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Analysis of Interconnected Space Frames
Calcul des systémes hyperstatiques tridimensionnels

Berechnung von rdumlichen Netzwerken

JAMES MICHALOS BERNARD GROSSFIELD
Department of Civil Engineering, New York University

Introduction

A method of analysis is presented which is applicable to any system of
interconnected frames regardless of their configuration or orientation in space.
Loads may be applied in any direction in space, and the effect of temperature
change or movement of supports can be readily included. Each common joint
of the interconnected frames can be free to move in any direction, and the
individual frames can consist of straight or curved components. A numerical
example is included to illustrate the method.

The procedure makes possible the partitioning of a structure in such a way
that the extent of the computations can be controlled. For complex structures
for which the number of simultaneous equations to be solved could exceed
the capacity of the digital computer available, partitioning reduces the equa-
tions to sets which can be readily handled. The coefficients of the sets of
equations are elements of stiffness matrices that can be conveniently deter-
mined by means of a numerical procedure [1, 2].

General Procedure

In this section the procedure of analysis is outlined for a three-dimensional,
interconnected framework consisting of components, straight or curved, of
arbitrary configuration and orientation. All moments, forces and stiffnesses
are referenced to an orthogonal coordinate system. The structure is considered
to be composed of individual branches or circuits, the ends of which are either
at supports or at the junction of other branches, and we proceed as follows:

1. Assume a solution which satisfies geometry.

2. Determine the resulting errors in statics.

3. Impose unit rotations and displacements at each joint in each reference
direction, successively, with all other joints restrained. and determine the
resulting moments and forces at every joint.
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4. Solve for the joint rotations and displacements necessary to adjust the
errors in statics.

5. Determine the moments and forces corresponding to the rotations and
displacements of step 4.

6. Combine the moments and forces of the assumed solution with those of
step 5 to obtain the final moments and forces.

In general, the solution assumed in step 1 is that the joints common to
individual branches are restrained against rotation and translation. For
example, Fig. 1 shows a generalized loaded structure made up of three-dimen-
sional frames which are rigidly connected at the common joints, 4, B, and C.
It is assumed that these joints are completely restrained, and the correspond-
ing fixed-end moments, m,. and fixed-end forces, v,, are determined as ex-
plained in the next section. In the case of support movement or volume changes,
however, it would be necessary to assume a solution having joint translations
consistent with the imposed movements.

At each common joint fixed-end moments and forces on the ends of all
branches at the joint are added algebraically, the positive direction of the
coordinate system indicating the sense of positive forces and positive moment
vectors (right-hand rule). The resulting moments, >’ m,, and the resulting forces,
2. vy, are the errors in statics referred to in step 2. Correction moments and
forces must be added to these unbalanced forces and moments in order to
obtain the final moments and forces.

Correction moments and forces are determined through the application of
steps 3, 4, and 5. In applying step 3, joint 4 of Fig. 1 is first considered to be

Fig. 1. Generalized interconnected three-dimensional frames.

displaced a unit distance along the positive direction of the z-axis. This is
done without allowing joint 4 to rotate and without allowing rotation or
translation at joints B and C. Each of the branches interconnected at joint 4
(i.e., AD, AJ, AC, A B) is analyzed separately, as explained later, to deter-
mine end moments and forces, caused by the joint movement. In general,
three forces (in the z, y, and z directions) and three moments (about the z, y,
and z axes) will be computed at each end of each branch inter-connected at
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joint A. Similarly, unit displacements of joint A in the y-direction and then
in the z-direction are imposed, with rotation at 4 prevented and with rotation
and translation prevented at B and C. The forces and moments corresponding
to each of these movements are computed.

Next, a positive unit rotation about the z-axis is imposed on the structure
at joint 4 while joints 4, B, and C are prevented from translating and joints
B and C are restrained against rotation. If all frames at a joint are rigidly
connected, each is subjected to the imposed unit rotation. No unit rotation is
imposed on frames free to rotate. Branches 4 D, A B, AC, and AJ are each
analyzed separately for the imposed rotation, and the end moments and forces
computed. Again, in general, three moments and three forces will be deter-
mined at each end of each branch. Similar analyses are performed for imposed
unit rotations about the y and z axes respectively. Thus a total of six unit
deformations, three rotational and three translational, are imposed at joint
A with the other joints fixed.

In a similar manner, six unit deformations are imposed at joint B, with 4
and C fixed, and then at C, with 4 and B held fixed. The moments and forces
thus determined are the stiffness coefficients for the individual branches. A
stiffness coefficient s§} represents, for some branch ab, the force (or moment)
in the direction (or about the axis) ¢ due to a unit displacement (or rotation)
in the direction (or about the axis) j. The notation used for the reference
directions is the following: the z, y, and z directions at A are labeled 1, 2,
and 3, and at B they are labeled 7, 8, and 9, as shown in Fig. 1. These numbers
are used to identify forces and displacements. The numbers 4, 5, and 6, and
the numbers 10, 11, and 12 refer to moments (or rotations) about the z, v,
and z axes, respectively, at 4 and B. Similarly, the numbers 13 through 18
are assigned to joint C. The stiffness coefficients of branch A B can be arranged
in a 12th order matrix, S4B, as follows:

811 812 . . . . . . - . . 81’12
821 . . . . . . . . . . 82,12
S48 — : (1)
_812'1 . . . . . . . . . . 812, 12—

The superscription A B has, for convenience, been ommitted from the elements
of the matrix.
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The matrix of Eq. (1) can be partitioned into four 6th order matrices as
follows: _ ‘
S, 48
S4B _ [AAAB] (2)

in which S, is the matrix of stiffness coefficients at the end 4 of branch 4 B
due to unit displacements and rotations at end 4, and S5 is the matrix of
stiffness coefficients at end 4 due to unit displacements and rotations at end
B. The matrices Sp, and Sy consist of the stiffness coefficients at the end B.
For those branches such as D 4, having one end at a fixed support, the stiff-
ness matrix is of order 12 x 6 because no displacements or rotations are imposed
at a fixed end.

Having obtained a stiffness matrix, S, for each branch, it is possible to
form a stiffness matrix, K, for the entire structure. The stiffness coefficients
k;;, of this matrix represent the force (or moment) at the joint in the direction
(or about the axis) ¢ due to a unit displacement (or rotation) in the direction
(or about the axis) j with all other joints completely restrained. They are found
as the sum of the individual stiffness coefficients, i.e.,

kij =285 (3)

This summation is made at each joint where some degree of freedom exists.
For the structure of Fig. 1, which has three joints, each with six degrees of
freedom. K is of order 18. The matrix K may be partitioned into nine 6th
order matrices as follows:

K iK.5 K

K = KBAgKBBéKBC ’ (4)

in which K, ,=3>8,,, K,;=2> 8,5, etc. Since no branch directly connects
joints B and C, K=K 5=0.

In step 4, a column vector, 4, representing the joint rotations and displace-
ments necessary to adjust the errors in statics, is determined from the following
equation of equilibrium:

Q+K4=0. (3)

In this equation, @ is a column vector representing the unbalanced forces
and moments at each joint. Thus,

o- (32

Eq. (5) can be readily solved by inverting the stiffness matrix to obtain
4=—-K1Q. (6)
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Physically, the inverse of the stiffness matrix represents the flexibility matrix
of the actual, unrestrained structure.

In step 5 , the correction forces, »;, and the correction moments, m;, at
the ends of each branch are found from

[”f] — 84, (7)

m;

in which § is the stiffness matrix of the particular branch.
In step 6, the corrections are added to the assumed values to obtain the
final moments and forces. Thus,

] =)+ ) ©

Stiffness Coefficients and Fixed-End Moments and Forces of Branches

In making the analysis discussed in the preceding section, it is necessary
to know, for each branch, fixed-end moments, fixed-end forces, and stiffness
coefficients with respect to the coordinate axes. In the general case of a three-
dimensional branch, three fixed-end moments and three fixed-end forces,
referenced to the orthogonal axes, must be determined at each end of the
branch. With respect to stiffness coefficients, a branch with six degrees of
freedom at each end, such as 4 B in Fig. 1, involves 144 stiffness coefficients,
as in Eq. (1). If one end of the branch has zero degree of freedom, 36 stiffness
coefficients are required. In either case, however, the stiffness matrix is sym-
metrical, thus reducing the number of computations.

The analytical procedure for interconnected frames is independent of the
means used to obtain stiffness coefficients, fixed-end moments, and fixed-end
forces. A generalized procedure, by Barox and MicHALOs [1,2], for closed-
circuit structures curved in space is convenient for this purpose. This method,
which has been put in matrix form by Baron [3], is numerical in the same
sense as solutions of plane frames or arches analyzed by means of the column
analogy [4] or the shear and torsion analogy [1,2]. For a two-dimensional
branch with loads and deformations in the plane of the branch, the generalized
procedure for computing stiffness coefficients, fixed-end moments, and fixed-
end forces, reduces to the column analogy. For loads and deformations normal
to the branch, the procedure reduces to the shear and torsion analogy.

