
a la conclusion que, pour de petites valeurs de B (ne dépassant pas 10°), les
poutres en question peuvent étre calculées comme si elles étaient des poutres
droites continues.
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Dans le cas d’un pont courbe & un nombre élevé de travées, il nous faut
établir une équation de liaison, entre les moments aux appuis successifs de la
poutre, analogue & 1’équation des trois moments de la poutre droite continue.
La poutre continue brisée dans le plan a sur chaque appui quatre moments
différents, & savoir M_, M2, M, et M2, ,. Par conséquent, pour établir une
analogie avec 1’équation des trois moments, nous considérons seulement les
moments M2 qui — la poutre étant chargée verticalement — ne varient pas
le long de ses travées particuliéres. Nous obtenons alors une équation de cing
moments successifs de torsion de la forme suivante [2]:

M2, +2cosBIMY,; —6ME +2cosBMO_, +M0_, =@, (10)

ou le symbole MY désigne les moments de torsion de la poutre aux appuis, B:
I’angle entre les travées particuliéres de la poutre et @,: un terme indépendant
de INY. |

Nous résumons maintenant le raisonnement qui nous améne a 1’équation
(10) et nous montrons comment s’en servir pour déterminer toutes les gran-
deurs hyperstatiques dans une poutre continue brisée dans le plan, en nous
basant sur les équations (1)—(9).

L’équation (9), considérée avec 1’équation (3), donne, pour B, = const.

plcosBf—0,sinf = —g,; (11)
étant donné qu’on obtient, d’apres les équations (4) et (5)
03-1sinf = @, +p cosp (12)
1’équation (11) devient:
Pz COSB—@; 3 —@ cosf—0b, sinf = —¢, ;. (13)

Nous résolvons maintenant le systéme d’équations (1)—(2) par rapport &
M et M,. Il vient

. 1
M, = 9329”15;;1*3

M, = MIctgB—MIL_

—MlctgB, (14)

1

lsing " (15)

Ces formules permettent de calculer les moments de flexion aux appuis
pour chaque travée du pont, aprés avoir résolu 1’équation des cinq moments
de torsion par rapport & M. De plus, elles peuvent servir & établir I’équation
(10). Grace & ces équations nous pouvons notamment écrire les formules (6)
et (7) sous la forme:

2
po = Mgl v meforgp-my 2L, (16)

o, = MYy =L e fotg—me_, -]

sin 8 sin B8 (17)
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_ l _ l _EE‘I—I ,_%x
f‘eEJ‘zGJO’ b=TFg VeTFJ

En introduisant ces notations dans I’équation (13), nous arrivons a 1’équa-
tion (10). L’expression de @, sera alors:

sin 8

Qo = =5 (=92 008 Bt + 0058 —dguy). (18)

Dans le cas ol les travées d 'une poutre continue brisée dans le plan ne sont
pas de longueur égale, on doit introduire les longueurs de ces travées dans la
partie gauche de 1’équation des cinq moments de torsion. Si ’on admet une
variation de ¢, ce n’est que le terme médian de 1’équation qui subira un change-
ment mais, dans la construction des ponts, € varie peu et cette variation
s’exprime par le remplacement, dans 1’équation (10), du coefficient 6 par le
coefficient suivant:

’1 N l

Nous pouvons utiliser 1’équation des cinq moments de torsion de deux
fagons. Premiérement comme un systéme d’équations linéaires et deuxiéme-
ment comme une équation aux différences finies du quatriéme ordre qu’on
intégrera.

La solution de I’équation (10) représente la somme

MY = p? +p, (19)
ol u) désigne une solution particuliére, tandis que p, est la solution générale
de I’équation
MY, o+2cos MY, —6M2 +2cosfME_; + M0, =0. (20)
La solution p, est de la forme:

pp = Cr e+ Cye 0 4 (ye*2 4 (e, (21)
ou Uy, C,, U3 et C; sont des constantes, tandis que « peut étre déterminé

d’apres I’équation
cos 3 1 cos?f

2 - 4

cosha = — +2. (22)
La solution pf dépend de la forme du terme @, donc de la charge appli-
quée au pont.
Si toutes les travées d’une poutre continue brisée dans le plan sont chargées
uniformément, notamment symétriquement par rapport au centre de chaque
travée (fig. 7), on aura

’/‘.;5 =p1= ‘/’x = 'ﬁz+1: (23)
Q:z: = 0. (24)
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Si la charge des travées de la poutre est égale et uniforme, sans cependant
étre symétrique (fig. 8), on a alors:

e =dz1s Y=V, ¥ F P, (25)
sinf ,, .
Q:c = f (',[lm—l,[lx)(l—COSB). (2’6)
a |P Pla _al” Pla ) Pla b Pl a
g q q q
l—| [T [T a | Y [T /
x-1 x xel x-1 x xo1
Fig. 7. Fig. 8.

