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IIel

Das Tragverhalten statisch unbestimmter Systeme aus hochfestem
Baustahl
Limat Design of Statically Indeterminate Structures Built of High Tensile Steel

Calcul de la charge de ruine d’ossatures hyperstatiques réalisées en acier & haute

résistance
H. BEER K. MOSER
Dipl. Ing. Dr. techn., o. Professor, Graz Dipl. Ing., Oberingenieur, Graz
A. Einleitung

Der Entwurf von Stahltragwerken nach der Plastizititstheorie (plastic
design) setzt die Kenntnis der Arbeitslinie (Spannungs-Dehnungsdiagramm)
des verwendeten Baustahls voraus. Die bisher bekannten Verfahren, die
namentlich von J. F. BAKER [1] und seinen Mitarbeitern anwendungsreif ent-
wickelt wurden, basieren auf der Annahme eines Stahles mit ideal elastisch-
plastischem Verhalten, d. h. die Arbeitslinie verlduft bis zur FlieBgrenze linear
(£ = konstant) und geht sodann in die Horizontale (# = 0) iiber. Nun besitzen
aber gerade die hochfesten Baustédhle in der Regel keinen ausgeprigten Fliel3-
bereich, sondern zeigen eine mehr oder weniger kontinuierliche Abnahme des
Elastizitatsmoduls bis zum Bruch. Die Arbeit behandelt unter dieser Voraus-
setzung das Tragverhalten von statisch unbestimmten Konstruktionen, wobei
mehrere Annahmen iiber den Verlauf der Arbeitslinie getroffen werden und
untersucht besonders die Frage, ob und wieweit ein Momentenausgleich statt-
findet. Die Untersuchungen werden fiir den «Sandwichquerschnitt» durchge-
fiihrt, dem die Annahme der normalkraftaufnehmenden Gurte und des nur
schubkraftaufnehmenden Steges zugrunde liegt. Die Erweiterung auf beliebige
Querschnitte ist zwar moglich, erfordert jedoch erheblich groBeren Rechen-
aufwand. Die Aussagen fur den Sandwichquerschnitt lassen sich jedoch auch
auf den I-Querschnitt iibertragen. In dieser Arbeit wird nur der EinfluBl der
Biegemomente auf die elastischen und teilplastischen Formanderungen beriick-
sichtigt. Der Einfluf} der Normalkrifte soll spdter behandelt werden.

B. Der Durchlauftriger bei polygonal geknickter Arbeitslinie

Fiir die Herleitung der Momentenverteilung wihlen wir als Beispiel den
symmetrischen Durchlauftriager auf vier Stiitzen, der in der Mitte durch eine
Einzellast belastet ist (Fig. 1a). Zundchst sei der Ableitung die in Fig. 2 dar-
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gestellte, aus zwei Geraden verschiedener Neigung zusammengesetzte, «bili-
neare» Arbeitslinie zugrunde gelegt. Die Erweiterung auf einen polygonalen
Linienzug bereitet keine grundsitzlichen Schwierigkeiten und wird sodann
fiir eine «trilineare» Arbeitslinie gezeigt. Schliellich wird auch noch der Fall
der stetigen Abnahme des Elastizititsmoduls im teilplastischen Bereich
behandelt.

J. FriTscHE [2] hat nachgewiesen, dal3 das Prinzip von Castigliano fiir die
Berechnung von statisch unbestimmten Systemen, die teilweise plastische
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Forménderungen erleiden, dann giiltig ist, wenn man den elastischen Anteil
der Forminderungsarbeit zugrunde legt und die Voraussetzung des Ebenblei-
bens der Querschnitte beibehilt. Fiir ideal elastisch-plastisches Verhalten des
Materials bestimmt FRITSCHE unter diesen Voraussetzungen fiir den Rechteck-
querschnitt die Momentenverteilung am Durchlauftriger.

Wir wenden fiir die nachstehenden Untersuchungen das Prinzip der vir-
tuellen Arbeit an, indem wir dem aktuellen Formanderungszustand, der durch
die Belastung P gegeben ist, einen virtuellen Belastungszustand, fiir den wir
den Zustand X, =1 wéhlen (Fig. 1b), gegeniiberstellen. Am gegebenen Trag-
werk mul} dann die so geleistete virtuelle Arbeit zu Null werden, wobei voraus-
gesetzt wird, daBl das Gleichgewicht zwischen dulBleren und inneren Kriften
bis zum Erreichen der Traglast vorhanden ist (stabile Gleichgewichtslage).
Wir nehmen im vorliegenden Fall (vgl. Fig. 1a) an, daB} die Spannungen im
Trigergurt sowohl unter der Einzellast als auch iiber der Stiitze den Wert o,
tiberschreiten und sich daher Teile des Trégers im teilplastischen Bereich befin-
den. Zur Berechnung des Forménderungszustandes infolge der gegebenen
Belastung kann man sich die iiber M, hinausgehenden Momentenbereiche
mit E/E, verzerrt denken und sodann fiir die so erhaltene ideelle Momenten-
fliche den Modul £ zugrunde legen. Fiir den iiber die ganze Trigerlinge kon-
stanten Sandwichquerschnitt (Fig. 1¢) wird dann nach Fig. 1a

L
fMMdx=0,
0

wobei sich das Integral iiber die ganze Tragerlinge L=I(1+2y) erstreckt.

Die Integration erfolgt abschnittsweise in der bekannten Art, wobei die ein-

zelnen Abschnitte durch die Stiitzweiten (/,y I) und durch die Teilplastizierungs-

bereiche

vy HX, + M) a _ X+ M) a =Z(M0+X1_Mp)
X, ’ 127 2M, - 2M,

Ay =

bestimmt sind. Uber das Vorzeichen von X; wurde hierbei noch nicht verfiigt.
Die Integration ergibt nach Multiplikation mit ! und wenn wir

E
€,=———1 setzen:

M ¢ 1
Xid (14 9+ 30+ T2 [ M, o (K 21, )
1
G,

_ 3
i, a7, Kot Mo— 3, = 0.

Daraus folgt fiir X, die kubische Gleichung:
2
X%{(l +iy)+ [(H%y)— j}l”] @fp}
0

(1)
extfue [1-0-9220] ) o Ty, o
0
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Wir erhalten dieselbe Gleichung durch Anwendung des Satzes von Castigliano,

wenn wir bilden
dA = f (g) dMdx

(x)

mit der Querschnittsverdrehung

fiir die elastischen Bereiche und

(3), = g, [0 ()

fir die teilplastischen Bereiche. Mit

—_ Oz —  Z
M=')/_ZX1’ dM= fy_ldXI

fir die AuBlenéffnungen und

M= ?(gx—Xl), dM=+dX,

fiir die Mittel6ffnung wird mit

M 2 =
01=Yl]2’yl, CZ?(XI'I'-MI))’ a12=?(X1_Mp):

¢ yl
dA z\2 _ z\2 E T _
ix, = (,,_z) de“f [(,,—z) =y (y—z)Mﬁ @‘P]d“’
0

Cy
Q.

t(. P\E 1 (P
+J (Xl_?x)E—_Mp@p dx+f(X1——é—m)dx

y2 .
0 a2

12
2 P E -
+J (Xl—?x)ﬁ-'l‘Mp@p dx=0.

D J

c

Nach einiger Zwischenrechnung erhilt man wieder Gleichung (1), wobei jedoch
iiber das Vorzeichen von X, schon verfiigt worden ist. Beide Verfahren fiithren
zum gleichen Ergebnis, sind allgemein giiltig und kénnen auch fiir Systeme
aus ideal elastisch-plastischem Material und beliebiger Querschnittsform ange-
wendet werden, wie dies FrRiTscHE fiir den Balken mit Rechteckquerschnitt
gezeigt hat.

Mit der bisher verwendeten bilinearen Arbeitslinie ist es im allgemeinen
nicht moglich, das teilplastische Verhalten des Baustahls geniigend genau zu
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erfassen. Wir kommen dem Ziel der moglichsten Anpassung an eine gegebene
Arbeitslinie bedeutend niher, wenn wir den aus drei Geraden bestehenden
Polygonzug (Fig. 2) annehmen. Der aktuelle Formadnderungszustand wird
sodann erzeugt durch die in Fig. 3a dargestellte Momentenlinie, die wieder
auf E reduziert wurde, wiahrend der virtuelle Belastungszustand X, =1 unver-

andert bleibt (Fig. 1b). Die Uberlagerung [ M M'dx ergibt wieder eine Glei-
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chung fiir X,, die sich nach einiger Zwischenrechnung in folgender Form
darstellen 148t

M M M
X%@pp+X%2Mo{(l +5y)+ [(1 ___M_z) + (%y —F:)] @p + (1 ———MI:’) (&pp}

M\t M M M,,\2
2 12 __P i __7 e
x| (-52) 52 (-3 [ e (- o @
3
—s?’ﬁp@ =0.