If a planar branch is skewed with respect to the coordinate axes, the fixed-
end moments and forces can be resolved into components parallel to the
coordinate system. As regards the stiffness coefficients, they can be deter-
mined first with respect to the plane of the branch by imposing unit deforma-
tions both in and normal to the plane. Next determine the projections in the
plane and normal to the plane that result from a unit displacement along one
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coordinate axis. Then multiply the forces (and moments) due to unit displace-
ments in the plane of the branch by the corresponding projected displacements,
and, finally, combine the resulting forces (and moments) and resolve them
into components parallel to the coordinate system. These components are the
desired stiffness coefficients for the particular unit displacement.

Analysis through Use of Moment Distribution

Stiffness coefficients of individual branches represent, in the terminology
of Harpy Cross [5], stiffness and carry-over factors, and, if desired, an ana-
lysis of interconnected space frames can be made by an extension of the
method of moment distribution. Such a method has been used previously to
analyze space frames consisting of straight members [2,6] and frames with
curved girders [2, 7].

In applying the method of moment distribution, it is assumed that all
common joints are restrained from translating. Moments are successively
distributed and carried over with respect to each of the axes of the chosen
orthogonal reference system. A moment distributed about one axis at a joint
results in a carry-over moment about each of the other two axes at the joint
and about each of three axes at the far end of each branch framing into the
joint.

With the moments known at the end of each member, the unbalanced force
in each orthogonal direction at each common joint can be determined by
statics. Corrections are then made for the displacements which must take
place along each axis if the joints are actually free to move. This requires the
solution of a set of simultaneous equations involving displacements only. Thus,
the use of moment distribution reduces the number of equations by up to
three at each joint.

Application

In this section the method of analysis is illustrated in connection with
Fig. 2. This structural system is composed of three frames interconnected at
joint C. Frames AC and C'G lie in a single plane, whereas a portion of frame
CH is skewed with respect to all three orthogonal coordinate planes. A con-
centrated load of 5000 Ib. acting in the negative y direction is applied midway
between B and C and a load of 1000 lb. acting in the z direction is applied
at F.

The framework shown in Fig. 2, with one common joint, has been chosen
without regard to any practical considerations. It is used merely to present
the method of analysis in as straightforward a manner as possible. A hollow
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circular cross section is used to simplify the presentation further. It should
be emphasized that the method of analysis, being perfectly general, is applicable
to bending of non-circular sections about non-principal axes, and that any
number of common joints could be introduced.

Hollow circular cross section
of constant area

El = B244x10% M- ft?
GJ= 6341 x10% ib.-ft?

Fig. 2. Structure for numerical example.

The structure is partitioned into three branches, 4C, CG, and CH. In
step 1 joint C is assumed to be restrained against translation and rotation.
Branch 4 C is then analyzed for the fixed-end condition by the column analogy
and branch C G is analyzed for the fixed end condition by the shear and torsion
analogy. The resulting moments and forces at joint C are shown in Table I.
Branch C H is not loaded and, therefore, has no fixed-end moments or forces.
Had it been loaded, the general procedure of BaroN and MicHALOS could
have been used to obtain fixed-end moments and forces.

The resulting errors in statics are found by adding the fixed-end moments
and forces at joint C.

Thus, Q= D vy, = —8451b.
Q, = Xv,, = 2,875 Ib.
Qs = 2 vy, = —2701b.
Q, = Ymy, = 11,852 ft.-1b.
Qs = 2my, = 4,951 ft.-1b.

Qs = S m,, = 44,995 ft.-1b.

As explained in connection with Eq. (2), the stiffness matrices, §4¢, SCG,
SCH for the individual branches are of order 12 X 6 because each branch has
one end fixed. The elements of the matrices for branches 4 C and C G were
obtained through application of the column analogy and the shear and torsion
analogy to each of the two branches. The elements of the matrix for branch



282 JAMES MICHALOS - BERNARD GROSSFIELD Id1

CH were obtained through use of the general procedure for non-planar
branches. These matrices are not included because of space limitations.

The stiffness matrix, K, for the entire structure was determined as per
Eq. (3) by combining individual stiffness coefficients at C' obtained from the
elements of the stiffness matrices for the individual branches. The matrix K,
of order 6 x 6, becomes the following:

~ 13,468 9,112 1,069 5,427 16,356 114,800
9,112 18,142 2,212 17,192 47,057 7,914
1,069 2,212 3,925 ~59,913 ~20,172 53,584

5427 17,192 —59.913 5,274,300 —1,312.200  —545,400
16,356 47,057 -20,172 -1,312,200 5,803,900 1,414,900
114,800 7,914 —53,584  —545,400 -1,414,900 15,293,700

Rotations and displacements at ' were obtained from Eq. (6) by multi-
plying the inverse of K by the column vector consisting of values @, through
Q¢. Correction moments and forces at the ends of the individual branches
were obtained as per Eq. (7), and final moments and forces were obtained as
per Eq. (8). These values are shown in Table I.

Table I. Moments and Forces at Joint C

Forces Moments
Branch
21 Y z x Y z
fixed-end —845 2,875 0 0 0 44,995
AC correction 1,400 -600 115 -117 -5,337 -40,512
final 555 2,275 115 ~117 5,337 4,483
fixed-end 0 0 -270 11,852 4,951 0
CG correction —524 —2,068 180 —8,829 952 -9,592
final -524 -2,068 -90 3,023 5,903 -9,592
fixed-end 0 0 0 0 0 0
CH correction -31 -207 -25 -2,906 —-566 5,109
final =31 -207 -25 -2,906 —-566 5,109
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Summary

A method for the analysis of any system of interconnected frames sub-
jected to a general system of loads or deformations is presented. The frames,
consisting of straight or curved members, may occupy any position in space
and the common joints may be free to move in any direction. The method is
illustrated by a numerical example.

Résumé

Les auteurs présentent une méthode pour le calcul d’un systéme hypersta-
tique quelconque, soumis & un systéme général de charges ou de déformations.
Le systéme, constitué par des éléments droits ou courbes, peut occuper n’im-
porte quelle position dans l’espace et les nceuds peuvent se déplacer dans
toutes les directions. Un exemple numérique illustre la méthode.

Zusammenfassung

Die Autoren beschreiben eine Methode zur Berechnung eines beliebigen,
statisch unbestimmten Systems, welches einem beliebigen System von Bela-
stungen oder Verformungen unterworfen ist. Das aus geraden oder krummen
Elementen zusammengesetzte System kann eine beliebige Stellung im Raum
einnehmen und die Knoten sind nach allen Richtungen verschieblich. Die
Anwendung der Methode wird anhand eines numerischen Beispiels dargestellt.
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The Stiffening Effect of Sheeting in Buildings

L’effet raidisseur de la couverture de tdle des batiments

Die aussteifende Wirkung der Dachhaut

E. R. BRYAN
M. Sc., Ph. D., University of Manchester

1. Introduction

Little attention has been given to the behaviour of sheeted pitched roof
portal frames. PErRCY [1] carried out the earliest known tests. GODFREY and
Bryaw [2] found that the actual bending moments in a sheeted frame were
closer to the moment distribution values allowing no spread of the eaves than
to the full theoretical values. They also found evidence of some tee-beam
action between the sheeting and rafters.

The present paper is a general survey of further work which has been done
at the University of Manchester in conjunction with W. M. EL-DARHAKHNI.
Detailed aspects of the work will be published elsewhere.

2. Tee-Beam Effect

In order to find the moment contribution of the sheeting in a tee-beam,
the experimental arrangement shown in Figs. 1a and 1b was set up. The
central strains and deflection of the beam were measured as load was applied

T C [ o= L+
T Ya!

T L 3'%1'n"I 3'x1%"C BOLTS

" w n W " be
24 24 24 —t ,/249 SHEETING l
t

a b c d
Fig. 1.

to the !/;rd points of the beam. From the measurements, the force in the
sheeting could be deduced. This force may be regarded as the linear elastic
stress, f, (Fig. 1¢), acting over the equivalent width of sheeting, b,, (Fig. 1d)
multiplied by the thickness, . The value of b, was found to be practically
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independent of the level of stress and was more dependent on the number of
fastening bolts than on the width of sheeting. The maximum value found,
b,=1.17in., would probably not be exceeded in practice, even though thicker
sheeting were used, in view of the close bolt and purlin spacings used in the
test. Putting b, =1.17in., the percentage moment contribution of the sheeting
in conjunction with any rafter section and purlin depth may be easily cal-
culated. Although the contribution of the sheeting in the experimental tee-
beam was up to 25%,, the contribution is reduced to 39, for a 8in. deep rafter
with 4in. deep purlins; for bigger beams it is still less.

