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Analysis of Interconnected Space Frames

Calcul des systemes hyperstatiques tridimensionnels

Berechnung von räumlichen Netzwerken

JAMES MICHALOS BERXARD GROSSFIELD
Department of Civil Engineering, Xew York University

Introduction

A method of analysis is presented which is applicable to any system of
interconnected frames regardless of their configuration or orientation in space.
Loads may be applied in any direction in space. and the effect of temperature
change or movement of supports can be readily included. Each common Joint
of the interconnected frames can be free to move in any direction, and the
individual frames can consist of straight or curved components. A numerical
example is included to illustrate the method.

The procedure makes possible the partitioning of a structure in such a way
that the extent ofthe computations can be controlled. For complex structures
for which the number of simultaneous equations to be solved could exceed
the capacity of the digital Computer available. partitioning reduces the equations

to sets which can be readily handled. The coefficients of the sets of
equations are elements of stiffness matrices that can be conveniently
determined by means of a numerical procedure [1,2].

General Procedure

In this section the procedure of analysis is outlined for a three-dimensional,
interconnected framework consisting of components. straight or curved, of
arbitrary configuration and orientation. All moments. forces and stiffnesses
are referenced to an orthogonal coordinate system. The structure is considered
to be composed of individual branches or circuits. the ends of which are either
at supports or at the junetion of other branches, and we proeeed as follows:

1. Assume a Solution which satisfies geometry.
2. Determine the resulting errors in statics.
3. Impose unit rotations and displacements at each Joint in each reference

direction, successively, with all other joints restrained. and determine the
resulting moments and forces at every Joint.
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4. Solve for the Joint rotations and displacements necessary to adjust the

errors in statics.
5. Determine the moments and forces corresponding to the rotations and

displacements of step 4.

6. Combine the moments and forces of the assumed Solution with those of
step 5 to obtain the final moments and forces.

In general, the Solution assumed in step 1 is that the joints common to
individual branches are restrained against rotation and translation. For
example. Fig. 1 shows a generalized loaded structure made up of three-dimensional

frames which are rigidly connected at the common joints. A. B. and C.

It is assumed that these joints are completely restrained, and the corresponding

fixed-end moments, m0. and fixed-end forces, v0, are determined as

explained in the next section. In the case of support movement or volume changes.
however, it would be necessary to assume a Solution having Joint translations
consistent with the imposed movements.

At each common Joint fixed-end moments and forces on the ends of all
branches at the Joint are added algebraically, the positive direction of the
coordinate system indicating the sense of positive forces and positive moment
vectors (right-hand rule). The resulting moments, 2 mo - and the resulting forces.

2©0, are the errors in statics referred to in step 2. Correction moments and
forces must be added to these unbalanced forces and moments in order to
obtain the final moments and forces.

Correction moments and forces are determined through the application of
steps 3, 4, and 5. In applying step 3, Joint A of Fig. 1 is first considered to be

*x<

Fig. 1. Generalized interconnected three-dimensional frames.

displaced a unit distance along the positive direction of the x-axis. This is
done without allowing Joint A to rotate and without allowing rotation or
translation at joints B and C. Each of the branches interconnected at Joint A
(i.e., AD, AJ, AC, AB) is analyzed separately, as explained later, to determine

end moments and forces, caused by the Joint movement. In general,
three forces (in the x, y, and z directions) and three moments (about the x, y,
and z axes) will be computed at each end of each branch inter-connected at
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Joint A. Simüarly, müt displacements of Joint A in the z/-direction and then
in the z-direction are imposed, with rotation at A prevented and with rotation
and translation prevented at B and C. The forces and moments corresponding
to each of these movements are computed.

Next, a positive unit rotation about the x-axis is imposed on the structure
at Joint A while joints A, B, and C are prevented from translating and joints
B and C are restrained against rotation. If all frames at a Joint are rigidly
connected, each is subjected to the imposed unit rotation. No unit rotation is
imposed on frames free to rotate. Branches AD, AB, AC, and AJ are each

analyzed separately for the imposed rotation, and the end moments and forces
computed. Again, in general, three moments and three forces will be
determined at each end of each branch. Similar analyses are performed for imposed
unit rotations about the y and z axes respectively. Thus a total of six unit
deformations, three rotational and three translational. are imposed at Joint
A with the other joints fixed.

In a similar manner, six unit deformations are imposed at Joint B, with A
and C fixed, and then at C, with A and B held fixed. The moments and forces
thus determined are the stiffness coefficients for the individual branches. A
stiffness coefficient sff represents, for some branch ab, the force (or moment)
in the direction (or about the axis) i due to a unit displacement (or rotation)
in the direction (or about the axis) j. The notation used for the reference
directions is the following: the x, y, and z directions at A are labeled 1, 2,

and 3, and at B they are labeled 7, 8, and 9, as shown in Fig. 1. These numbers
are used to identify forces and displacements. The numbers 4, 5, and 6, and
the numbers 10, 11, and 12 refer to moments (or rotations) about the x, y,
and z axes, respectively, at A and B. Simüarly, the numbers 13 through 18

are assigned to Joint C. The stiffness coefficients of branch A B can be arranged
in a 12th order matrix, SAB, as follows:

SAB

'21 3 2,12

,:>12,12_

(1)

The superscription A B has, for convenience, been ommitted from the elements
of the matrix.
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The matrix of Eq. (1) can be partitioned into four 6th order matrices as

follows:

SAB
SAA \ SAB

&BA '¦ &BB
(2)

in which SA A is the matrix of stiffness coefficients at the end A of branch A B
due to unit displacements and rotations at end A, and SAB is the matrix of
stiffness coefficients at end A due to unit displacements and rotations at end
B. The matrices (SR4 and S„If consist ofthe stiffness coefficients at the end B.
For those branches such as DA, having one end at a fixed support, the stiffness

matrix is of order 12x6 because no displacements or rotations are imposed
at a fixed end.

Having obtained a stiffness matrix, S, for each branch, it is possible to
form a stiffness matrix, K, for the entire structure. The stiffness coefficients

ktf, of this matrix represent the force (or moment) at the Joint in the direction
(or about the axis) i due to a unit displacement (or rotation) in the direction
(or about the axis) j with all other joints completely restrained. They are found
as the sum ofthe individual stiffness coefficients, i.e.,

2%- (3)

This summation is made at each Joint where some degree of freedom exists.
For the structure of Fig. 1, which has three joints, each with six degrees of
freedom, K is of order 18. The matrix K may be partitioned into nine 6th
order matrices as follows:

K
Kaa.KabZKac

K
K.

Kpn Ki
ca KCB.KCC

(4)

in which KAA ^SAA, KAB — ^SAB, etc. Since no branch directly connects
joints B and C, KBC KCB 0.

In step 4, a column vector, A, representing the Joint rotations and displacements

necessary to adjust the errors in statics, is determined from the following
equation of equilibrium:

Q + KA=0. (5)

In this equation, Q is a column vector representing the unbalanced forces
and moments at each Joint. Thus,

.2>o
Q

Eq. (5) can be readily solved by inverting the stiffness matrix to obtain

A=-K-*Q. (6)
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Physically, the inverse of the stiffness matrix represents the flexibihty matrix
of the actual, unrestrained structure.

In step 5 the correction forces, vt, and the correction moments, mi, at
the ends of each branch are found from

ni,-
-SA, (7)

in which S is the stiffness matrix of the particular branch.
In step 6, the corrections are added to the assumed values to obtain the

final moments and forces. Thus,

(8)
V

in
+

m,

Stiffness Coefficients and Fixed-End Moments and Forces of Branches

In making the analysis discussed in the preceding section, it is necessary
to know, for each branch, fixed-end moments, fixed-end forces, and stiffness
coefficients with respect to the coordinate axes. In the general case of a three-
dimensional branch, three fixed-end moments and three fixed-end forces,
referenced to the orthogonal axes, must be determined at each end of the
branch. With respect to stiffness coefficients, a branch with six degrees of
freedom at each end, such as AB in Fig. 1, involves 144 stiffness coefficients,
as in Eq. (1). If one end of the branch has zero degree of freedom. 36 stiffness
coefficients are required. In either case, however, the stiffness matrix is
symmetrical, thus reducing the number of computations.

The analytical procedure for interconnected frames is independent of the
means used to obtain stiffness coefficients, fixed-end moments, and fixed-end
forces. A generalized procedure, by Baron and Michalos [1,2], for closed-
circuit structures curved in space is convenient for this purpose. This method.
which has been put in matrix form by Baron [3], is numerical in the same
sense as solutions of plane frames or arches analyzed by means of the column
analogy [4] or the shear and torsion analogy [1,2]. For a two-dimensional
branch with loads and deformations in the plane ofthe branch, the generalized
procedure for Computing stiffness coefficients, fixed-end moments, and fixed-
end forces, reduces to the column analogy. For loads and deformations normal
to the branch, the procedure reduces to the shear and torsion analogy.