Die umsténdliche Losung der Gleichung vierten Grades kann umgangen wer-
den, wenn man fiir die dritten und vierten Potenzen von X, den entsprechen-
den Wert des elastischen Durchlauftrigers X, , einsetzt. Man erhilt dann fiir
den betrachteten Fall M, < X, <M, die Losung in folgender Form:

Xy =- m {[2] V212 —[1]-[3]}- (3)
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Hierbei bedeutet
[1] - pp:
M M M
2] = (1+ +[(1__2)+(2 __?’)]@ +(1_ pp)@ ,
[2]=(1+47) M, k4 M, M, be

_ Mp\2  Mp(, My M3 Mpp\?
= |(1-32) o (v st )| o (1 52)

Fiir die beiden Fille X, <M, und X,>M

pp lassen sich die Losungen fiir X,
dhnlich herleiten. Dabei ergeben sich beispielsweise fiir den ersten Fall die
entsprechend verkiirzten Faktoren

[1]=@p+@z):ﬂ’
2 2 My
[]2(1+§7)+ l_ﬁ @p+ Mo @])1)’

(3] = 1+(1—£) €, + ( Mm’) €y s

et

C. Stetig veriinderlicher Elastizititsmodul

Wir wollen nun eine moglichst einfache geschlossene Funktion fir die
Verinderung des E-Moduls im teilplastischen Bereich annehmen. An Stelle
der Spannung o tritt hier der auf £ bezogene Wert

+J§-da. Setzt man nun f—da-—( c—o,)(1+u),
Yy

so ist u ein MaQ fiir die Verdnderlichkeit des E,-Moduls. Am einfachsten ist es
nun, fiir den «Vergroferungsfaktor» u einen geradlinigen Verlauf anzunehmen
(Fig. 4), wobei zur Erfiillung der Randbedingungen diese Gerade von u =0 bei
o=0,, e=¢, auf u=p, bei o, und ¢, ansteigt. Berechnet man umgekehrt die
Arbeitslinie, welche dem angenommenen Verlauf von u entspricht, so erhilt
man eine Kurve, die etwas unter jener achsenorientierten quadratischen
Parabel liegt, welche bei o, tangentiell an die Gerade E = konst. anschlie3t
und bei o, ihren Scheitel besitzt. Die Empfindlichkeit der Momentenverteilung
gegen eine Verdinderung der Arbeitslinie ist jedoch nicht sehr groB3, so dafl wir
mit der Annahme eines geradlinig ansteigenden VergroBerungsfaktors die
Arbeitslinie des hochfesten Baustahls gut wiedergeben konnen. Die Giite der
Anniherung der Arbeitslinie durch ein Polygon wird besonders von der Uber-
einstimmung der Neigung der letzten Polygonseite gegeniiber der Parabel-
neigung abhingen (Fig. 4).

Mit Verwendung von Fig. 3b erhalten wir unter der Annahme, daB auch die
Stiitzen in den teilplastischen Bereich gelangen, die folgende Gleichung vierten
Grades fiir X, :
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1 M 2 M.\ .
X4 g3y bem =] + X2 [+ )+ 1 (1= 52 (- 3 32 ]
M, M M\2 5 M2

+ X G M2y~ X M3y = 0.

Auch hier kann die Auflosung der Gleichung vierten Grades umgangen wer-
den. Zu diesem Zweck formen wir diese Gleichung folgendermaBen um:

3 M M
X (pp — pg) + X1 2 M, [(§+7) - (1 _Mf)FLF_i' (%V—JT?) ru'st]

3 M \2 M2 M M M
2]2 _ "0 _Tp Y p Pl _2Z» =
+M°{2+(1 Mp) HE = gt t s g, [5+X1(1 X)]”} 0.
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erweist sich als sehr kleine KorrekturgroBle, in der es vollauf geniigt, fir X,
den Wert X, , aus der rein elastischen Momentenverteilung einzusetzen. Man
erhilt daher wiederum die Lésung der quadratischen Gleichung fiir X; nach
Formel (3), wobei nunmehr fiir

(1] = pr— gy,

[2]—§+)’+(1—m)#p+(z}’—m)#sn

3 M)\ My M,[. M,(. M,
[3]—§+(1—m) TN TN 5+X1_e(1__X1_e) st

einzusetzen ist.

Fiir die Ermittlung dieser Werte ist wesentlich, daBl die VergréBerungs-
faktoren pz und py wiederum von M und daher auch von X, abhingen. Fir
den Sandwichquerschnitt ist =M /F k und daher kann der Wert p, welcher
der Spannung o entspricht, aus Fig. 4 entnommen werden, wenn man fiir M
die Werte M+ X, — M, bzw. X, — M, einsetzt. Man ist gezwungen, zunéchst
eine Annahme fiir x und daher fiir M zu treffen, diese nach Berechnung von
X, zu korrigieren und die Berechnung zu wiederholen, wobei zwei bis drei
Rechnungsginge eine ausreichende Genauigkeit ergeben. Man kénnte natiir-
lich auch von vorneherein p als Funktion von X, einfithren, wiirde aber dadurch
die Rechnung unnétig komplizieren.

In Fig. 5 ist fiir die drei in Fig. 4 eingetragenen Werkstoffarbeitslinien
(Parabel, Polygon I, Polygon II) der Verlauf der Stiitz- und Feldmomente
eines mit einer Einzellast belasteten Dreifeldbalkens (fiir y=0,5; 0,75; 1,0)
bis zum Versagen des Trégers eingetragen. Man erkennt, daB fiir alle ange-
nommenen y-Werte kein Momentenausgleich eintritt. Feldmoment M, und
Stiitzmoment X gleichen sich zwar nach Uberschreiten der Proportionalitits-
grenze zunichst an, doch tritt noch weit vor dem Erreichen der Bruchlast
ein Zustand ein, in dem eine weitere Annaherung nicht mehr stattfindet.
Diese Tendenz ist fiir die drei angenommenen Arbeitslinien gleichlaufend,
wobei die Unterschiede relativ gering sind. Die fiir Polygon I ermittelten
Kurven X, und M, verlaufen nach erfolgter Anniherung nahezu parallel
zur X,-M,-Linie fiir den starr eingespannten Mittelbalken (y=0), fiir den ein
elastischer Momentenausgleich eintritt.

D. Korrekturverfahren

Der vorgeschlagene Weg ist zwar grundsitzlich fiir beliebige Systeme und
Belastungen anwendbar, fithrt aber schon fiir den Durchlauftriger unter
Gleichlast zu Gleichungen mit gebrochenen Exponenten. Nachstehend sei
daher ein Korrekturverfahren angegeben, das auch bei mehrfach statisch
unbestimmten Rahmensystemen unter beliebiger Belastung nur die Auflésung
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eines linearen Gleichungssystems erfordert. Es besteht im wesentlichen darin,
dal man zunidchst die Zustandslinie der Biegemomente fiir das elastische
System ermittelt, die iiber M, hinausragenden Momentenanteile teilplastisch
verzerrt und eine Korrektur der elastischen Momentenverteilung vornimmt
(SchluBlinienkorrektur). In Fig. 6a ist dieser Vorgang am einfachen Beispiel

c)

rt l yl—=

" |

X, P ;

TN T T T T T TT
D

Mo |/ L L

N
[nﬂf_—L

Fig. 6.

des Durchlauftragers unter Einzellast und Annahme eines linearen Verlaufes
der Arbeitslinie im teilplastischen Feldmomentenbereich veranschaulicht. Die
Momentenlinie M, aus der elastischen Verteilung erfiillt die Bedingung

p={M,Mdx=0. (5)

Die teilplastische Verzerrung der Momentenlinie ergibt einen zus#tzlichen

Momentenanteil M (in Fig. 6a schraffiert), der nun in das Integral (5) mit
eingeht, so dafl die gesamte Forméanderungsgrolle lautet:

(MM de=[M, M da+[ MM dz = ¢+i. (6)

Da ¢=0 und ¢ +0 ist, gilt ¢+ +0. Um diese Diskrepanz zu beseitigen,
miissen wir eine Korrekturgrofle 4 X; anbringen (vgl. auch Fig. 6b). Diese
bewirkt eine Verschiebung der SchluBllinie und damit etwas geinderte Werte
® und ¥, so daBl die Forménderungsbedingung &+ = 0 erfiillt ist. Wir kénnen
nun dieses Korrekturverfahren unter den hier giiltigen Voraussetzungen auch
als Variationsproblem auffassen und bilden das vollstindige Differential von

P+
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3 o 3 ’ ar '
sx, (P HH X, = ;axi M, M da+[M M dz]d X,.

Die Forderung lautet nun:

Pty (p )X, = 0. (1)

Fiir ein n-fach statisch unbestimmtes Tragwerk ergeben sich, wie spiter
anhand eines einfachen Beispiels gezeigt wird, n solche lineare Gleichungen
mit den Unbekannten d X; (=1,2...n). Bei nur einer Korrekturgréfie d X,
erhilt man, da voraussetzungsgemill ¢ =0 ist,

(ZX]_:—a—l/’*. (8)

E(‘P"“ﬁ)

Gehort die Momentenlinie M, aus der elastischen Verteilung einem anderen
teilplastischen Zustand an (z.B. X; <M ) als die korrigierte Momentenlinie
M (z.B. X,> M), so ist eine zusitzliche Korrektur notwendig. In [M* M 'dx
=@* +* ist nunmehr sowohl ¢* als auch ¢* ungleich Null. Fiir ein einfach
statisch unbestimmtes System erhilt man

% *
dX, = —g;JrL (8a)

ox, @+ )

Um die Anwendung des Korrekturverfahrens zu zeigen, wihlen wir den
Durchlauftriger unter Gleichlast p in der Mittel6ffnung und nehmen eine
bilineare Arbeitslinie an. Wir setzen voraus, dafl im Feld M > M, ist (Fig. 6d).
Der Bereich a der Teilplastizierung 1Bt sich aus der Bedingung M = M, sofort
angeben, wenn wir setzen:

P l—a l+a _
2 9 9 +X,=M,,
woraus folgt:
_ Xy M, . _pl?
a=1 E+1_M_o mit MO—?.