For practical purposes, therefore, the tee-beam effect of sheeting may be
ignored.

3. Membrane Effect

By far the most important stiffening effect of roof sheeting is its resistance
to shear. The end gables of a pitched roof shed are extremely stiff in their
own planes, so that, when an intermediate frame tends to spread under load,
the displacement forces are carried back to the end gables by means of diagonal
tension fields in the roof sheeting.

e Fig. 2.

From Fig. 2, the shear displacement, 3, in the plane of the sheeting is given by
8 = 4, cosé, (1)

where 4, is the actual eaves displacement and @ is the rafter angle.

Referring to the simple shed shown in Fig. 3a, assume the intermediate
frame spreads some amount 4, at each eave under load, and the roof sheet
provides some horizontal force P preventing further spread.

Let 4 = theoretical eaves displacement of bare frame,
k = theoretical eaves displacement of bare frame due to two opposite
horizontal unit eaves loads.

For the frame, :
4, =4-kP. (2)

For the sheeting, shear displacement 8 =c X shear force, where ¢ = shear
displacement of panel under unit load.



THE STIFFENING EFFECT OF SHEETING IN BUILDINGS 287

P

cos 8

P
~—
b
Ptan 8
a ) f tﬁ Teast
Fig. 3.
c
From ti 1 d Figs. 3b and 3 4 cosB——c—P—
om equation (1) and Figs. and 3ec, ” =5 ond’
. A P
so that, putting ¢, = 20520’ 1 =t (3)
. . 4
Equating equations (2) and (3), P = = (4)
k+—

Thus, the intermediate frame should be designed for the combined effect
of the roof load and the eaves restraining force P.

By similar means, it is possible to find the eaves restraining force at each
frame in a long shed for the cases of (1) all frames loaded (e.g. snow load) or
(2) one frame loaded (e.g. runway load). It is also possible to treat multi-bay
and unsymmetrically loaded frames in the same way, though the working is
naturally more tedious.

4. Modified Moment-Distribution

In a bare frame, using moment distribution analysis,

Final moments = Non-spread moments + Spread moments. (5)

The forces preventing spread of the eaves are called the “artifical joint
restraints’’ (A.J.R.), and the spread moments are due to eaves forces, equal
and opposite to the A.J.R. In a sheeted frame, the spread moments to be
considered are those due to an eaves force equal to the difference between the
A.J.R. and the force actually provided by the roof sheeting.

For the shed in Fig. 3a, A.J.R. = (6)

ir
1+4r’

N N

From equation (4), AJR.—P = (7)
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where P = ¢l (8)
i.e. r is the stiffness of the sheeting relative to the stiffness of the frame.
Thus, Final moments =

37 (9)

T+17 X (Spread moments of bare frame).

Non-spread moments +

.For a long shed with similar frames, and all frames loaded, the central
frame is the design criterion. The central eaves restraining force may be -
calculated in terms of 4/k and r, so that, for the central frame:

Final moments =
Non-spread moments +m (Spread moments of bare frame), (10)

where m may be calculated in terms of r.

A design chart has been drawn up for sheds with different numbers of
intermediate frames, n, showing the variation of m at the central frame with
n. This has been done for various values of r.

Similarly, taking advantage of the fact that the intermediate frames near
the end gables receive more support than those further away, design charts
have been drawn up for sheds with different numbers of intermediate frames,
showing the variation of m with the position of the intermediate frame. Again,
this has been done for various values of r.

When only one frame is loaded, the design charts may still be used, but
the value of m obtained must be divided by a factor which is approximately
equal to } (n +1) provided r is small. The sheeting is specially effective in this
case.

9. Shear Stiffness of Sheeting

It should be noted that the stiffening effect of sheeting may only be utilized
for loads applied after the sheeting has been fixed. At the moment, the main
difficulty in applying the stiffening effect of sheeting to the design of frames,
is the determination of ¢, the shear displacement of a panel under unit load.
A great deal of theoretical and experimental work has been done on panels
of plain sheeting with flexible edge members, and is proceeding for corrugated
sheeting. For the present, it is recommended that practical tests [3] be carried
out on a panel of the sheeting to be used, complete with purlins, fasteners,
ete., in order to determine c.

6. Experimental Work

All the theoretical work described has been verified experimentally by
model tests, tests on a 150ft. span portal frame shed, and by semi-full scale
tests in the laboratory.
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Fig. 4 shows the arrangement for the latter tests. The shed was 16ft. span,
48 ft. long, with frames at 8 ft. spacing. The frames were of 3 in. X 3 in. I sec-
tion with either pinned or encastre bases; the end gables were tied. The
corrugated sheeting was of 26 gauge mild steel fixed with self tapping screws.
Load was applied to the apex. The behaviour of the bare frames agreed exactly
with theory.

In the sheeted shed, when all frames were loaded, the maximum bending
moment measured in the central frame was only 709, of the bare frame value
for the case of pinned bases, and 809, for the case of encastre bases. These
values agreed closely with the bending moments predicted by the proposed
theory.

Opportunity was also taken to load the pinned base shed to collapse by
means of jacks. The actual collapse load of a bare frame (an end gable with
the tie removed) was 2.85 tons and agreed exactly with the value predicted
by simple plastic theory. The collapse load on each frame at collapse of the
shed was 4.05 tons and agreed exactly with the value given by the proposed
theory assuming linear behaviour of the sheeting up to collapse.

The stiffening effect of sheeting is therefore just as important in the plastic
range as in the elastic range.
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Summary

Sheeting in a pitched roof portal shed acts like the web of a deep plate
girder, spanning from gable to gable, tending to prevent intermediate frames
from spreading. This important effect has been studied theoretically and
verified experimentally. Unless it is taken into account, calculated frame
stresses are fictitious.

Résumé

La couverture de toéle d’un halle joue le role de I’dme d’une poutre trés
haute allant d’un pignon & l'autre et tendant a empécher tout déplacement
latéral des portiques intermédiaires. On a étudié la théorie de cet important
effet puis on a procédé a une vérification expérimentale. Tout calcul des sollici-
tations d’une charpente est purement imaginaire si 'on ne tient pas compte
de ce facteur.

Zusammenfassung

Die Dachhaut einer Hallenkonstruktion wirkt als Steg eines von Giebel-
wand zu Giebelwand gespannten hohen Triagers und hindert die Portalrahmen
am seitlichen Ausweichen. Dieser bedeutende Effekt wird theoretisch unter-
sucht und hernach experimentell bestatigt. Wird er vernachlissigt, so erweisen
sich die rechnerischen Spannungen in den Rahmen als unbrauchbar.
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Stress Analysis and Tests on a One-sheet Hyperboloidal Tower
Calcul des contraintes et essais sur une tour en hyperboloide a une nappe

Spannungsanalyse und Versuche an etnem einschaligen Hyperboloid-Turm

BEN KATO
Assistant Professor, University of Tokyo

1. Introduction

A one-sheet hyperboloidal tower, as shown in Fig. 1, is now under construc-
tion on the 3rd pier of the port of Kobe. This tower consists of an outer net of
one-sheet hyperboloid and the elevator shaft located in the core; diaphragms
between the net and the shaft are distributed at each node level of the net
(@...fin fig. 2). The members of the net are made of high tensile steel tubes,
and they are connected by high-strength bolts at every node.
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In this paper the stress calculation and the results of model tests on this
structure, when subjected to lateral forces such as the seismic load, are dis-
cussed.

2. Geometrical Properties of the Hyperboloid

a) The net consists of sixteen pairs of family generators as shown in Fig. 2,
and one of them is

R N R
z_ V§= V2 l/§= 2 _z (1)
b gyl 27 gyt 8N

V2 V2 V2 V2

Enveloping these generators, we have an equation of one-sheet hyperboloid

o _apa_J2( )12 (31)2 2
r2 =x2+y {h(}f_q‘+b) b}—i— R ys) (2)

b) The Z-co-ordinate of each node @ ~ f may be calculated as that of the point
of intersection of corresponding generators.

¢) The geometrical moment of inertia at any section a ~f of the net is I, =
=16724,, A,: sectional area of the generator, and that of the elevator
shaft is 1.

d) The Z-component of direction cosines has the same value in every generator

h a 8 a\?
e, = =098 82=(—=+b)] +|—=) +h?% S : length of the generator.