If a planar branch is skewed with respect to the coordinate axes, the fixed-
end moments and forces can be resolved into components parallel to the
coordinate system. As regards the stiffness coefficients, they can be
determined first with respect to the plane of the branch by imposing unit deformations

both in and normal to the plane. Next determine the projections in the
plane and normal to the plane that result from a unit displacement along one



280 JAMES MICHALOS - BERNARD GROSSFIELD Id 1

coordinate axis. Then multiply the forces (and moments) due to unit displacements

in the plane ofthe branch by the corresponding projected displacements,
and, finally, combine the resulting forces (and moments) and resolve them
into components parallel to the coordinate system. These components are the
desired stiffness coefficients for the particular unit displacement.

Analysis through Use of Moment Distribution

Stiffness coefficients of individual branches represent, in the terminology
of Hardy Cross [5], stiffness and carry-over factors, and, if desired, an
analysis of interconnected space frames can be made by an extension of the
method of moment distribution. Such a method has been used previously to
analyze space frames consisting of straight members [2, 6] and frames with
curved girders [2, 7].

In applying the method of moment distribution, it is assumed that all
common joints are restrained from translating. Moments are successively
distributed and carried over with respect to each of the axes of the chosen

orthogonal reference system. A moment distributed about one axis at a Joint
results in a carry-over moment about each of the other two axes at the Joint
and about each of three axes at the far end of each branch framing into the
Joint.

With the moments known at the end of each member, the unbalanced force
in each orthogonal direction at each common Joint can be determined by
statics. Corrections are then made for the displacements which must take
place along each axis if the joints are actually free to move. This requires the
Solution of a set of simultaneous equations involving displacements only. Thus,
the use of moment distribution reduces the number of equations by up to
three at each Joint.

Apphcation

In this section the method of analysis is illustrated in connection with
Fig. 2. This structural system is composed of three frames interconnected at
Joint C. Frames AC and CG he in a single plane, whereas a portion of frame
CH is skewed with respect to all three orthogonal coordinate planes. A
concentrated load of 5000 lb. acting in the negative y direction is applied midway
between B and C and a load of 1000 lb. acting in the z direction is applied
at F.

The framework shown in Fig. 2, with one common Joint, has been chosen
without regard to any practical considerations. It is used merely to present
the method of analysis in as straightforward a manner as possible. A hollow
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circular cross section is used to simplify the presentation further. It should
be emphasized that the method of analysis, being perfectly general, is applicable
to bending of non-circular sections about non-principal axes, and that any
number of common joints could be introduced.

^J
._—_

E *
©sX

%

^vHollow circular cross secfion

of constant area
E! 82 44x10' (b - ft*
GJ ¦ 6311 x I0S lb - ft2

Fig. 2. Structure for numerical example.

The structure is partitioned into three branches, AC, CG, and CH. In
step 1 Joint C is assumed to be restrained against translation and rotation.
Branch A C is then analyzed for the fixed-end condition by the column analogy
and branch C G is analyzed for the fixed end condition by the shear and torsion
analogy. The resulting moments and forces at Joint C are shown in Table I.
Branch CH is not loaded and, therefore, has no fixed-end moments or forces.
Had it been loaded, the general procedure of Baron and Michalos could
have been used to obtain fixed-end moments and forces.

The resulting errors in statics are found by adding the fixed-end moments
and forces at Joint C.

Thus, Oi Zvox -845 1b.

02 2>oy 2,875 1b.

03 Z«o, -270 1b.

04 Zmox 11,852 ft.-lb.
05 £m0y 4>951 ft©b-
0G Zmoz 44,995 ft.-lb.

As explained in connection with Eq. (2), the stiffness matrices, SAO, Sca,
SCH, for the individual branches are of order 12x6 because each branch has

one end fixed. The elements of the matrices for branches AC and CG were
obtained through application of the column analogy and the shear and torsion
analogy to each of the two branches. The elements of the matrix for branch
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CH were obtained through use of the general procedure for non-planar
branches. These matrices are not included because of space limitations.

The stiffness matrix, K, for the entire structure was determined as per
Eq. (3) by combining individual stiffness coefficients at G obtained from the
elements of the stiffness matrices for the individual branches. The matrix K,
of order 6x6, becomes the following:

K

Rotations and displacements at C were obtained from Eq. (6) by
multiplying the inverse of K by the column vector consisting of values Oi through
06- Correction moments and forces at the ends of the individual branches
were obtained as per Eq. (7), and final moments and forces were obtained as

per Eq. (8). These values are shown in Table I.

Table I. Moments and Forces at Joint C

13,468 9,112 1,069 5,427 16,356 114,800
9,112 18,142 2,212 17,192 47,057 7,914
1,069 2,212 3,925 -59,913 -20,172 -53,584
5,427 17,192 -59,913 5,274,300 -1,312,200 -545,400

16,356 47,057 -20,172 -1,312,200 5,803,900 -1,414,900
14,800 7,914 -53,584 -545,400 -1,414,900 15,293,700

Forces Moments
Branch

X y z X y 2

fixed-end -845 2,875 0 0 0 44,995
AC correction 1,400 -600 115 -117 -5.337 -40.512

final 555 2,275 115 -117 -5,337 4,483

fixed-end 0 0 -270 11,852 4,951 0

CG correction -524 -2,068 180 -8,829 952 -9.592
final -524 -2,068 -90 3,023 5,903 -9,592

fixed-end 0 0 0 0 0 0

CH correction -31 -207 -25 -2,906 -566 5,109
final -31 -207 -25 -2,906 -566 5,109

References

Frank Baron and James Michalos: "Laterally Loaded Plane Structures and Structures

Curved in Space." Transactions, ASCE, Vol. 117, 1952, p. 279.
James Michalos: "Theory of Structural Analysis and Design." Ronald Press, New
York, 1958.

Frank Baron: "Matrix Analysis of Structures Curved in Space." Proceedings, ASCE,
Vol. 87, No. ST 3, March 1961.



ANALYSIS OF INTERCONNECTED SPACE FRAMES 283

4. Hardy Cross: "The Column Analogy." Bulletin No. 215, Eng. Experiment Station,
Univ. of Illinois, Urbana, HL, 1930.

5. Hardy Cross : "Analysis of Continuous Frames by Distributing Fixed-End Moments."
Transactions, ASCE, Vol. 97. 1932, p. 1.

6. James Michalos: "Numerical Analysis of Continuous Frames in Space."
Transactions, ASCE, Vol. 119, 1954, p. 565.

7. James Michalos: "Numerical Analysis of Frames with Curved Girders."
Transactions, ASCE, Vol. 121, 1956, p. 521.

Summary

A method for the analysis of any system of interconnected frames
subjected to a general system of loads or deformations is presented. The frames,
consisting of straight or curved members, may occupy any position in space
and the common joints may be free to move in any direction. The method is
illustrated by a numerical example.

Resume

Les auteurs presentent une methode pour le calcul d'un Systeme hypersta-
tique quelconque, soumis ä un Systeme general de charges ou de deformations.
Le Systeme, constitue par des elements droits ou courbes, peut occuper
n'importe quelle position dans l'espace et les nceuds peuvent se deplacer dans
toutes les directions. Un exemple numerique illustre la methode.

Zusammenfassung

Die Autoren beschreiben eine Methode zur Berechnung eines behebigen,
statisch unbestimmten Systems, welches einem beliebigen System von
Belastungen oder Verformungen unterworfen ist. Das aus geraden oder krummen
Elementen zusammengesetzte System kann eine behebige Stellung im Raum
einnehmen und die Knoten sind nach allen Richtungen verschieblich. Die
Anwendung der Methode wird anhand eines numerischen Beispiels dargesteUt.
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The Stiffening Effect of Sheeting in Buildings

L'effet raidisseur de la couverture de töle des bätiments

Die aussteifende Wirkung der Dachhaut

E. R. BRYAN
M. Sc, Ph. D., University of Manchester

1. Introduction

Little attention has been given to the behaviour of sheeted pitched roof
portal frames. Percy [1] carried out the earliest known tests. Godfrey and
Bryan [2] found that the actual bending moments in a sheeted frame were
closer to the moment distribution values allowing no spread of the eaves than
to the füll theoretical values. They also found evidence of some tee-beam
action between the sheeting and rafters.

The present paper is a general survey of further work which has been done
at the University of Manchester in conjunction with W. M. El-Dakhakhni.
Detaüed aspects of the work will be published elsewhere.