Fiir den elastischen Trager gilt fiir die Gesamtlinge L=1(1+2y):
L
# = [ MM do = X, (14+37) +§ My = 0.
0
Im Bereich a tritt nun durch teilplastische Verzerrung der Momentenlinie ein

Anteil

b=(MMdx
(a)

hinzu, so daB @+ =+0 wird und daher die Form#nderungsbedingung nicht
mehr erfiillt ist. Fiir den vorliegenden Fall bilden wir:
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1

l‘2110
., X3 ]/ X, M3
(P"l'lli—l‘i“m(g‘}“‘)’)‘f“@p [m‘i‘l—m

5 (XL (3 3 (X, ]/Xl i,

Damit erhdlt man nach Gl. (8) die auf M, bezogene KorrekturgroBBe fiir X,
(SchluBlinienverschiebung fiir den elastischen plus teilplastischen Momenten-
anteil), wenn wir den Ubergang von unendlich kleinen auf endliche Werte

durchfiihren:

¢’ = %a(X1+M0_Mp) (‘Ep =

(X1+My—M,)P"RE,,

W o

. (9)

M

Die hier durchgefiihrte SchluBlinienkorrektur erfolgte unter Vernachléassigung
der dadurch bedingten Verdanderung der Linge des Teilplastizierungsbereiches
von ¢ auf a’. Wenn auch der Einflull dieser Vernachlassigung in der Regel
ohne Bedeutung ist, so ist es doch ohne weiteres moglich, Gl. (9) fiir einen
zwelten Korrekturschritt zu verwenden, wenn man in die Formel den aus der

ersten Rechnung erhaltenen Wert von |4 < zu X,/M, hinzufiigt und
g Mo/, /o g

nach Gl. (8a) ein verbessertes [A (711}%)]2 errechnet, das dann sicherlich als

s[5 - - &Y (3 + 1~ 322

endgiiltig angesehen werden kann.
Zahlenbeispiel: y = 1, M= 200%™, X, =—8,00m,
AX,=-0296m X, =—8,296m,

Die direkte Berechnung nach Abschnitt B ergab X;= —8,29™, Hierbei mul}
jedoch — da die Unbekannte X, in der charakteristischen Gleichung gebro-
chene Exponenten besitzt — auch ein Iterationsverfahren zu ihrer Auflésung
angewandt werden.

Das beschriebene Korrekturverfahren 146t sich mit Vorteil auf mehrfach
statisch unbestimmte Systeme iibertragen. Wie bereits ausgefiihrt, erhalten
wir so viele Korrekturgleichungen als Unbekannte X, vorhanden sind, wobei
man beachte, dafl das vollstindige Differential (Variation) nach allen Unbe-
kannten X, zu bilden ist. Das Verfahren sei am Beispiel des beidseitig einge-
spannten Rechteckrahmens der Fig. 7 erlautert.

Der SchluBlinienzug fiir den elastischen Rahmen wird durch folgende Ordi-
naten bestimmt:

M, =X,+X,, M,=X,+X,+1X,, M,,=X,+1X,,
Py (10)
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e
Osq 4
1 bsa_ = S M
Ml f f L—Ms—- d)
L l -+ X1 +—

M'\ =1

)
D ke L

Fig. 7.

Wir setzen die trilineare Arbeitslinie nach Fig. 4 voraus. Die zugehorige
«elastische» Momentenverteilung fiir ein angenommenes P =K M/l mit M, =1
ist in Fig. 7Ta dargestellt. Man erhilt dabei z. B. teilplastische Zonen in Riegel-
mitte 3, an der Ecke 4 und an der Einspannstelle 5. Die Forminderungs-
grofle ¢, berechnen wir durch Anwendung des Prinzipes der virtuellen Arbeit
mit:
1 :
o1 =7 [ MM ds = O+ M) — (O + M) — 4 (M, M)+ My = 0,

Bildet man das vollstandige Differential von ¢,, so wird:

dop,=—-3dX,—dX,—31d X,. (12)

Fiir die teilplastischen Bereiche kommt der Arbeitsanteil ¢ hinzu. Treten Teil-
plastizierungen M > M, in 3, 4 und 5 auf, so wird:

SO Ugo+ Q@ T8
¢1=TJMM ds=%(MO_MS?’_MP)L?Z_&‘QP—%(M‘i—Mp)“43l 45@1)

a
+3 (M- M) C,.

Ist an der Stelle 5 (rechte Einspannung) M > M, so lautet der letzte Sum-

pp>
mand:

%(ME_Mp)a54 [‘Ep+%(M5_Mpp)b54 @pp'

Setzt man die Ausdriicke fiir die SchluBlinienordinaten (10) ein, so erhilt man
mit agy+ag, =0, und a5 +a,,=a,:
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2l = — X, [(az+ay—as) €, + b5, €, ]+ X, [(ag —as,) €, — b5, C,, )]
—Xjllas+a €+ Myas €, — M, (a3 —ay+az) €, - M,,b,C,,,
oder kiirzer geschrieben:
hy = Xjog + X B+ Xyyy + 4y (13Db)

Bildet man wieder das vollstindige Differential, so wird:
diy = o d X, +Bd X, +y,d Xy, (14)

Die erste Korrekturgleichung lautet gemidfB der Forderung (6) und unter
Beriicksichtigung der Funktionen (11) bis (14), wenn wir wieder auf endliche
KorrekturgroBen iibergehen:

AX _“1)+A X, ( 1“B1)+A-X3(3l_’)’1) = X16“1+X25ﬁ1+X3e')’1+k1- (15)

Analog erhalten wir durch Bildung der Forméinderungsgréfien ¢,,i, und
@3, 5 und ihrer totalen Differentiale die beiden fehlenden Gleichungen fiir die
Berechnung der unbekannten Korrekturgréﬂen 4X,,4X,und 4X,:

= _X X25 (16)
612, = — X, {[(a3; — a3, +al;) — 31 (ay—as,) ]@p+3lbs4 (E;n;p}
+ X, {[a%; —31(ag—a5)] €, + 3105, €.} — 1 X, {(a, — a3y +ad) +31a,} €,

+{M(a3y—ady) — M, [(a3; —afy —ads) + 31 (agy +ay5+a5) ]} €,
+3lbgy M, €,

oder o = Xyoag+ Xy Bo+ Xgya + Ky, (17)
8 1 8
<P3=—§X1_§X2_§1X3+M0: (18)

6024y = — X, {[31(az+a,)—(af; +ad,)] €, —b3,C,,}
+ X {[3lay—(afs +ad)] €, — 0% €, } -1 X;[31(az +a,) —ajs] €,
+3IMoa;3 €, — M, [31(as—a,)+(ads +ad)] €, — M, 02, €,

oder s = Xyog+ X, B3+ Xy y3 + k5. (19)

Aus (16) bis (19) erhalten wir die beiden restlichen Korrekturgleichungen:

5
4X,(1-ay)+4X, (5_,32) — A X3y, = Xy o+ X B+ Xy ya+ky, (20)

4X (5—%) +4X, ( 33) +4X, ( l—'ya) = Xy, 04 Xpo ot Xauyathy. (21)
Die Aufloésung der drei Korrekturgleichungen (15), (20) und (21) nach den
Unbekannten 4 X, 4 X, und 4 X, ergibt die SchluBllinienverschiebung infolge
Teilplastizierung der angegebenen Bereiche. Wie durchgerechnete Beispiele
zeigen, ist diese Verschiebung, die im Sinne eines Momentenausgleiches erfolgt,
fiir die bei hochfesten Baustéihlen in Frage kommenden Arbeitslinien im all-
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gemeinen nicht sehr groB3 und tritt erst nahe an der Bruchgrenze stirker in
Erscheinung. Auch hier ist man jedoch noch weit von einem vollstindigen
Momentenausgleich entfernt. Die Verfasser werden hieriiber noch am Kongrel3
berichten.

E. SchluBbetrachtung

Die bisherigen Untersuchungen bezogen sich auf eine einmalige Belastung.
Bei wiederholter Be- und Entlastung gehorcht der SchluBlinienzug fiir die
zweite und folgende Belastung der elastischen Verteilung, solange die Aus-
gangslast nicht iiberschritten wird. Ist dies der Fall, so ist die Berechnung
mit einer neuen Arbeitslinie mit angehobenen Werten von M,, M,, usw.
durchzufithren. Die Verfasser werden auf dieses Problem noch zuriickkommen,
wobei auch die Betrachtung der Formidnderungen von Interesse ist. Auf die
Ermiidungsfestigkeit soll jedoch in diesem Zusammenhang nicht eingegangen
werden.