8 V2 V2

3. Stress Analysis (Lateral Force P at the Top of the Tower)

Both net and shaft may be regarded as jointed to the rigid body at the top
and bottom of the tower, and relative displacement of the net and the shaft
is restrained by diaphragms distributed at the nodes. So we may assume
that the net and the shaft behave as a complete composite structure and
that the applied moment is to be shared between the net and the shaft accord-
ing to the ratio of the moments of intertia

1 k I,
Mn=mM: MS=mM, Ic=Tn—.

M : applied moment, M, : moment acting on the net, M,: moment acting
on the shaft.

We divide the tower at two arbitary adjacent node lines I.J. The shear
force P and the bending moments M;=Ph,, M ;= P (h,+h,) are then acting
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on this portion of the shell (fig. 3). Deformations of an arbitary point 7 of the
section consist of the deformation due to shear §,, and of the deformation
due to bending 3,;; these are also expressed by the meridional deformation
d; and the hoop deformation 84, as shown in Fig. 4.

Fig. 3.

First, let us consider the stress due to deformation 3,,. The axial deforma-
tion of the generator ¢, is: 4y, = +6p;sinw (fig. 5a), and the stress in it is

A:iEAn=i%EAnsinw, +...9=1t—-1, —..9=1+1, (3)

Nez'.a' =

23,

Qa,i = (NHi,i—I—NHi,i—I—I)Sinw = EA,sin*w.

Let the shear deformation 8,, be same at any point ¢ (fig. 5b), and

.t
3g; = 8xosm-lg, (4)

28,

then Qo EA,sinw sin%.

The X-component of fy; is

1 293
Qozi = QpiSin— = —z0

v

EA, sinzwsinzm. (5)

Let us next consider the stress due to the deformation 8,,;. The axial defor-
mation of the generator 4,,; (fig. 6a) is 4,,;,=35,,; cos w, and the stress in it is

N, =Amigy _°

mi,j P

?iEAncosw’ Nmi,i—l = Nmi.i+1 = Np;- (6)
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The resultant stress 7,,; (fig. 6a) is

T.;=2N,;cosw = 2i"”:EAn cos® w
The Z-component of 7),; is
T,.;=1T,;cos¢ = @EAR cos?w cos¢. (7)

In Fig. 6b, we find the following relationships

h e
Scoswcosd =k . cos¢ = Sy 8
P L ¢ scosw  cosw’ (8)
rysin— = ssin s i sm cd 7‘ze sin — (9)
— = w ;. sinw = —2sin— = -2 =
27716 ’ 16  hy, 16

Introducing (8) into (7) we have

28,
T..=—2FKEA,e,cosw. (77)

mzi
S

Z-component of deformation §,,; is

Smm = szeos‘ﬁ - 8 COSw (10)
53 Bmzi
j:i—] i=i+l
By introducing this value, (7) may also be written as follows:
23
T 8’"” EA,cos?w. (7")

According to the assumption indicated at the beginning of this section, §,,;
may be expressed as follows (fig. 7)

v
Smzi = 8,0COS— TS (11)
And the moment at the point ¢ is: M, =1T,,,,r, cos ;g

Using (7) and (11): M, = 2iz°EA 7, €082 w cos? ;g
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Summing up at all the points of the section

>M, = zrlEA cos?wd,, > cos? ;g = lzrlEAncoswaZo. (12)
This must be equal to the applied moment
Ph, _ 167
Tk, . EA, costwd,,. (13)

Introducing (13), (11) and (10) into (6), we obtain the stress of the generator
due to the deformation 3,,;

Ph, im
Nmj = 167, ¢, (1+k) 16 (14)

Next, let us consider the X-component of stress 7,;

1i—1,1+1

@Qnzi = 20 Nmij€rij= Nmilezii1tersin), (15)
7

where e, ; is the X-component of direction cosines of the generator ¢j, and
with reference to Fig. 3
iﬂ' 7'17'
71 COS [g — T3 COS ¢
€rij = — 5 g (16)
Introducing (14), (16) into (15) we have
Ph, 7o g I
s S — 1
4 - 8h2(1+k1)(1 —2cos 16) cos® o (17)
The resultant stress in the X-direction is
25 . -
Qi = Qopit Quuri = sonAnsmzwst;—g
S (AT
8y (1 +ky) 16 16
Summing up at all the points of the section
28, 9 g I Ph, Ty
= M (120058 e 7
P E A, sin*w ) sin T (1+k)( 2cos )Zcos 16 o)
165, , Ph r 77
s EA,sinw———L—(1——2cos—
" 2 Sin%w h2(1+k1)( 7*100816)

Here we must consider the shear stress on the shaft

k, ky 1 [k h) _k hl}
@ = | P Ut o) 1+Ic1Ph1}h2_{l+k2(l+h2 ik by - 20
The equilibrium between the stresses in the section and the applied force is

P=ZQIi+Q3' (21)
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Introducing (19) and (20) into (21) we have

) s ( 1+« «p cosl) where, o = %—1, B = e,

T I6EA, sinfw\l+ky, 1tk 16
Introducing (4), (9) and (22) into (3) we have
Ph, ( 1+« ap 'rr) . i

2 "1

Nei} ==+ - cos— | sin—,
16rzezsin16 1+ky, 14k 16 16

+...j=t=1, —...J=1+1,

Id3

(23)



STRESS ANALYSIS AND TESTS ON A ONE-SHEET HYPERBOLOIDAL TOWER 297

We now obtain the resultant stress of an arbitary member 7

Nij=DNps;+Npi ;=
P hy [ «B i 1+« T af 7\ . i®
= T2 ] %P st Ty L t ) sin27 2
16 ezrz{l+klcos 16"(1+/1¢2cosec 6 " 1+k °'1e) 15 (24
h r I 1
Y, — =Bl B, BT R . Te
s SR p=rkl w=gs P BTgaay R TEa4;

4., Test Results

The test model has dimensions equal to !/,, of those of the actual tower as
shown in Fig. 2, and each part of the model is made of steel.

A lateral force was applied at the top of the model by means of a tension
bar, and the magnitude of the tensile force was measured by a tension meter
inserted in the tension bar system as shown in Fig. 8. Seven dial gauges were
used to measure the deflection of the model, and 360 electric resistance wire
strain gauges were mounted to investigate the stress distribution of the model.
The locations of the dial gauges and electric resistance wire strain gauges are
shown in Fig. 8.

Some of the more important results are shown in Fig. 9, they are the stresses
measured at all the main parts of the model. In Fig. 9, the theoretical values
obtained by means of Eq. (24) are given in condition; the moment of inertia
of the shaft I is 460 cm? in this model.

The calculated and the observed stresses show satisfactory agreement,
except at the upper portion of the model a B. In Eq. (24), we have not con-
sidered the boundary effects at the top end of the model, and this might have
affected the above results to some extent at the upper portion a B.

In the practical design of this tower, Eq. (24) was adopted as a design
criterion, and some appropriate modification were therefore applied, for the
upper portion of the tower by reference to the test results.

Summary

A unique tower as shown in Fig. 1 is now under construction on the 3rd
pier of the port of Kobe. This tower consists of an outer net of one-sheet
hyperboloid and the elevator shaft located in the core. This paper comprises
the stress analysis and the experimental study of this tower when subjected
to lateral forces such as the seismic load. The agreement between the test
results and the theoretical results was satisfactory, and the method of calcula-
tion described would be adequate as a practical design criterion.
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Résumé

Une tour d’un genre unique, visible & la fig. 1, est en cours de construction
a la jetée n® 3 du port de Kobé. Cette tour comporte un treillis extérieur en
hyperboloide & une nappe et une cage d’ascenseur dans son noyau. L’auteur
présente les résultats du calcul des contraintes et des recherches expérimentales
effectuées sur cette tour soumise a des forces latérales telles que celles d’origine
sismique. On constate un accord satisfaisant entre les essais et les résultats du
calcul, et ’on en conclut que la méthode de calcul présentée devrait constituer
un critére suffisant dans la pratique.