2. Tee-Beam Effect

In order to find the moment contribution of the sheeting in a tee-beam,
the experimental arrangement shown in Figs. la and lb was set up. The
central strains and deflection of the beam were measured as load was applied

24"
W „ W

L- 24 i_ 24

c L

T^ 3 xl'/z I

E E

-3xl'/2^T

PH24g SHEETING 4
\ TI

BOLTS

Fig. 1.

to the a/3rd points of the beam. From the measurements, the force in the
sheeting could be deduced. This force may be regarded as the linear elastic
stress, /s (Fig. Ic), acting over the equivalent width of sheeting, be, (Fig. Id)
multiplied by the thickness, t. The value of be was found to be practically
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independent of the level of stress and was more dependent on the number of
fastening bolts than on the width of sheeting. The maximum value found,
be= 1.17in., would probably not be exceeded in practice. even though thicker
sheeting were used, in view of the close bolt and purlin spacings used in the
test. Putting öe=1.17in., the percentage moment contribution ofthe sheeting
in conjunction with any rafter section and purlin depth may be easily
calculated. Although the contribution of the sheeting in the experimental tee-
beam was up to 25%, the contribution is reduced to 3% for a Sin. deep rafter
with 4in. deep purlins; for bigger beams it is stiU less.

For practical purposes. therefore. the tee-beam effect of sheeting may be

ignored.

3. Membrane Effect

By far the most important stiffening effect of roof sheeting is its resistance
to shear. The end gables of a pitched roof shed are extremely stiff in their
own planes, so that, when an intermediate frame tends to spread under load,
the displacement forces are carried back to the end gables by means of diagonal
tension fields in the roof sheeting.

©

%.
Fig. 2.

From Fig. 2, the shear displacement, 8, in the plane ofthe sheeting is given by

o=AlCose, (1)

where Ax is the actual eaves displacement and 0 is the rafter angle.
Referring to the simple shed shown in Fig. 3 a, assume the intermediate

frame spreads some amount Ax at each eave under load, and the roof sheet

provides some horizontal force P preventing further spread.

Let A — theoretical eaves displacement of bare frame,
k theoretical eaves displacement of bare frame due to two opposite

horizontal unit eaves loads.

For the frame,
Al A-kP. (2)

For the sheeting, shear displacement 8 cx shear force, where c shear

displacement of panel under unit load.
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H
l~l
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PtanÖ

p

2 cos 9
1 p I p

2cos8

Fig. 3.

From equation (1) and Figs. 3 b and 3 c, A1cosd — c
2cosö'

so that, putting c1 cos2 0'

Equating equations (2) and (3),

Ai clT.

k +
Cl

(3)

(4)

Thus, the intermediate frame should be designed for the combined effect
of the roof load and the eaves restraining force P.

By similar means, it is possible to find the eaves restraining force at each
frame in a long shed for the cases of (1) all frames loaded (e.g. snow load) or
(2) one frame loaded (e.g. runway load). It is also possible to treat multi-bay
and unsymmetrically loaded frames in the same way, though the working is

naturally more tedious.

4. Modified Moment-Distribution

In a bare frame, using moment distribution analysis,

Final moments Non-spread moments + Spread moments. (5)

The forces preventing spread of the eaves are called the "artifical Joint
restraints" (A. J. R.), and the spread moments are due to eaves forces, equal
and opposite to the A.J. R. In a sheeted frame, the spread moments to be
considered are those due to an eaves force equal to the difference between the
A. J. R. and the force actually provided by the roof sheeting.

For the shed in Fig. 3 a, A.J.R. —. (6)
fc

From equation (4), A.J.R. - P T \ (7)k l+\r'
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where r cjk (8)

i. e. r is the stiffness of the sheeting relative to the stiffness of the frame.

Thus, Final moments

Non-spread moments + X (Spread moments of bare frame).
(9)

x i^iin1»!] n if t. n ihm ii s'. m [i;:.ip i r;i.r i it-1 i_

l + i©
For a long shed with similar frames, and all frames loaded, the central

frame is the design criterion. The central eaves restraining force may be

calculated in terms of A/k and r, so that, for the central frame:

Final moments

Non-spread moments +m (Spread moments of bare frame), (10)

where m may be calculated in terms of r.
A design chart has been drawn up for sheds with different numbers of

intermediate frames, n, showing the Variation of m at the central frame with
n. This has been done for various values of r.

Simüarly, taking advantage of the fact that the intermediate frames near
the end gables receive more support than those further away, design charts
have been drawn up for sheds with different numbers of intermediate frames,
showing the Variation of m with the position of the intermediate frame. Again,
this has been done for various values of r.

When only one frame is loaded, the design charts inay still be used, but
the value of m obtained must be divided by a factor which is approximately
equal to \(n+ 1) provided r is small. The sheeting is specially effective in this
case.

5. Shear Stiffness of Sheeting

It should be noted that the stiffening effect of sheeting may only be utilized
for loads applied after the sheeting has been fixed. At the moment, the main
difficulty in applying the stiffening effect of sheeting to the design of frames,
is the determination of c, the shear displacement of a panel under unit load.
A great deal of theoretical and experimental work has been done on panels
of piain sheeting with flexible edge members, and is proceeding for corrugated
sheeting. For the present, it is recommended that practical tests [3] be carried
out on a panel of the sheeting to be used, complete with purlins, fasteners,
etc., in order to determine c.

6. Experimental Work

AU the theoretical work described has been verified experimentally by
model tests, tests on a 150 ft. span portal frame shed, and by semi-full scale

tests in the laboratory.
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Fig. 4 shows the arrangement for the latter tests. The shed was 16ft. span,
48 ft. long, with frames at 8ft. spacing. The frames were of 3 in. X 3 in. I
section with either pinned or encastre bases; the end gables were tied. The
corrugated sheeting was of 26 gauge mild steel fixed with seif tapping screws.
Load was applied to the apex. The behaviour of the bare frames agreed exactly
with theory.

IV
NS

*
zy

SP
0i

i,©

mi
Fig. 4.

In the sheeted shed, when all frames were loaded, the maximum bending
moment measured in the central frame was only 70% of the bare frame value
for the case of pinned bases, and 80% for the case of encastre bases. These
values agreed closely with the bending moments predicted by the proposed
theory.

Opportunity was also taken to load the pinned base shed to collapse by
means of jacks. The actual collapse load of a bare frame (an end gable with
the tie removed) was 2.85 tons and agreed exactly with the value predicted
by simple plastic theory. The collapse load on each frame at collapse of the
shed was 4.05 tons and agreed exactly with the value given by the proposed
theory assuming linear behaviour of the sheeting up to collapse.

The stiffening effect of sheeting is therefore just as important in the plastic
ränge as in the elastic ränge.
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Summary

Sheeting in a pitched roof portal shed acts like the web of a deep plate
girder, spanning from gable to gable, tending to prevent intermediate frames
from spreading. This important effect has been studied theoretically and
verified experimentally. Unless it is taken into aecount, calculated frame
stresses are fictitious.

Resume

La couverture de töle d'un halle joue le röle de l'äme d'une poutre tres
haute allant d'un pignon ä l'autre et tendant ä empecher tout deplacement
lateral des portiques intermediaires. On a etudie la theorie de cet important
effet puis on a procede k une verification experimentale. Tout calcul des
solhcitations d'une charpente est purement imaginaire si l'on ne tient pas compte
de ce facteur.

Zusammenfassung

Die Dachhaut einer Hallenkonstruktion wirkt als Steg eines von Giebelwand

zu Giebelwand gespannten hohen Trägers und hindert die Portalrahmen
am seitlichen Ausweichen. Dieser bedeutende Effekt wird theoretisch untersucht

und hernach experimentell bestätigt. Wird er vernachlässigt, so erweisen
sich die rechnerischen Spannungen in den Rahmen als unbrauchbar.
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Stress Analysis and Tests on a One-sheet Hyperboloidal Tower

Calcul des contraintes et essais sur une tour en hyperboloide ä une nappe

Spannungsanalyse und Versuche an einem einschaligen Hyperboloid-Turm

BEN KATO
Assistant Professor, University of Tokyo

1. Introduction

A one-sheet hyperboloidal tower, as shown in Fig. 1, is now under construction

on the 3rd pier of the port of Kobe. This tower consists of an outer net of
one-sheet hyperboloid and the elevator shaft located in the core; diaphragms
between the net and the shaft are distributed at each node level of the net
(a. ./ in fig. 2). The members of the net are made of high tensile steel tubes,
and they are connected by high-strength bolts at every node.
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In this paper the stress calculation and the results of model tests on this
structure, when subjected to lateral forces such as the seismic load, are
discussed.