Die hier beschriebene Methode gestattet auch — fiir Baustéhle, deren
Arbeitslinie einen ausgeprigten FlieBbereich aufweist — die Erfassung der
Ubergangszone vom elastischen zum plastischen Bereich und die Beriicksich-
tigung des Verfestigungsbereiches. Aber auch Verdnderungen der Arbeitslinie
infolge von Eigenspannungszustinden aus dem Walz- und SchweiBlprozef3
kénnen nun in Rechnung gestellt werden. Dadurch diirften die Traglast-
versuche von F. Stiissi [3], welche keinen Momentenausgleich ergeben haben,
eine wenigstens teilweise theoretische Begriindung erfahren.
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Zusammenfassung

Die Verfasser entwickeln ein Verfahren zur Berechnung der Grenztrag-
fahigkeit von statisch unbestimmten Systemen aus hochfesten Baustdhlen,
deren Spannungs-Dehnungsdiagramm keine Idealisierung in eine rein elasti-
sche und eine rein plastische Zone gestattet. Fiir den Sandwichquerschnitt
wird ein genaues und ein Korrekturverfahren entwickelt, die es gestatten, fiir
Durchlauftriger und Rahmensysteme die Berechnung bis zum Versagen
durchzufiihren. Die Untersuchungen haben ergeben, dall zwar eine Tendenz
in Richtung des Momentenausgleiches eintritt, die aber noch weit vor dem
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Erreichen der Bruchlast nahezu zum Stillstand kommt. Das Verfahren ermog-
licht auch bei nicht hochfesten Baustihlen die Beriicksichtigung der Uber-
gangszone in den plastischen Bereich und die Einbeziehung des Verfestigungs-
bereiches in die Traglastbestimmung.

Summary

The authors present a method of “limit design” of statically indeterminate
structures built of high tensile steel, for which the stress-strain diagram does
not permit idealisation into a purely elastic and a purely plastic zone. The
paper deals with an exact method of computation and a correction procedure
for the “Sandwich” section, assuming any stress-strain diagram. The investiga-
tions show that there is a certain tendency towards compensation of bending
moments, but this ceases long before the collapse-load is reached. By this
method it is also possible to take into account the transition-zone in the plastic
range and to incorporate the strain-hardening zone in the determination of
the load-carrying capacity of mild steels.

Résumé

Les auteurs présentent une méthode de calcul de la charge de ruine d’ossa-
tures hyperstatiques réalisées en acier & haute résistance, acier dont le dia-
gramme contrainte-allongement réel ne peut étre valablement remplacé par
une zone purement élastique suivie d’une zone purement plastique. Pour une
section en double-té idéalisée, ils développent une méthode exacte et un pro-
cédé par corrections, en partant d’un diagramme contrainte-allongement
quelconque. Les recherches montrent qu’il existe effectivement une certaine
tendance a 1’égalisation des moments mais qu’elle s’arréte bien avant que la
charge de ruine soit atteinte. Avec cette méthode, il est aussi possible de tenir
compte, pour l'acier doux, de la zone de transition précédant le domaine
plastique ainsi que de la zone d’écrouissage.
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Extension du calcul en plasticité a ’acier A 52
Erweiterte Anwendung des Traglastverfahrens auf St 52
The Extension of the Plastic Theory of Design to Steel A 52

R. ANSLIJN E. MAS CH. MASSONNET
Assistant a I’Université Chef de Travaux Professeur a 1'Université
de Liege au C.R.LF. de Liege

1. Introduction

En 1961, I'Institut Belge de Normalisation (IBN) a édité en annexe & la
NBN 1 «Charpentes Métalliques» des «Reégles supplémentaires pour le Calcul
en Plasticité». Ces régles ne sont toutefois applicables qu’a 1’acier A 37.

Etant donné l'intérét économique de 1’acier A 52 et 1’extension que l’on
observe dans son utilisation, il a paru intéressant a la C.E.C.M. de mettre au
point un programme de recherches expérimentales, en s’inspirant des recher-
ches américaines [1, 2, 3] afin de juger de la possibilité d’étendre ces régles aux
constructions en acier A 52.

Les recherches ont comporté:

a) des essais de traction;

b) des essais de flambement sur éprouvettes courtes prismatiques;

c) des essais de compression et de flexion sur profilés & larges ailes;

d) des essais de lambement par flexion et torsion sur corniéres;

e) des essais sur poutres continues (expérience de STUSSI et KOLLBRUNNER);
f) des essais sur nceuds soudés.

Etant donné le manque de place, la présente note se bornera & examiner
les essais a), b), et ¢) et & en tirer des conclusions en ce qui concerne la minceur
maximum admissible dans les profilés de structures dimensionnées plastique-
ment. Les résultats des essais d), e) et f) seront publiés ailleurs.

2. Etude statistique de la longueur du palier et des autres caractéristiques du
diagramme tensions-déformations

Afin d’obtenir pour l’acier A52 un diagramme tensions-déformations
moyen, on a réalisé une centaine d’essais de traction sur des éprouvettes
tirées de profilés et plats de provenances diverses.

Ce diagramme moyen est représenté a la fig. 1 tandis que les valeurs moyen-
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Tableau I. Caractéristiques en traction de Uacier A 52
Caractéristiques Yalour Dl_s'
moyenne | persion
Limite d’élasticité apparente inférieure Rei (kg/mm?2) 38,5 3,666
Limite d’élasticité apparente supérieure Res (kg/mm?2) 39,5 3,907
Tension de rupture R, (kg/mm?) 55,8 2,490
Dilatation élastique sous Re; e (%) 0,183 —
Dilatation & la fin du palier e (%) 1,788 | 0,479
Module de déformation tangent & la fin du palier | E, (kg/mm?) | 436 71,9
Allongement proportionnel de rupture sur
5,65 1@ Al (%) 29,1 2,061
Allongement proportionnel de rupture sur :
8,16 Y@ Alz (%) 24,2 1,831
Striction St (%) 61,3 3,809

nes des caractéristiques sont résumées au tableau I. On a aussi tracé a la fig. 1
la courbe moyenne donnant la variation du module de déformation tangent

B = g le long du palier selon la loi L Ei,, +

B,

—li—k ol k est la fraction de volume

du métal qui est & la fin du palier et E, le module de déformation tangent

& la fin du palier (cf. [5], p. 14).
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La moyenne des rapports ? vaut 9,72 et la dispersion est égale a 2,27.
€

A ce sujet, notons que suivant une étude du Professeur Hor~NE [4], il est
souhaitable que la valeur du rapport E’-’ soit égale ou supérieure a 8 pour que
€

la notion de rotule plastique soit applicable. Dans nos essais, cette valeur est
réalisée dans 809, des cas.

3. Essais de flambement sur éprouvettes courtes prismatiques

On sait que, si I’on comprime des piéces d’élancement assez faible (A < 20),
on peut dépasser le palier d’écrasement et entrer dans la zone des grandes
déformations sans qu’aucun flambement ne se produise.

Un certain nombre d’éprouvettes prismatiques ont été prélevées dans une
tole en acier A 52 d’épaisseur 26 mm. Leurs dimensions (20X 15X ~Amm) ont
été choisies de fagon & balayer le domaine d’élancement (6 <A < 18).

Toutes les éprouvettes ont été usinées, recuites puis rectifiées avant d’étre
essayées en triple exemplaire dans une «Sub-Press» [6] qui réalise 1’encastre-
ment aux extrémités. La fig. 2 montre ’aspect des éprouvettes aprés essai.

Fig. 2. Eprouvettes courtes aprés essais de flambement.

Afin de déterminer les caractéristiques en compression de ’acier utilisé,
18 éprouvettes d’élancement 6 ont été essayées. On a obtenu les valeurs
moyennes suivantes:

R,; = 30,8kg/mm?; R, = 31,6 kg/mm?; e, = 0,14669;

€.
g = 1,1731%:; E, = 590 kg/mm?; _€£ =

(4

P

Aprés avoir tracé pour les éprouvettes d’élancement 6 la courbe (o,¢)
moyenne dans la zone des grandes déformations (fig. 3), on a déterminé une
expression analytique de cette courbe qui s’écrit:

_ _ 1,7
o 30,8+ 2,16(0 30,8)

—11731-10-6 = g—a5°
€ ¢ 590 590
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Fig. 4.

La figure montre que la concordance entre 1’équation ci-dessus et les points
expérimentaux est quasi parfaite. La variation du module de déformation

tangent E,=

do

de

en fonction de o est également représentée a la fig. 3.

A la fig. 4, on compare les tensions maxima moyennes expérimentales &

celles obtenues par les courbes théoriques tracées

by

a partir de la théorie du
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=2 K, 3 2 m2 KB,
module tangent of,= i~ et de celle du module réduit of, = = avec
_ 4EE,
T (VE+VE)

On constate: 1. que, pour A < 20, les tensions d’affaissement sont toujours
supérieures a la limite élastique; 2. que les résultats expérimentaux sont tous

compris entre les courbes de o, et de o7,.