Zusammenfassung

Auf dem dritten Landungsdamm des Hafens von Kobe ist gegenwartig ein
einzigartiger Turm im Bau (sieche Abb. 1). Dieser Turm besteht aus einem
dulleren Netzwerk in der Form eines einschaligen Hyperboloids und einem
den Aufzug enthaltenden Kern. Die vorliegende Abhandlung beschreibt die
Spannungsberechnung und die Modellmessungen unter der Wirkung seitlicher
Krifte insbesondere infolge von Erdbeben. Die Ubereinstimmung der Ver-
suchsergebnisse mit den rechnerischen Werten ist befriedigend, und die ge-
wahlte Berechnungsmethode darf fiir die Bediirfnisse der Praxis als ausreichend
bezeichnet werden.
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Niherungsberechnung der gekriimmten Kastentriger mit verformbarem
Querschnitt

Approximate Analysis of Curved Box Beams with Deformable Cross- Section

Calcul approché des poutres-caissons cintrées a section déformable

RYSZARD DABROWSKI
Dr. Ing., Columbia University. New York

1. Einleitung

Es werden Tréiger mit einem geschlossenen, biegesteifen Querschnitt, die
gekriimmt und senkrecht zur Kriimmungsebene belastet sind, behandelt. Die
Querschnittsverformung, bedingt einerseits durch die Art der Lasteintragung
und Queraussteifung und andererseits durch das Vorhandensein einer Kriim-
mung der Lingsachse, soll untersucht werden. Die Behandlung beschrinkt
sich zunédchst auf frei drehbar gestiitzte Einfeldtriger mit einfach-symmetri-
schem Querschnitt, die nur an den Auflagern durch Querschotte ausgesteift
sind (Fig. 1). Ein analoges Problem ist fiir gerade Kastentriger bereits von

Fig. 1.

mehreren Verfassern behandelt worden — siehe hierzu Literaturhinweise in [1].
Hierbei wird der Einflu der Schubverformung der Steg- und Gurtwénde
des Kastentrigers in der Regel vernachlissigt. Diese Vereinfachung soll auch
fir nachfolgende Betrachtungen beibehalten bleiben.

Den Berechnungsgang kann man sich in zwei Etappen aufgeteilt denken.
In der ersten Etappe wird angenommen, dall die Querschnittsverformung
vollig verhindert sei (etwa durch Vorhandensein von gedachten, kontinuierlich
verteilten Querscheiben). Die zugehotrigen Biege- und Torsionsmomente kon-
nen nach den bekannten Regeln der Statik leicht bestimmt werden. Die als
Folge einer behinderten Torsion immer auftretenden Waélbspannungen (Walb-
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krafttorsion eines diinnwandigen Kastentrigers mit nichtverformbarem
Querschnitt) werden somit auler acht gelassen!). Dies erscheint wegen ihrer
verhidltnisméBigen Kleinheit vertretbar. In der 2weiten Etappe, die hier aus-
schlielich behandelt werden soll, werden die gedachten Zwischenscheiben
entfernt und der Triger durch ein entsprechendes Gleichgewichtssystem von
duBleren Kriften belastet. (Dies sind die in der ersten Etappe von den gedach-
ten Zwischenscheiben auf die Tragerwénde einwirkenden Krifte in entgegen-
gesetzter Richtung angebracht.) Durch diese Belastung wird eine Anderung
der Querschnittsform sowie eine Querschnittsverwolbung mit zugehérigen
Normal- und Schubspannungen hervorgerufen.

2, Grundgleichung des Problems

Wolbspannungen. Der Spannungs- und Verformungszustand der zweiten
Berechnungsetappe wird ermittelt. Die Normalspannung wird durch das
Produkt

o, =fw (1)

ausgedriickt, wobei f=f(z) eine dimensionslose Funktion ist und w die Ver-
teilung im Querschnitt kennzeichnet. Fiir einen einfach-symmetrischen Quer-
schnitt gemiB Fig. 2a ist der zugehdrige w-Verlauf in Fig. 2b dargestellt. Die
Bedingung N=M_=0 ist von vornherein erfiillt. Aus der Bedingung M, =
ffwxzdA=0 folgt der Zusammenhang zwischen w, und w,.

4

a) b)
b e e | : )
“.’;_svli(%’_é{sv:[ > Is/“’1
. ——-i-— —] | pt— /
I | I S | VTV .
15, AL =il ¢
l_ | u uvu L .l w
e =t a e
c) d)
/\ !0 Ol = — =)
=1 1T =1 == 11 ==
(-) 1 =) =) -
C ‘——/Lt\ l (+) 1
TN :_ A Fig. 2.
Sw Sw

1) Das Problem der Walbkrafttorsion eines gekrimmten dinnwandigen Stabes mit
nichtverformbarem Querschnitt ist, sofern es dem Verfasser bekannt ist, nur fiir Stéabe
mit offenem Querschnitt behandelt worden [2], [3].
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Die von o, abhingigen Schubspannungen, ausgedriickt durch den Schub-
fluB T'=78, folgen aus der bekannten Gleichgewichtsbedingung: (8¢,/02)8
+07/28=0. Durch die Integration entlang des Konturs (wobei die Inte-
grationskonstante aus der Bedingung, daB3 das Torsionsmoment H gleich null
ist, bestimmt wird) erhédlt man die Beziehungen

T =+8=—-{8,, 8S,=8,+C,
(2)
C

. 1
mit S =m§8whd8.

Der Verlauf der Querschnittsfunktion S, und 8, ist in Fig. 2¢ und d gezeigt.

Zusammenhang zwischen Wilbnormalspannungen und Verschiebungen. Die
Vertikalverschiebung der inneren und duBleren Stegwand wird mit », bzw. v,
bezeichnet. Die Horizontalverschiebung der oberen und unteren Gurtplatte
wird mit %, bzw. u, benannt. Positive Werte sind in Fig. 3 angegeben. Einzelne

Y
=
6) e‘(m

’5’+y:f-\_ !

Elemente sind als gekriimmte Stidbe aufzufassen. Die gesuchten Beziehungen
lauten

2 e, B / ., 0 f
;%‘”1 +H = —Eb(w1+w2)’ ;g”z +7T2‘ = Eb(w1+w2)’ @)
” uO f ” U f

Hierbei bezeichnet ( )’ die Ableitung nach z=r¢.

Fiir den Drillwinkel der Stegelemente gilt 6 = (u,+ %,)/b. Die Querschnitts-
verformung wird durch den Winkel y=(v;—v,)/a+ (%,+u,)/b beschrieben,
siehe Fig. 3. Wird nun die letztere Beziehung zweimal nach z differenziert und
die Werte aus (3) eingefithrt, so ergibt sich nach Reduktion gleichwertiger
Terme eine (etwas unerwartet) einfache Gleichung

N . «. Lab
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Weitere Beziehungen folgen aus Betrachtung der Verformung des Quer-
rahmens, der durch Steg- und Gurtelemente gebildet wird.

Verformung des Querrahmens zufolge der Woélbschubspannungen. Durch die
Differenzen der Wolbschubspannungen wird der Querrahmen belastet und
verformt (Fig. 4a). Die resultierenden Schubkrifte sind entgegengesetzt
gleich. Fiir die untere Platte erhilt man z. B.

_ ddgu _ _%/f” mit W=0b[S8,ds. (3)

W ist die Wolbsteifigkeit (in kgm?). Der Integralausdruck erstreckt sich
natiirlich auf die untere Platte.

a)
dQo
dz
- -
‘/_1\ "-—._.’Y
\ 1 \ l_ﬂﬂl
\ \ dz
— \
——
dQy

Zugehorige Winkelverformung y, wird folgendermaflen ausgedriickt:

W n
ve =% (6)
wobei K (in kg) die Rahmensteifigkeit kennzeichnet:

a Jo+Ju
ko BEL gy B 7. 7
- nb HH Tl - +J0+Ju b JOJ‘U‘ ( )

b ——

oI a J3

Die Bezeichnungen folgen aus Fig. 2a.

Einfluf} der Balkenkriommung. Die Einwirkung der Biegemomente M, und
der Torsionsmomente H ersetzt man durch die zugehdrigen Normal- und
Schubkrifte: n,=o0,8=—(M,[J,)8y, T=H|2ab. Die auf ein durch zwei
benachbarte Radialebenen herausgeschnittenes Balkenelement einwirkenden
Resultierenden dieser Krifte (die in der zweiten Berechnungsetappe auf die
Tréagerwandungen angreifen) sind in Fig. 4b dargestellt. Auf die Stege wirken
die Ablenkungskrifte s; bzw. s, ein. Werden diese auf die Flacheneinheit der
yz-Fliche bezogen, so erhélt man die Flachenlast s=s,7,[r=s,ry/r=M_8y[J, .
Die Ablenkungskrafte aus Biegespannungen in der oberen und in der unteren
Gurtplatte betragen S,=M_ A, ey, r bzw. S,=M_ A, e,/J.r (die Bezeich-

u-u
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nungen gemaf Fig. 2a). Aus den Schubkriften 7' und dulleren Drehmomenten
m folgt die tangentialgerichtete Flachenlast s, =07 /02 +m/2ab=(H +m)/2ab.
Die auf die obere und untere Gurtplatte einwirkenden Lasten S, und s,
bzw. S, und s, werden zu Resultierenden zusammengefat. Der zugehorige
Verformungswinkel, einschlielich des Einflusses der Stegkrifte s, betrigt

Y, = PRy (3)
. _ M _Tey+3e, 25 Aobey 1
wobei p = o . 107, b23, T 3
T Jo (9)
bs, (360—26u)(a+3b7:)+(3eu-—2eo) (a+3ij)
s = .
15 J, Jo+Ju o b JoJa
j % T

Erwartungsgemil3 wird der Beitrag nach Gl. (8) mit wachsendem 7 immer
kleiner.