On présente souvent le terme ¢, comme suit:

Q.=ax+b. (27)
On doit rechercher alors la solution p sous la forme
pd=Az+B (28)

ou a, b, 4 et B sont des constantes.
L’équation (10) revét dans ce cas la forme

M2 o+2cosB (M) —6(M2)+2cosB(MI_,)+Me_, =ax+b. (29)

Apres avoir introduit 1’expression (28) dans 1’équation (29) et identifié les
termes de méme degré en x des deux cotés de 1’équation, nous trouvons les
coefficients 4 et B, ainsi que la solution

ax+b

8 sinz—g

py =

(30)

Ainsi, nous arrivons a la solution suivante de 1’équation aux différences
finies
ax+b

. 25'
851112

mg - Ol exa1+02 6“"”‘1-]-03 ewag+04 e—To2 _ (31)

Les coefficients C,, C,, C; et C, peuvent étre déterminés d’apres les con-
ditions aux appuis des extrémités d’une poutre continue brisée dans le:plan.

Considérons le cas, qui peut étre d’une importance considérable pour les
projets de ponts courbes, & savoir celui d’une poutre continue brisée dans le
plan, appuyée librement aux extrémités, les travées particuliéres de la poutre
étant soumises & une charge uniforme. On admet, en outre, que les angles
formés par les travées sont les mémes et que les longueurs des travées sont
égales (fig. 9).

D’apres les conditions aux extrémités des poutres, il vient

M =My =M, =M, =0, (32)
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c’est a dire que les moments de torsion et de flexion aux appuis sont nuls
(x=0,x=mn). :

Etant donné que, dans le cas considéré, a =b =0, les conditions aux extré-
mités — en vertu de 1’équation (31) et des relations (14) et (15) — peuvent
étre exprimées a 1’aide des équations:

Cl eno + 02 g—nal + 03 eno + 04 e—noz — () ,
01 e(n+1)<x1 + 02 e—(71+1) o1 03 e(n+1) a3 04 6_( n+l)as — 0 ,
Cie+Cre+0ze2+Cie > =0,

(33)

Fig. 9.

Dans le cas ol le déterminant du systéme ci-dessus différe de zéro, c’est-a-
dire dans le cas ou

1 1 1 1

enol e—no enas e—nag
emthoa  pg—(ntlar  gn+los  g—(n+1las

afx 1 e—al e(xg e—(!2

ona O, =0,=C;=C,=0. Ceci traduit que, pour toutes les travées de la poutre,
les moments aux appuis, qu’ils soient de torsion ou de flexion, sont égaux &
zéro, autrement dit, chaque travée peut étre considérée comme une poutre
appuyée librement aux deux extrémités.

Dans d’autres cas, si les constantes d’intégration ne sont pas égales & zéro,
il nous faut prendre en considération les moments MY au-dessus des appuis
des ponts; ceci admis, les moments de flexion aux appuis agissant aux extré-
mités des travées particuliéres d’une poutre continue peuvent étre déterminés
a l’aide des relations (14) et (15); il est possible, alors, de calculer les moments
de flexion dans les sections transversales des travées particuliéres.

Si une poutre continue brisée dans le plan est appuyée librement & 1’une
des extrémités, 1’autre extrémité reposant sur un appui glissant mais non
rotatif, on aura:

My=0, M,=0, M,=0, 6,=0. (35)

Si la rotation de la section n est empéchée, nous introduisons le moment
MY, = IM? (pour le moment inconnu). Nous allons done résoudre, par rapport
aux grandeurs C,, C,, C; et C, les quatre équations suivantes:

MY=0, M, =0, M, =0, I =M. (36)
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En introduisant les coefficients €' comme fonctions du moment inconnu
dans 1’équation (4) et en posant que la rotation 6, de la section finale de la
poutre est égale & zéro, nous arrivons a 1’équation du type:

F(MO) =0 (37)

pour le moment inconnu M°. En considérant le dit moment comme une charge
additionnelle sollicitant la poutre continue, nous pouvons calculer les autres
moments M?; & 1’aide des relations (14) et (15), nous calculons les moments
de flexion aux appuis.
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Résumé