4. Essais de compression et de flexion sur poutrelles a larges ailes

Ces essais ont pour but d’étudier la résistance au voilement plastique local
des parois constituantes des profilés laminés et de fixer les minceurs b/e maxima
admissibles des parois des profils mis en ceuvre dans une ossature dimensionnée
plastiquement.

On a exécuté:

4.1. des essais de compression centrique sur trongons courts

Les éprouvettes de compression dont les extrémités sont fraisées, sont
essayées dans une machine Amsler de 1000 tonnes.
La fig. 5 montre 1'état de 1’éprouvette DIE 20 apres ruine.

4.2. des essais de flexion

Les profilés sont bi-appuyés et sollicités symétriquement par deux charges
distantes de 800 mm. Des raidisseurs sont placés sous les charges et aux appuis.

Fig. 5.
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Les essais de flexion ont été réalisés sur la dalle universelle d’essai du labora-
toire de Résistance des Matériaux de 1'Université de Liége (fig. 6).
La fig. 7 montre ’aspect des profilés aprés ruine.

T e

4.3. Dépouillement des essais de compression et de flexion

Dans les deux types d’essais, les dilatations longitudinales ¢ sont mesurées
au moyen de quatre déformetres mécaniques G.C. & base de 250 mm placés
longitudinalement aux bords des ailes; tandis que les déplacements trans-
versaux d des ailes et de I’aAme sont donnés par des comparateurs au !/,,, de mm

placés perpendiculairement & ces parois.

Les diagrammes (e,8) permettent de déterminer la valeur critique de la
dilatation (e,) & partir de laquelle les déplacements transversaux ou éven-
tuellement les rotations transversales commencent & croitre plus vite qu’au

g€10-3

Eer— #

mfI

Courbe E-8 de I'essai B3
de flexion sur poutrelles
10 a lorges ailes.

.
3 105 MM

5 |
200 400 600 800

€10-3

a

Courbe €- & de I'essai A3
de| compression sur poutrelles
! ¢ [larges ailes.

Fig. 8.
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DIE 20 DIN 20 DIL 20 DIE 30
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&1}
Ot
Qo

début de 1’essai. La fig. 8 donne, & titre d’exemple, deux diagrammes (e, d)

caractéristiques.
On a reproduit a la fig. 9 les diagrammes tension-déformation obtenus tant

en compression qu’en flexion et on y a fait figurer les valeurs de e, déterminées

précédemment.
Les caractéristiques principales des profilés étudiés et les résultats des

essails sont donnés aux tableaux II et III.

Tableau I11. Caractéristiqgues des profilés a larges ailes

I
Ne TYPe 2mm® ; mm3 | 2bmm dmm €mm Lmm Lﬁx m b/e d/[l
A, B; |DIE 20| 5858 408 197 185,4 11,8 604,5 | 800 | 8,39 | 26,5
Az Bs | DIL 20| 7673 551 200 183,7 16,3 601 800 | 6,15 | 28,3
Az Bs | DIN20| 8549 595 200 183,75 16,75 | 600,5 | 800 | 5,97 | 18,37
A4 By | DIE 30| 11026 1243 297 282,5 14,5 900 800 (10,22 | 34,05
A B
@/lr
|
|~
.)\ / A = éprouvette de compression
o % B = éprouvette de flexion
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Tableau II1. Résultats des essais de compression et de flexion
Eprou-| © k(“"ac“‘jn) er 10-3 o kg/mm? | Ud | b
vette g/mm? Voilement
Ne ame |semelle| dme |[semelle| A&me |semelle| Ame |scmelle
A 40,31 | 37,40 2,075 1,93 | 40,7 38,91 — Semelle
A 40,95 | 37,92 2,00 1,84 | 39,75 | 37.8 0,537 | 1,25 ame-semelle
As | 40,17 38,00 | — 2,00 | — | 3800 | — | 1 Semelle
Ay 43,98 | 40,15 2,02 2,02 | 39,90 | 39,90 |0,565| 1,085 ame-semelle
B; 40,31 | 37,40 — 24,00 — 40,00 — 2,64 Semelle
B 40,95 | 37,92 | 34,50 | 24,25 — 45,00 — 2,6 Semelle
B3 40,17 | 38,09 — 24,25 — 42,00 — 2,6 Semelle
By 43,98 | 40,15 2,60 —_ 39,50 —_— 1,000 — ame
€107
40 T
w S
—— courbe theorique pour Re=38,39kg/mme
\ —-— courbe théorique pour Re =36 kg/mm?
20 N ' B=coefficient d'encastrement
€ 788 W ____\_ ﬁ ________________________
4 ( o essai de compression
I ‘ a essai de flexion
lo R — e R X TS SRR = : ,,,,, —_—
| |
LT I8 Jr_'i',-__.‘ia_ _______ |1t ________________________
0 A ‘
5 10 15 20 5 &
Fig. 10.

Les demi-longueurs d’onde de voilement ({) sont mesurées apres ruine sur
les éprouvettes comprimées et fléchies; les valeurs obtenues ont permis de
calculer les rapports I/b et l/d figurant au tableau III.

Aux fig. 10 et 11, on a tracé les courbes théoriques de ¢, en fontion de b/e
et d/a déduites de la théorie de HAAIJER [1] pour les limites élastiques moyen-
nes des semelles, soit 38,39 kg/mm? et des Ames, soit 41,35 kg/mm?, en adoptant
pour le module de glissement tangent la valeur G;,=1680 kg/mm? On y a
reporté les résultats des essais. On voit qu’il y a accord satisfaisant entre la
théorie et 1’expérience.

On a ensuite tracé en trait d’axe les mémes courbes théoriques pour la
valeur conventionnelle de la limite élastique de 1’acier A 52, c’est-a-dire
36 kg/mm?,
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€ 1073

o LN

courbe théonque pour
Re= 41,35 kg/mm2

\ \ —-— courbe theorique pour

Re= 36 kg/mm?2
_\_ B=coefficient d'encastrement

20

| 9 essai de compression
& essai de flexion

5. Recommandations et conclusions

La fig. 10 montre que, pour les semelles comprimées uniformément, la
minceur B/e ne doit pas dépasser 13,7 pour qu’on puisse développer une rotule
plastique.

~

La fig. 11 montre que, pour atteindre l’extrémité du palier dans le cas
d’une 4me comprimée, on devrait respecter la condition §§27,2; mais, en

fait, il n’est pas nécessaire d’atteindre ce point pour permettre la formation
d’une rotule plastique possédant une capacité de rotation suffisante et il suffit
de demander & la dilatation d’atteindre ¢,. Si 1’on se rapporte a la fig. 11 et

. . . ) A d
aux résultats des essais 4, et B,, on voit qu'une dme de rapport —=34 a

atteint ¢,. En tenant compte de ce que —-=1,05 en moyenne, on peut finale-

d
; : h
ment admettre en compression uniforme - = 36.

I1 reste & déduire de ce résultats une régle pratique relative aux dmes sou-
mises & flexion composée. HAAIJER et THURLIMANN ([2] p. 15 et [5] p. 157)
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ont établi la théorie du voilement plastique de ces dmes et démontré que le
diagramme ([2] fig. 8 ou [5] fig. 2.5) était applicable a des aciers différant de

P’acier doux, pour autant qu’on multiplie la minceur g par le rapport des

racines carrées des limites élastiques. Ce rapport vaut pour l'acier A 52,

¥ 23,2/36 =0,803.

Par conséquent, il suffit, pour obtenir la loi de variation des minceurs
admissibles en fonction de Pi’ de multiplier par 0,803 le membre de droite de
b4
la formule gg 70— 100 7312- obtenue pour l’acier A7 et le rapport Qﬁz 2 de la
D a

section totale & la section de 1’ame. On trouve ainsi

h P P

~<56—80— —=<0,27].

o= "%p (Pp;— % ) &
Si de plus on considére pour le rapport QE- la valeur 4 qui est représentative

en moyenne des profilés & larges ailes européens de hauteur inférieure & 500 mm;
on obtient:

¥ 2

D

b s6_160L (£§ 0,135)- (2)
a Pp

Les expressions (1) et (2) sont représentées a la fig. 12.
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Fig. 12.
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Résumé

La longueur du palier de 1’acier A 52 est suffisante pour permettre le déve-
loppement d’une rotule plastique.

En compression, il est possible d’atteindre et méme de dépasser la limite
élastique sans qu’aucun flambement ne se produise.

On peut étendre les régles de calcul plastique aux constructions en acier
A 52 (R,=36 kg/mm?) en respectant les valeurs suivantes des minceurs limites
afin d’éviter tout voilement local prématuré:

1. Semelle comprimée sous 1’effet d’une sollicitation par flexion et/ou par une
force axiale.

B
e
2. Ame comprimée uniformément
’—L <36.
a
3. Ame comprimée et fléchie.
h P P ()
g — R0 — <02 il
a=56 SOPp (szo,ﬂ) pour o, 2,
h P P Q
Z<56—160- il 5 = =4,
e 56 — 160 P, (Pp < 0,130) pour [}
Zusammenfassung

Die obere Flieldehnung des St 52 ist grof3 genug, um die Ausbildung eines
Flielgelenks zu ermdoglichen.