Einflup der dupPeren Drehmomente. AuBere Belastung durch Drehmomente
M, m kann gemial Fig. 5 in reine Torsionsbelastung (Fig. 5b) und eine Gleich-

a b) c)
m m m
VAR, = &
.l— _ A ] L m B m
1 = 20 T B
A
Fig. 5.

gewichtsgruppe (Fig. 5c¢) aufgeteilt werden, wobei die letztere eine Quer-
schnittsverformung bewirkt. Der Beitrag zum Verformungswinkel y betrigt

m
Ym = "é—' (10)

Grundgleichung beziiglich des Winkels y. Der wirklich auftretende Winkel

y soll gleich sein der Summe der Beitrige gemidl (6), (8) und (10): y=y, +

+¥ar, +¥m- Man erhiilt hieraus, unter Beriicksichtigung der aus (4) folgenden
Beziehung

f=—4%y, (11)

die Differentialgleichung vierter Ordnung beziiglich y
1 M m
YIV+4A4)J=W(P_‘£+'T)‘) (12)

T -
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4
. K

~ Es sei bemerkt, daBl der KriimmungseinfluB im ersten Lastterm enthalten
ist.

Verformungswinkel y

Fig. 6.

3. Losung der Grundgleichung des Problems

Analogie mit dem Balken auf elastischer Bettung. Die Gl. (12) ist analog der
Gleichung fiir Biegung eines Balkens auf elastischer Unterlage. Der Durch-
biegung v und der Biegesteifigkeit £'J des Balkens auf elastischer Unterlage
entspricht in dem hier betrachteten Problem der Verformungswinkel y und
Wolbsteifigkeitsgro3e W .4 *. Ferner tritt an Stelle der Belastung P oder p und
des Biegemomentes M = — K Jv" eine «Wolblasty M/2+p M, [/r oder m/2+
+p M, /r und ein Wolbmoment Wf= — W A*4".

Somit kénnen die aus der Theorie eines Balkens auf elastischer Bettung
bekannten Losungen und Hilfsmittel zur Losung des betrachteten Problems
herangezogen werden. Auf Grund der Analogie kénnen aber die einzelnen
Verformungskomponenten der Fig. 3 nicht berechnet werden.

Fouriersche Reihenentwicklung. Die Belastung eines Einfeldtrigers kann
wie folgt dargestellt werden:

p(2) = 2. p,sina,z, m(z) = D m,sin«, 2, o = (n=1,2,3...). (14)

~3

Der gemial Fig. 1 frei drehbar gestiitzte Triger sei durch Einzellast P und
Einzeldrehmoment M im Querschnitt z =z, belastet. Somit
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2P . 2M .
Pn =—-siney,z, My = —7—Sinay, 2 (n=1,2...),
P m,\ .
M, = Zé pn—T" sin e, 2 (15)
: 1 ¥ P
mit P =1—ﬁ1—’ H =Z;f( n—a%’;)cos(znz.
o2 72

Auf Grund der Gl. (12) erhilt man ferner

y =2 ¥aSina,z, f=21psina,z, (16)
; 1 m, M,
wobei Yn =—a_4_|:?n+¢—;(pn_—)£:|’ fn=A*oci'yn. (17)
K(1+4—;‘4) xy r r

Mit entsprechenden Ansdtzen konnen aus (3) die Verschiebungskompo-
nenten v, vy, %, und u, bestimmt werden. Fiir die Berechnung von durch-
laufenden Kastentrigern mit verformbarem Querschnitt ist ferner die Kennt-
nis der Stiitzenbiegewinkel der Stegelemente, y, =dv,/r;d¢ und x, =d v,/ryd o,
unerldfllich. Durch diese wird der Zentralbiegewinkel y =1/, (x; +x,) sowie die
Verwolbung « = (2/a) (x; —x») &y’ zufolge der Querschnittsverformung bestimmt.

Beispiel. Einfeldtriger mit Rechteckquerschnitt, gestiitzt gemiB Fig. 1
(Querscheiben nur in Stiitzquerschnitten), wird im Mittelquerschnitt durch
Einzellast, die auf die innere bzw. dulere Stegwand angreift, belastet. Abmes-
sungen (in m): r=60, =30, a=b=2, §=0,15 (konstant). Der Verlauf von y
und f ist aus Fig. 6 ersichtlich. Strichliniert sind die Werte fiir einen geraden
Kastentriger von demselben Querschnitt und Linge ! dargestellt,

4. Schlulbemerkungen

Einer unnachgiebigen Querscheibe im Kastentriger entspricht im stell-
vertretenden Balken (auf elastischer Unterlage) eine starre Stiitzung. Sind
nun neben den Endscheiben noch Zwischenscheiben vorhanden, so miissen
dementsprechend Zwischenstiitzen im stellvertretenden Balken eingefiihrt
werden. Die Ersatzlast bleibt unverandert und betrigt m /2 +p M, /r. In einem
durchlaufenden gekriimmten Kastentriger ist die Analogie insofern beschriankt,
als dafl die M_-Momente nicht von Haus aus gegeben sind (und somit die
Ersatzlast nicht im voraus bekannt ist) und durch die Querschnittsverformung
selbst beeinfluBt werden. An den Zwischenstiitzen sind sodann je zwei unbe-
kannte GroBen einzufithren: Biegemoment M, und Woélbmoment W . Diese
kénnen aus den Kontinuitidtsbedingungen beziiglich des Biegewinkels und der
Verwdlbung ermittelt werden.
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Da die Drillsteifigkeit einzelner Elemente des Kastentrigers iiberall ver-
nachlissigt wurde, diirfen die Kastenwinde nicht zu stark sein. Demgegen-
iber werden in den Stahlbetonbriicken mit Kastenquerschnitt im Falle kleiner
Bauhohe in der Regel dicke Stege ausgefiihrt, deren Drillsteifigkeit nicht ver-
nachlassigt werden darf. Will man diese in der Berechnung beriicksichtigen,
so wird die letztere mit zwei Unbekannten 6; = (v; —v,)/a und 0, = (u,+u,)/b
an Stelle von y=0; +0, durchzufiihren sein. Die Losung wird mit Hilfe der
Fourierschen Reihen gefunden.
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Zusammenfassung

Es wird ein gekriimmter Kastentriger mit verformbarem, einfach-sym-
metrischem Querschnitt betrachtet. Der die Querschnittsverformungen charak-
terisierende Winkel y (Fig. 3) wird aus einer Differentialgleichung vierter Ord-
nung, die der Gleichung eines Balkens auf elastischer Bettung analog ist,
bestimmt. Hierbei kann sowohl die erwahnte Analogie ausgentitzt als auch
die Reihenentwicklung verwendet werden.

Summary

A curved box beam with deformable monosymmetrical cross-section is
considered. Deformation of the cross-section is characterized by the angle v
(Fig. 3) which is to be determined from a differential equation of 4th order,
the latter being analogous to the equation of a beam on elastic foundation.
The solution can be obtained either by taking advantage of the above-
mentioned analogy or by employing Fourier series.

Résumé

On considére une poutre-caisson cintrée a section monosymétrique déforma-
ble. L’angle y qui définit la déformation de la section est calculé & partir d’une
équation différentielle du 4e ordre analogue & 1’équation d’une poutre sur
semelle élastique. Le calcul peut étre effectué soit en exploitant cette analogie
soit par un développement en série.
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Berechnung der Stahlbetonbriicken als raumliche Tragwerke
Calculation of Reinforced Concrete Bridges as Three-dimensional Truss Structures

Calcul des ponts en béton armé considérés dans lespace

B. J. ULIZK1J
UdSSR

Zahlreiche Forschungsergebnisse, die im Laufe der letzten Jahrzehnte ver-
offentlicht wurden, zeigen, daBl die Untersuchungen auf dem Gebiet der
Wirkungsweise rdaumlicher Tragwerke sich in drei Hauptrichtungen ent-
wickelten:

1. das Tragwerk wurde durch einen Trigerrost ersetzt;

das Tragwerk wurde durch eine orthotrope Platte ersetzt;

die Wirkungsweise des Tragwerks wurde ohne Vereinfachung seines sta-
tischen Systems untersucht.

.OJ 8]

Da jedoch die Tragwerke der Stahlbetonbriicken in der Regel weder
Tragerroste noch orthotrope Platten sind, konnten die zwei ersten Richtungen
zu keiner vollstandigen Losung des Problems fihren.