2. Geometrical Properties of the Hyperboloid

a) The net consists of sixteen paus of family generators as shown in Fig. 2,

and one of them is

,6 b b b

z_ V2
_ \fi_ V2

_
a

Y2_ _
z

Enveloping these generators, we have an equation of one-sheet hyperboloid

^HK©>M'+(l7?)! (2)j.2 _ ryl

b) The Z-co-ordinate of each node a <~/ may be calculated as that of the point
of intersection of corresponding generators.

c) The geometrical moment of inertia at any section a ~ / of the net is /„
l%r2An, An: sectional area of the generator, and that of the elevator

shaft is Is.

d) The Z-component of direction cosines has the same value in every generator

e* -ö- 0-98, S2 hL+ ö) + (44\2 + h2, S: length ofthe generator.

3. Stress Analysis (Lateral Force P at the Top of the Tower)

Both net and shaft may be regarded as jointed to the rigid body at the top
and bottom of the tower, and relative displacement of the net and the shaft
is restrained by diaphragms distributed at the nodes. So we may assume
that the net and the shaft behave as a complete composite structure and
that the applied moment is to be shared between the net and the shaft according

to the ratio of the moments of intertia

Mn=-^-TM, Ms -^-rM, k 4^-" l + k s l + k In

M: applied moment, Mn: moment acting on the net, Ms: moment acting
on the shaft.

We divide the tower at two arbitary adjacent node lines I. J. The shear
force P and the bending moments MI Ph1, ifJ P(A1 + A2) are then acting
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on this portion ofthe shell (fig. 3). Deformations of an arbitary point i of the
section consist of the deformation due to shear 8x0 and of the deformation
due to bending 8zi; these are also expressed by the meridional deformation
8mi and the hoop deformation 8g i as shown in Fig. 4.

TYJf» \ i roU,= Ph M, Ph,

P\ r\
L

KP
Mj P(h,fh2]M," P(h,»h2)

1 0 A o
1 0

lt*--42

ZK 3

1 8

a) b)

Fig. 3.

zi T;

öxo

t'-1
/ ;*]

Fig. 4.

A,ir-S,.iV©£'- /T! 9 -^-

A
Fig. 5. / N».i,i

b)

j=i-i j=i+l

First, let us consider the stress due to deformation 8g i. The axial deformation

of the generator i,j is: Agi ±8gisinu> (fig. 5a), and the stress in it is

N6ttj ^EAn ±^EAnsma>,
s s

+ .j i — 1, - .j i+l,
28„v

(3)

Qe.i Wtt.tr.i-Net,**)sin" —^^„sin*«,.
6

Let the shear deformation 8x0 be same at any point i (fig. 5b), and

in

then

The X-component of dgt is

hi 8xosin-16>

Qei ^^nsin2eosin^.

(4)

ITT 2S
Qexi öfliSin— —^^^nsin2wsin2—. (5)

Let us next consider the stress due to the deformation 8mi. The axial
deformation of the generator Ami (fig. 6a) is Ami 8micosa>, and the stress in it is

NmiJ ^iEAn S-^EAncosco, N^^ Nmi,i+1 Nmi. (6)
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The resultant stress Tmi (fig. 6a) is

2S„
Tmi 2Nmicosw —^EAncos2w.

2 8„

The Z-component of Tmi is

Tmzi Tmi cos$ ^f±EAn cos2 u> cos rp.

In Fig. 6 b, we find the following relationships

ScOSCüCOStp h2, .'. coscp
hr,

S COS O) cos tu

r.sin— ssinaj,2 16
r, 77 r, .ttsmt-j =^sin— —e3sin —.
s 16 A, 16

Introducing (8) into (7) we have

T
28

^.EM„e,costo.

Z-component of deformation 8mi is

Kzi 8micos<f> 8»
COSCU

'mi

iim.i

\ :

Nm.im.i,

Fig. 6

'*/
Y 16

1 VI

(8)

(9)

(7')

(10)

Fig.7

1=«—l i'i*i

By introducing this value, (7) may also be written as follows:

T„t=^***EA „cos2«,. (7")

According to the assumption indicated at the beginning of this section, 8„

may be expressed as follows (fig. 7)

Kzi 020COS —. (11)

And the moment at the point i is: Mi Tmeir1 cos 16'

Using (7) and (11): Mi -4^EAnr1cos2cocos24^.
1

s 16
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Summing up at all the points of the section

ZMi ^EAncos2oi8z0Zoos2— -^ EAncos2oo8s0. (12)

This must be equal to the applied moment

Ph lfir
S^L —lEAncos*a.oe0. (13)

Introducing (13), (11) and (10) into (6), we obtain the stress of the generator
due to the deformation 8mi

*T PK i7r IIA,N^=l&r~eÄl4k4)C°STQ- (14)

Next, let us consider the X-component of stress Tmi

i-M+i
^i-mxi 2j ™mi.j exi,j ™mi (exi,i-l + ext,i+l) ' (*¦")

i
where exi • is the X-component of direction cosines of the generator »•/, and
with reference to Fig. 3

ITT 1 TT

^COSjg-^COSjg
5

Introducing (14), (16) into (15) we have

(16)

(18)

_ Ph. I r2 it\ .i-n
^^-s^d + ^l1-^008^)0082!!,- (17)

The resultant stress in the X-direction is

Qxt Qexi+Qmxi —f*EAnam*wBm»^

Pht / r2 77 \ in
-zh^i+kA 4iCOS46)cosW

Summing up at all the points of the section

_ _ 2 8-.n _ .„ „.„177 Ph. /, r„ tt\„ „inZQx^-^^msin^Lsin2--8A2(I^i)(l-^c0s-jZcos2-
168_.n _ „ Ph. I r„ 77 \- ^EA^m2M-h^i-^){1-rrsW

Here we must consider the shear stress on the shaft

* -{tV^-iV^ " 4k4ht)-444}p' <20)

The equilibrium between the stresses in the section and the applied force is

P ZQxi + Q3- (2i)

(19)
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Introducing (19) and (20) into (21) we have

g fx0 l6EAnsin2w {y4F2 ~ n^n) where> " F2'ß ?i

Introducing (4), (9) and (22) into (3) we have

PKNetj +-
16r2eesinyg

(l+oc
txß n\ in

TT^-T4ÄcosIojsini6'

+ .j i-l, - ...j i + l.

(22)

(23)



STRESS ANALYSIS AND TESTS ON A ONE-SHEET HYPERBOLOIDAL TOWER 297

We now obtain the resultant stress of an arbitary member i j
¦"i,J ¦"mi.i'-^'ti.j

P h2 f ccß in / 1 + «

16e2r2

ocß in tl+OL 77 a.ß n\ In]-—S-cost^Üi—5—cosecT7T — ¦;—^i—cot—- sin—->, (24)l + kx 16 \1+Ä;2 16 l+kt 16/ 16/ v '

+ ...j i-l, -...j=-i + l, «=A ß=?M, h -^-, k2=
/s

K H V 1 8r2An' "'» %r2An

4. Test Results

The test model has dimensions equal to 1/25 of those of the actual tower as
shown in Fig. 2, and each part of the model is made of steel.

A lateral force was applied at the top of the model by means of a tension
bar, and the magnitude of the tensile force was measured by a tension meter
inserted in the tension bar system as shown in Fig. 8. Seven dial gauges were
used to measure the deflection of the model, and 360 electric resistance wüe
strain gauges were mounted to investigate the stress distribution ofthe model.
The locations of the dial gauges and electric resistance wüe strain gauges are
shown in Fig. 8.

Some of the more important results are shown in Fig. 9, they are the stresses
measured at all the main parts of the model. In Fig. 9, the theoretical values
obtained by means of Eq. (24) are given in condition; the moment of inertia
of the shaft Is is 460 cm4 in this model.

The calculated and the observed stresses show satisfactory agreement,
except at the upper portion of the model aB. In Eq. (24), we have not
considered the boundary effects at the top end of the model, and this might have
affected the above results to some extent at the upper portion aB.

In the practical design of this tower, Eq. (24) was adopted as a design
criterion, and some appropriate modification were therefore applied, for the
upper portion of the tower by reference to the test results.

Summary

A unique tower as shown in Fig. 1 is now under construction on the 3rd
pier of the port of Kobe. This tower consists of an outer net of one-sheet
hyperboloid and the elevator shaft located in the core. This paper comprises
the stress analysis and the experimental study of this tower when subjected
to lateral forces such as the seismic load. The agreement between the test
results and the theoretical results was satisfactory, and the method of calculation

described would be adequate as a practical design criterion.
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Resume

Une tour d'un genre unique, visible ä la fig. 1, est en cours de construction
ä la jetee n° 3 du port de Kobe. Cette tour comporte un treillis exterieur en
hyperboloide ä une nappe et une cage d'ascenseur dans son noyau. L'auteur
presente les resultats du calcul des contraintes et des recherches experimentales
effectuees sur cette tour soumise ä des forces laterales telles que celles d'origine
sismique. On constate un accord satisfaisant entre les essais et les resultats du
calcul, et l'on en conclut que la methode de calcul presentee devrait constituer
un critere süffisant dans la pratique.