Le pont courbe peut étre considéré, dans nombre de cas, comme une cons-
truction continue, composée (dans la section transversale) de deux ou plusieurs
poutres continues brisées dans le plan et appuyées aux noeuds sur les piliers
du pont. Cette communication présente les relations entre les moments aux
appuis ainsi qu’entre les déformations; ces expressions sont analysées et on
en tire les conclusions appropriées. On attache une importance toute parti-
culiéere & 1’équation de cinq moments de torsion successifs dans la poutre,
ainsi qu’aux conséquences qui en découlent. On présente en outre des formules
pour le calcul des moments fléchissants aux appuis & partir des moments de
torsion.

Zusammenfassung

Eine gekriimmte Briicke kann in der Regel als eine kontinuierliche Kon-
struktion betrachtet werden, die aus zwei oder mehreren Haupttrigern mit
geknickter Achse besteht. Die Haupttrager ruhen in den Knotenpunkten auf
den Briickenpfeilern.

In der vorliegenden Arbeit werden Beziehungen fiir die Stiitzmomente und
Forménderungen eines durchlaufenden Balkens mit geknickter Achse ange-
geben und aus den abgeleiteten Formeln die entsprechenden SchluBfolgerun-
gen fiir die Verwendung als Haupttriger von gekrimmten Briicken gezogen.
Eine besondere Bedeutung kommt der Gleichung der finf aufeinanderfolgen-
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den Torsionsmomente und ihrer Deutung zu, wobei Formeln angegeben wer-
den, die einen Ubergang von den Torsionsmomenten zu den Biegungsmomenten
ermoglichen.

Summary

The curved bridge may be regarded, in numerous cases, as a continuous
structure, made up (in the cross section) of two or more continuous girders,
broken in plan and supported at the joints on the pillars of the bridge. This
paper explains the relationships between the moments at the supports and
also between the deformations; these expressions are analysed and the appro-
priate conclusions drawn. Particular importance is attached to the equation
of five successive torsional moments in the girder, and also to the consequen-
ces thereof. Formulae are also provided for the calculation of the bending
moments in the supports on the basis of the torsional moments.
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Space Frame Action and Load Distribution in Skew Bridges
Comportement tridimensionnel et distribution des charges dans les ponts biais

Raumliche Tragwirkung und Lastverteilung in schiefen Briicken

M. S. AGGOUR
Dr., Professor at the Faculty of Engineering, Cairo University, Giza, U.A.R.

Introduction

The usual method of calculating the stresses in the different parts of a
bridge is to split it up into a group of vertical and horizontal plane frames
and trusses acting independently of each other, the vertical loads being taken
by the vertical main girders, the horizontal loads by the horizontal wind
bracings and then transmitted through the transverse frames to the bearings
of the bridge. In reality the whole bridge acts as a space structure; the vertical
loads produce stresses not only in the main girders, but also in the wind
bracings and transverse frames. In case of a skew bridge, the effect of the space
frame action is much greater than in the case of a square bridge on account
of the much greater twisting moments produced at the end transverse frames.

The object of this research is to investigate how skew bridges with two or
more main girders connected rigidly together by cross frames and wind bracings
will behave if they are treated as space structures. The results of the space
frame calculation are compared with those obtained by the ordinary method
and it has been found that the design of a safe skew bridge should be carried
out as a space structure. Furthermore some types of square bridges are treated
as space structures in order to compare their behaviour with that of skew
bridges.

Space Frame Method of Calculation

The space structure is considered to be composed of several plane frames
or trusses connected together at their lines of intersection. Along these lines
the plane frames or trusses will act mutually on one another. The corresponding
actions and reactions are called edge forces, since their lines of action in the
case of plane frames with negligible lateral stiffness coincide with the edge.
After the determination of these edge forces, the calculation of the space frame is
carried back to the calculation of several plane frames or trusses loaded by
external forces and edge forces in their own planes.

The general shape of a bridge with two main girders, an upper and a lower
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wind bracing, and two end cross frames, is a closed polyhedron. If the main
girders are trusses or plate girders with parallel chords, the polyhedron will
possess six surfaces and twelve edges. For the equilibrium of each plane sur-
face of the polyhedron, the external loads and edge forces acting upon this
surface must satisfy the three conditions of equilibrium in the plane. If the
bridge is supported by means of four vertical and three horizontal reactions,
the total number of unknown reactions and edge forces is 74+12=19, the
number of equations of equilibrium is 6 X 3 =18, and therefore the space frame
is once statically indeterminate.