Die Mingel dieser beiden Richtungen sind Folgen der Vereinfachung des
statischen Systems der untersuchten Konstruktionen.

Der Triagerrost hat keine Fahrbahnplatte, welche die Kontinuitdat der Tra-
ger untereinander gewdhrt und der Wirkungsweise der Konstruktion einen
spezifischen Charakter gibt.

In der orthotropen Platte fehlen die Haupttragelemente, d. h. die Triger,
in denen sich die gro3ten Krifte konzentrieren. In beiden Fiéllen kann man
die innern Krifte in der Regel nur in den Haupttragern bestimmen, dabei ist
die Lage der neutralen Achse streng fixiert, unabhéngig von der Laststellung,
was zu Fehlern bei der Spannungsberechnung fiihrt.

Genauer ist die dritte Art der Berechnung, welche das statische System der
betreffenden untersuchten Konstruktion nicht entstellt und die Méngel der
Methoden 1 und 2 los ist.

Der Verfasser hat eine Theorie zur Berechnung von rdumlichen Tragwerken
vorgeschlagen, welche alle Konstruktionselemente in ihrer rdumlichen Wir-
kung erfaBt und den tatséchlichen Zustand des Tragwerks unter Last erkennen
laf3t. Diese Theorie bezieht sich auf die dritte Methode.

Die Grundsitze der Berechnung bestehen im folgenden:

Die Tragwerkkonstruktion, die aus den Haupt- resp. Langstriagern und
einer Platte (bzw. aus zwei Platten im Kastentragwerk) besteht, wird langs
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des Briickenfeldes in einzelne Haupttriger und Platten oder in Haupttriger
mit an sie anschlieBenden Plattenteilen geschnitten (Fig. 1 und 2). In jedem
Schnitt hat man sechs Komponenten der inneren Krifte und Momente einzu-
fihren: drei Momente und drei Krifte (Fig. 3a). Durch die Kirchhoffsche

Fig. 3.

Umformung laBt sich die Anzahl der Komponenten bis auf vier reduzieren:
ein Moment und drei Krifte (Fig. 3b). Alle Krifte und Momente bezogen auf
die Mittellinie der Schnitte werden durch trigonometrische Reihen wie folgt
ausgedriickt:

T(x) =8+ (2) =8n21ycosn;x, (1)
N (@) =5p(z) =8 3 Bsin "7, @)
M (z) :,glm sin "7, (3)
Q@) = 3 gsin™7" ()

Die Achse X verlauft lings des Tragwerks und hat an den Enden die
Werte 0 und 1.

Die Werte der unbekannten Parameter v, B8, g und m der trigonometrischen
Funktionen werden aus Vertriglichkeitsbedingungen benachbarter Schnitte
gewonnen. Im allgemeinen Falle erhilt man fiir jeden Querschnitt folgende
vier Gleichungen:

1. Gleichheit der Dehnungen léings des Tragwerkes:

(—eptey—eg)iat(ep—exteg)i—¢ = (5)

(_ET_EA\T_EQ)i,r+(ET+€N+€Q)i+1_eq,7"

WO e, €, € = Werte der Langsdehnungen infolge der innern Kréfte 7' (x), N (),
Q (x), €15 €, = analog jene der duBern Krifte, welche rechts und links vom
i-ten Querschnitt wirken.

Die Indizes neben den Klammern bezeichnen die Verformungen infolge der
innern Krifte in den Querschnitten ¢ —1, 7, ¢ + 1.

Die Stauchungen werden mit —, die Langungen mit + bezeichnet.
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2. Gleichheit der waagrechten Kriimmungen:
1 1 1 1 1 1 1 1 1
—t———+—) | ———— +— =
Tp '™ To TMm/iaa \'r T~y T@ TM/ig Tou (6)

1 1 1 1 1 1 1 1 1
—t———F—) =] -
rp TN To  Talyr rp TN To  Ta)iva Tor

Kriimmungen in der Horizontalebene infolge der innern

'r '™~ T Tm Krifte: T (x); N (x); @ (x); M (),

1 ; " "
— = jene der duBlern Krifte.
To1 Tor

Die Krimmungen der Fasern nach rechts werden mit +, nach links mit
— bezeichnet.
3. Gleichheit der senkrechten Kriimmungen:

1 1 1 1 1 1 1 1 1
—t—t— 4 — -\—+—+—4+— —_—=
PT PN P Pyx/i-1 P PN P Pal/in Pa,1 (7)

1 1 1 1 1 1 1 1 1
(___+___) _(___+___) P
Pr PN PQ Prar/ir Pr PN PQ Pu/i+vr Pqr

wO:

1 I 1 1 . . - .
= Krimmungen in der Vertikalebene infolge der innern

Pr PN Po Pu Krifte: T (z); N (x); @ (x); M (x),
11
Pq,l’ Pq,r

Die Kriimmungen nach unten werden mit +, nach oben mit — bezeichnet.
4. Gleichheit der Drehwinkel:

= jene der dullern Krifte.

ey — o+ Pardia— (@x+Po+Pa)s T4 = (8)
(px —Po+Par)i,r —(Px+ Qo+ Paris1—Pg.r

WO:

NP @y = Drehwinkel infolge der innern Krifte: N (z); @ (x); M ().

®q.15 Pgq.r = Drehwinkel der duBlern Krifte.

Die Drehwinkel der Rander im Uhrzeigersinn werden mit +, gegen den
Uhrzeigersinn mit — bezeichnet.

Nachdem die Werte der SchnittgroBen nach obigen Gleichungen ermittelt
worden sind, wird die Berechnung der Spannungen und Verformungen infolge
dullerer Last in den einzelnen Konstruktionselementen keine Schwierigkeiten
mehr bereiten.

Bei der Berechnung breiter Briicken (Autobahn, Stidte) kann man die
Einflulinien oder -flichen der entsprechenden Krifte und Verformungen
bestimmen.
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Als Beispiel wird das Verhalten eines Balkentragwerks, einer Eisenbeton-
briicke ohne Quertriger, unter Einzellast erortert (Fig. 4).

700
L kK
b) 210
( |
N
f - Fig. 4.
;60 |

Die Berechnung als rdumliches Tragwerk ermoglichte es, eine Reihe von
EinfluBlinien zu finden, welche bei gewohnlichen Berechnungen nicht gewon-
nen werden koénnen. Diese unterscheiden sich von gewodhnlichen EinfluBlinien
dadurch, daBl ihre Ordinaten die Werte der Verformungen oder Krifte ange-
ben, welche nicht von einer Einzelkraft, sondern von einem System von Krif-
ten, die langs des Tragwerks verteilt sind, sog. Lastkolonnen, herriihren. Das
Berechnungsverfahren erméglicht es auch, Einfluflichen zu bestimmen, doch
ist in diesem Falle die Berechnung sehr zeitraubend.

Die Fig. 5a,b,c zeigen die Einflufllinien der senkrechten Durchbiegungen -
(W£), der senkrechten Biegemomente (M%) und Querkrifte (Q7) im Haupt-
triger am Rande. Die Werte der senkrechten Biegemomente enthalten die
Momente derjenigen Vertikal- und Léangskrifte, welche im Querschnitt des
Tragers aullermittig angelegt wurden.

In der Fig. 5d ist die EinfluBlinie der Léngskrifte (V;) (Zug oder Druck)
im Haupttriager am Rande aufgetragen. Die Werte der Liangskrifte lassen sich
mittels dieser EinfluBlinie ermitteln. Die Verfahren, die das Tragwerk durch
einen Trigerrost oder eine orthotrope Platte ersetzen, versagen bei der Berech-
nung der Langskrifte. Langskrifte verandern die Spannungsverteilung in den
Querschnitten, was eine Verschiebung der Neutralachse zur Folge hat. Die
Anderung der Spannungen in den Haupttrigern durch Lingskrifte kann sehr
erheblich sein. Nach den Literaturangaben ergaben Versuche eine Anderung
der Spannungen in den oberen Fasern der Konstruktion etwa um 409,.

Die Fig. 5e,f, g zeigen die EinfluBlinien der waagrechten Durchbiegungen
(W}”), der waagrechten Biegemomente (M¥) und Querkrifte (Q%) im Haupt-
trager am Rande. Diese EinfluBllinien zeigen die Wirkung einer asymmetrisch
angreifenden Belastung auf die Querverformung des Tragwerkes.

Bei den Berechnungen stellte sich heraus, dal der Wert des waagrechten
Biegemoments nicht grof} ist, d.h. evtl. weniger betrigt als 59, des Werts des
senkrechten Biegemoments. Der Betrag der Querkraft ist erheblich groBer
und macht iiber 309, des Berechnungswertes der Vertikalkraft aus. Offen-
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Fig. 5.

sichtlich mul man die Lingsquerkrifte auch bei der Berechnung des Verbun-
des der Platte mit der Rippe beriicksichtigen.