Auf Druck kann die Fliegrenze ohne Knickerscheinungen erreicht und
sogar iiberschritten werden.

Das Traglastverfahren kann auch fiir Konstruktionen aus St 52 (o, =36 kg/
mm?) angewendet werden, wenn folgende Werte der minimalen Stérkeverhilt-
nisse eingehalten werden, um ein vorzeitiges ortliches Beulen zu vermeiden:
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1. Druckgurt bei Biege- oder Axialkraft-Beanspruchung

5514.

2. GleichméaBig gedriickter Steg

3. Steg unter Druck und Biegung

h P P L2

< — R — U wmey =

= 56 801,:;) (Pp < 0,27) fiir a 2,

h P P (9

- = e s _ =

a=56 1601_,)19 (BD<0,135) fir o 4,
Summary

The plastic extension of steel A52 is sufficient to permit the development

of a plastic hinge.
In compression it is possible to reach and exceed the elastic limit at which

buckling is introduced.
To avoid local buckling in plastic designs using steel A52 the following

thickness limits should be observed:

1. Compression flange under the effort of bending and/or under an axial load

§-§14.
e

2. Web under uniform compression

k< 36.
@

3. Web under compression and bending

h P P Q

2 <5680 il _
= 56 80% (Pp < 0.27) for o 2,
é§56—160£ (£<0.135) for £=4.
@ Iy 3 A 52,
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High Strength Bolted Connections with Applications to Plastic Design
Assemblages par boulons a haute résistance et applications au calcul en plasticité

HV-Verbindungen und thre Anwendung fiir plastische Bemessung

R. T. DOUTY W. MCGUIRE

Assistant Professor, University of Missouri Professor, Cornell University

The present status of high strength bolted moment connections in plastic
design is summarized in the American Society of Civil Engineers’ Commen-
tary on Plastic Design in Steel: “Although accurate procedures leading to the
most economical safe design are not yet available, the results of research show
that safe bolted joints can be designed to develop the plastic moment of the
members with reasonable economy’’ [1]. Supporting this statement is the
research of Johnson, Cannon and Spooner in England and Schutz in America.
With these pilot studies lending background and some assurance of success,
the authors undertook the investigation described herein. This project, con-
ducted at Cornell University, covered the common types of T-stub and end
plate moment connections. The study of end plate connections will not be
reported here because of lack of space and because it is treated elsewhere [2].
Most of the questions to be discussed are of interest in working stress design
as well as in plastic design, but attention is focused here on matters which
have particular relevance to plastically designed beams and frames.

T-stub Web-to-Beam Flange Connections

To simulate the connection between T-stub webs and beam flanges, eight
spliced beams were tested (Table 1). All of the beams and splices were ASTM
A7 steel, having a specified minimum yield point of 33,000 psi. Bolts were
ASTM A 325, the high strength bolt commonly used in America. Bolts were
designed for nominal shear stresses on the full area of 15,000, 22,000, or
30,000 psi at the working load on the beam. They were tightened to the specified
proof load (approximately the yield strength). Lateral bracing on the beam
was closely spaced, giving an effective slenderness ratio in the weak direction
(!/r,) of 25,

Typical non-dimensionalized load-deflection diagrams are shown in Fig. 1.
The load causing a bending moment equal to the theoretical plastic resisting
moment of the gross section (the full plastic moment) is plotted for reference.
Also shown are the load required for full plastification of the net section (about
2569, less than the other) and the conventional working load (P,) causing a
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Table 1. Summary of Beam Tests
p [
EGW:364 . | ) ,IGW: 36
[4-0 _I_ 6'-0 _|_4‘—oj
Description Test Results
Test Splice |Total Bolts oy Z My M) Mz
Plates |(no.-diam.)] (ksi) (in3) (in-kips) | (in-kips) | (in-kips)
B4A None-plain beam 40.3 65.5 2,640 — 2,690
B 8.1 None-15/,6” holes 40.0 65.9 2,640 — 2,690
B 9.1 77 x 1/16” 48 3/, 38.5 66.4 2,560 None 2,760
B 10.1 77 x11/16" 32 3[4 38.5 66.4 2,560 1,730 2,590
B 10.2 | 7"x /" 32 3/ 38.5 66.9 2,580 2,130 2,690
B 10.3 | 7"x11/;4” 32 34 39.6 66.9 2,650 2,190 2,690
B 11.1 | 7" x11;4" 24 3/, 40.0 65.9 2,640 1,720 2,710
B 13.1 77 X 3[4 24 7/g 38.2 65.8 2,510 1,770 2,670
B 13.2 77 X 3/s" 24 /g 38.2 65.7 2,510 1,960 2,730
B 13.3 77X 3[4" 24 7/g 39.6 65.7 2,640 2,090 2,800
(1) Bending moment at first major slip

maximum stress on the gross section of 0.6 times the yield point. The test of
B4A, a plain unspliced beam, followed the upper theoretical curve quite
closely until failure. In all beams tested, the full plastic moment was obtained.
In most, bolt slip started at loads from 30 to 509, greater than the working
load and progressed erratically. B9.1, having bolts designed for a nominal
working shear stress of 15,000 psi, experienced no major slip throughout test.
Typically, ultimate failure occurred by gradual inelastic lateral bowing accom-
panied by progressive local flange buckling on the concave side of a lateral

y CB 9l
I L e ———— VLT
e . N
BI10.3 "
1.0 ALl .
_vly__‘\___ — e e ————— — Net_Section _Pu/_Pyj.
W irBIL
0.8 P .'; -‘)’
.J'; '._I'\‘ f
o Fo
206 P,
= B4A - Plgin Beam
89.1 - 48- 3/4:0 HSB
04t BI10.3 -32-3/4 o HSB
BIl.l -24-3/4"g HSB
0.2
0 1 1 1 1 1 ] } ]
0 2 3 a 5 6 7 8 0 an,
Deflection

Fig. 1. Typical load-deflection curves.
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buckle. Outside of the splice plates, yield lines traced on the whitewash coating
extended nearly to mid-depth of the web, but web yielding stopped almost
abruptly at the vertical plane through the end bolts. Flange yielding extended
through one or more bolt rows.

It is likely that the attainment of the full plastic moment was largely the
result of strain hardening of the flange material remaining around the holes.
This conclusion is supported by B8.1, an unspliced specimen with 13/, inch
diameter open holes in each flange. In this test the full plastic moment was
reached before the compression flange buckled locally. At least in beams with
normal proportions and locations of flange holes, one may rely upon the devel-
opment of the full plastic moment.

The moment-curvature relationship for each beam in Table 1 was also
measured but the results are not reported because the curvatures, being averages
for the spliced and plain portions of the constant moment region, have no
direct application. They did, however, give an indication of the ability of the
connection to rotate inelastically. The rotation capacities were at least as
large as some of those cited as satisfactory in Reference 1.

T-stub Flange-to-Column Connections

Simulating the connection between a T-stub flange on the tension side of a
beam and its supporting column, the specimens in Table 2 were tested. Again,
the rolled sections were A 7 steel and the bolts were type A 325, tightened to
the proof load.

The most important questions in either elastic or plastic design are the
flexure of the flange plates and the tension in the bolts. As long as there is
contact between the joined plates of a pretensioned connection, the bolt force
is statically indeterminate. At low loads it is only slightly larger than the
initial tension. At high loads it may be substantially greater than the applied
load F (Fig. 2b) if there is prying by the portions of the flange outside of the
bolts (causing the force ). The AISC Specification prescribes that any addition-
al rivet or bolt tension resulting from prying action be added to the stress
calculated directly from the applied force in proportioning the fasteners.
Unfortunately, there is, to the authors’ knowledge, no sound analytical

(b)

Fig. 2. Analytical model of T-stub flange.