By eliminating one of the four vertical reactions, or by omitting either of
the two end cross frames or one diagonal in the upper or the lower wind
bracing, we obtain a statically determinate space structure. On the other
hand, each additional cross frame increases the number of unknowns by one
(4 edge forces and 3 equations of equil.) so that a bridge with two main gir-
ders, two wind bracings, two end cross frames and (») intermediate cross
frames, supported by seven reactions (four vertical and three horizontal) is
(n+1) times statically indeterminate. This means that the redundant edge
forces can be obtained from (n+ 1) equations. This is true not only when all
the component parts of the bridge are statically determinate plane plate gir-
ders or trusses, but also when they are statically indeterminate ones, because
the additional indeterminacy of the plane trusses can be calculated separately.

Furthermore, skew bridges are not symmetrical with regard to vertical
planes, as are square bridges, but they can in most cases be made symmetrical
with regard to a vertical axis through the centre of the bridge. By splitting up
the acting vertical or horizontal loads into symmetrical and asymmetrical
loadings, the number of redundant forces can be reduced by one half.

Skew Bridges with Two Main Girders

In order to study the effect of the stiffness of the end portals as well as the
effect of the intermediate transverse frames on the stress distribution, four
different cases of a single track railway bridge, Fig. 1, have been investigated:

a) A through bridge with two wind bracings and two end portals.

b) A through bridge with two wind bracings, two end, and two interme-
diate portals.

c¢) A deck bridge with two wind bracings and two end cross frames.

d) A deck bridge with two wind bracings, two end, and two intermediate
cross frames.

The general arrangement and cross sections of members of main girders
and wind bracings are the same in all four cases, but the stiffness of the end
portals in the case of deck bridges is about 25 times greater than that in the
case of through bridges.
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All these bridges are supported by four vertical and three horizontal reac-
tions and thus bridges a) and c¢) are once, while bridges b) and d) are three
times statically indeterminate space structures.

In order to compare the behaviour of square and skew bridges as space
structures, two square through and deck bridges with only two end trans-
verse frames have been calculated. The influence line of the redundant edge
force (Y) between the plane surfaces of the upper wind bracing and the end
transverse frame, for the square and the skew through bridges, due to
vertical loads moving either in the plane of one main girder or along the centre
line of the bridge, are shown in Fig. 2.

In the square through bridge, the influence line for a unit load moving
in the plane of one main girder has negative ordinates on the left half and
equal positive ordinates on the right half. All ordinates of the influence line
for an axle load of two tons moving along the centre line of the bridge are
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therefore zero. In the square deck bridge, the edge force Y for any vertical
loading is negligible. In skew bridges, on the contrary, all the ordinates of the
influence line for the edge force ¥ due to a load moving in the plane of one
main girder have the same sign, and all the ordinates of the influence line for
a load of two tons moving along the centre line of bridge are therefore nearly
doubled.

It follows, therefore, that in the calculation of square bridges with two
main girders, the space frame action can usually be neglected. It is only of a
certain importance in double track railway bridges and roadway bridges
subject to eccentric loading. On the contrary, in all skew bridges the actual
forces in the main girders, wind bracings, and transverse bracings differ very
much from those obtained by the usual method of calculation. In order to
obtain a safe structure, skew bridges have to be treated as space frames.

Results Obtained for Vertical Loads

The influence lines for certain members of the skew deck bridges ¢) and d)
for an axle load of two tons moving along the centre line of bridge, are shown
in Fig. 3. The corresponding influence lines obtained by the ordinary method
of calculation are also shown for comparison. The investigation of these
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influence lines and the calculation of the deflections allow the following general
conclusions to be reached.

a) Bridges with Two End Cross Frames

The maximum reactions for the skew deck bridge are increased at the
obtuse ends by about 239, and reduced at the acute ends by the same amount.
For the skew through bridge this deviation is only 119%,. The forces in all
the truss members except the diagonals near the obtuse ends are reduced.
The greatest decrease is 329, for the deck bridge and 159, for the through
bridge. The total forces in the diagonals of the end cross frames of the deck
bridge are increased by 1309%,, while the stresses in the end portals of the
through bridge are increased by 2909%,. A still greater increase takes place
for the total forces in the diagonals of the two wind bracings.