In den Fig. 5h, k sind die Einflufllinien der Drehwinkel (¢;) der Querschnitte
des Haupttriagers um ihre Léngsachse und der Torsionsmomente (M7) ange-
geben. Durch die Auswertung dieser Einflulllinien mit Lastkolonnen erhilt
man die Betrige der Drehwinkel und Torsionsmomente, welche bekanntlich
bei den heutigen Berechnungen beriicksichtigt werden miissen.

AuBer den oben genannten EinfluBlinien kann man auch die Einflullinien
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der Langsbiegemomente und Querkrifte in der Platte berechnen. Die Auswer-
tung der Einflullinien der Langsbiegemomente in der Platte mit Lastkolonnen
ermdglicht die Ermittlung der Langsbiegemomente in der Platte ohne beson-
dere Berechnungen der Fahrbahnplatte fiir Vollast.

Ahnliche EinfluBlinien lassen sich auch fiir die anderen Haupttriger des
Tragwerks bestimmen.

Die Gesamtheit aller zur Verfiigung stehender Berechnungsangaben ist
geniigend, um die Frage der Widerstandsfahigkeit der Konstruktion und deren
Festigkeitseigenschaften zu l6sen. Die ausgefithrten Berechnungen zeigen, daB
sich die Tragwerkkonstruktion unter der Wirkung der duBeren Last in der
Horizontal- und Vertikalebene verformt und sich um ihre Lingsachse dreht;
dabei verkriimmen sich die einzelnen Konstruktionselemente (die Platte, die
Haupttriger). Fig. 6 stellt grob den Verlauf der Gesamtverformungen unter
asymmetrischer Last eines einfachen Tragwerkes, bestehend aus zwei Rippen
und einer Platte, dar.

Die genaue réumliche Berechnung zeigt in einigen Fillen, daB sich einzelne
Tragwerkselemente anders verhalten als aus den vereinfachten Berechnungen
folgt. Steht zum Beispiel eine Lastkolonne zwischen beiden Haupttrigern,
weist die Fahrbahnplatte an der Ubergangsstelle zu den Haupttrigern im
Bereiche der Stiitzen negative Momente auf, wogegen im Mittelbereich posi-
tive Momente entstehen. Vgl. Fig. 7.

Die vorgeschlagene Theorie kann fiir die Berechnung von Plattenbriicken
angewandt werden. Dabei wird das Plattentragwerk in einzelne rechteckige
Teile — Platten — zerschnitten. Bei den zusammensetzbaren Konstruktionen
ist es zweckmailig, die Schnitte in die Fugen zu legen. Im Schnitt miissen die
Querkrifte ) und Momente M eingefiihrt werden. Die Werte der unbekannten
Krifte und Momente werden analog der Berechnung der Rippenkonstruk-
tionen nach folgenden Gleichungen ermittelt:
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1. Gleichheit der senkrechten Kriimmungen (siehe die Gleichung (7)):

1 1 1 1 1 1 1 1 1 1
—ifi— — i +—=——— il e + . (9)
Po Pm/i-1 PQ Par/i1  Pqrl Po Par/ir Po Pa/i+1 Pqr

2. Gleichheit der Drehwinkel (siehe die Gleichung (8)):

(—po+ea)ic1—(Po+Par)iit Por = (—®o T @ar)ir— (Po + Par)is1 — Pgr- (10)

Nachdem die Werte der Krifte und Momente in den Schnitten nach obigen
Gleichungen ermittelt worden sind, konnen die Spannungen und Verformun-
gen in den einzelnen Konstruktionselementen infolge der Wirkung der dullern
Belastung berechnet und die nétigen EinfluBllinien ohne Schwierigkeiten
ermittelt werden.

Wenn man im zusammensetzbaren Tragwerk die einzelnen Platten lings
des Tragwerks untereinander gelenkig verbindet, so treten im Schnitt nur
Querkrifte @ auf. Ihre Betrige werden aus der Bedingung der Gleichheit der
senkrechten Kriimmungen ermittelt (siehe die Gleichungen (7), (9)).

Als Beispiel wird in der Fig. 8a die Einflufilinie der Kraft (¢,) in der Rand-
fuge des zusammengesetzten Plattentragwerks dargestellt. Wertet man diese
EinfluBlinie mit den Lastkolonnen aus, erhilt man die Reaktion im Rand-

gelenk.
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Die Fig. 8b, ¢, d zeigt die Einflullinien der senkrechten Durchbiegungen, der
senkrechten Biegemomente und Querkrifte im Randblock des Tragwerks.

Frither wurde das rdumliche Verhalten der Briickenbauten vorwiegend fiir
einfache Trager untersucht. Die vorgeschlagene Theorie kann auch fiir die
Berechnung durchlaufender Balken, Krag- und Rahmenkragtrigern u. a. ange-
wandt werden.

Die strenge Berechnung der Konstruktion als rdumliches Tragwerk zeigt,
daBl die lotrechte dullere Belastung sowohl senkrechte als auch waagrechte
Verformungen sowie Verdrehungen hervorruft. So ruft die dynamische lot-
rechte Belastung senkrechte als auch waagrechte Schwingungen, aber auch
Torsionsschwingungen hervor. Folglich miissen fiir briickendynamische Unter-
suchungen die rdumlichen Besonderheiten der Konstruktion berticksichtigt
werden.

Selbst wenn die Standfestigkeit der ganzen Briicke oder einzelner Elemente
untersucht werden muf}, sind die rdumlichen Eigenschaften der Briicke zu
beriicksichtigen.

Bei der Berechnung der Stahlbetonbriicken haben die Dauerprozesse
(Schwinden, Kriechen) grofle Bedeutung. Dabei kénnen auch wiederum diese
Dauerprozesse durch die rdumliche Wirkung der Konstruktion beeinflullit
werden.

In allen oben genannten Fillen kann die vorgeschlagene Berechnungs-
theorie der Stahlbetonbriicken als rdumliche Tragwerke von Nutzen sein.

Zum Schlufl muf} hervorgehoben werden, daf3 die zahlreichen Untersuchun-
gen iber die rdumliche Wirkungsweise der Briickenkonstruktionen wenig
koordiniert werden. Viele Untersuchungen gehen von stark vereinfachten
Berechnungsschemata aus, was zu keinen exakten Ergebnissen fiithren kann.

Darum ist es notwendig, in Zukunft die wissenschaftlichen Untersuchungen
iiber die Wirkungsweise rdumlicher Tragwerke zu koordinieren und sich auf
das dritte, bessere Berechnungsverfahren zu orientieren. Zu diesem Zweck
ware es ratsam, einen speziellen Ausschull fiir Fragen der Theorie der rium-
lichen Berechnung von Briicken zu schaffen.
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Zusammenfassung

Im vorliegenden Vortrag wird ein neues Verfahren der raumlichen Berech-
nung von Briickentragwerken vorgefiihrt, welches vom wirklichen statischen
System ausgeht und dem Grundcharakter der Konstruktion gerecht wird.



316 B. J. ULIZKIJ Id5

Dieses Verfahren gestattet die Berechnung von einfachen sowie durchlau-
fenden Platten- und Triagerkonstruktionen, Kragsystemen und Rahmenkrag-
tragern; kurz, es ermdéglicht die Ermittlung der Verformungen und Spannun-
gen in allen Konstruktionsteilen.

Sowohl bei dynamischer Berechnung als auch bei Berechnungen der Stand-
festigkeit rdumlicher Tragwerke kann das behandelte Verfahren als Grundlage
dienen.

Summary

In this paper, a new method is presented for the three-dimensional cal-
culation of bridge truss structures which stems from the actual static system
and satisfies the basic character of the design.

This method allows the calculation of simple as well as continuous slab
and beam constructions, cantilever systems and frame cantilever beams; in
short, it makes possible the determination of strains and stresses in all struc-
tural components.

This method can serve as a basis for both dynamic calculation and cal-
culation of the rigidity of three-dimensional truss structures.

Résumé

Dans le présent exposé, il est présenté une nouvelle méthode de calcul
tridimensionnel des ossatures de pont qui procéde du systéme statique réel de
P’ouvrage et est appropriée a ses caractéristiques fondamentales.

Cette méthode permet le calcul des systémes en encorbellement, des cadres
avec poutres en porte a faux et des structures constituées de dalles et de poutres
simples ainsi que continues; bref, elle fournit le moyen de déterminer les défor-
mations et les contraintes dans tous les éléments de 1’ouvrage.

La méthode exposée s’applique aussi bien au calcul dynamique qu’aux
calculs de stabilité des constructions dans 1’espace.
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