Table 2. Summary of T-Stub Tests

89¢

1.9
22y (1AW
T ¥| Ia ] H g
- — 4q '/z“ -— # = ._F — t I! ¥ :£4 1"
T-stub 4 =M T-stub s :'r+
1
A Series B Series
Comp. : Bolt
Bolt Edge Comp. Fail. Actual Comp. Actual
T-stub Base | piam. | Dist a Stﬁfl‘éth Load | Fail. Load cgrﬁfcy Fail. Mode | Fail. Mode
(in) (in) (kips) (kips) (kips)

Al 18 WF 70 Rigid /s 1.50 224 155 176 0.78 | Bolt Fract. | Bolt Fract.
A3 36 WF 300 Rigid /s 1.50 248 248 256 1 Bolt Fract. | Bolt Fract.
A4 2”Flange/1”Web| Rigid /8 1.50 237 237 219 0.93 Bolt Fract. | Nut Strip.
A5 18 WF 70 Rigid 11/g 1.50 408 214 224 — Web Flange
AT 36 WF 300 Rigid 11/g 1.50 408 401 392 0.96 Bolt Fract. | Bolt Fract.
A8 2%" F1./1” Web Rigid 1t/g 1.50 423 423 (2) — Bolt Fract. (2)
A9 18 W 70 Rigid /s 1,75 224 162 177 0.79 Bolt Fract. | Bolt Fract.
A1l0 241105.9 Rigid /8 1.66 244 200 240 0.98 Bolt Fract. | Bolt Fract.
All 36 WF 300 Rigid /s 1.75 247 247 256 1 Bolt Fract. | Bolt Fract.
A1l2 2” F1./]1” Web Rigid /s 1.75 239 239 245 1 Bolt Fract. | Bolt Fract.
A 13 18 W 70 Rigid 11/g 1.75 404 217 228 - Web Web
A 14 241105.9 Rigid 11/g 1.66 388 300 286 —— Bolt Fract. Web (3)
Al5 36 WF 300 Rigid 11/g 1.75 400 400 404 1 Bolt Fract. | Bolt Fract.
A16 |23%”FL/1” Web Rigid 11/g 1.75 426 426 (2) - Bolt Fract. (2)
B1 18 WF 70 14 WF 150 /s 1.50 256 171 202 0.79 | Bolt Fract. | Bolt Fract.
B3 2471 105.9 14 W 150 /8 1.66 248 204 230 0.93 Bolt Fract. | Bolt Fract.
B4 241105.9 14 WF 287 /8 1.66 240 200 228 0.95 | Bolt Fract. | Bolt Fract.
B5 241105.9 14 WF 426 /s 1.66 240 200 230 0.96 Bolt Fract. | Bolt Fract.
B6 36 WF 300 14 WF 150 /s 1.50 240 228 254 1 Bolt Fract. | Bolt Fract.
B7 36 WF 300 14 WF 287 g 1.50 222 222 233 1 Bolt Fract. | Bolt Fract.
B9 36 WF 300 14 W 150 11/g 1.50 388 316 348 0.90 | Bolt Fract. | Bolt Fract.
B 10 36 WF 300 14 Wr 287 11/g 1.50 396 396 403 1 Bolt Fract. | Bolt Fract.
B12 |214,”F1L/1” Web | 14 WF 150 11/g 1.50 400 318 378 0.94 | Bolt Fract. | Bolt Fract.
B 13 |214” FL/1” Web | 14 WF 287 11/g 1.50 398 398 (2) — Bolt Fract. (2)

(2) Exceeded machine capacity of 404 kips.

(3) Imperfection in material

HIINHDOW "M - ALN0Ad 'L "4
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method for doing this and there is little empirical data for guidance. In the
absence of a better approach, it has long been the custom to use clearly approxi-
mate methods for estimating prying action.

Because a precise analysis is virtually impossible, one of the commonly
used approximate methods were developed into a complete theory of flange
and bolt behavior to aid in interpreting the Cornell tests [3]. The analytical
model] is shown in Fig. 2. Under zero applied load the tension in each bolt is
B,, the initial value. The equilibrating compression is assumed localized around
the bolts with the remainder of the plates in contact but exerting no pressure
on each other. The bolt pressure on the flange causes its upper surface to dish
locally. When the load 2 F' is applied, the flange is assumed to flex as shown
in Fig. 2b. Should the outer portions remain in contact with the support,
prying forces develop. These are assumed to act as line loads at the ends of
the spans a. The residual contact force at the bolt is . While the flange
remains elastic, its upward deflection at the bolt is, from ordinary flexure

theory: T ]
b= guemle i [s(s) 1] 9 "

where w is the width of the flange normal to the figure and E is Young’s
modulus. The corresponding bolt stretch is:

8 =[(F+@Q)— (B C')]A B, (2)

where [,, 4,, and E, are, respectively, the effective length, area and modulus
of the bolt. Until C' becomes zero and the initial thickness of the flange is
restored, the plate’s local expansion is

8 = (By— C)AE, (3)
where [,, A,, and E, are, respectively, the effective thickness, area and

modulus of the compressed portion of the plate. Eliminating & and (B,—C):
" 1 _Ew®/12ab?

_ 2 To+7p
@= (11 4 EuliizaE o )
b\3db T+ Tp

where 7, and r, are the bolt and plate stiffnesses {,/4, E) and [,/A, E,,. The
application of Eq. (4) depends upon the establishment of reasonable values
of the parameters. Also, it applies only while there is bolt line contact and the
flange remains elastic. Nevertheless, the same concepts may be used to derive
formulas for @ as a function of F following separation at the bolt line and
including plastic flow and strain hardening of the flange. Strain hardening,
which is disregarded in the simple plastic analysis of frames because of the
difficulty of preventing local buckling in the strain hardened range, may be
considered here because of the absence of local buckling. In fact, its inclusion
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1s necessary to explain the performance of thin flanges. In addition to the rigid
support in Fig. 2, flexible supports of the type provided by most column
flanges were treated. The several equations for @ will not be reproduced
because they are unwieldy and have no direct design utility.

In applying the theory to the test specimens, the distance a was taken to
the edge of the flange and b to the center of the web fillet. In the inelastic
range, moment-curvature relationships for a rectangular section of structural
steel were used. Bolt stiffness was determined from calibration tests of bolts
of the same size. Bolt tensions were measured by calibrated elongation read-
ings. The effective compressed area of the plate was taken as a cylinder or
truncated cone (when a washer was used on one side only) having an outer
diameter defined by the distance across flats of the nuts and by the washer
diameter (when present). While not to be thought of as general guides, these
quantities, when used in combination to supplement the theory, gave results
that were in good accord with the tests. The true distribution of prying forces
is unknown but the four tested specimens in Fig. 3 show that, at least at high

Fig. 3. T-stub flanges after testing.

loads and in light flanges most subject to prying, the only contact is very
close to the edge. Local compression of the flanges around the bolt, also highly
indeterminate, is a factor only so long as contact remains in that area.

In Table 2 the computed bolt strengths are based on the bolt calibration
tests. The computed failure loads were calculated from the theory. Values less
than the bolt strength mean that prying was computed to persist until failure.

The behavior of one specimen, A 1, is shown in Fig. 4. Characteristically,
prying decreased at high loads. At an applied load of 26 kips, the bolt tension
was 42kips. Since bolt line separation had occurred, the prying force was
16 kips, or 619%, of the applied load. At an applied load of 39 kips it was 389,
of that load and at the failure load of 44 kips, 279%,. The theory predicted most
of this, but no attempt was made to account for the final reduction in prying
which took place as the bolts elongated under almost constant load just prior
to rupturing. In some other specimens this was sufficient to cause complete
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flange separation and to make the bolts 1009, efficient at rupture even though,
at loads not greatly less than the ultimate, prying was still significant. For
heavy flanges prying action was unimportant at all loads.

F

S0

Bolt fracture (Obs)—*g

a0r

Separation at bolts {Comp) ———==

Simple plastic mechanism (Comp)—= '45-'
18 W 70
{ 4 -7/8 bolts

20

Plostic ninge in fillet {Comp)—eg

Applied Load per Bolt (kips)

o] ot

Computed values
Observed values oocooo

o L

0. © o0 5 0 o

| i ! lnLF |

o] 10 20 30 40 50 60 B
Total Tension per Bolt (kips)

Fig. 4. Bolt tension, test A 1.

Assembled Connections

Finally, the assembled T-stub moment connections shown in Table 3 were
tested. The T-stub and column combinations in these tests were the same as
some of those in Table 2. The T-stub web-to-beam flange bolts were propor-
tioned for a nominal shear stress of 15,000 psi when the moment on each beam
at the inner row of bolts was equal to its working value. Prior to failure or
reaching the capacity of the equipment, the full plastic moment of each beam
was attained. The moment-rotation characteristics of the connections are
believed satisfactory for plastically designed structures. From both the theory
and tests it appears possible to use bolted T-stub connections in plastically
designed frames without loss of section efficiency, even when the beam flange
connection is bolted.

Tentative Design Method

To develop design techniques using the assumption that T-stub flanges
behave as in Fig. 2, the theory may be modified empirically to obtain useful
formulas for prying force. Formulas giving reasonable results when compared
with the Cornell data are:

For (F + @) < the initial tension B, (to be used in elastic design):

1wt 7
2
Q= |5are—n i [T =T (5)
_‘4—6(4_b+1)+30ab2Ab



Table 3. Summary of Assembled Connection Tests

P
A
Description Test Results
Test Beams T-stub Bolts l 14 I ay z M, sz% Plsax Failure
(diam) (in) (in) (in) (k1) (in3) (in-kips) (kips) (kips) Mode

D, 14 WF 34 18 W 70 /s 30 27 15.8 37.2 56.7 2,120 70.5 93.0 Bolts
D, 16 WF 40 241105.9 /s 36 32 20.8 34.2 74.4 2,550 71.0 108.0 (4)
Ds 21 WF 62 36 W 300 11/s 66 61 46.5 35.2 140.6 4,950 75.0 108.0 (4)

(4) Exceeded jack capacity of 108 kips

GLS
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For (F + @) > B, (to be used in plastic design):

l_ wi4
2 30ab2A,
Q= a(a 1:)#4 F=pF, (6)
E(ﬁ+1)+6abub

where A4, is the full area of the bolt and the other terms are as defined earlier.
If the second term in the numerator is equal to or greater than one-half, no
prying develops since ¢ cannot be negative. The prying forces decrease as the
flexural stiffness of the inner part of the flange — measured by w, ¢ and 1/b —
increases. Prying increases with A,. It generally decreases with an increase
in a, but, because of the limited range of edge distances tested, complete
reliance upon this is not advisable. It is suggested that, in using Egs. (5) and
(6), a be taken as 1.25b6 when its actual dimension is greater than this.