Zusammenfassung

Auf dem dritten Landungsdamm des Hafens von Kobe ist gegenwärtig ein

einzigartiger Turm im Bau (siehe Abb. 1). Dieser Turm besteht aus einem
äußeren Netzwerk in der Form eines einschaligen Hyperboloids und einem
den Aufzug enthaltenden Kern. Die vorliegende Abhandlung beschreibt die
Spannungsberechnung und die Modellmessungen unter der Wirkung seitlicher
Kräfte insbesondere infolge von Erdbeben. Die Übereinstimmung der
Versuchsergebnisse mit den rechnerischen Werten ist befriedigend, und die
gewählte Berechnungsmethode darf für die Bedürfnisse der Praxis als ausreichend
bezeichnet werden.
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Näherungsberechnung der gekrümmten Kastenträger mit verformbarem
Querschnitt

Approximate Analysis of Curved Box Beams with Deformable Cross-Section

Calcul approche des poutres-caissons cintrees ä section deformable

RYSZARD DABROWSKI
Dr. Ing., Columbia University. New York

1. Einleitung

Es werden Träger mit einem geschlossenen, biegesteifen Querschnitt, die

gekrümmt und senkrecht zur Krümmungsebene belastet sind, behandelt. Die
QuerschnittsVerformung, bedingt einerseits durch die Art der Lasteintragung
und Queraussteifung und andererseits durch das Vorhandensein einer Krümmung

der Längsachse, soll untersucht werden. Die Behandlung beschränkt
sich zunächst auf frei drehbar gestützte Einfeldträger mit einfach-symmetrischem

Querschnitt, die nur an den Auflagern durch Querschotte ausgesteift
sind (Fig. 1). Ein analoges Problem ist für gerade Kastenträger bereits von

^ip\4
ft

Fig. 1.

mehreren Verfassern behandelt worden — siehe hierzu Literaturhinweise in [1].
Hierbei wird der Einfluß der Schubverformung der Steg- und Gurtwände
des Kastenträgers in der Regel vernachlässigt. Diese Vereinfachung soll auch
für nachfolgende Betrachtungen beibehalten bleiben.

Den Berechnungsgang kann man sich in zwei Etappen aufgeteilt denken.
In der ersten Etappe wird angenommen, daß die Querschnittsverformung
völlig verhindert sei (etwa durch Vorhandensein von gedachten, kontinuierlich
verteilten Querscheiben). Die zugehörigen Biege- und Torsionsmomente können

nach den bekannten Regeln der Statik leicht bestimmt werden. Die als

Folge einer behinderten Torsion immer auftretenden Wölbspannungen (Wölb-
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krafttorsion eines dünnwandigen Kastenträgers mit nichtverformbarem
Querschnitt) werden somit außer acht gelassen1). Dies erscheint wegen ihrer
verhältnismäßigen Kleinheit vertretbar. In der zweiten Etappe, die hier
ausschließlich behandelt werden soll, werden die gedachten Zwischenscheiben
entfernt und der Träger durch ein entsprechendes Gleichgewichtssystem von
äußeren Kräften belastet. (Dies sind die in der ersten Etappe von den gedachten

Zwischenscheiben auf die Trägerwände einwükenden Kräfte in entgegengesetzter

Richtung angebracht.) Durch diese Belastung wird eine Änderung
der Querschnittsform sowie eine Querschnittsverwölbung mit zugehörigen
Normal- und Schubspannungen hervorgerufen.

2. Grundgleichung des Problems

Wölbspannungen. Der Spannungs- und Verformungszustand der zweiten
Berechnungsetappe wird ermittelt. Die Normalspannung wird durch das
Produkt

<7a,=/©

ausgedrückt, wobei f f(z) eine dimensionslose Funktion ist und w die
Verteilung im Querschnitt kennzeichnet. Für einen einfach-symmetrischen
Querschnitt gemäß Fig. 2 a ist der zugehörige w-Verlauf in Fig. 2 b dargestellt. Die
Bedingung N Mx 0 ist von vornherein erfüllt. Aus der Bedingung My
f\iaxdA =0 folgt der Zusammenhang zwischen o>1 und w2.

1- S*J-

L

o)

E5

1B~R

8«
I

'AijJu

Mvj. / \^4
¦4

b)

;—j

l+j

c)

'

/ - N
Süj

d)

Fig. 2.

l) Das Problem der Wölbkrafttorsion eines gekrümmten dünnwandigen Stabes mit
nichtverformbarem Querschnitt ist, sofern es dem Verfasser bekannt ist, nur für Stäbe
mit offenem Querschnitt behandelt worden [2], [3].
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Die von au abhängigen Schubspannungen, ausgedrückt durch den Schub-
fluß T — t8, folgen aus der bekannten Gleichgewichtsbedingung: (ScrJ8z)S
+ d T/8 S 0. Durch die Integration entlang des Konturs (wobei die
Integrationskonstante aus der Bedingung, daß das Torsionsmoment H gleich null
ist, bestimmt wird) erhält man die Beziehungen

mit

T =tS -/'£„,
s

S^^jcodA,

sw s^+c,
(2)

c 2ab jS^hds.

Der Verlauf der Querschnittsfunktion Sw und Sw ist in Fig. 2 c und d gezeigt.

Zusammenhang zwischen Wölbnormalspannungen und Verschiebungen. Die
Vertikalverschiebung der inneren und äußeren Stegwand wird mit vx bzw. v2
bezeichnet. Die Horizontalverschiebung der oberen und unteren Gurtplatte
wird mit u0 bzw. uu benannt. Positive Werte sind in Fig. 3 angegeben. Einzelne

v

?*>Ä jj
"fi-s Fig. 3.

Elemente sind als gekrümmte Stäbe aufzufassen. Die gesuchten Beziehungen
lauten

:V +- ±
Eb (o^ + tojj), r\ r,

e

r2 Eb (Wi + Wa),

<+- Ya^' < +$
(3)

-Wa2"*-

Hierbei bezeichnet )' die Ableitung nach z r<p.
Für den Drillwinkel der Stegelemente gilt 6 (u0 + uu)jb. Die Querschnittsverformung

wird durch den Winkel y (v1 — v2)fa + (u0 + uu)fb beschrieben,
siehe Fig. 3. Wird nun die letztere Beziehung zweimal nach z differenziert und
die Werte aus (3) eingeführt, so ergibt sich nach Reduktion gleichwertiger
Terme eine (etwas unerwartet) einfache Gleichung

7
1
A*-Ar mit A* Eab

4(cu1 + ü>2)'
(4)
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Weitere Beziehungen folgen aus Betrachtung der Verformung des

Querrahmens, der durch Steg- und Gurtelemente gebildet wird.

Verformung des Querrahmens zufolge der Wölbschubspannungen. Durch die
Differenzen der Wölbschubspannungen wird der Querrahmen belastet und
verformt (Fig. 4a). Die resultierenden Schubkräfte sind entgegengesetzt
gleich. Für die untere Platte erhält man z.B.

dQu
dz

W
f" mit W bjS„d8. (5)

W ist die Wölbsteifigkeit (in kgm2). Der Integralausdruck erstreckt sich
natürlich auf die untere Platte.

a)

ddp
"

dz

dQv
dz

dOy
dz

b)

St M
S,^v!lCs2© !0^.(>Ŝ

£©^s=SL--
St --

Fig. 4.

Zugehörige WinkelVerformung yT wird folgendermaßen ausgedrückt:

W
yT=Yf"' (6)

wobei K (in kg) die Rahmensteifigkeit kennzeichnet:

v 24 EJ,. Zb+6—j7-K= r-5 mit V l+ip—i h j i ¦ 7)
rib Jo + Ju '' ' ¦ '

-r r-6 j^-
Die Bezeichnungen folgen aus Fig. 2 a.

Einfluß der Balkenkrümmung. Die Einwirkung der Biegemomente Mx und
der Torsionsmomente H ersetzt man durch die zugehörigen Normal- und
Schubkräfte: ns uz8= — (Mx\Jx)8y, T Hj2ab. Die auf ein durch zwei
benachbarte Radialebenen herausgeschnittenes Balkenelement einwirkenden
Resultierenden dieser Kräfte (die in der zweiten Berechnungsetappe auf die

Trägerwandungen angreifen) sind in Fig. 4b dargestellt. Auf die Stege wirken
die Ablenkungskräfte s-^ bzw. s2 ein. Werden diese auf die Flächeneinheit der
2/z-Fläche bezogen, so erhält man die Flächenlast s=s1 rjr s2r2jr Mx 8 y\Jxr.
Die Ablenkungskräfte aus Biegespannungen in der oberen und in der unteren
Gurtplatte betragen S0 MxA0e0jJxr bzw. Su MxAueJJxr (die Bezeich-
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nungen gemäß Fig. 2a). Aus den Schubkräften T und äußeren Drehmomenten
m folgt die tangentialgerichtete Flächenlast sT 8 Tjdz + m\2ab (H' + m)\2ab.