By neglecting the space frame action in the calculation of such skew bridges,
a considerable amount of material is wasted in the main girders. On the other
hand, the wind bracings and end cross frames will not be safe, if they are
calculated for wind loads only, as is usual, since they are subject to considerable
additional forces due to the twisting moments at the end cross frames.

b) Bridges with Two End and Two Intermediate Cross Frames

The space frame calculation gives an additional reduction of the forces in
nearly all the members of the main girders, and a corresponding increase in
the middle diagonals of the two wind bracings. For vertical loads acting in
the plane of one main girder, the decrease in the forces of that loaded girder
is more pronounced than that for loads acting along the centre line of the
bridge. The intermediate cross frames reduce the deflections due to vertical
loads, thereby increasing the stiffness against vibrations due to moving loads.
By increasing the stiffness or the number of the intermediate cross frames
this effect can be improved.

Skew Bridges with Several Main Girders Connected Rigidly by Cross Frames and
Wind Bracings

Two types of skew bridges with different angles of the skew have been
investigated. Both bridges consist of four simple main girders of the plate-
girder type, connected together by five rigid cross bracings as well as an upper
and a lower wind bracing, Fig. 4. The bridges are symmetrical about the
vertical axis through the mid point (m). In the first bridge the skew corresponds
to the whole span, tan«, =12/7.5=1.6; in the second bridge the skew is about
0.43 of the span, tan «,=0.686. These bridges have been fully calculated as
space structures when they are provided with the upper wind bracing only,
and then with the upper and lower wind bracings.
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Bridge with the Bigger Skew

In this case the bridge is provided with an upper wind bracing only, and
can be regarded as consisting of two separate statically determinate bridges
0—6—-8—14 and 0'—6"—8"— 14" connected together by three intermediate
cross frames e,m,e’. The system is statically determinate if the three inter-
mediate cross frames are disconnected and is a nine times statically indeter-
minate space structure when they are connected. For symmetrical loading,
the total number of redundant forces is only five, and for asymmetrical loading,
the number of redundant forces is only four.

If the lower wind bracing is added to the above bridge, the structure will
be a 13 times statically indeterminate space structure. If we consider the
bridge with one wind bracing only as a statically determinate second main
system, each of the diagonals of the lower wind bracing will correspond to a
new redundant force, and therefore the total number of redundant forces is
9+4=13. The second main system is four times statically indeterminate for
any loading, and twice for symmetrical or asymmetrical loading.

Bridge with the Smaller Skew

The bridge with an upper bracing is nine times statically indeterminate for
any loading. It will be five times statically indeterminate for symmetrical,
and four times for asymmetrical loadings. In the bridge with two wind bracings,
we have six new redundant forces which reduce to three for symmetrical or
asymmetrical loadings.
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Results Obtained for Main Girders

a) Bridges with one Wind Bracing Only

For the bridge with the bigger skew, for a full loading of the outside main
girder (A4), the vertical reaction at support 6 increases by 8%, and that at
support 0 decreases by 16%, with regard to those found by the ordinary method
of calculation. For the inside main girder, both end reactions are reduced by
about 529, for a full loading of this girder. For the critical loading, the decrease
in the vertical reaction at the acute end of the outside girder is only 6%, while
a very great increase of 879, occurs at the obtuse end. For the inside main
girder both reactions are reduced by 259%, and 189%, at the acute and obtuse
ends respectively.

The maximum bending moment for the outside girder of the bridge is
decreased by 279, for a full loading of that girder, and by 189, for the critical
loading. For the inside main girder the reductions in the bending moments
are 559%, and 279%,, respectively.

For the bridge with the smaller skew, the results obtained for the reactions
and bending moments range between those found for a similar square bridge
and those for the bridge with the bigger skew.

In all bridges considered, the relief in the maximum bending moment due
to the loading of one main girder is much greater for the inside girders than
for the outside girders, owing to the fact that the two adjacent girders in the
first case take a greater part of the load than the one adjacent girder in the
second case. It is therefore recommended that the outside girders should be
made stronger than the inside girders. This is not only favourable for equal
distribution of the bending stresses over the four main girders, but also for
the stiffness of the bridge. Furthermore, the maximum deflections in the
outside girders will be reduced.

b) Bridges with Two Wind Bracings

The relief in the bending moment of the outside girders for the loading of
one of these girders is about one and a half times as great as in the bridge
with one bracing, and the inside girders are also slightly more relieved. The
effect of the second bracing is much greater in skew bridges than in square

bridges.