Assuming that in a plastically designed connection there has been bolt line
separation by the time the plastic moment of the supported beam is reached,
the bolt force will be B=(F + @) where, in this case, F is the beam’s plastic
moment divided by the effective depth of the connection and number of bolts.
From the test data, limiting the value of B so computed to not more than 1.33
times the specified proof load of the bolt (presumed to be the pretension also)
prevents premature bolt fracture. Eq. (6) gives prying forces generally some-
what greater than those corresponding to the ultimate efficiencies in Table II,
providing a margin of safety attributable to disregarding partially the final
bolt elongation just prior to rupture.

In plastic design one must be concerned with conditions at working load
as well as at failure. In the present instance the most important precaution is
the prevention of bolt line separation at working loads with the consequent
danger of inelastic stretching and loosening of bolts. It appears that this may
control the total force permitted on the bolts in most cases. For example, the
ultimate uniformly distributed load on a fixed end beam is 16 M ,/i%. The end
moment at working load is ¢/%/12 or, assuming a load factor of 1.85, 729, of
the plastic moment. If a total bolt force of 1.33 times the initial pretension is
permitted at the plastic moment, then the tests in which there was prying
action show that there might be separation at the working load. From a study
of the data and practical cases, it is believed possible to prevent premature
separation in connections where prying occurs by limiting the total bolt force
to 1.15 times the initial tension when the ultimate load acts on the frame.
A double standard is therefore indicated: 1. for connections at the last plastic
hinge to form and those in which Eq. (6) shows no prying, use 1.33 times the
initial tension; 2. for others use 1.15 times the initial tension. Because of the
restrictions on the higher value, it is probable that 1.15 B, would normally
be used.

These ideas and the remainder of the Cornell studies suggest a procedure
for proportioning T-stub moment connections at plastic hinge locations in
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plastically designed structures. It assumes that the bolts are pretensioned to
the specified proof load. At a plastic hinge the force acting on the T-stub web
(the force F' — as defined above — times the number of bolts) will be designated
as F’. An outline of the full procedure follows:

T-stub Web-to-Beam Flange Connections

1. Make the net area of the T-stub web times its yield point equal to or greater
than F'.

2. Provide sufficient bolts in shear so that F’ divided by the total bolt area is
not greater than 22,000 psi (for A 325 bolts).

T-stub Flange-to-Column Flange Connections

1. Select trial sizes and dimensions.

2. Compute p,, the ratio of prying to applied force, from Eq. (6).

3. Check to see that
a) at the last plastic hinge to form and at other connections where p,=0:

(1+p,) FF <1.33 X proof load;

b) at all other connections: (1 +p,) F < 1.15 X proof load.

4. Compute the bending moment in the T-stub flange at the bolt line and at
the outer edge of the fillet:

M boliline

y
M/inet == [Pz“—(b—é)] F,

where r is the fillet radius.
5. Check to see that the moment on either section does not exceed wit?o, /4
where o, is the yield point of the T-stub flange.
6. Use the following modifications in special cases:
a) When a=1.25b, use 1.25b.
b) When the column flange is thinner than the T-stub flange and is un-
stiffened, use the average of the two thicknesses in computing prying
forces and stresses. All other dimensions are to be taken as those of the

T-stub.

The design procedure tends to underestimate the capabilities of light
T-stub flanges because it does not account directly for the reserve of strength
attributable to strain hardening. In most cases this tendency is not objection-
able because heavier flanges would be used to reduce prying action and to use
the bolts to better advantage, that is, the bolts rather than the flange thick-
ness usually control the design.

Observed separation and failure loads and values computed by the sug-
gested procedure are shown in Table 4 for all of the Cornell direct tension

= p,Fa,
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Table 4. Comparison of Design Procedure and Tests

Comp. Values of F (kips) | Obs- Values of
Souei.| T-stub | Bo (Bolt F (kips)
ikl o Pretension) P
men (k:i) (kips) (g9} 1.15 By| 1.33 By w2 ay 4 Balt A.t
T+pa) | 0tp9) 2 Separa-| Fail-

P2 P2) 14 (?92“ ~b —g) tion ure
Al 34.5 37.1 0.42 30.1 34.8 22.8 22 44.0
A3 26.0 33.2 — 38.2 44.2 89.6 34 64.0
Ad 31.1 34.5 — 39.7 45.9 100.0 35 55.0
A5 33.3 52.5 0.44 42.1 48.6 22.7 27 55.8
AT 27.0 51.2 0.01 58.1 67.2 100.4 45 98.0
A8 31.0 54.6 — 62.9 72.6 156.0 60 (6)
A9 34.5 36.0 0.35 30.6 35.3 22.7 24 44.3
A 10 31.1 34.5 0.16 34.2 39.6 46.5 28 60.0
All 26.0 34.5 —_ 39.7 45.9 89.6 (5) 64.0
Al2 31.1 34.5 — 39.7 45.9 100.0 35 61.5
A 13 33.3 53.0 0.37 44.6 51.6 22.3 27 57.0
A 14 29.5 53.6 0.23 49.9 57.7 48.1 35 71.5
A 15 27.0 54.1 0.03 60.4 69.8 104.6 (5) 101.0
A 16 31.0 54.7 — 63.0 72.8 156.0 60 (6)
B1 34.5 33.0 0.42 26.8 30.9 22.8 25 50.5
B3 31.1 31.5 0.23 29.6 34.2 40.0 20 57.5
B4 31.1 33.5 0.16 33.2 38.4 45.4 24 57.0
B5 31.1 37.5 0.16 37.1 42.9 45.4 30 57.5
B 6 26.0 32.5 0.04 35.9 41.5 71.1 25 63.5
B 7 26.0 35.5 — 40.8 47.2 89.6 (5) 58.2
B9 27.0 50.5 0.11 52.5 60.8 84.5 35 87.0
B 10 27.0 53.0 0.01 50.1 69.5 100.4 55 101.0
B 12 31.0 53.0 0.03 59.2 68.4 77.2 40 94.5
B13 | 31.0 53.5 - 61.5 | 71.1 156.0 54 (6)

(5) No abrupt increase in tension. Separation point not clear.
(6) Exceeded machine capacity of 404 kips.

specimens. The measured initial tension rather than the specified proof load is
used in these computations. For all cases in which 1.15 B controls, the observed
separation load is at least two-thirds of the computed value of F. This is
believed to be an appropriate lower limit for practical conditions. For all cases
in which 1.33 B, controls there is a margin of safety against failure which may
be attributed to the factors mentioned previously. Although no design proce-
dure may be considered proved until it has withstood the tests of time and
experience, from the data available this one appears reasonable.

The investigation described here was conducted under the sponsorship of
the American Institute of Steel Construction and the Industrial Fasteners
Institute.
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Summary

Tests and analytical studies were made of the components and complete
assemblies of T-stub moment connections having high strength bolts (ASTM-
A 325). Of particular interest was the question of their applicability in plastic
design. In the tests of beams and connections having holes in the beam flanges,
the full plastic moment of the beam was developed. In the tests of T-stub
flanges the development of prying forces and response of the flange was
observed. Semi-empirical formulas for estimating prying are presented and
incorporated in a tentative design procedure for the use of connections of
this type in plastic design.

Résumé

Les auteurs ont étudié par le calcul et par des essais les éléments des assem-
blages fléchis comportant des T de liaison fixés par boulons HR (ASTM-A 325)
ainsi que les assemblages entiers. Ils ont tout particulierement considéré leur
emploi dans les constructions calculées en plasticité. Dans les essais auxquels
ont été soumis des poutres et des assemblages comportant des trous dans les
ailes, on a réalisé le moment plastique théorique. Dans les essais sur les T de
liaison, on a observé un effet de levier et les sollicitations qui en résultent dans
les ailes. Les auteurs établissent des formules semi-empiriques pour I’estimation
de I’effet de levier, et ces formules trouvent leur place dans une méthode
proposée pour l’étude d’assemblages de ce type dans le calcul en plasticité.

Zusammenfassung

Versuche und analytische Studien an Elementen und an vollstdndigen
T-Stiick-Verbindungen mit HV-Schrauben werden beschrieben. Die Anwend-
barkeit dieser Verbindungen bei Bemessung nach der Plastizitidtstheorie wur-
den besonders untersucht. Trigerstée erreichten dabei trotz der Lochschwé-
chung das volle plastische Moment ungestofener Tréger. An T-Stiick-Elemen-
ten wurde der Einflul der Reaktionskrafte der Flanschen infolge der Flanschen-
verformung auf die GroBe der Schraubenkrifte untersucht. Empirische For-
meln werden angegeben fiir die Bestimmung dieser Reaktionskrifte sowie
ein Verfahren fiir die plastische Bemessung von T-Stiick-Verbindungen.
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