Die auf die obere und untere Gurtplatte einwirkenden Lasten S0 und sT
bzw. Su und sT werden zu Resultierenden zusammengefaßt. Der zugehörige
Verformungswinkel, einschließlich des Einflusses der Stegkräfte s, beträgt

wobei P =Mr

Mx

^ -lÖJT " +^T
1

2'

M2
6g| (3eo-2e„)(a + 36^) + (3eu-2eo)(a + 36j)

(8)

(9)

15 J. + 6-
Jv a JI

Erwartungsgemäß wird der Beitrag nach Gl. (8) mit wachsendem r immer
kleiner.

Einfluß der äußeren Drehmomente. Äußere Belastung durch Drehmomente
M, m kann gemäß Fig. 5 in reine Torsionsbelastung (Fig. 5b) und eine Gleich-

r
L

o)

f O \

b)

m

2b

C)

m

2b

JB. i
2o + 2a

k-o^
Fig. 5.

gewichtsgruppe (Fig. 5c) aufgeteilt werden, wobei die letztere eine Quer-
schnittsverformung bewirkt. Der Beitrag zum Verformungswinkel y beträgt

m
Ym YK' (10)

Grundgleichung bezüglich des Winkels y. Der wirklich auftretende Winkel
y soll gleich sein der Summe der Beiträge gemäß (6), (8) und (10): y yT +
+ YMz + ym- Man erhält hieraus, unter Berücksichtigung der aus (4) folgenden
Beziehung

f -A<

die Differentialgleichung vierter Ordnung bezüglich y

TV JU 1 / Mx m\

(ii)

(12)
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mit A ]/Ö5' <13>

Es sei bemerkt, daß der Krümmungseinfluß im ersten Lastterm enthalten
ist.

Verformungswinkel y

z=0 i=i
P aussen

067

0.193

P innen

Wölbfunktion f
1 -0,086P aussen-. A

P innen

0,158

Fig. 6.

3. Lösung der Grundgleichung des Problems

Analogie mit dem Balken auf elastischer Bettung. Die Gl. (12) ist analog der
Gleichung für Biegung eines Balkens auf elastischer Unterlage. Der
Durchbiegung v und der Biegesteifigkeit E J des Balkens auf elastischer Unterlage
entspricht in dem hier betrachteten Problem der Verformungswinkel y und
Wölbsteifigkeitsgröße WA*. Ferner tritt an Stelle der Belastung P oder p und
des Biegemomentes M=—EJv" eine «Wölblast» M\2+pMx\r oder m\2 +
+ pMxjr und ein Wölbmoment Wf= — WA*y".

Somit können die aus der Theorie eines Balkens auf elastischer Bettung
bekannten Lösungen und Hilfsmittel zur Lösung des betrachteten Problems
herangezogen werden. Auf Grund der Analogie können aber die einzelnen
Verformungskomponenten der Fig. 3 nicht berechnet werden.

Fouriersche Reihenentwicklung. Die Belastung eines Einfeldträgers kann
wie folgt dargestellt werden:

Piz) 2>nsinar©> m(z) ^mnsmccnz, <x„ -=- (» 1,2,3...). (14)

Der gemäß Fig. 1 frei drehbar gestützte Träger sei durch Einzellast P und
Einzeldrehmoment M im Querschnitt z zx belastet. Somit
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2P 2M ,„Vn =— smo^Zj, mn =-j-sinanz1 (»=1,2...),

mit <A„ -—V- Ä=E^k-J7)cosa„2.
a%r*

Auf Grund der Gl. (12) erhält man ferner

y =2y«sina„2, / 2/nsina„2, (16)

wobei y
1 r^+ife»L _!2*U1 / -^L*a2v ri71

jt(i+-^-U2 «ir" »-M' 7n"

Mit entsprechenden Ansätzen können aus (3) die Verschiebungskomponenten

vlt v2, u0 und uu bestimmt werden. Für die Berechnung von
durchlaufenden Kastenträgern mit verformbarem Querschnitt ist ferner die Kenntnis

der Stützenbiegewinkel der Stegelemente, Xi dv1jr1dcp und Xz dv2jr2d(p,
unerläßlich. Durch diese wird der Zentralbiegewinkel x 1/2(Xi + X2) sowie die
Verwölbung k (2 ja) (x1 — x2) f*ty' zufolge der Querschnittsverformung bestimmt.

Beispiel. Einfeldträger mit Rechteckquerschnitt, gestützt gemäß Fig. 1

(Querscheiben nur in Stützquerschnitten), wird im Mittelquerschnitt durch
Einzellast, die auf die innere bzw. äußere Stegwand angreift, belastet. Abmessungen

(in m): r 60, 1 30, a b 2, 8 0,15 (konstant). Der Verlauf von y
und / ist aus Fig. 6 ersichtlich. Strichliniert sind die Werte für einen geraden
Kastenträger von demselben Querschnitt und Länge l dargestellt.

4. Schlußbemerkungen

Einer unnachgiebigen Querscheibe im Kastenträger entspricht im
stellvertretenden Balken (auf elastischer Unterlage) eine starre Stützung. Sind
nun neben den Endscheiben noch Zwischenscheiben vorhanden, so müssen
dementsprechend Zwischenstützen im stellvertretenden Balken eingeführt
werden. Die Ersatzlast bleibt unverändert und beträgt mj2 + pMxjr. In einem
durchlaufenden gekrümmten Kastenträger ist die Analogie insofern beschränkt,
als daß die Üf^-Momente nicht von Haus aus gegeben sind (und somit die
Ersatzlast nicht im voraus bekannt ist) und durch die Querschnittsverformung
selbst beeinflußt werden. An den Zwischenstützen sind sodann je zwei
unbekannte Größen einzuführen: Biegemoment Mx und Wölbmoment Wf. Diese
können aus den Kontinuitätsbedingungen bezüglich des Biegewinkels und der
Verwölbung ermittelt werden.
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Da die Drülsteifigkeit einzelner Elemente des Kastenträgers überall
vernachlässigt wurde, dürfen die Kastenwände nicht zu stark sein. Demgegenüber

werden in den Stahlbetonbrücken mit Kastenquerschnitt im Falle kleiner
Bauhöhe in der Regel dicke Stege ausgeführt, deren Drülsteifigkeit nicht
vernachlässigt werden darf. Will man diese in der Berechnung berücksichtigen,
so wird die letztere mit zwei Unbekannten 61 (v1 — v2)ja und 82=(u0 + uu)lb
an Stelle von y d-,+82 durchzuführen sein. Die Lösung wird mit Hilfe der
Fourierschen Reihen gefunden.
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Zusammenfassung

Es wird ein gekrümmter Kasten träger mit verformbarem, einfach-symmetrischem

Querschnitt betrachtet. Der die Querschnittsverformungen
charakterisierende Winkel y (Fig. 3) wird aus einer Differentialgleichung vierter
Ordnung, die der Gleichung eines Balkens auf elastischer Bettung analog ist,
bestimmt. Hierbei kann sowohl die erwähnte Analogie ausgenützt als auch
die Reihenentwicklung verwendet werden.

Summary

A curved box beam with deformable monosymmetrical cross-section is
considered. Deformation of the cross-section is characterized by the angle y
(Fig. 3) which is to be determined from a differential equation of 4th order,
the latter being analogous to the equation of a beam on elastic foundation.
The Solution can be obtained either by taking advantage of the above-
mentioned analogy or by employing Fourier series.

Resume

On considere une poutre-caisson cintree ä section monosymetrique deformable.

L'angle y qui definit la deformation de la section est calcule ä partir d'une
equation differentielle du 4e ordre analogue ä l'equation d'une poutre sur
semelle elastique. Le calcul peut etre effectue soit en exploitant cette analogie
soit par un developpement en serie.
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Berechnung der Stahlbetonbrücken als räumliche Tragwerke

Calculation of Reinforced Concrete Bridges as Three-dimensional Truss Structures

Calcul des ponts en beton arme consideres dans l'espace

B. J. ULIZKIJ
UdSSR

Zahlreiche Forschungsergebnisse, die im Laufe der letzten Jahrzehnte
veröffentlicht wurden, zeigen, daß die Untersuchungen auf dem Gebiet der
Wirkungsweise räumlicher Tragwerke sich in drei Hauptrichtungen
entwickelten :

1. das Tragwerk wurde durch einen Trägerrost ersetzt;
2. das Tragwerk wurde durch eine orthotrope Platte ersetzt;
3. die Wirkungsweise des Tragwerks wurde ohne Vereinfachung seines sta¬

tischen Systems untersucht.