Results Obtained for Cross Frames and Wind Bracings

For a loading acting in the plane of the cross frame itself, the stresses in
this cross frame are about 1.5 times greater than those produced in the adjacent
cross frames. It follows, therefore, that all cross frames of the bridge are
stressed, whether the load is acting in their own plane or in the plane of other
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adjacent cross frames, and it is incorrect to assume, that each cross frame is
stressed only by the loads acting in its own plane.

The critical loading producing maximum compressive stress in the middle
strut of these cross frames consists of a full loading of the inside main girders
B and B’, while that producing maximum tensile stress in the middle lower
strut consists of a full loading of the main girders B’ and 4’.

These critical loadings are the same for bridges with one and with two
wind bracings, but the second bracing has a tendency to increase slightly the
forces in the cross frames of square bridges and reduce those in the cross
frames of skew bridges. It is more favourable for the load distribution to make
the cross frames as stiff as possible.

Comparing the critical forces in the wind diagonals of these bridges, the
forces in these diagonals in the case of one wind bracing only, are less than
one-half of those obtained in case of two wind bracings.

It follows therefore that the lower wind bracing will relieve the main
girders and the cross frames of the bridge from part of the load, but the two
upper and lower wind bracings will receive additional forces. The two wind
bracings have an effect on the load distribution which is less than that obtained
by arranging stiffer cross frames.

Conclusions

1. At the obtuse end of the outside main girders of all skew bridges, the
reactions are very much greater than those obtained by the ordinary method
of calculation. It is important to take this into consideration in the design of
the abutments in order to avoid unequal settlement.

2. The more the skew of the bridge is increased, the greater is the reduction
in the maximum bending moment in both main girders.

3. The position of the maximum bending moment is near the centre of the
main girders of square bridges, but it is shifted towards the acute ends in skew
bridges. The greater is the skew of the bridge, the greater is the shift of the
position of the max. bending moment.

4. The deviations mentioned for bridges with one wind bracing are still
more pronounced in cases where the bridge is provided with two wind bracings.

5. The bending moment and shearing forces in the cross frames increase
considerably when the skew of the bridge becomes greater. In the bridge with
the smaller skew, they are twice as great as, and in the bridge with the bigger
skew five times greater than, the corresponding values in square bridges.

6. The forces in the wind diagonals are affected when the angle of the skew
becomes greater. In the bridge with two wind bracings, the forces in the wind
diagonals are five times greater than those of the bridges with one bracing in
the case of the square bridge, and twice as great in the case of the bridge
with the greater skew.
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7. By taking into account the load distribution and space frame action in
the design of skew bridges, a considerable amount of material can be saved in
the main girders. On the other hand, the additional forces in the cross frames
and wind bracings produced by vertical loads must be taken into consideration
in the design in order to obtain a safe structure.

Summary

The object of this research is to investigate how skew bridges with two or
more main girders, connected rigidly together by cross frames and wind
bracings, will behave if they are treated as space structures. The author has
found that by taking into account the load distribution and space frame
action in the design of skew bridges, a considerable amount of material can be
saved in the main girders. On the other hand, the additional forces in the
cross frames and wind bracings produced by vertical loads must be taken into
consideration in order to obtain a safe structure.

Résumé

L’auteur étudie le comportement tridimensionnel des ponts biais compor-
tant deux ou plusieurs poutres maitresses, solidarisées par des entretoisements
et des contreventements. Il montre que I’on peut réduire considérablement les
poids des poutres maitresses lorsque 1’on considére la distribution des charges
et le comportement tridimensionnel de la structure; pour réaliser un ouvrage
présentant toute sécurité, il faut bien entendu tenir compte des sollicitations
supplémentaires des entretoisements et des contreventements dues aux charges
verticales.

Zusammenfassung

Der Zweck der vorliegenden Arbeit ist, festzustellen, wie sich schiefe
Briicken mit zwei bzw. mehreren Haupttriagern, welche mit Querrahmen und
Windverbénden verbunden sind, als Raumtragwerke verhalten. Es wurde
bewiesen, da3 die Berechnung solcher Briicken unter Beriicksichtigung der
durch die rdumliche Wirkung erzielten Lastverteilung zu einer erheblichen
Materialersparnis bei den Haupttriagern fiihrt; jedoch miissen die zusétzlichen
Krifte in den Querrahmen und Windverbidnden, welche durch die vertikalen
Lasten hervorgerufen werden, mit Riicksicht auf die Sicherheit der Konstruk-
tion beriicksichtigt werden.
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