Da jedoch die Tragwerke der Stahlbetonbrücken in der Regel weder
Trägerroste noch orthotrope Platten sind, konnten die zwei ersten Richtungen
zu keiner vollständigen Lösung des Problems führen.

Die Mängel dieser beiden Richtungen sind Folgen der Vereinfachung des

statischen Systems der untersuchten Konstruktionen.
Der Trägerrost hat keine Fahrbahnplatte, welche die Kontinuität der Träger

untereinander gewährt und der Wirkungsweise der Konstruktion einen
spezifischen Charakter gibt.

In der orthotropen Platte fehlen die Haupttragelemente, d. h. die Träger,
in denen sich die größten Kräfte konzentrieren. In beiden Fällen kann man
die innern Kräfte in der Regel nur in den Hauptträgern bestimmen, dabei ist
die Lage der neutralen Achse streng fixiert, unabhängig von der Laststellung,
was zu Fehlern bei der Spannungsberechnung führt.

Genauer ist die dritte Art der Berechnung, welche das statische System der
betreffenden untersuchten Konstruktion nicht entstellt und die Mängel der
Methoden 1 und 2 los ist.

Der Verfasser hat eine Theorie zur Berechnung von räumlichen Tragwerken
vorgeschlagen, welche alle Konstruktionselemente in ihrer räumlichen
Wirkung erfaßt und den tatsächlichen Zustand des Tragwerks unter Last erkennen
läßt. Diese Theorie bezieht sich auf die dritte Methode.

Die Grundsätze der Berechnung bestehen im folgenden:
Die Tragwerkkonstruktion, die aus den Haupt- resp. Längsträgern und

einer Platte (bzw. aus zwei Platten im Kastentragwerk) besteht, wird längs
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des Brückenfeldes in einzelne Hauptträger und Platten oder in Hauptträger
mit an sie anschließenden Plattenteilen geschnitten (Fig. 1 und 2). In jedem
Schnitt hat man sechs Komponenten der inneren Kräfte und Momente
einzuführen: drei Momente und drei Kräfte (Fig. 3 a). Durch die Kirchhoffsche

Q(x),

M„U>

NU MU)

NUTU

Fig. 3.

Umformung läßt sich die Anzahl der Komponenten bis auf vier reduzieren:
ein Moment und drei Kräfte (Fig. 3b). Alle Kräfte und Momente bezogen auf
die MitteUinie der Schnitte werden durch trigonometrische Reihen wie folgt
ausgedrückt:

T(x) =8r(x) 8Zyoos^, (1)
n=l

OO

N(x) =8p(x) 8 2)8sin

M (x) 2 ™ sin

Q(x) 2 9 sin
n=l *

m=l

nnx
~T'
nnx

l
'

nnx
1~' (2)

(3)

(©

Die Achse X verläuft längs des Tragwerks und hat an den Enden die
Werte 0 und 1.

Die Werte der unbekannten Parameter y, ß, g und m der trigonometrischen
Funktionen werden aus Verträglichkeitsbedingungen benachbarter Schnitte
gewonnen. Im allgemeinen Falle erhält man für jeden Querschnitt folgende
vier Gleichungen:

1. Gleichheit der Dehnungen längs des Tragwerkes:

— eT + €N ~ €o)i-l + (eT — eN + eo)i,l ~eg,l

(-eT-€i\-eQ)i,r + (eT + eN + €Q.)
(5)

Qli+1 tg,r:

wo €T,€N,eQ Werte der Längsdehnungen infolge der innern Kräfte T(x), N(x),
Q(x), egl; egr analog jene der äußern Kräfte, welche rechts und links vom
i-ten Querschnitt wüken.

Die Indizes neben den Klammern bezeichnen die Verformungen infolge der
innern Kräfte in den Querschnitten i — l, i, i + l.

Die Stauchungen werden mit —, die Längungen mit + bezeichnet.
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2. Gleichheit der waagrechten Krümmungen:

(± + ±-±+±) +(±-JL-±-±) +±
\rT rN rQ rMJi_1 \rT rx rQ rM/itl rql

VT '.V rQ rMI i.r VT 'X rQ rMI i+l rq,r

(6)

wo:
1

rT'
1 1

1 1

— Krümmungen in der Horizontalebene infolge der innern
r-v Kräfte: T(x); N(x); Q(x); M(x),

jene der äußern Kräfte.

Die Krümmungen der Fasern nach rechts werden mit +, nach links mit
— bezeichnet.

3. Gleichheit der senkrechten Krümmungen:

/ 1 1 1 1\ / 1 1 1 1 \ 1

— + — + — + — -— + — + — +— +—\Pt P.x Pq P.M/i-i \Pt Px Pq PM/i.i Pq.i

(±_± + l__L) _(±__L + 1__L) +_L,
\Pt Px Pq PMli.r \Pt Px Pq Pm/i+i Pq.r

4)

wo:

—; —; —; — Krümmungen in der Vertikalebene infolge der innern
Pt Px Pq Pm Kräfte: T(x);N (x);Q(x);M (x),

—; jene der äußern Kräfte.
Pq,l Pq,r

Die Krümmungen nach unten werden mit +, nach oben mit — bezeichnet.
4. Gleichheit der Drehwinkel:

(<P.\ ~9Q+ <P.l/)i-l - (<P.V + ?Q + 93l)t,l +9q,l= /gx
(<Px ~<Pq+ <PM)i.r - (9.x + 9q+ 9m)m -9a.r>

wo:

9x>9q>9m — Drehwinkel infolge der innern Kräfte: N (x); Q(x); M(x).

9q,i> 9q,r Drehwinkel der äußern Kräfte.

Die Drehwinkel der Ränder im Uhrzeigersinn werden mit +, gegen den
Uhrzeigersinn mit — bezeichnet.

Nachdem die Werte der Schnittgrößen nach obigen Gleichungen ermittelt
worden sind, wird die Berechnung der Spannungen und Verformungen infolge
äußerer Last in den einzelnen Konstruktionselementen keine Schwierigkeiten
mehr bereiten.

Bei der Berechnung breiter Brücken (Autobahn, Städte) kann man die
Einflußlinien oder -flächen der entsprechenden Kräfte und Verformungen
bestimmen.
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Als Beispiel wird das Verhalten eines Balkentragwerks, einer Eisenbetonbrücke

ohne Querträger, unter Einzellast erörtert (Fig. 4).

o)

J
700 u| & Ä &"'

t»

Fig. 4.

Die Berechnung als räumliches Tragwerk ermöglichte es, eine Reihe von
Einflußlinien zu finden, welche bei gewöhnlichen Berechnungen nicht gewonnen

werden können. Diese unterscheiden sich von gewöhnlichen Einflußlinien
dadurch, daß ihre Ordinaten die Werte der Verformungen oder Kräfte angeben,

welche nicht von einer Einzelkraft, sondern von einem System von Kräften,

die längs des Tragwerks verteilt sind, sog. Lastkolonnen, herrühren. Das
Berechnungsverfahren ermöglicht es auch, Einflußflächen zu bestimmen, doch
ist in diesem Falle die Berechnung sehr zeitraubend.

Die Fig. 5a,b,c zeigen die Einflußlinien der senkrechten Durchbiegungen
(Wf), der senkrechten Biegemomente (Mf) und Querkräfte ($f) im Hauptträger

am Rande. Die Werte der senkrechten Biegemomente enthalten die
Momente derjenigen Vertikal- und Längskräfte, welche im Querschnitt des

Trägers außermittig angelegt wurden.
In der Fig. 5d ist die Einflußlinie der Längskräfte (Nz) (Zug oder Druck)

im Hauptträger am Rande aufgetragen. Die Werte der Längskräfte lassen sich
mittels dieser Einflußlinie ermitteln. Die Verfahren, die das Tragwerk durch
einen Trägerrost oder eine orthotrope Platte ersetzen, versagen bei der Berechnung

der Längskräfte. Längskräfte verändern die Spannungsverteüung in den
Querschnitten, was eine Verschiebung der Neutralachse zur Folge hat. Die
Änderung der Spannungen in den Hauptträgern durch Längskräfte kann sehr
erheblich sein. Nach den Literaturangaben ergaben Versuche eine Änderung
der Spannungen in den oberen Fasern der Konstruktion etwa um 40%.

Die Fig. 5e,f, g zeigen die Einflußlinien der waagrechten Durchbiegungen
(Wjw), der waagrechten Biegemomente (MY) und Querkräfte (QY) im Hauptträger

am Rande. Diese Einflußlinien zeigen die Wirkung einer asymmetrisch
angreifenden Belastung auf die Querverformung des Tragwerkes.

Bei den Berechnungen stellte sich heraus, daß der Wert des waagrechten
Biegemoments nicht groß ist, d.h. evtl. weniger beträgt als 5% des Werts des
senkrechten Biegemoments. Der Betrag der Querkraft ist erheblich größer
und macht über 30% des Berechnungswertes der Vertikalkraft aus. Offen-
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sichtlich muß man die Längsquerkräfte auch bei der Berechnung des Verbundes

der Platte mit der Rippe berücksichtigen.
In den Fig. 5h, k sind die Einflußlinien der Drehwinkel (q>j) der Querschnitte

des Hauptträgers um ihre Längsachse und der Torsionsmomente (Mf)
angegeben. Durch die Auswertung dieser Einflußlinien mit Lastkolonnen erhält
man die Beträge der Drehwinkel und Torsionsmomente, welche bekanntlich
bei den heutigen Berechnungen berücksichtigt werden müssen.

Außer den oben genannten Einflußlinien kann man auch die Einflußlinien
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der Längsbiegemomente und Querkräfte in der Platte berechnen. Die Auswertung

der Einflußlinien der Längsbiegemomente in der Platte mit Lastkolonnen
ermöghcht die Ermittlung der Längsbiegemomente in der Platte ohne besondere

Berechnungen der Fahrbahnplatte für Vollast.
Ähnliche Eüiflußlinien lassen sich auch für die anderen Hauptträger des

Tragwerks bestimmen.
Die Gesamtheit aller zur Verfügung stehender Berechnungsangaben ist

genügend, um die Frage der Widerstandsfähigkeit der Konstruktion und deren
Festigkeitseigenschaften zu lösen. Die ausgeführten Berechnungen zeigen, daß
sich die Tragwerkkonstruktion unter der Wirkung der äußeren Last in der
Horizontal- und Vertikalebene verformt und sich um ihre Längsachse dreht;
dabei verkrümmen sich die einzelnen Konstruktionselemente (die Platte, die
Hauptträger). Fig. 6 stellt grob den Verlauf der Gesamtverformungen unter
asymmetrischer Last eines einfachen Tragwerkes, bestehend aus zwei Rippen
und einer Platte, dar.

Die genaue räumliche Berechnung zeigt in einigen FäUen, daß sich einzelne
Tragwerkselemente anders verhalten als aus den vereinfachten Berechnungen
folgt. Steht zum Beispiel eine Lastkolonne zwischen beiden Hauptträgern,
weist die Fahrbahnplatte an der Übergangsstelle zu den Hauptträgern im
Bereiche der Stützen negative Momente auf, wogegen im Mittelbereich positive

Momente entstehen. Vgl. Fig. 7.

1

Fig. 6.

Fig. 7.

A
/.

Die vorgeschlagene Theorie kann für die Berechnung von Plattenbrücken
angewandt werden. Dabei wird das Plattentragwerk in einzelne rechteckige
Teile —¦ Platten — zerschnitten. Bei den zusammensetzbaren Konstruktionen
ist es zweckmäßig, die Schnitte in die Fugen zu legen. Im Schnitt müssen die
Querkräfte Q und Momente M eingeführt werden. Die Werte der unbekannten
Kräfte und Momente werden analog der Berechnung der Rippenkonstruktionen

nach folgenden Gleichungen ermittelt:



314 B. J. ULIZKIJ Id5

1. Gleichheit der senkrechten Krümmungen (siehe die Gleichung (7)):

(J.+-L) P± + ±) + J--(J—L) -©-© +J-. ,9,
W PMli-1 \PQ PM/i.1 Pq,} \PQ PMlt.r \PQ © +-P.M/i+l Pq.r

2. Gleichheit der Drehwinkel (siehe die Gleichung (8)):

(~9q + 9is)i-i~(9q + 9at)i,i + 9q,i (~9q+ 9M,i,r~(9q + 9m)m~9q.r- (10)

Nachdem die Werte der Kräfte und Momente in den Schnitten nach obigen
Gleichungen ermittelt worden sind, können die Spannungen und Verformungen

in den einzelnen Konstruktionselementen infolge der Wükung der äußern

Belastung berechnet und die nötigen Einflußlinien ohne Schwierigkeiten
ermittelt werden.

Wenn man im zusammensetzbaren Tragwerk die einzelnen Platten längs
des Tragwerks untereinander gelenkig verbindet, so treten im Schnitt nur
Querkräfte Q auf. Ihre Beträge werden aus der Bedingung der Gleichheit der
senkrechten Krümmungen ermittelt (siehe die Gleichungen (7), (9)).

Als Beispiel wird in der Fig. 8 a die Einflußlinie der Kraft (67x) in der Randfuge

des zusammengesetzten Plattentragwerks dargestellt. Wertet man diese

Einflußlinie mit den Lastkolonnen aus, erhält man die Reaktion im
Randgelenk.

4
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Die Fig. 8 b, c, d zeigt die Einflußlinien der senkrechten Durchbiegungen, der
senkrechten Biegemomente und Querkräfte im Randblock des Tragwerks.

Früher wurde das räumliche Verhalten der Brückenbauten vorwiegend für
einfache Träger untersucht. Die vorgeschlagene Theorie kann auch für die
Berechnung durchlaufender Balken, Krag- und Rahmenkragträgern u. a.
angewandt werden.

Die strenge Berechnung der Konstruktion als räumliches Tragwerk zeigt,
daß die lotrechte äußere Belastung sowohl senkrechte als auch waagrechte
Verformungen sowie Verdrehungen hervorruft. So ruft die dynamische
lotrechte Belastung senkrechte als auch waagrechte Schwingungen, aber auch
Torsionsschwingungen hervor. Folglich müssen für brückendynamische
Untersuchungen die räumlichen Besonderheiten der Konstruktion berücksichtigt
werden.

Selbst wenn die Standfestigkeit der ganzen Brücke oder einzelner Elemente
untersucht werden muß, sind die räumlichen Eigenschaften der Brücke zu
berücksichtigen.

Bei der Berechnung der Stahlbetonbrücken haben die Dauerprozesse
(Schwinden, Kriechen) große Bedeutung. Dabei können auch wiederum diese

Dauerprozesse durch die räumliche Wirkung der Konstruktion beeinflußt
werden.

In allen oben genannten FäUen kann die vorgeschlagene Berechnungstheorie

der Stahlbetonbrücken als räumliche Tragwerke von Nutzen sein.
Zum Schluß muß hervorgehoben werden, daß die zahlreichen Untersuchungen

über die räumliche Wirkungsweise der Brückenkonstruktionen wenig
koordiniert werden. Viele Untersuchungen gehen von stark vereinfachten
Berechnungsschemata aus, was zu keinen exakten Ergebnissen führen kann.

Darum ist es notwendig, in Zukunft die wissenschaftlichen Untersuchungen
über die Wirkungsweise räumlicher Tragwerke zu koordinieren und sich auf
das dritte, bessere Berechnungsverfahren zu orientieren. Zu diesem Zweck
wäre es ratsam, einen speziellen Ausschuß für Fragen der Theorie der räumlichen

Berechnung von Brücken zu schaffen.
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Zusammenfassung

Im vorhegenden Vortrag wird ein neues Verfahren der räumlichen Berechnung

von Brückentragwerken vorgeführt, welches vom wüklichen statischen
System ausgeht und dem Grundcharakter der Konstruktion gerecht wüd.
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Dieses Verfahren gestattet die Berechnung von einfachen sowie durchlaufenden

Platten- und Trägerkonstruktionen, Kragsystemen und Rahmenkragträgern;

kurz, es ermöglicht die Ermittlung der Verformungen und Spannungen

in allen Konstruktionsteilen.
Sowohl bei dynamischer Berechnung als auch bei Berechnungen der

Standfestigkeit räumlicher Tragwerke kann das behandelte Verfahren als Grundlage
dienen.

Summary

In this paper, a new method is presented for the three-dimensional
calculation of bridge truss structures which stems from the actual static system
and satisfies the basic character of the design.

This method allows the calculation of simple as well as continuous slab
and beam constructions, cantilever Systems and frame cantilever beams; in
short, it makes possible the determmation of strains and stresses in all structural

components.
This method can serve as a basis for both dynamic calculation and

calculation of the rigidity of three-dimensional truss structures.

Resume

Dans le present expose, il est presente une nouvelle methode de calcul
tridimensionnel des ossatures de pont qui procede du Systeme statique reel de

l'ouvrage et est appropriee ä ses caracteristiques fondamentales.
Cette methode permet le calcul des systemes en encorbellement, des cadres

avec poutres en porte ä faux et des structures constituees de dalles et de poutres
simples ainsi que continues; bref, eile fournit le moyen de determiner les
deformations et les contraintes dans tous les elements de l'ouvrage.

La methode exposee s'applique aussi bien au calcul dynamique qu'aux
calculs de stabilite des constructions dans l'espace.
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